
1

Shared Memory Coherence

Ian Watson & Mikel Lujan

Advanced Processor Technologies Group

COMP60011 Future Multi-core Computing

Multi-Core Programs

� Will meet details of programming later in the
course

� However, it is clear that multiple cores will
each be running their own pieces of code

� This can either be
• Processes – operating system level processes e.g.
separate applications – in many cases do not share
any data – separate virtual memory spaces

• Threads – parallel parts of the same application
sharing the same memory – this is where the
problems lie – assume we are talking about threads

2

COMP60011 Future Multi-core Computing

Typical Multi-Core Structure

CPU

L1 L1

Inst Data

CPU

L1 L1

Inst Data

CPU

L1 L1

Inst Data

CPU

L1 L1

Inst Data

Level 2 Cache

Main Memory

On Chip

Shared Bus

COMP60011 Future Multi-core Computing

Memory Coherence

� What is the coherence problem?
• Core writes to location in its L1 cache

• Other L1 caches may hold shared copies - these will
immediately be out of date

� Core may either
• Write through to L2 cache and/or memory

• Copy back only when cache line is rejected

� In either case we have a problem

� Because each core may have its own copy, it is
not sufficient just to update L2 and/or memory

3

COMP60011 Future Multi-core Computing

Bus Snooping

� Scheme where every core knows who has a copy of its
cached data is far too complex.

� So each core (cache system) ‘snoops’ (i.e. watches
continually) for activity concerned with data addresses
which it has cached.

� This assumes a bus structure which is ‘global’, i.e all
communication can be seen by all

� There are ‘directory based’ coherence schemes for
non-global comms. structures will not consider at
present

COMP60011 Future Multi-core Computing

Snooping Protocols

� Write Invalidate
• CPU wanting to write to an address, grabs a bus
cycle and sends a ‘write invalidate’ message which
contains the address

• All snooping caches invalidate their copy of
appropriate cache line

• CPU writes to its cached copy (assume for now that
it also writes through to memory)

• Any shared read in other CPUs will now miss in cache
and re-fetch new data.

4

COMP60011 Future Multi-core Computing

Snooping Protocols

� Write Update
• CPU wanting to write grabs bus cycle and broadcasts
address & new data as it updates its own copy

• All snooping caches update their copy

� Note that in both schemes, problem of
simultaneous writes is taken care of by bus
arbitration - only one CPU can use the bus at
any one time.

COMP60011 Future Multi-core Computing

Update or Invalidate?

� Update looks the simplest, most obvious and
fastest, but:-
• Multiple writes to same word (no intervening read)
need only one invalidate message but would require
an update for each

• Writes to same block in (usual) multi-word cache
block require only one invalidate but would require
multiple updates.

5

COMP60011 Future Multi-core Computing

Update or Invalidate?

� Due to both spatial and temporal locality,
previous cases occur often.

� Bus bandwidth is a precious commodity in
shared memory multi-processors

� Experience has shown that invalidate protocols
use significantly less bandwidth.

� Will consider implementation details only of
invalidate.

COMP60011 Future Multi-core Computing

Implementation Issues

� In both schemes, knowing if a cached value is not
shared (copy in another cache) can avoid sending any
messages.

� Invalidate description assumed that a cache value
update was written through to memory. If we used a
‘copy back’ scheme (usual for high performance) other
processors could re-fetch incorrect old value on a
cache miss.

� We need a protocol to handle all this.

6

COMP60011 Future Multi-core Computing

MESI Protocol (1)

� A practical multiprocessor invalidate protocol which
attempts to minimize bus usage.

� Allows usage of a ‘copy back’ scheme - i.e. L2/main
memory not updated until ‘dirty’ cache line is displaced

� Extension of usual cache tags, i.e. invalid tag and ‘dirty’
tag in normal copy back cache.

� To make description simpler, we will ignore L2 cache
and treat L2/main memory as a single main memory unit

COMP60011 Future Multi-core Computing

MESI Protocol (2)

Any cache line can be in one of 4 states (2 bits)
� Modified - cache line has been modified, is different

from main memory - is the only cached copy.
(multiprocessor ‘dirty’)

� Exclusive - cache line is the same as main memory and
is the only cached copy

� Shared - Same as main memory but copies may exist in
other caches.

� Invalid - Line data is not valid (as in simple cache)

7

COMP60011 Future Multi-core Computing

MESI Protocol (3)

� Cache line changes state as a function of
memory access events.

� Event may be either
• Due to local processor activity (i.e. cache access)
• Due to bus activity - as a result of snooping

� Each cache line has its own state affected only
if address matches

COMP60011 Future Multi-core Computing

MESI Protocol (4)

� Operation can be described informally by
looking at action in local processor
• Read Hit
• Read Miss
• Write Hit
• Write Miss

� More formally by state transition diagram
(later)

8

COMP60011 Future Multi-core Computing

MESI Local Read Hit

� Line must be in one of MES

� This must be correct local value (if M it must
have been modified locally)

� Simply return value

� No state change

COMP60011 Future Multi-core Computing

MESI Local Read Miss (1)

� CPU makes read request to main memory
� One cache has E copy

• Snooping cache puts copy value on the bus
• Memory access is abandoned
• Local processor caches value
• Both lines set to S

� No other copy in caches
• CPU waits for memory response
• Value stored to local cache, marked E

9

COMP60011 Future Multi-core Computing

MESI Local Read Miss (2)

� Several caches have S copy
• One cache puts copy value on the bus (arbitrated)

• Memory access is abandoned

• Local processor caches value

• Local copy set to S

• Other copies remain S

COMP60011 Future Multi-core Computing

MESI Local Read Miss (3)

� One cache has M copy
• Snooping cache puts copy value on the bus

• Memory access is abandoned

• Local processor caches value

• Local copy tagged S

• Source (M) value copied back to memory

• Source value M -> S

10

COMP60011 Future Multi-core Computing

MESI Local Write Hit (1)

Line must be one of MES

� M
• line is exclusive and already ‘dirty’

• Update local cache value

• no state change

� E
• Update local cache value

• State E -> M

� S
• Processor broadcasts an invalidate on bus

• Snooping processors with S copy change S->I

• Local cache value is updated

• Local state change S->M

COMP60011 Future Multi-core Computing

MESI Local Write Miss (1)

Detailed action depends on copies in other
processors

� No other copies
• Value read from memory to local cache (?)

• Value updated

• Local copy state set to M

11

COMP60011 Future Multi-core Computing

MESI Local Write Miss (2)

� Other copies, either one in state E or more in
state S
• Value read from memory to local cache - bus
transaction marked RWITM (read with intent to
modify)

• Snooping processors see this and set their copy
state to I

• Local copy updated & state set to M

COMP60011 Future Multi-core Computing

MESI Local Write Miss (3)

Another copy in state M
� Processor issues bus transaction marked
RWITM

� Snooping processor sees this
• Blocks RWITM request
• Takes control of bus
• Writes back its copy to memory
• Sets its copy state to I

12

COMP60011 Future Multi-core Computing

MESI Local Write Miss (4)

Another copy in state M (continued)

� Original local processor re-issues RWITM
request

� Is now simple no-copy case
• Value read from memory to local cache

• Local copy value updated

• Local copy state set to M

COMP60011 Future Multi-core Computing

MESI - local cache view

Invalid

Modified Exclusive

Shared
Read

Hit

Read

Hit
Read

Hit

Read

Miss(sh)

Read

Miss(ex)

Write

Hit

Write

Hit

Write

HitWrite

Miss

RWITM

Invalidate

Mem Read

Mem Read

= bus transaction

13

COMP60011 Future Multi-core Computing

MESI - snooping cache view

Invalid

Modified Exclusive

Shared

Mem Read

Mem Read

Mem Read

Invalidate

InvalidateRWITM

= copy back

COMP60011 Future Multi-core Computing

Comments on MESI Protocol

� Relies on global view of all memory activity –
usually implies a global bus

� Bus is a limited shared resource

� As number of cores increases
• Demands on bus bandwidth increase – more total
memory activity

• Bus gets slower due to increased capacitive load

� General consensus is that bus-based systems
cannot be extended beyond a small number (8
or 16?) cores

