
1

The Need for Synchronisation

Ian Watson & Mikel Lujan

Advanced Processor Technologies Group

COMP60011 Future Multi-core Computing

Shared Memory Computations

� There are two major reasons for shared 
memory in a parallel system
• To allow parallel sections of a program to 
communicate with each other

• To allow the expression of problems which naturally 
use shared data

� In both cases, if one computation is writing 
data and another is reading it, there is a need 
to coordinate the reading and writing to ensure 
correct results



2

COMP60011 Future Multi-core Computing

An Example – Airline Reservation

� This is a familiar problem, hence its use

� Not necessarily an obvious multi-core problem 
but representative of many others

� The problem statement is easy
• A plane with reservable seats

• Seats can be reserved ‘on-line’

• Multiple customers can be trying to reserve 
(multiple) seats at the same time

• Seats can be ‘reserved’ or ‘free’

• How do we avoid reservation clashes?

COMP60011 Future Multi-core Computing

Airline Reservation

� Client indicates seat preferences
� Will be done in reality one by one (using a 
mouse?) – reservations noted locally

� Then will confirm to finalise booking – this will 
commit reservations to seat plan

� Note that client wants three seats together
� All OK this time – but what if someone else is 
trying to do the same thing at the same time?

reserved

free



3

COMP60011 Future Multi-core Computing

Airline Reservation

� Client 1 starts reservation – selects first two 
seats

� Client 2 now starts and selects two seats 
before client 1 gets to his third

� Something is about to go wrong!

� Exactly what depends both on what happens 
next plus implementation details

reserved

free

COMP60011 Future Multi-core Computing

Airline Reservation (3)

� Assume we have a coherent system, i.e. a 
committed reservation is seen immediately by 
all clients (in reality this may not be true)

� Assume Client 2 commits reservation
� This is not very satisfactory for Client 1
� He must abandon his reservation and start 
again – poor customer interface – but it is 
potentially worse than that.

reserved

free



4

COMP60011 Future Multi-core Computing

Alternative Possibility – Race Condition

� Client 1 gets in first and thinks he has reserved 
all three so commits reservation – he doesn’t 
see Client 2’s provisional reservation as this is 
noted only locally within Client 2

� But Client 2 thinks he already has both seats 
provisionally reserved and commits just after 
Client 1 – DOUBLE BOOKING!

� Could Client 2 have checked that seats were 
still free just before committing?

� Client 1 commit could still have got in between 
check and Client 2 commit – fundamental 
problem

COMP60011 Future Multi-core Computing

Need for Atomic Sections

� Only way to completely solve the problem is to 
ensure that a set of actions are atomic

� Basically we need to be able to check the state 
of the seats, make our provisional reservation 
selections and then commit them all in one go 
without the possibility of anyone else changing 
the state of the seats in the middle

� We need to make all the above into an atomic 
section this means that it all takes place in one 
go as if it were a single action.



5

COMP60011 Future Multi-core Computing

Locking

� Now consider an implementation of the airline 
system in a real parallel computer system

� The seat plan is simple, it is just an array of 
booleans (free or reserved)

� The simplest way of solving our problem is to 
ensure that only one parallel client can use the 
array at any one time

� This can be achieved by having a lock 
(busy/free) which can only be acquired by one 
client at a time

COMP60011 Future Multi-core Computing

Single Lock Solution

� Clients must get lock 
before they can read or 
write to reservation array

� What’s the problem?

Client 1 Client 2 Client n….

• Client 1 gets lock

• Client 1 reads

• Client 2 fails to get lock

• Client 1 writes

• Client 1 frees lock

• Client 2 gets lock

• Client 2 reads

• Client 2 writes

• Client 2 frees lock



6

COMP60011 Future Multi-core Computing

Serialisation!

� Solution works

� But has totally serialised the problem

� A reservation can’t start until the previous has 
completed

� Particularly serious in interactive system if 
clients take excessive time

� But in previous example, there was actually no 
problem

� Seats were different, no conflict would have 
occurred

COMP60011 Future Multi-core Computing

Fine Grain Locking

� If we have a shared structure, we can 
associate a lock with a particular part of it

� Exactly how is dependent on the 
characteristics of the problem

� In airline reservation we can probably surmise 
that ‘seat row’ level is a reasonable solution
• Small enough that it allows a significant number of 
parallel reservations

• Large enough that it covers a grouping (i.e. a row) 
within which conflict would be undesirable



7

COMP60011 Future Multi-core Computing

Fine Grain Locking

� As long as clients don’t select 
the same row, they can 
proceed in parallel

� More complex

Client 1 Client 2 Client n….

• Client 1 takes row lock

• Client 1 selects seats

• Client 2 takes row lock

• Client 2 selects seats

• Client 1 selects seats

• Client 2 commits 

• Client 2 removes lock

• Client 1 commits

• Client 1 removes lock

COMP60011 Future Multi-core Computing

Locks in Practice

� In the simple form required here, a lock can 
just be a single (boolean) variable with states 
representing busy or free

� There are more complex synchronisation 
mechanisms, notably Semaphores and Monitors 
but, for the moment, we will concentrate on a 
simple boolean lock

� We need to consider what is needed to 
perform the operations get and free on the 
lock



8

COMP60011 Future Multi-core Computing

Lock Operations

� Assume free = 0 busy = 1
� The get operation

while (lock == 1);   // loop doing nothing
lock = 1

� The free operation
lock = 0

� Seems simple but
� Assume two parallel executions of get
� If lock suddenly freed they might both see it
� Both will try to set lock = 1 and continue
� We are trying to define basic operations to 

implement atomic sections but the get operation 
itself needs to be atomic!

COMP60011 Future Multi-core Computing

Test and Set

� To solve this we need to introduce special 
atomic instructions at the machine level

� The simplest of these is test and set
� A single instruction operating on a memory 
location

read location and return value – if value =0 then 
set it to one

� Note that this is a ‘read modify write’ 
operation – hard to do efficiently – need to 
keep control of bus (unless done in memory 
controller)



9

COMP60011 Future Multi-core Computing

Using Test and Set

� The get operation
while (Test_and_Set(lock));   // loop doing nothing until

lock=0

� The free operation
lock = 0

� Other similar instructions
� Compare and Swap

� Load Linked / Store Conditional  (2 instructions!)

COMP60011 Future Multi-core Computing

Monitors

� Higher level code based synchronisation

� A monitor is an object with associated methods

� Only one method can be called on an object at 
any one time

� Is the basic synchronisation mechanism used in 
multi-threaded Java

� You will meet it soon



10

COMP60011 Future Multi-core Computing

Busy Wait vs. Signalling

� When a thread fails to get a lock, what does it 
do?

� Keeps trying continually until the lock becomes 
free – this is busy wait – wastes CPU time and 
bus/memory bandwidth

� Lock has queue on which to leave ID of 
requesting thread

� When active thread frees the lock it checks 
the queue and ‘wakes up’ a waiting thread

COMP60011 Future Multi-core Computing

Deadlock

� Potential problem for any lock based parallel 
program

� Thread needs two locks to complete operation
� E.g. a source & destination bank account to 
make a money transfer.

� One thread gets one lock, another gets the 
other – neither can get both, they wait forever

� Can be solved if known potential problem as 
above (e.g. by timeout)

� But can occur unexpectedly in complex 
programs – makes parallel programming hard



11

COMP60011 Future Multi-core Computing

Overall Summary

� Multi-cores are here, many-cores are coming
� Two major problems

• Parallel programming
• Extensible memory systems

� General purpose parallel programming requires 
shared memory

� But it is providing the required coherent 
shared memory which limits extensibility

� Networks are probably not a big problem as 
long as we don’t want a global view of comms
(required for coherence)

COMP60011 Future Multi-core Computing

Overall Summary (cont.)

� But even with ideal shared memory parallel 
programming is not easy

� A major problem is the need for 
synchronisation

� Locks work but coarse grain kills parallelism, 
fine grain is more complex (more locks)

� More complex programs with more locks are 
more liable to problems (e.g. deadlock)



12

COMP60011 Future Multi-core Computing

Finally – Beware Snake Oil

� “Data parallel programming has been around for 
a while and is understood”
• Only for simple problems

• Many general purpose programs are not data parallel

� “Message passing programming is easier and 
has a formal basis (CSP, pi-calculus)”
• Only for simple (usually data parallel) programs

� “Some languages (e.g. purely functional) are 
easily parallelisable as they don’t have state”
• But they don’t have state!

COMP60011 Future Multi-core Computing

Finally Finally – Beware the Control Freak

� “The more control I have over ....
• Data placement

• Detailed thread creation

• Inter thread communication

• Allocation of threads to cores

• Synchronisation

....the more efficient my parallel program will be”

� But I will probably have gone insane in the 
attempt!


