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NeuroPipe-Chip: A Digital Neuro-Processor for
Spiking Neural Networks

Tim Schoenauer, Sahin Atasoy, Nasser Mehrtash, and HeinrichMé&mnber, IEEE

Abstract—Computing complex spiking artificial neural advantage of the inherent characteristics of silicon devices. An
networks (SANNs) on conventional hardware platforms is far example for an analog time-multiplexed accelerator for SANNs
from reaching real-time requirements. Therefore we propose a 5 described in [19] and proposals exist to link several analog

neuro-processor, called NeuroPipe-Chip, as part of an accelerator hios t hi t 201 H th f
board. In this paper, we introduce two new concepts on chip-level chips to a neuromorphic system [20]. However, the accuracy o

to speed up the computation of SANNs. These concepts are@nalog signal processing is limited, memory storage of analog
implemented in a prototype of the NeuroPipe-Chip. We present signals is area hungry or volatile and transmitting them over
the hardware structure of the prototype and evaluate its perfor-  chip boundaries is difficult. Since we aimed at the computation
mance in a system simulation based on a hardware description of very complex networks with a fairly high accuracy (e.g.

language (HDL). For the computation of a simple SANN for image . . . . - .
segmentation, the NeuroPipe-Chip operating at 100 MHz shows 16 bits) with extensive programming capability, the digital

an improvement of more than two orders of magnitude compared approach was first choice.

to an Alpha 500 MHz workstation and approaches real-time Main objective of the paper is to present the architecture of the
requirements for the computation of SANNSs in the order pfloﬁ NeuroPipe-Chip employing two new concepts for a better com-
neurons. Hence, such an accelerator would allow for applications 1, tational performance. Also HDL-based simulation results of
of complex SANNSs to solve real-world tasks like real-time image - -

processing. The NeuroPipe-Chip has been fabricated in an Alcatel the accelerf_;ltor Sy_stem are described which allow to evalu_ate
0.35-um digital CMOS technology. the NeuroPipe-Chip performance. For a better understanding,
in Section Il and Il of this paper general aspects of SANNSs, the
simulation of SANNSs and a review of our accelerator system is

given.

Index Terms—Neuroaccelerator, neurochip, pulse-coded neural
networks, spiking neural networks.

. INTRODUCTION

PIKING (or pulse-coded or pulsed) neurons represent Il. COMPUTING SPIKING NEURAL NETWORKS

omplex integrate-and-fire neurons. Synchronized firing Spiking neurons represent biophysical models that account
of neuronal assemblies could serve the brain as a code @ properties of real neurons without descending to the level
feature binding, pattern segmentation, and figure/ground se@-onic currents. They rather model the integrated signal flow
aration [10], [3]. Spiking artificial neural networks (SANNS)of incoming action potentials through parts of the neuron, in
are able to model such synchronization since they take ifd@rticular the synapses, dendrites, soma and axon. Opposed to
account the precise timing of spike events. They are therefQtge_coded models, spiking neuron models encode their infor-
subject of investigations for biology-inspired image processingation in the exact timing of a neuron’s firing event not in the
applications [16], [9]. However, employing SANNS for imagrequency rate of firing. Therefore interneuronal communica-
processing requires complex networks in the order 6fdD i takes place solely via action potentials (also called spikes
spiking neurons [12]. Computing large networks of compleg, ises). A discrete-time model of a generic spiking neuron
neuron model_s IS a computatl_onal expensive task and _Ie@\(;l?n g feeding dendrites (excitatory or inhibitory), modulated
to long run times even for high-performance ‘_NorkStat'O%UItipIicativer by a linking dendrite and a dynamic threshold is
[71. Fur'Fhermore, to solve real-world tagks therg is a need 1gp 5y jn Fig. 1. Each dendrite as well as the dynamic threshold
comput'mg complex networks in rea"“”.‘e' which can only modeled by a leaky integrator. There are various types of den-
Ee acrll‘l_eve_c(j:r?y _supercorpputehrs 0(; Eij(_adlca(;e;i_ harldﬁvarotla. ltes with different kinds of influence on the calculation of the
eurobipe-Chip Is part of such a dedicated digital har War[ﬁ"elmbrane potential. Feeding dendrites may be modulated by

accelerator system. For several reasons we chose a digital. . N
y q}ﬁ(mg dendrites for a better synchronization of neuronal as-

and not an analog implementation. Analpg hardware 01ffesr,semblies as proposed by Eckhetral.[4], while other dendrites
a potential for compact, low-power realizations by takin

Yre not influenced by linking and may serve as inhibitory den-
drites. Furthermore, delay elements at the output of the model
Manuscript received November 30, 2000. Prototypes of the NeuroPipe-Chigpresent axonal delays.
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Fig. 1. Discrete-time representation of a generic spiking neuron model [4].
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Fig. 2. Basic structure of a MASPINN-board. Right: circled part is computed by the NeuroPipe-Chip.

usually structured in receptive fields. The network activity redetermines target neurons (neurons receiving a spike) and cor-
sembles the average number of spikes per time slot dividediggponding weight values.
the total number of neurons. Network activity of SANNs is typi- The MASPINN-structure is based on previously proposed
cally lowi.e.,<1%. The computation of SANNSs by digital hard-concepts such as a spike event list, a sender-oriented connec-
ware is performed in discrete time. For real-time computatiotivity list and tagging of dendrite potentials [5], [6], which are
a time interval (which we refer to as time slot) of 1 ms is corsummarized as concepts 1-3 in Table |I. We refer to dendrite
sidered sufficient for the entire network data to be updated [1potentials (DPs) as the state values in the leaky integrators of
the neuron model (Fig. 1). Two additional concepts are asso-
ciated with the MASPINN-architecture: weight caching and a
compressed DP-memory (concepts 4-5 in Table ), which will
be discussed more thoroughly in the following. In principle, all

In order to achieve real-time computation of very compleaf the previously mentioned concepts either try to reduce the
SANNSs we proposed an accelerator system called memory gpaount of computation to a minimum or to make the required
timized accelerator for spiking neural networks (MASPINN);omputation more suitable for a hardware realization.
which is an accelerator board connected to a host computer via4) Compressed DP-MemornyDue to a low network activity,
PCl-bus [13]. As shown in Fig. 2, an MASPINN-board consistsnly part of the DPs in a SANN receive an input. Therefore
of three main units: a neuron unit, which computes the neuramany DPs decay to zero and have no influence on the mem-
model, a spike event list, which stores the addresses of soubcane potential of a neuron. Hence, these DPs do not need to be
neurons (neurons emitting a spike) and a connection unit, whi@bcessed or processed. This can be achieved by using tags which

I1l. A CCELERATORSYSTEM FOR SPIKING NEURAL NETWORKS
MASPINN
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CONCEPTS OFACCELERATORS FORCOMPUTING SANNS

Concept

Principle

Benefit

1.Spike event list

addresses of neurons emitting a spike are stored in an event
list during one time slot and considered as source neurons
during the next time slot.

*  efficient communication between time slots

2.Sender-oriented con-
nectivity list

connections are stored in a list which contains for each
address of a source neuron the addresses of all connected
neurons (target neurons) and a weight value characterizing
the strength of the connection.

* efficient memory organization to store network
connectivity of an arbitrary topology

3.Tagging of dendrite
potentials (DPs)

DPs are tagged to be valid or irrelevant. If they are not valid
they are neither accessed nor processed.

* reduced 10-requirements
* reduced computational load

4.Weight caching

weighted spikes are accumulated in weight caches within the
connection unit one time slot ahead before being propagated
to the corresponding DP in the neuron unit

* parallelization of main processing steps
* reduced I0-bandwidth

5.Compressed DP-
memory

only valid DPs are stored and accessed; each word read from
the DP-memory contains only valid DPs; their address is

* efficient use of I0-bandwidth between neuron
processor and DP-memory

generated by analyzing the stream of tag-bits.

DP[n}, DP-tag(n],
neuron parameter

DP[n+1],
DP-tag{n+1]

mark the relevance of a DP with a single bit. If the value of a
DP drops below a user-defined threshold its tag-bit is set fron
“1" to “0” (concept 3 in Table I).

Normally there is a place in memory reserved for every DP
since the relevance of a DP might change during the comput:
tion. This leads to inefficient access of DP-data once data-worc
which are several DPs wide are stored in a single memory. The:
words might inevitably contain irrelevant DPs and cause a los
of effective bandwidth between the DP-memory and the neuro
processor. What we refer to as compressed DP-memory repr
sents a solution to that problem: only the relevant DPs are store
in memory in consecutive order (first neuron in first layer to last
neuron in last layer). That way only relevant DPs are stored an
transferred between memory and processor.

A disadvantage of this approach is the loss of a direct rela
tionship between the physical memory-address of a DP and i
logical address in the computed network. However this probler
can be solved by analyzing the stream of tag-bits while conse«
utively processing all DPs during each time slot. Each tag-bi
must be counted and at each value “1” the counter value repr:
sents an address belonging to one of the DPs in the conseculti
stream of DPs, which is read in parallel. This task is performe
by on-chip tag-to-address- and address-to-tag-converter of tt
NeuroPipe-Chip (Fig. 3).

2) Weight Caching:Weight caches represent copies of a
complete DP-memory (for each DP there is a certain place i
memory reserved). They are used to accumulate all weighted
spikes occurring in one time slot. The accumulated weight¥: 3. Basic blocks of the NeuroPipe-Chip.
then serve as target neuron input during the next time slot.
Two weight caches are required: during an entire time slot one
functions as an accumulator while the other one sends weights,
which have been accumulated in the previous time slot, to themain task of the NeuroPipe-Chip is to compute a spiking
neuron unit. The function (accumulator/sender) of the weigheuron model as depicted in the circled part of Fig. 2. Dendrites
caches alternates with each new time slot. Since thereby thay also be modeled by higher order filters (not shown in
complete stimulation data for each DP is known already at tRég. 2). In order to allow different kinds of neuron models to
beginning of the next time slot, the main processing stepsite computed, the NeuroPipe-Chip computes a programmable
compute the neuron model may be processed in parallel bypeuron model: with a program code the user specifies the
pipelined datapath (see Fig. 3). The pipelined processing wilimber of DPs per neuron and how each DP contributes to
be outlined in more detail in the following section. the membrane potential (e.g., excitatory, inhibitory, multiplica-
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IV. ARCHITECTURE OF THENEUROPIPE-CHIP
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tively). All neurons of one layer are supposed to have the sam@nsecutively fed into a datapath pipeline performing the steps:

characteristics. decay, propagate, and output (see Fig. 3). In addition to a fully
For each time slot the computation of the neuron model copipelined datapath, several such datapaths in parallel achieve a
tains the following sequence of steps [8]. further speed up. The NeuroPipe-Chip was designed with two
Decay: DPs are decayed (“leaky integration”). datapaths in parallel.

Propagate: Stimuli from other neurons in the network or Per clock cycle each of the two parallel datapaths re-
the input layer (“accumulated weights”) are added to treeives a relevant DP from the DP-memory via the neuron
corresponding DP. memory-(NM)-Interface (see Fig. 3). The neuron memory en-
Output: DPs are combined to a membrane potential s@oses the DP-, the DP-tag- and the neuron-parameter memory.
cording to a program code. When exceeding a threshdfiom the DP-tag-stream, the corresponding DP-address is
the neuron spikes and therefore its address is written to @@nerated by a tag-to-address-converter. DP-data and -address
spike event list. now enter a pipeline stage where the DP-data is multiplied
The basic computational steps (decay, propagate, outpliih a decay factor (“decay stage”). If the result is below a
have been implemented in the dataflow architecture of th&er-defined threshold, the DP is regarded irrelevant and the DP
NeuroPipe-Processor as depicted in a block diagram of tise'emoved from further processing. In the next pipeline stage
NeuroPipe-Processor in Fig. 3. Therefore the basic operatigisaccumulated weight from the weight cache is combined with
to compute a neuron model are hard-wired. However, iie DP (“propagate stage”): An accumulated weight and a DP
specifying, e.g., the number of DPs per neuron and selectiwiih an equal address are summed; an accumulated weight with
different functionality of each DP with a program code, th80 corresponding DP becomes a new DP and is inserted into
user may program the NeuroPipe-Processor to compute varigig DP-stream so that the consecutive order of DPs is remained.
neuron models. Since DP-removal in the decay stage and DP-insertion in the
For example, to compute the neuron model of the benchmd&iopagate stage might cause stalls within the datapath pipeline,
network we used in Fig. 6(a), (1)—(4) need to be solved to updaitet-in—first-out-(FIFO)-Memories have been added in front

the DPs in time slofz], which areDPY, DPL. DPIandDPT and behind the pipe stage to buffer data irregularities.
At the output of the propagate stage the DP is now com-

pletely updated and a copy of the data is written back to the

F F F F
DP ] =w™ - x o] +rp - DP 0 — 1] @ DP-memory. The corresponding DP-address is converted back
. p . . into a “1” at the proper place in the DP-tag-stream by an ad-
DP"[n] =) w} -af[n]+r-DP"[n—1]  (2) dress-to-tag-converter. From the propagate stage a copy of the
i=1 DP is also delivered to a subsequent pipe stage, the higher order
q filter stage, where DPs are cascaded to model higher order filter
DPIn] = Z wf . arf[n] +77-DPIn - 1] (3) functions. A sorting stage then maps all DPs of the same neuron
j=1 to one of two parallel processor-elements (PEs). A PE computes
DPT[n] =no - y[n] + 2 - DPT[n — 1. 4) the membrane potential and determines the spike activity of the

neuron. Optimal load balancing of the parallel PEs is achieved

by the sorting stage. It uses the half-full-flags of the FIFOs in
The upper index refers to the feeding, linking, inhibitory, angtont of each PE to decide which PE the next neuron will be

the dynamic threshold character of the parameter, whés& mapped to. In case a neuron is active, its address is written to

neuron input ang the neuron outputy a connection weight, the spike event list.

andr a decay factor. During the decay phase the decayterm

DP[n—1]is calculated. In the propagate phase, the accumulated

weight value>~ w-z[n] is added to the decay term. Based on the V. NoveL CONCEPTS OF THENEUROPIPE-CHIP

updated DPs, the membrane potentipl] is calculated by (5)  The architecture of the NeuroPipe-Chip was designed to take
and upon spike emission is determined by (6) during the OUt%vantage of the MASPINN-concepts such as weight caching
phase and a compressed DP-memory. However, also two novel con-
cepts in the NeuroPipe design allow further increase in system
uln] =DPF[n] - (1 4+ DP[n]) — DP'[n] (5) performance: an on-chip inhibition unit and data preanalysis.
. T 1) On-Chip Inhibition Unit; In SANNs for image pro-

yn] = { 1, i (“[n]_z DP7[n]+6) (6) cessing, inhibition is commonly used to control network
0, otherwise. activity and to generate a winner-take-all mechanism: e.g., to
separate objects in time by an SANN for image segmentation

While 79 in (4) represents the strength of the negative feeflt1l]. Such an inhibition module receives spikes from all neu-
back by the dynamic threshold potenti@l,refers to the static rons or a large portion of the network. It then applies equally
threshold offset. distributed negative feedback to these neurons. Typically, the
Thanks to the concept of weight caching, the complete setadnnections to and from the inhibition module have similar
data to compute the neuron model is available at the beginnstgength. Therefore, an inhibition module may be implemented
of a new time slot; all DPs and accumulated weights. Thereenveniently on-chip: only a few parameters are required for
fore, starting with the first relevant DP of the first layer, DPs areharacterization; also, by placing the on-chip inhibition unit
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Fig. 4. On-chip inhibition unit.

within a processor element, resource sharing of arithmef for each neuron of the network, memory, 10-bandwidth, and
modules, like multipliers, minimizes area overhead. computation time are saved.

The basic structure of the on-chip inhibition unit is shown in Since a global inhibitory potential is identical for all neurons,
Fig. 4. The left part of Fig. 4 shows registers with additionat is not necessary to take it into account for each neuron of a
neuron parameters required. The middle part represents thelaiger during membrane potential calculation. Instead, it may be
quired arithmetic elements. Since the computation takes onlg@mputed once at the beginning of layer processing and added
few clock cycles and is required only once during a time slot, the the static threshold (see Fig. 4) modifying (6) to
arithmetic elements of a PE may be used. The right part shows
the main elements of the on-chip inhibition unit: only a counter,
registers for the inhibition data, and a controller are necessary. y[n] = {

The global inhibition unit works as follows. Each spike of a
neuron within a layer increments a counter. At the end of layer
processing, the counter value is multiplied with an inhibition |n the case that the inhibition is not global but only local to
weight, buffered, and added to an inhibitory accumulator ardfew layers, several inhibition units are required. In the Neu-
finally the counter is reset (see Fig. 4). These actions repegPipe-Chip, we implemented two on-chip inhibition units, one
for each layer of the network during one time slot. Hence, gt each PE.
the end of a time slot the value in the inhibitory accumulator 2) Data Preanalysis:Computational resources can be
represents some equivalent of the network activity during thigrthermore saved by analyzing which DPs need to be taken
time slot. It may be used during the next time slot to inhibjhto account for membrane potential calculation. A reduction of
the network. For example the accumulated value is added tegiputational load is particularly important when considering
so-called global inhibitory potentid) P}, ,,, which is decayed a multiplication of 16 bit operands (e.g., DP) as required in
each time slot by an inhibitory decay factor. Considering a a PE for example during a linking multiplication. Such a
simple case of uniform global inhibition, each neuron of thgultiplication may demand several clock cycles in a hardware
network is an element of the sy, and, if active, it takes realization. The multiplier in the PE of the NeuroPipe-Chip was
partin the inhibition process with a synaptic strengfly,,,- The  designed as a two-stage pipelined booth-encoded-Wallace-tree-
inhibitory DP (D P’) of (3) previously had to be computed formultiplier in order to achieve a clock frequency of 100 MHz
each neuron. Now it may be substituted by a global inhibitofy the 0.35pm-CMOS technology. Therefore, during each
potential D P, ;, which is computed only once per time slot formultiplication the PE is busy for three clock cycles. However,

1, if (uln] > DPT[n]+ 6+ DP}, ®
0, otherwise.

the entire network the rest of the datapath stages (e.g., decay stage, propagate
stage) is designed to compute an output within one clock cycle.
J€Ninnin Thus, the output stage of the NeuroPipe-Processor with PEs
DP}o[n] = whe,- Z yjIn—1]4r;-DP},[n—1]. (7) performing linking operations might become a bottleneck and
J=1 could require the introduction of wait cycles in other processing

stages of the chip.
By computing the inhibitory potential in the on-chip inhibition Computational load of the PE can be reduced by analyzing
unit only once per time slot instead of computing an inhibitorshe character and validity of DPs belonging to a certain neuron.
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X 1) o Output NEUROPIPE-CHIP
y In} €(0.1] L . . .
X' [ O In the process of designing the NeuroPipe-Chip, we realized
X; [n] » Mmooy a HDL-model on register transfer level (RTL) of the chip in the
’ hardware description language VHDL. In the design flow of
@) an ASIC (Application Specific Integrated Circuit), the register
' transfer level of a chip represents an intermediate stage between
1 HT an algorithmic description and the actual circuit layout. The cor-
N T”|| Houput respondence of the RTL-model of the NeuroPipe-Chip to the
o | Pt fabricated prototype in respect to timing and functionality was
%nﬂgﬁs}ln oo eteces verified during chip test (see Section VII). However, the entire
XS Output Layer MASPINN-system has not yet been implemented in hardware.
O Therefore, for performance evaluations the MASPINN-system
,HTT is modeled in behavioral (algorithmic) VHDL-code. The algo-
TTHl" i | T l J rithmic MASPINN-model is used as a testbench for the Neu-

roPipe- RTL-model. The MASPINN-model always provides/re-
ceives the required data to/from the NeuroPipe-Chip within one
PTnput Layer clock cycle. This is a realistic assumption for the interfaces to
the spike-event list and the memories within the neuron unit
where fast static random access memories (SRAMs) may be
Fig. 6. (a) Neuron model. (b) Network topology [11]. used. However, for the interface to the connection unit, this as-
sumption is only valid up to a maximum number of connections.

For example, if there are no valid DPs of a neuron with agdrxceeding such a number of connections, the connection unit
tive (excitatory) influence on the membrane potential, it dod¥ll become a bottle neck for computation speed. In that case
not make sense to calculate the ones with multiplicative or suf€ access of connection weights and their accumulation in the
tractive (inhibitory) influence even if they are valid: in any cas@eight caches will take more time than the computation of the
the neuron will not emit a spike. An example of such a scenar§uron model by the NeuroPipe-Chip. Building a MASPINN-
based on the neuron model in Fig. 6(a) is depicted in Fig. 5. board with state-of-the-art components, up to 50-100 connec-
In the NeuroPipe-Architecture, the sorting unit keeps tradiens per neuron at a network activity of about 0.5% seem fea-
of the types of DPs in the datapath pipeline (see Fig. 3). Fisible.
of all the sorting unit maps all DPs belonging to one neuron to In order to validate the functioning of the NeuroPipe-Chip
a certain PE. To achieve an optimal load balancing between il to evaluate its performance, we chose a simple SANN for
two PE, the sorting unit takes into account the fill state of thenage processing [11] as a benchmark. This benchmark network
two PE-FIFOs. Also, the data preanalysis is performed. In casas been selected for two reasons. On the one hand, it provides
data preanalysis reveals that no additive DPs have occurred gdcal characteristics of SANNs for image processing which

Feeding /

Connections

(b)
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Fig. 7. Results of an MASPINN system simulation using a simple benchmark network (1000 neurons) [11].

TABLE I
PERFORMANCE OF THENEUROPIPE-CHIP WITH AND WITHOUT NEW CONCEPTS(ON-CHIP INHIBITION, PREANALYSIS) AND IN COMPARISON TO OTHERHARDWARE
PLATFORMS (* M EASURED, # SMULATED, + EXTRAPOLATED, 0 ESTIMATED). LISTED ARE THE TIME INTERVALS IT TAKES HARDWARE PLATFORMS TO COMPUTE
ONE TIME SLOT OF A SANN BENCHMARK [11] (NEURONWITH 4 DP, NsTWORK ACTIVITY ABOUT 0.4%, RELEVANT DP ABOUT 12% EXCL. INHIB. DP)

Workstation | SPIKE128K | ParSpike | MASPINN with | MASPINN with
Number Alpha 10MHz 100MHz NeuroPipe-Chip | NeuroPipe-Chip
of 500MHz FPGA-based 64 DSPs 100MHz 100MHz
Neurons (4 boards) (preanalysis off & (preanalysis on &
on-chip inhib. off) on-chip inhib. on)
1Kl 0.56ms® << 1ms® << 1ms°® 0.012ms* 6.5us*
128K 67ms” 10 ms* 1ms® 1.5ms* 0.83ms*
IM|  650ms” - 8ms® 11.8ms* 6.5ms*

are also inherent to SANNSs solving more elaborated tasks thiterval (bin46-bin47). For a typical simulation run, the network
shownin Fig. 7 (e.g., as [16]). On the other hand, the chosen nattivity was 0.4% and 12% of the DPs were relevant excluding
work is simple to implement in C- and VHDL-code and yield$nhibitory DPs.
reasonable simulation run times. As a measure of computational performance, the time to
As shown in Fig. 6(b), the network consists of an outpudompute the new state of the network (time slot) is given
layer and a global inhibition neuron. The neuron model of the Table Il for different accelerator architectures and network
benchmark network is shown in Fig. 6(a). It has three typesmplexities ranging from about 1000 to 1000000 spiking
of inputs: a feeding, a linking and an inhibitory input. Theneurons. As suggested by the VHDL-based system simula-
refractory period of the neuron is modeled by an addition&ibn, the NeuroPipe-Chip at 100 MHz (with the architectural
leaky integrator referred to as dynamic threshold. The input fi@atures on-chip inhibition unit and preanalysis) computes a
the network is given by a binary image where each pixel tsBne slot for a benchmark network of one million neurons
associated with the feeding dendrite of an output layer neuram.about 6.5 ms. The NeuroPipe-Chip with on-chip inhibition
Besides these feeding connections there are linking connection# and preanalysis thereby yields an improved performance
organized in receptive fields. They connect neurons of tloé a factor of 1.8 compared to the NeuroPipe-Chip without
output layer laterally with their 9< 9 nearest neighbors. Athese concepts.
global inhibition neuron receives input from all output layer Table Il also attempts to compare the performance of the
neurons. Its output is connected to the inhibitory dendrite dfeuroPipe-Chip to other hardware platforms. The purpose of
all output layer neurons. Table Il is to give a coarse overview of the performance of dif-
Fig. 7 shows the result of a VHDL-based system simulatiderent accelerator approaches. It is not meant to be an accurate
run for a network of 1000 neurons and two input stimulus olzomparison between these platforms, since most of the values
jects: a “plus” and a “square.” The SANN performs an imag@ Table Il are based on estimation. Out of several other accel-
segmentation: neurons associated to the “plus” spike durin@ators architectures for SANN, which have been proposed, two
certain time interval (bin35-bin38) while neurons associatdérhve been chosen for comparison: the SPIKE128K-and the Par-
with the “square” spike with a phase shift in another time irSpike-accelerator. The SPIKE128K [17] represents a field-pro-
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grammable gate array (FPGA)-based approach. ParSpike [18]
connects 64 commercial digital signal processors (DSPs) with
programmable logic and memory to an accelerator architecture
optimized for the computation of SANN.

Also listed in Table Il is the execution time of an Alpha work-
station to compute the benchmark network coded in C. Exe-
cuting the C-code on a 500 MHz Alpha workstation took 650
ms (averaged over 1000 time slots) to compute one time slot
of a SANN of one million neurons. Thereby real-time require-
ments are missed by almost three orders of magnitude. The
SPIKE128K was designed and built at the Technical University
of Paderborn [17]. It consists of four boards of programmable
logic and exhibits a performance improvement compared to an
Alpha workstation of almost a factor of seven for a network of
about 128 K spiking neurons. The ParSpike-accelerator with 64
DSP§ (AD21160 from Analog I?evices) running gt 100 MH%ig. 8. Photograph of the NeuroPipe-Chip.
promises another order of magnitude performance improvement
compared to the SPIKE128K and suggests about the same per-
formance as the NeuroPipe-Chip embedded in the MASPINN-
system. The computational speed of the NeuroPipe-Chip withiny presented a neuro-processor, the NeuroPipe-Chip, as part
the MASPINN-system for the benchmark SANN of ¥@urons o an accelerator board concept which approaches real-time
is still a factor of about 6.5 slower than the real-time requiremegb mpytational requirements for SANNS in the order df a6u-
of 1 ms per time-slot demands. However, several MASPINNons, Two new concepts were introduced on chip-level which
boards in parallel and/or a NeuroPipe-Chip with more parallplad to improved performance of the NeuroPipe-Chip. In the
datapaths would multiply the performance of the MASPINNyrocess of designing the NeuroPipe-Chip a VHDL-RTL-model
system. By designing a NeuroPipe-Processor with four paraligl the chip was created. With an algorithmic description of
datapaths (instead of two of the prototype) and running fote surrounding accelerator-system in behavioral VHDL,
MASPINN-boards in parallel, e.g., real-time computation of system simulation was performed. For a simple SANN
SANNSs in the order of 1Dneurons could become feasible.  benchmark network for image segmentation, the simulation of
the accelerator suggested about two orders of magnitude faster
computation time than a 500 MHz Alpha workstation and a
performance comparable to dedicated accelerator architecture

The NeuroPipe-Chip has been implemented as a digital sta@nsisting of 64 high-performance DSPs. The NeuroPipe-Chip
dard-cell design in an Alcatel five-metal layer 0,8%-CMOS-  comprising 100 K gate equivalents has been fabricated in an

process. For the implementation of the NeuroPipe-Chip, a dficatel five-metal layer 0.3%m digital CMOS technology.
sign flow has been developed combining various CAD-tools.

For design entry on register transfer level in graphical VHDL
the toolVisual-HDL of Summit Desigwas used [14]. A pure
textual VHDL-code is generated bByisual-HDL and fed into  Prototypes of the Neuro-PipeChip have been fabricated and
a logic-synthesizer. We usddesign-Compilerof Synopsyso  partly funded by the EUROPRACTICE service, funded by the
optimize the RTL-design representation and map it to a stasT program of the European Commission. The authors also
dard-cell library [15]. The layout of the circuit was generated byratefully acknowledge the support of U. Voss during chip
Silicon-Ensemblef Cadencg?2]. Even though the architecturetesting.
of the NeuroPipe-Chip takes advantage of several concepts to
reduce the required input—output (I0) bandwidth, the necessary
number of 156 chip pads organized in a pad ring still demanded
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