
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 1, JANUARY 2002 205

NeuroPipe-Chip: A Digital Neuro-Processor for
Spiking Neural Networks

Tim Schoenauer, Sahin Atasoy, Nasser Mehrtash, and Heinrich Klar, Member, IEEE

Abstract—Computing complex spiking artificial neural
networks (SANNs) on conventional hardware platforms is far
from reaching real-time requirements. Therefore we propose a
neuro-processor, called NeuroPipe-Chip, as part of an accelerator
board. In this paper, we introduce two new concepts on chip-level
to speed up the computation of SANNs. These concepts are
implemented in a prototype of the NeuroPipe-Chip. We present
the hardware structure of the prototype and evaluate its perfor-
mance in a system simulation based on a hardware description
language (HDL). For the computation of a simple SANN for image
segmentation, the NeuroPipe-Chip operating at 100 MHz shows
an improvement of more than two orders of magnitude compared
to an Alpha 500 MHz workstation and approaches real-time
requirements for the computation of SANNs in the order of106

neurons. Hence, such an accelerator would allow for applications
of complex SANNs to solve real-world tasks like real-time image
processing. The NeuroPipe-Chip has been fabricated in an Alcatel
0.35– m digital CMOS technology.

Index Terms—Neuroaccelerator, neurochip, pulse-coded neural
networks, spiking neural networks.

I. INTRODUCTION

SPIKING (or pulse-coded or pulsed) neurons represent
complex integrate-and-fire neurons. Synchronized firing

of neuronal assemblies could serve the brain as a code for
feature binding, pattern segmentation, and figure/ground sep-
aration [10], [3]. Spiking artificial neural networks (SANNs)
are able to model such synchronization since they take into
account the precise timing of spike events. They are therefore
subject of investigations for biology-inspired image processing
applications [16], [9]. However, employing SANNs for image
processing requires complex networks in the order of 10of
spiking neurons [12]. Computing large networks of complex
neuron models is a computational expensive task and leads
to long run times even for high-performance workstations
[7]. Furthermore, to solve real-world tasks there is a need for
computing complex networks in real-time, which can only
be achieved by supercomputers or dedicated hardware. The
NeuroPipe-Chip is part of such a dedicated digital hardware
accelerator system. For several reasons we chose a digital
and not an analog implementation. Analog hardware offers
a potential for compact, low-power realizations by taking

Manuscript received November 30, 2000. Prototypes of the NeuroPipe-Chip
have been fabricated and funded in part by the EUROPRACTICE service,
funded by the IST program of the European Commission.

The authors are with the Institute of Microelectronics, Technical University
of Berlin, D-10587 Berlin, Germany (e-mail: tim.schoenauer@multilink.de,
sahin.asatoy@bln.siemens.de, nasser@mikro.ee.tu-berlin.de, klar@mikro.ee.
tu-berlin.de).

Publisher Item Identifier S 1045-9227(02)00344-2.

advantage of the inherent characteristics of silicon devices. An
example for an analog time-multiplexed accelerator for SANNs
is described in [19] and proposals exist to link several analog
chips to a neuromorphic system [20]. However, the accuracy of
analog signal processing is limited, memory storage of analog
signals is area hungry or volatile and transmitting them over
chip boundaries is difficult. Since we aimed at the computation
of very complex networks with a fairly high accuracy (e.g.,
16 bits) with extensive programming capability, the digital
approach was first choice.

Main objective of the paper is to present the architecture of the
NeuroPipe-Chip employing two new concepts for a better com-
putational performance. Also HDL-based simulation results of
the accelerator system are described which allow to evaluate
the NeuroPipe-Chip performance. For a better understanding,
in Section II and III of this paper general aspects of SANNs, the
simulation of SANNs and a review of our accelerator system is
given.

II. COMPUTING SPIKING NEURAL NETWORKS

Spiking neurons represent biophysical models that account
for properties of real neurons without descending to the level
of ionic currents. They rather model the integrated signal flow
of incoming action potentials through parts of the neuron, in
particular the synapses, dendrites, soma and axon. Opposed to
rate-coded models, spiking neuron models encode their infor-
mation in the exact timing of a neuron’s firing event not in the
frequency rate of firing. Therefore interneuronal communica-
tion takes place solely via action potentials (also called spikes
or pulses). A discrete-time model of a generic spiking neuron
with feeding dendrites (excitatory or inhibitory), modulated
multiplicatively by a linking dendrite and a dynamic threshold is
shown in Fig. 1. Each dendrite as well as the dynamic threshold
is modeled by a leaky integrator. There are various types of den-
drites with different kinds of influence on the calculation of the
membrane potential. Feeding dendrites may be modulated by
linking dendrites for a better synchronization of neuronal as-
semblies as proposed by Eckhornet al.[4], while other dendrites
are not influenced by linking and may serve as inhibitory den-
drites. Furthermore, delay elements at the output of the model
represent axonal delays.

For the design of our accelerator system, we assume SANNs
to be locally and therefore sparsely connected. The networks are
composed of several layers where each layer consists of neu-
rons with equal properties. Neurons may be connected laterally
(within one layer) as well as to other layers. Connections are

1045–9227/02$17.00 © 2002 IEEE

206 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 1, JANUARY 2002

Fig. 1. Discrete-time representation of a generic spiking neuron model [4].

Fig. 2. Basic structure of a MASPINN-board. Right: circled part is computed by the NeuroPipe-Chip.

usually structured in receptive fields. The network activity re-
sembles the average number of spikes per time slot divided by
the total number of neurons. Network activity of SANNs is typi-
cally low i.e., 1%. The computation of SANNs by digital hard-
ware is performed in discrete time. For real-time computation,
a time interval (which we refer to as time slot) of 1 ms is con-
sidered sufficient for the entire network data to be updated [1].

III. A CCELERATORSYSTEM FORSPIKING NEURAL NETWORKS:
MASPINN

In order to achieve real-time computation of very complex
SANNs we proposed an accelerator system called memory op-
timized accelerator for spiking neural networks (MASPINN),
which is an accelerator board connected to a host computer via a
PCI-bus [13]. As shown in Fig. 2, an MASPINN-board consists
of three main units: a neuron unit, which computes the neuron
model, a spike event list, which stores the addresses of source
neurons (neurons emitting a spike) and a connection unit, which

determines target neurons (neurons receiving a spike) and cor-
responding weight values.

The MASPINN-structure is based on previously proposed
concepts such as a spike event list, a sender-oriented connec-
tivity list and tagging of dendrite potentials [5], [6], which are
summarized as concepts 1–3 in Table I. We refer to dendrite
potentials (DPs) as the state values in the leaky integrators of
the neuron model (Fig. 1). Two additional concepts are asso-
ciated with the MASPINN-architecture: weight caching and a
compressed DP-memory (concepts 4–5 in Table I), which will
be discussed more thoroughly in the following. In principle, all
of the previously mentioned concepts either try to reduce the
amount of computation to a minimum or to make the required
computation more suitable for a hardware realization.

1) Compressed DP-Memory:Due to a low network activity,
only part of the DPs in a SANN receive an input. Therefore
many DPs decay to zero and have no influence on the mem-
brane potential of a neuron. Hence, these DPs do not need to be
accessed or processed. This can be achieved by using tags which

SCHOENAUERet al.: NEUROPIPE-CHIP: A DIGITAL NEURO-PROCESSOR 207

TABLE I
CONCEPTS OFACCELERATORS FORCOMPUTING SANNS

mark the relevance of a DP with a single bit. If the value of a
DP drops below a user-defined threshold its tag-bit is set from
“1” to “0” (concept 3 in Table I).

Normally there is a place in memory reserved for every DP,
since the relevance of a DP might change during the computa-
tion. This leads to inefficient access of DP-data once data-words
which are several DPs wide are stored in a single memory. These
words might inevitably contain irrelevant DPs and cause a loss
of effective bandwidth between the DP-memory and the neuron
processor. What we refer to as compressed DP-memory repre-
sents a solution to that problem: only the relevant DPs are stored
in memory in consecutive order (first neuron in first layer to last
neuron in last layer). That way only relevant DPs are stored and
transferred between memory and processor.

A disadvantage of this approach is the loss of a direct rela-
tionship between the physical memory-address of a DP and its
logical address in the computed network. However this problem
can be solved by analyzing the stream of tag-bits while consec-
utively processing all DPs during each time slot. Each tag-bit
must be counted and at each value “1” the counter value repre-
sents an address belonging to one of the DPs in the consecutive
stream of DPs, which is read in parallel. This task is performed
by on-chip tag-to-address- and address-to-tag-converter of the
NeuroPipe-Chip (Fig. 3).

2) Weight Caching:Weight caches represent copies of a
complete DP-memory (for each DP there is a certain place in
memory reserved). They are used to accumulate all weighted
spikes occurring in one time slot. The accumulated weights
then serve as target neuron input during the next time slot.
Two weight caches are required: during an entire time slot one
functions as an accumulator while the other one sends weights,
which have been accumulated in the previous time slot, to the
neuron unit. The function (accumulator/sender) of the weight
caches alternates with each new time slot. Since thereby the
complete stimulation data for each DP is known already at the
beginning of the next time slot, the main processing steps to
compute the neuron model may be processed in parallel by a
pipelined datapath (see Fig. 3). The pipelined processing will
be outlined in more detail in the following section.

Fig. 3. Basic blocks of the NeuroPipe-Chip.

IV. A RCHITECTURE OF THENEUROPIPE-CHIP

Main task of the NeuroPipe-Chip is to compute a spiking
neuron model as depicted in the circled part of Fig. 2. Dendrites
may also be modeled by higher order filters (not shown in
Fig. 2). In order to allow different kinds of neuron models to
be computed, the NeuroPipe-Chip computes a programmable
neuron model: with a program code the user specifies the
number of DPs per neuron and how each DP contributes to
the membrane potential (e.g., excitatory, inhibitory, multiplica-

208 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 1, JANUARY 2002

tively). All neurons of one layer are supposed to have the same
characteristics.

For each time slot the computation of the neuron model con-
tains the following sequence of steps [8].

Decay: DPs are decayed (“leaky integration”).
Propagate: Stimuli from other neurons in the network or
the input layer (“accumulated weights”) are added to the
corresponding DP.
Output: DPs are combined to a membrane potential ac-
cording to a program code. When exceeding a threshold
the neuron spikes and therefore its address is written to the
spike event list.

The basic computational steps (decay, propagate, output)
have been implemented in the dataflow architecture of the
NeuroPipe-Processor as depicted in a block diagram of the
NeuroPipe-Processor in Fig. 3. Therefore the basic operations
to compute a neuron model are hard-wired. However, by
specifying, e.g., the number of DPs per neuron and selecting
different functionality of each DP with a program code, the
user may program the NeuroPipe-Processor to compute various
neuron models.

For example, to compute the neuron model of the benchmark
network we used in Fig. 6(a), (1)–(4) need to be solved to update
the DPs in time slot , which are , , and

(1)

(2)

(3)

(4)

The upper index refers to the feeding, linking, inhibitory, and
the dynamic threshold character of the parameter, whereis a
neuron input and the neuron output, a connection weight,
and a decay factor. During the decay phase the decay term

is calculated. In the propagate phase, the accumulated
weight value is added to the decay term. Based on the
updated DPs, the membrane potential is calculated by (5)
and upon spike emission is determined by (6) during the output
phase

(5)

if

otherwise.
(6)

While in (4) represents the strength of the negative feed-
back by the dynamic threshold potential,refers to the static
threshold offset.

Thanks to the concept of weight caching, the complete set of
data to compute the neuron model is available at the beginning
of a new time slot: all DPs and accumulated weights. There-
fore, starting with the first relevant DP of the first layer, DPs are

consecutively fed into a datapath pipeline performing the steps:
decay, propagate, and output (see Fig. 3). In addition to a fully
pipelined datapath, several such datapaths in parallel achieve a
further speed up. The NeuroPipe-Chip was designed with two
datapaths in parallel.

Per clock cycle each of the two parallel datapaths re-
ceives a relevant DP from the DP-memory via the neuron
memory-(NM)-Interface (see Fig. 3). The neuron memory en-
closes the DP-, the DP-tag- and the neuron-parameter memory.
From the DP-tag-stream, the corresponding DP-address is
generated by a tag-to-address-converter. DP-data and -address
now enter a pipeline stage where the DP-data is multiplied
with a decay factor (“decay stage”). If the result is below a
user-defined threshold, the DP is regarded irrelevant and the DP
is removed from further processing. In the next pipeline stage
an accumulated weight from the weight cache is combined with
the DP (“propagate stage”): An accumulated weight and a DP
with an equal address are summed; an accumulated weight with
no corresponding DP becomes a new DP and is inserted into
the DP-stream so that the consecutive order of DPs is remained.
Since DP-removal in the decay stage and DP-insertion in the
propagate stage might cause stalls within the datapath pipeline,
first-in–first-out-(FIFO)-Memories have been added in front
and behind the pipe stage to buffer data irregularities.

At the output of the propagate stage the DP is now com-
pletely updated and a copy of the data is written back to the
DP-memory. The corresponding DP-address is converted back
into a “1” at the proper place in the DP-tag-stream by an ad-
dress-to-tag-converter. From the propagate stage a copy of the
DP is also delivered to a subsequent pipe stage, the higher order
filter stage, where DPs are cascaded to model higher order filter
functions. A sorting stage then maps all DPs of the same neuron
to one of two parallel processor-elements (PEs). A PE computes
the membrane potential and determines the spike activity of the
neuron. Optimal load balancing of the parallel PEs is achieved
by the sorting stage. It uses the half-full-flags of the FIFOs in
front of each PE to decide which PE the next neuron will be
mapped to. In case a neuron is active, its address is written to
the spike event list.

V. NOVEL CONCEPTS OF THENEUROPIPE-CHIP

The architecture of the NeuroPipe-Chip was designed to take
advantage of the MASPINN-concepts such as weight caching
and a compressed DP-memory. However, also two novel con-
cepts in the NeuroPipe design allow further increase in system
performance: an on-chip inhibition unit and data preanalysis.

1) On-Chip Inhibition Unit: In SANNs for image pro-
cessing, inhibition is commonly used to control network
activity and to generate a winner-take-all mechanism: e.g., to
separate objects in time by an SANN for image segmentation
[11]. Such an inhibition module receives spikes from all neu-
rons or a large portion of the network. It then applies equally
distributed negative feedback to these neurons. Typically, the
connections to and from the inhibition module have similar
strength. Therefore, an inhibition module may be implemented
conveniently on-chip: only a few parameters are required for
characterization; also, by placing the on-chip inhibition unit

SCHOENAUERet al.: NEUROPIPE-CHIP: A DIGITAL NEURO-PROCESSOR 209

Fig. 4. On-chip inhibition unit.

within a processor element, resource sharing of arithmetic
modules, like multipliers, minimizes area overhead.

The basic structure of the on-chip inhibition unit is shown in
Fig. 4. The left part of Fig. 4 shows registers with additional
neuron parameters required. The middle part represents the re-
quired arithmetic elements. Since the computation takes only a
few clock cycles and is required only once during a time slot, the
arithmetic elements of a PE may be used. The right part shows
the main elements of the on-chip inhibition unit: only a counter,
registers for the inhibition data, and a controller are necessary.

The global inhibition unit works as follows. Each spike of a
neuron within a layer increments a counter. At the end of layer
processing, the counter value is multiplied with an inhibition
weight, buffered, and added to an inhibitory accumulator and
finally the counter is reset (see Fig. 4). These actions repeat
for each layer of the network during one time slot. Hence, at
the end of a time slot the value in the inhibitory accumulator
represents some equivalent of the network activity during this
time slot. It may be used during the next time slot to inhibit
the network. For example the accumulated value is added to a
so-called global inhibitory potential , which is decayed
each time slot by an inhibitory decay factor. Considering a
simple case of uniform global inhibition, each neuron of the
network is an element of the set and, if active, it takes
part in the inhibition process with a synaptic strength . The
inhibitory DP () of (3) previously had to be computed for
each neuron. Now it may be substituted by a global inhibitory
potential which is computed only once per time slot for
the entire network

(7)

By computing the inhibitory potential in the on-chip inhibition
unit only once per time slot instead of computing an inhibitory

DP for each neuron of the network, memory, IO-bandwidth, and
computation time are saved.

Since a global inhibitory potential is identical for all neurons,
it is not necessary to take it into account for each neuron of a
layer during membrane potential calculation. Instead, it may be
computed once at the beginning of layer processing and added
to the static threshold (see Fig. 4) modifying (6) to

if

otherwise.
(8)

In the case that the inhibition is not global but only local to
a few layers, several inhibition units are required. In the Neu-
roPipe-Chip, we implemented two on-chip inhibition units, one
in each PE.

2) Data Preanalysis:Computational resources can be
furthermore saved by analyzing which DPs need to be taken
into account for membrane potential calculation. A reduction of
computational load is particularly important when considering
a multiplication of 16 bit operands (e.g., DP) as required in
a PE for example during a linking multiplication. Such a
multiplication may demand several clock cycles in a hardware
realization. The multiplier in the PE of the NeuroPipe-Chip was
designed as a two-stage pipelined booth-encoded-Wallace-tree-
multiplier in order to achieve a clock frequency of 100 MHz
in the 0.35- m-CMOS technology. Therefore, during each
multiplication the PE is busy for three clock cycles. However,
the rest of the datapath stages (e.g., decay stage, propagate
stage) is designed to compute an output within one clock cycle.
Thus, the output stage of the NeuroPipe-Processor with PEs
performing linking operations might become a bottleneck and
could require the introduction of wait cycles in other processing
stages of the chip.

Computational load of the PE can be reduced by analyzing
the character and validity of DPs belonging to a certain neuron.

210 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 1, JANUARY 2002

Fig. 5. Example scenario where data preanalysis detects unnecessary computation of a neuron.

(a)

(b)

Fig. 6. (a) Neuron model. (b) Network topology [11].

For example, if there are no valid DPs of a neuron with addi-
tive (excitatory) influence on the membrane potential, it does
not make sense to calculate the ones with multiplicative or sub-
tractive (inhibitory) influence even if they are valid: in any case
the neuron will not emit a spike. An example of such a scenario
based on the neuron model in Fig. 6(a) is depicted in Fig. 5.

In the NeuroPipe-Architecture, the sorting unit keeps track
of the types of DPs in the datapath pipeline (see Fig. 3). First
of all the sorting unit maps all DPs belonging to one neuron to
a certain PE. To achieve an optimal load balancing between the
two PE, the sorting unit takes into account the fill state of the
two PE-FIFOs. Also, the data preanalysis is performed. In case
data preanalysis reveals that no additive DPs have occurred and

will occur for one neuron, all multiplicative or subtractive DPs
for this neuron are neglected. Thereby the work load of the PEs
is reduced.

VI. SYSTEM SIMULATION INCLUDING A MODEL OF THE

NEUROPIPE-CHIP

In the process of designing the NeuroPipe-Chip, we realized
a HDL-model on register transfer level (RTL) of the chip in the
hardware description language VHDL. In the design flow of
an ASIC (Application Specific Integrated Circuit), the register
transfer level of a chip represents an intermediate stage between
an algorithmic description and the actual circuit layout. The cor-
respondence of the RTL-model of the NeuroPipe-Chip to the
fabricated prototype in respect to timing and functionality was
verified during chip test (see Section VII). However, the entire
MASPINN-system has not yet been implemented in hardware.
Therefore, for performance evaluations the MASPINN-system
is modeled in behavioral (algorithmic) VHDL-code. The algo-
rithmic MASPINN-model is used as a testbench for the Neu-
roPipe- RTL-model. The MASPINN-model always provides/re-
ceives the required data to/from the NeuroPipe-Chip within one
clock cycle. This is a realistic assumption for the interfaces to
the spike-event list and the memories within the neuron unit
where fast static random access memories (SRAMs) may be
used. However, for the interface to the connection unit, this as-
sumption is only valid up to a maximum number of connections.
Exceeding such a number of connections, the connection unit
will become a bottle neck for computation speed. In that case
the access of connection weights and their accumulation in the
weight caches will take more time than the computation of the
neuron model by the NeuroPipe-Chip. Building a MASPINN-
board with state-of-the-art components, up to 50–100 connec-
tions per neuron at a network activity of about 0.5% seem fea-
sible.

In order to validate the functioning of the NeuroPipe-Chip
and to evaluate its performance, we chose a simple SANN for
image processing [11] as a benchmark. This benchmark network
has been selected for two reasons. On the one hand, it provides
typical characteristics of SANNs for image processing which

SCHOENAUERet al.: NEUROPIPE-CHIP: A DIGITAL NEURO-PROCESSOR 211

Fig. 7. Results of an MASPINN system simulation using a simple benchmark network (1000 neurons) [11].

TABLE II
PERFORMANCE OF THENEUROPIPE-CHIP WITH AND WITHOUT NEW CONCEPTS(ON-CHIP INHIBITION, PREANALYSIS) AND IN COMPARISON TO OTHERHARDWARE

PLATFORMS (* M EASURED, # SIMULATED ,+ EXTRAPOLATED, o ESTIMATED). LISTED ARE THETIME INTERVALS IT TAKES HARDWARE PLATFORMS TOCOMPUTE

ONE TIME SLOT OF A SANN BENCHMARK [11] (NEURONWITH 4 DP, NETWORK ACTIVITY ABOUT 0.4%, RELEVANT DP ABOUT 12% EXCL. INHIB. DP)

are also inherent to SANNs solving more elaborated tasks than
shown in Fig. 7 (e.g., as [16]). On the other hand, the chosen net-
work is simple to implement in C- and VHDL-code and yields
reasonable simulation run times.

As shown in Fig. 6(b), the network consists of an output
layer and a global inhibition neuron. The neuron model of the
benchmark network is shown in Fig. 6(a). It has three types
of inputs: a feeding, a linking and an inhibitory input. The
refractory period of the neuron is modeled by an additional
leaky integrator referred to as dynamic threshold. The input to
the network is given by a binary image where each pixel is
associated with the feeding dendrite of an output layer neuron.
Besides these feeding connections there are linking connections
organized in receptive fields. They connect neurons of the
output layer laterally with their 9 9 nearest neighbors. A
global inhibition neuron receives input from all output layer
neurons. Its output is connected to the inhibitory dendrite of
all output layer neurons.

Fig. 7 shows the result of a VHDL-based system simulation
run for a network of 1000 neurons and two input stimulus ob-
jects: a “plus” and a “square.” The SANN performs an image
segmentation: neurons associated to the “plus” spike during a
certain time interval (bin35–bin38) while neurons associated
with the “square” spike with a phase shift in another time in-

terval (bin46–bin47). For a typical simulation run, the network
activity was 0.4% and 12% of the DPs were relevant excluding
inhibitory DPs.

As a measure of computational performance, the time to
compute the new state of the network (time slot) is given
in Table II for different accelerator architectures and network
complexities ranging from about 1000 to 1 000 000 spiking
neurons. As suggested by the VHDL-based system simula-
tion, the NeuroPipe-Chip at 100 MHz (with the architectural
features on-chip inhibition unit and preanalysis) computes a
time slot for a benchmark network of one million neurons
in about 6.5 ms. The NeuroPipe-Chip with on-chip inhibition
unit and preanalysis thereby yields an improved performance
of a factor of 1.8 compared to the NeuroPipe-Chip without
these concepts.

Table II also attempts to compare the performance of the
NeuroPipe-Chip to other hardware platforms. The purpose of
Table II is to give a coarse overview of the performance of dif-
ferent accelerator approaches. It is not meant to be an accurate
comparison between these platforms, since most of the values
in Table II are based on estimation. Out of several other accel-
erators architectures for SANN, which have been proposed, two
have been chosen for comparison: the SPIKE128K-and the Par-
Spike-accelerator. The SPIKE128K [17] represents a field-pro-

212 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 1, JANUARY 2002

grammable gate array (FPGA)-based approach. ParSpike [18]
connects 64 commercial digital signal processors (DSPs) with
programmable logic and memory to an accelerator architecture
optimized for the computation of SANN.

Also listed in Table II is the execution time of an Alpha work-
station to compute the benchmark network coded in C. Exe-
cuting the C-code on a 500 MHz Alpha workstation took 650
ms (averaged over 1000 time slots) to compute one time slot
of a SANN of one million neurons. Thereby real-time require-
ments are missed by almost three orders of magnitude. The
SPIKE128K was designed and built at the Technical University
of Paderborn [17]. It consists of four boards of programmable
logic and exhibits a performance improvement compared to an
Alpha workstation of almost a factor of seven for a network of
about 128 K spiking neurons. The ParSpike-accelerator with 64
DSPs (AD21160 from Analog Devices) running at 100 MHz
promises another order of magnitude performance improvement
compared to the SPIKE128K and suggests about the same per-
formance as the NeuroPipe-Chip embedded in the MASPINN-
system. The computational speed of the NeuroPipe-Chip within
the MASPINN-system for the benchmark SANN of 10neurons
is still a factor of about 6.5 slower than the real-time requirement
of 1 ms per time-slot demands. However, several MASPINN-
boards in parallel and/or a NeuroPipe-Chip with more parallel
datapaths would multiply the performance of the MASPINN-
system. By designing a NeuroPipe-Processor with four parallel
datapaths (instead of two of the prototype) and running four
MASPINN-boards in parallel, e.g., real-time computation of
SANNs in the order of 10neurons could become feasible.

VII. D ESIGN OF THENEUROPIPE-CHIP

The NeuroPipe-Chip has been implemented as a digital stan-
dard-cell design in an Alcatel five-metal layer 0.35m-CMOS-
process. For the implementation of the NeuroPipe-Chip, a de-
sign flow has been developed combining various CAD-tools.
For design entry on register transfer level in graphical VHDL
the toolVisual-HDL of Summit Designwas used [14]. A pure
textual VHDL-code is generated byVisual-HDL and fed into
a logic-synthesizer. We usedDesign-Compilerof Synopsysto
optimize the RTL-design representation and map it to a stan-
dard-cell library [15]. The layout of the circuit was generated by
Silicon-Ensembleof Cadence[2]. Even though the architecture
of the NeuroPipe-Chip takes advantage of several concepts to
reduce the required input–output (IO) bandwidth, the necessary
number of 156 chip pads organized in a pad ring still demanded
a minimum die size of 14.3 mmas seen in Fig. 8. The 100 K
gate equivalents of the NeuroPipe-Chip covered about 70% of
the core area.

The prototypes of the NeuroPipe-Chip have been tested. On
a HP82000-tester we verified the correct logic functioning of
the chip by applying functional test vectors from the benchmark
simulation. We successfully tested the chip up to the maximum
tester frequency of 95 MHz employing an external clock gener-
ator. Postlayout simulations showed a chip performance of 109
MHz. Extrapolating the measured power dissipation of the chip
yields 2.5 W at 3.3 V and 100 MHz.

Fig. 8. Photograph of the NeuroPipe-Chip.

VIII. C ONCLUSION

We presented a neuro-processor, the NeuroPipe-Chip, as part
of an accelerator board concept which approaches real-time
computational requirements for SANNs in the order of 10neu-
rons. Two new concepts were introduced on chip-level which
lead to improved performance of the NeuroPipe-Chip. In the
process of designing the NeuroPipe-Chip a VHDL-RTL-model
of the chip was created. With an algorithmic description of
the surrounding accelerator-system in behavioral VHDL,
a system simulation was performed. For a simple SANN
benchmark network for image segmentation, the simulation of
the accelerator suggested about two orders of magnitude faster
computation time than a 500 MHz Alpha workstation and a
performance comparable to dedicated accelerator architecture
consisting of 64 high-performance DSPs. The NeuroPipe-Chip
comprising 100 K gate equivalents has been fabricated in an
Alcatel five-metal layer 0.35 m digital CMOS technology.

ACKNOWLEDGMENT

Prototypes of the Neuro-PipeChip have been fabricated and
partly funded by the EUROPRACTICE service, funded by the
IST program of the European Commission. The authors also
gratefully acknowledge the support of U. Voss during chip
testing.

REFERENCES

[1] M. Arbib, “Background,” inHandbook of Brain Theory and Neural Net-
works, M. Arbib, Ed. Cambridge, MA: MIT Press, 1995, pt. I, pp.
879–884.

[2] Cadence Design Systems Inc.Silicon Ensemble Reference Manual, Vers.
5.2, 1999.

[3] R. Eckhorn, R. Bauer, W. Jordan, M. Brosch, W. Kruse, M. Munk, and
H. J. Reitbock, “Coherent oscillations: A mechanism of feature linking
in the visual cortex?,”Biol. Cybern., vol. 60, pp. 121–130, 1988.

[4] R. Eckhorn, H. J. Reitboeck, M. Arndt, and P. Dicke, “Feature linking
via stimulus-evoked oscillations: Experimental results from cat visual
cortex and functional implication from a network model,” inProc. ICNN
I, 1989, pp. 723–720.

[5] G. Frank and G. Hartmann, “An artificial neural-network accelerator
for pulse-coded model neurons,” inProc. Int. Conf. Neural Networks
ICNN95, vol. 4, Perth, Australia, 1995, pp. 2014–2018.

SCHOENAUERet al.: NEUROPIPE-CHIP: A DIGITAL NEURO-PROCESSOR 213

[6] A. Jahnke, U. Roth, and H. Klar, “A SIMD/dataflow architecture for a
neurocomputer for spike-processing neural networks (NESPINN),” in
Proc. MicroNeuro’96, 1996, pp. 232–237.

[7] A. Jahnke, T. Schoenauer, U. Roth, K. Mohraz, and H. Klar, “Simulation
of spiking neural networks on different hardware platforms,” inProc.
ICANN’97. Berlin, Germany, 1997, pp. 1187–1192.

[8] A. Jahnke, U. Roth, and T. Schoenauer, “Digital simulation of spiking
neural networks,” inPulsed Neural Networks, W. Maas and C. M.
Bishop, Eds. Cambridge, MA: MIT Press, 1998.

[9] T. Lindblad and J. M. Kinser,Image Processing using Pulse-Coupled
Neural Networks. Berlin, Germany: Springer-Verlag, 1998.

[10] C. v. d. Malsburg, “The correlation theory of brain function,” inModels
of Neural Networks II, Domanyet al., Eds. London, U.K.: Springer-
Verlag, 1994, pp. 95–119.

[11] H. J. Reitboeck, M. Stoecker, and C. Hahn, “Object separation in dy-
namic neural networks,” inProc. Int. Conf. Neural Networks ICNN93,
1993, pp. 638–641.

[12] U. Schott and R. Eckhorn, “Internal Commun.,” Philipps-Univ. Mar-
burg, 1997.

[13] T. Schoenauer, N. Mehrtash, A. Jahnke, and H. Klar, “MASPINN: Novel
concepts for a neuro-accelerator for spiking neural networks,” inProc.
VIDYNN’98, 1998.

[14] Summit Design Inc. (1998) Visual HDL for VHDL—User’s guide. [On-
line]. Available: http://www.summit-design.com

[15] Synopsys Inc.H. Klar, “Design compiler—Fundamentals, Ref. Manual,
Vers. 98.08,”, 1998.

[16] L. Weitzel, K. Kopecz, C. Spengler, R. Eckhorn, and H. J. Reitboeck,
“Contour segmentation with recurrent neural networks of pulse-coding
neurons,” inSommer: Computer Analysis of Images and Patterns, CAIP
Kiel. Berlin, Germany: Springer-Verlag, 1997.

[17] G. Hartmann, G. Frank, M. Schafer, and C. Wolff, “SPIKE128K—An
accelerator for dynamic simulation of large pulse-coded networks,” in
Proc. MicroNeuro’97, 1997, pp. 130–139.

[18] C. Wolff, G. Hartmann, and U. Ruckert, “ParSPIKE—A parallel DSP-
accelerator for dynamic simulation of large spiking neural networks,” in
Proc. MicroNeuro’99, Granada, Spain, 1999, pp. 324–331.

[19] M. Ehlert and H. Klar, “Analog time-multiplexed hardware for
spike-processing neural networks,” inProc. MicroNeuro’97, 1997, pp.
140–144.

[20] K. A. Boahen, “Communicating neuronal ensembles between neu-
romorphic chips,” inNeuromorphic Systems Engineering, T. Lande,
Ed. Boston, MA: Kluwer, 1998, ch. 11, pp. 229–261.

Tim Schoenauer received the Dipl.-Ing. degree in electrical engineering in
1995 from the Technical University of Berlin (TUB), Germany, after academic
stays at the Ecole Nationale Superieure d’Electronique et de Radioelectricite de
Grenoble (ENSERG), France, in 1994 and Stanford University, Stanford, CA,
in 1995. He pursued the Ph.D. degree in electrical engineering at the TUB with
research interests in the area of spiking neural networks and dedicated hardware
for biology-oriented neural networks.

In 2000, he joined Multilink Technology Corporation, Munich, Germany,
working on processors for high-speed high-bandwidth optical networks.

Sahin Atasoyreceived the Dipl.-Ing. degree in electrical engineering in May
2000 from the Technical University of Berlin, Germany.

In 2000, he joined Siemens AG, Berlin, Germany, working on the develop-
ment of the basestations for third generation mobile radio networks (TDD).

Nasser Mehrtashreceived the Dipl.-Ing. degree in electrical engineering in
1996 from the Technical University of Berlin (TUB), Germany. He is currently
pursuing the Ph.D. degree in electrical engineering at the TUB with research
interests in the area of spiking neural networks.

Heinrich Klar (M’97) received the Dipl.-Ing. degree and the Dr.-Ing. degree
from the Technical University of Munich, Germany, in 1972 and 1976, respec-
tively.

In 1976, he joined the research Laboratories of Siemens AG, Munich, where
he was engaged in the research development of circuits for transmission and
processing of analog and digital signals as well as the design of standard MOS
ICs. He now is a Professor at the Institute of Microelectronics of the Tech-
nical University of Berlin, Germany. His research interests are in integrated
circuits for digital and analog signal processing, especially spiking neural net-
works, high-speed high-resolution analog-to-digital converters, and RF-CMOS
circuits.

