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Abstract 

This paper contains the results of an initial study 
into the FPGA implementation of a spiking neural 
network. This work was undertaken as a task in a 
project that aims to design and develop a new kind 
of tangible Collaborative Autonomous Agent. The 
project intends to exploit/investigate methods for 
engineering emergent collective behaviour in large 
societies of actual miniature agents that can learn 
and evolve. Such multi-agent systems could be used 
to detect and collectively repair faults in a variety of 
applications where it is difficult for humans to gain 
access, such as fluidic environments found in critical 
components of material/industrial systems. The 
initial achievement of implementation of a spiking 
neural network on a FPGA hardware platform and 
results of a robotic wall following task are discussed 
by comparison with software driven robots and 
simulations. 

1. Introduction 

Extensive theoretical work has shown that Spiking 
Neural Networks (SNNs) are deemed 
computationally more powerful than conventional 
artificial neural network formalisms [1]. This implies 
that SNNs need fewer nodes to solve the same 
problem than conventional artificial neural nets. 
Relatively little work has been carried out on the 
implementation of SNNs in digital platforms such as 
FPGAs [2][3], most work tending to concentrate on 
analogue ASIC type devices [4][5][6]. FPGA 
implementation gives the flexibility to develop SNNs 
for a particular task without committing to costly 
silicon ASIC fabrication. In addition digitally based 
SNNs provide a number of other desirable features 
such as noise-robustness and simple real-world 
interfaces [7]. 

The FPGA implementation of the spiking neural 
network is intended to be the core computational 
component in what has been dubbed a CAA 
(Collaborative Autonomous Agent). The work forms 
part of a European IST project called SOCIAL (Self 
Organised Societies of Connectionist Intelligent 
Agents Capable of Learning - IST-2001-38911). The 
SOCIAL project aims to exploit/investigate methods 
for engineering emergent collective behaviour in 
large societies of actual miniature agents that can 
learn and evolve. It is envisaged that the project will 
produce tangible agents that can perform individual 
and collective goal seeking tasks such as repair in 
environments that are inaccessible for humans. An 
example of such a task is the repair of bypass tubing 
used in the oil industry. Pipelines can deteriorate due 
to scale formation and this can be detected by 
changes in pH in the vicinity of the fault when the 
pipes are flushed with water. With integrated pH 
sensing capability it is intended to build miniature 
tangible CAAs with the ability to navigate, indirectly 
communicate amongst themselves, directly 
communicate with a development environment and 
possibly repair such faults.   

The paper focuses on the initial investigation of 
the FPGA SNN implementation with the goal of 
performing a navigational task of wall following.  
The exercise was used go gain familiarity with SNNs 
and show that, when implemented on FPGAs, simple 
navigational tasks can be performed. Initially the 
SNN used is described in terms of its VHDL 
implementation resulting from a manual translation 
of a C-type code implementation of the SNN. The 
paper will then overview synthesis to FPGA 
hardware modules used for implementation of the 
SNN. Interfacing to robotic platforms and results to 
show comparison with software versions of the SNN 
on a simulation tool also developed within the 
project framework will be discussed.  

Conclusions will be drawn and the future direction 
of the project toward implementation of the SNNs on 



miniature platforms will be projected. New miniature 
FPGA and communication modules that have been 
built and proven functional will be presented to show 
the next phase of implementation. 

2. Implementation of SNNs on FPGAs 

This section overviews the route taken in the 
implementation of the SNN controller for the wall 
following robot on FPGA hardware. A wall 
following task has been demonstrated on robots 
running the VxWorks operating system [8]. 
Essentially this is C-code with extra libraries 
supporting the real-time robotic operation. It was 
decided to manually translate this to VHDL as a first 
pass to FPGA implementation of the SNN. The route 
to demonstration of the prototype reported in this 
paper is summarized as follows: 

 
1. Manual translation of the VxWorks C-code 

to VHDL; 
2. Test-bench simulation and comparison with 

VxWorks C-code output;  
3. Synthesis of VHDL to FPGA hardware; 
4. Interfacing to a simulation tool developed in 

the project and the robotic platforms; 
5. Test wall following scenario on the 

simulator and then on the robot. 

3. Translation of the C-Code to VHDL 

Initially the wall following C-Code was written 
for the embedded processor of the robots and 
compiled using VxWorks. The task for VHDL 
translation involved breaking the code down to its 
respective functions and representing the entire code 
in a hierarchical structural description. VHDL entity 
e_SNN formed the top level of the hierarchy and 
defines the connectivity between the neurons, 
weighted synapses and control timer of the network 
connected as shown in Figure 1. 

The network contains two types of neuron. There 
are two instantiations, front and rear, of the pre-
synaptic neurons. On the robots there are ultrasonic 
sensors located at the front and rear that are used to 
detect range either from a wall or an obstacle. The 
two pre-synaptic neurons convert the ultrasonic range 
values into spike trains, the shape of which defined 
by a series of exponential functions. These spike 
trains are weighted in the four synapse entities by a 
set of weights evolved in software trials on the 
VxWorks system. The outputs of the synapses feed 
into the post-synaptic neuron entities. By varying the 
speed of one motor relative to the other then the 
robot can turn to avoid an obstacle or follow the path 
of a wall. The post-synaptic neurons function by 
firing once a membrane potential has been reached. 

The time at which they fire has a relationship with 
the speed of the motor that they are controlling.    

 

 
 

Figure 1. Schematic representation of 
the VHDL SNN code for entity e_SNN. 
 
 
In FPGAs it is advantageous to use fixed-point 

logic so that mathematical functions in the standard 
libraries can be used to minimize resources. When 
translating the VxWorks C-Code the precision of 
signals, sensor inputs and motor outputs had to be 
decided. Precision directly corresponds to the 
number of bits used to represent a signal and in turn 
relates to register storage, logic resources for 
computation and communication. Optimizing the 
precision leads to lower resource usage and therefore 
smaller neurons, ultimately allowing larger SNNs to 
be implemented on the FPGA. The precision of data 
within the modules was calculated given the 
accuracy, noise levels and ranges of the input 
ultrasonic detectors. The ultrasonic sensors output 
data in the range 0 to 90 and therefore 7 bits were 
required to represent this as an unsigned binary 
number. A five bit signed two’s complement 
representation was used for the weights. 

    Overall the VHDL modules contain quite 
simple arithmetic, concatenation and scaling 
assignments. Therefore the VHDL standard libraries 
were used to implement these functions. However, 
the pre-synaptic neuron block requires more complex 
arithmetic for the computation of the spike effect. 
This involves exponential functions that are not 
contained in the standard VHDL libraries. The 
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exponential function could be broken down into an 
arithmetical expansion series of calculations and the 
end result would be computationally expensive in 
terms of the logic resources on the FPGA. It was 
therefore decided to model the spike effect as a look-
up table in VHDL using case statements. 

A C-program was written to generate this look-up 
table by taking the spike generation exponential 
functions of the VXWorks C-code and using a 
decimal to binary conversion routine. The results 
showed that slight errors were introduced due to 
quantization of the spike-effect. Note the jagged 
appearance of the spike effect falling time curve as 
shown in Figure 2. 

 

 
 
Figure 2. Spike- Effect LUT precision.  
 

4. Synthesis of VHDL to the FPGA 

After functional verification against the C-Code wall 
following model using test-bench methods the 
synthesis of the VHDL was considered. The FPGA 
PCB used for the initial testing was originally 
developed for a research project in which sensor 
networks were being researched and developed. 
However a commercially available PCB could 
equally have been used at this stage. The board uses 
a Xilinx Spartan II low cost series FPGA, 
specifically the mid range xc2s300e-7fg456 device 
[10]. The module has an on board serial 
configuration EPROM enabling it to be run remotely 
from a battery source. 
The SNN controller was synthesized using Xilinx 
ISE V6.1 Webpack software. To do this a wrapper 
VHDL file was created. This wrapper file includes 
the SNN controller and also port maps the necessary 
UART components for serial communication with 
the robot. The implementation of a four-neuron 
VHDL model of a digital spiking neural network 
required 324 Slices approximately 10% of the 
resources on the FPGA device. Therefore 
approximately 40 neurons would fit on the FPGA for 

the current version of the neuron. The overall 
network delay of 8.461ns allows clocking up to a 
maximum frequency of 118.189MHz. The 
requirement to clock at 1kHz, based on the 
specifications of the robots used, to give a 1ms cycle 
time is therefore met.  
 

5. Interfacing and Hardware Test 

 
A simulation tool is being developed in parallel to 
the hardware implementation of the SNNs. The 
simulator allows robot behaviour to be modeled and 
evolved in software before going to hardware 
implementation. The simulation tool was also 
adapted so that it could be interfaced to the FPGA 
board as shown in Figure 3. By doing so the FPGA 
implementation could be verified against simulated 
results to minimize the amount of test and debug 
needed when interfacing to the real robots. The 
simulator computes the ultrasonic sensor readings 
and continuously updates the FPGA via the serial 
port. The FPGA SNN controller then outputs the 
motor control data through the serial port and this is 
used to control the motion of the simulated robot. 
The FPGA controlling the movement of a virtual 
robot exhibited the wall following behaviour by 
avoiding the obstacles and keeping a set distance 
from the wall and gave similar results to that of the 
software SNN controller. 

 

 
 
Figure 3. Simulator to FPGA hardware 
interface. 
 
The FPGA was interfaced to the real robots once 

the wall following behaviour had been verified using 
the simulation tools. The robots have a serial port 
interface and therefore the FPGA code did not have 
to be changed from that used with the simulator. 
Figure 4 shows the robot being controlled by the 
FPGA that is located within the white box towards 
the top of the left of the robot. Power was supplied to 
the FPGA directly from the auxiliary supply 
available on the robot. As expected the tangible robot 
exhibited similar wall following characteristics as 
those shown on the simulated robot proving the 
developmental approach taken to be valid. 
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Figure 4. FPGA controlling the 
tangible robot with corresponding 
simulator view shown on the left hand 
side. 

6. Future Work and Conclusions 

This paper has overviewed the initial research 
towards building tangible collaborative autonomous 
agents for fluidic environments. The agent’s 
intelligence was based on spiking neural networks 
implemented on FPGA devices. The paper has 
demonstrated a number of key aspects of the project. 
Firstly FPGAs can be used to implement spiking 
neural networks to perform navigational tasks. 
Secondly the spike response can be easily be 
accurately modeled by using look-up-tables. Thirdly 
it has been demonstrated that the FPGA can be used 
in conjunction with simulation tools to control a 
virtual simulated robot creating a spiking neural 
network test and development environment. The 
FPGA linked to the simulation tool could also serve 
as an accelerator and enable hybrid simulations of 
software and hardware controlled virtual robots to be 
studied. Finally it was shown that the FPGA-SNN 
could be used to control a tangible robot for wall 
following, yielding similar results to those seen on 
the simulator. This proved the feasibility of the 
development and simulation environment that is 
currently under construction.         

 Future work will consider the implementation of 
more complex spiking neural networks and 
optimization of the neurons onto the NMRC’s new 
miniature 25mm FPGA module [11]. These networks 
will aim to complete more challenging tasks of fault 
detection and collaboration in fluidic environments.  

A development environment for the graphical 
input and formal specification of spiking neural 
networks is under construction and eventually will 
support automatic translation to VHDL format. The 
simulation tool will be linked to the development 
environment and this will support 3D fluidic 
simulation. 
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