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Abstract 

Over the past decade a large variety of hardware has been designed to exploit the inherent parallelism of the 

artificial neural network models. This paper presents an overview of neural network hardware. Neural network 

basics, hardware specification and performance evaluation are introduced. Major categories of neural network 

architectures are reviewed. Two examples of neurohardware, CNAPS and SYNAPSE-1, and some real-world 

applications of neural network hardware, are described in detail. The challenges and future of hardware 

implementation of neural networks are also discussed. 

 

1 Introduction 

 

Neural network hardware has undergone rapid development during the last decade. Unlike the 

conventional von-Neumann architecture that is sequential in nature, artificial neural networks (ANNs) 

profit from massively parallel processing.  A large variety of hardware has been designed to exploit 

the inherent parallelism of the neural network models. Despite the tremendous growth in the digital 

computing power of general-purpose processors, neural network hardware has been found to be 

promising in some specialized applications, such as image processing, speech synthesis and analysis, 

pattern recognition, high energy physics and so on.  

 

Neural network hardware is usually defined as those devices designed to implement neural 

architectures and learning algorithms, especially those devices that take advantage of the parallel nature 

inherent to ANNs. A few surveys of neural network hardware have been published [1-6]. Due to the 

fast growth and huge diversity of neurohardware, these overviews are either outdated or limited on 

certain aspects of hardware implementations of artificial neural networks. The purpose of this paper is 

to present the state of the art in neural network hardware architectures and provide a broad view of 

principles and practice of hardware implementation of neural networks. Neural network hardware 

specification and classification, various architectures and design issues, latest development and real 

world applications are reviewed in detail. The future direction of neural network hardware is also 

discussed. However, the general purpose massively parallel computers, or neurocomputer designs 

based on other implementation techniques, such as opto-electronics, electro-chemical and molecular 

techniques, are not within the scope of this survey. 



2 Artificial Neuron Model and Neural Network Structures 
The study of artificial neural networks has been inspired in part by the observation that biological 

learning system are built of very complex webs of interconnected neurons. Typically, the human brain 

consists of approximately 10 11  neurons, each with an average of 10 3 - 10 4  connections. It is believed 
that the immense computing power of the brain is the result of the parallel and distributed computing 

performed by these neurons [7]. The transmission of signals in biological neurons through synapses is a 

complicated chemical process in which specific transmitter substances are released from the sending 

side of the synapse. The effect is to raise or lower the electrical potential inside the body of the 

receiving cell. The neuron fires if the potential reaches a threshold. This is the characteristic that the 

artificial neuron model proposed by McCulloch and Pitts [8] attempts to reproduce. This neuron model 

is widely used in artificial neuron networks with some variations (Figure 1).  

 

 
Figure 1: Artificial neuron model 

The artificial neuron presented in Figure 1 has N inputs, denoted as x 1 , x 2 ,…, x n . Each line 

connecting these inputs to the neuron is assigned a weight, denoted as w1 , w 2 ,..., w n , respectively. 

The action, which determines whether the neuron is to be fired or not, is given by the formula: 
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The output of the neuron is a function of its action: 

y = f(a) 

Originally the neuron output function f(a) proposed in McCulloch-Pitts model was a threshold function. 

However, linear, ramp and sigmoid functions are also widely used today. 

 

An ANN system consists of a number of artificial neurons and a huge number of interconnections 

among them. According to the structure of the connections, two different classes of neural network 

architectures are identified [9](Figure 2).  

 

In layered neural networks, the neurons are organized in the form of layers. The neurons in one layer 

get input from the previous layer and feed their output to the next layer. This type of network is called 

feedforward neural network. The first and last layers are input layer and output layer respectively, and 

the layers that are not input or output are called {\it hidden layers}. Networks with one or more hidden 

layers are called multi-layer networks. Multi-Layer perceptron is a well-known feedforward layered 



neural network, on which the Backpropagation learning algorithm [10] is implemented.   

 
Figure 2: (a) Layered feed forward neural network. (b) Recurrent neural network.  

The structure, where connections to the neurons are to the same layer or the previous layers, shown in 

Figure 2 (b), is called recurrent neural network. Hopfield Neural Network [11] is an example of widely 

used recurrent networks.  

 

Kohonen's selforganizing map (SOM) is another well-known neural network paradigm introduced by 

Kohonen[12]. Many other ANN learning algorithms have been proposed, including algorithms for 

more specialized tasks.  

 

ANN models have been proved to be successful in a number of applications, including text to speech 

conversion [13], protein structure analysis, autonomous navigation, game playing, image and signal 

processing, intelligent vision, pattern recognition, etc. These artificial models rely heavily on highly 

interconnected computational units functioning in parallel.  

 

3 Hardware versus Software  
 

A significant amount of work has been done in developing simulation environments for ANNs on 

sequential machines. An overview of sequential ANN simulators can be found in [14]. The 

performance of conventional von-Neuman processors, for example, the Intel Pentium series, continues 

to improve dramatically. When the particular task at hand does not require super fast speed, most 

designers of neural network solutions find a software implementation on a PC or workstation with no 

special hardware add-ons a satisfactory solution. However, even the fastest sequential processor cannot 

provide real-time response and learning for networks with large numbers of neurons and synapses. 

Parallel processing with multiple simple processing elements (PEs), on the other hand, can provide 

tremendous speedups. Some specialized applications have motivated the use of hardware neural 

networks. For example, cheap dedicated devices, such as those for speech recognition in consumer 

products, and analog neuromorphic devices, such as silicon retinas, which directly implement the 



desired functions. 

      

When implemented in hardware, neural networks can take full advantage of their inherent parallelism 

and run orders of magnitude faster than software simulations. Section 7 will present some real-world 

applications of neural network hardware.  

 

In general, neural network hardware designers have taken two different approaches. One is to build a 

general, but probably expensive, system that can be re-programmed for many kinds of tasks, such as 

Adaptive Solutions CNAPS [15]. Another approach is to build a specialized but cheap chip to do one 

thing very quickly and efficiently, such as IBM ZISC [16].   

 

4 Block Representation and Specification 
 

Over the past decade a huge diversity of hardware for ANNs has been designed. Figure 3 presents a 

block level architectural representation for almost all neuro-chips and neurocomputer processing 

elements [17].  

 

Figure 3:  Block level representation for neuro-chips and neurocomputer processing elements after [17]. 

The activation Block in Figure 3, which performs the multiplications w j x j  and the summation of 

these multiplied terms as in Equation (1), is always on the neuro-chip (or the processing element of the 

neurocomputer). Other blocks, i.e., the Neuron State Block, Weights Block and Transfer Function 

Block may be on the chip or off the chip, and some of these functions may be performed by a host 

computer. The data flow between these blocks is controlled by the Control Unit that is always on the 



chip. The control parameters are used for controlling the hardware by a host. 

 

The data flow is such that the weights from the Weights Block and the inputs from outside or from the 

outputs are multiplied and the products are summed in the Activation Block, then the outputs are 

obtained in the Neuron State Block from the transferred sum of the products. Neuron states and weights 

can be stored in digital or analog form. Weights can be loaded statically, only once, before the 

activation computation, or they can be updated dynamically by the host or the Activation Block in the 

learning phase while activation steps are being performed. 

 

For multi-layer perceptron and Hopfield network (such as [18]) the transfer function may be a 

threshold, linear, ramp, or sigmoid function. For Kohonen network (for example [19]), what is 

computed by the Activation Block corresponds to the Euclidean distance between input and weight 

vectors, and the Activation Block, and the Transfer Function block (in cooperation with the Activation 

Block) implement the operation of finding the minimal one among all Euclidean distances between 

input and weight vectors and determining the indexes that denotes the neuron in the Self Organizing 

Feature Map where the minimum occurred. 

 

Neural network hardware is usually specified by the number of artificial neurons, or processing 

elements, and the number of connections between them. The number of neurons and number of 

connections vary from less than 10 to 10 6 . Another important parameter is the precision by which the 
arithmetical units perform the basic operations. The precision is mostly limited to 16-bit fixed point for 

the weights of a neural network and to 8-bit fixed point for the neuron outputs. In case of the 

multi-layer perceptron and the standard error backpropagation learning algorithm this precision was 

shown to be sufficient in most cases [20].However Kohonen's SOM algorithm can learn very well with 

only 6-bit weights [21]. Recurrent neural networks may require an arithmetical precision of more than 

16 bits [22].     

 

The traditional approach for quantifying neural network hardware performance is to measure the 

number of multiply and accumulate operations performed in the unit time (measured in MCPS or 

Millions of Connections Per Second) and the rate of Weight updates (measured in MCUPS or Millions 

of Connection Update Per Second). These two measurements somewhat correspond to the MIPS or the 

MFLOPS measured on traditional systems. They only serve as indications and have to be compared 

with care since the implementations differ in precision and size.  

 

Due to the lack of widely available and portable software, no serious effort has been made to develop a 

comprehensive benchmark suit for neural network hardware. The NETtalk network [13], which 

translates text to phonemes, is often used for the learning and recall phase of backpropagation networks. 

Other hardware benchmark proposals have been made in [2] and [23]. 



 

5 Classification of Neural Network Hardware 
 

Neural network hardware ranges from single stand-alone neurochips to full-fledged neurocomputers. A 

variety of attributes have been used to classify neural network hardware, such as system architecture, 

degree of parallelism, inter-processor communication network, general purpose or special purpose 

device, on-chip or off-chip learning, and so on. Neural network hardware can be categorized into 4 

classes by the degree of parallelism: coarse-grained, medium-grained, fine-grained and massive 

parallelism [24].  The number of processing elements yields the degree of parallelism of a system. The 

more parallel units there are, the faster data is processed. However, parallelism is expensive in terms of 

chip area or chip count. Therefore highly parallel systems usually employ simpler processing elements. 

The parallelism can be rated from only a few processing elements referred to as coarse-grained up to 

almost a one-to-one implementation of neural processing nodes called massive. There are no definite 

borders between these different categories. 

 

Parallel processing elements only speed up the computation when they do not run idle. Thus, for the 

system performance it is crucial that the inter-processor communication network provides the 

processing elements with sufficient data. Broadcast bus, linear array, systolic ring, crossbar and 

bidimensional mesh are the most frequently encountered communication networks of ANN systems 

[24].   

 

Here we follow the scheme proposed in [5] and group neural network hardware into four main 

categories as shown in Figure 4. 

 

Figure 4: Neural network hardware categories after [5]. 

The first two main categories consist of neurocomputers based on standard ICs. They consist of 



Accelerator boards which speed up a conventional computer like a PC or workstation, and parallel 

multiprocessor systems, which mostly run stand alone and can be monitored by a host computer. The 

other main categories are neurochips built from dedicated neural ASICs (Application Specific 

Integrated Circuits). These neurochips can be digital, analog, or hybrid. The rest of this section will 

look at each of these categories and discuss their advantages and disadvantages.   

 

5.1 Accelerator Boards 

Accelerator boards are the most frequently used neural commercial hardware, because they are 

relatively cheap, widely available, simple to connect to the PC or workstation, and typically provided 

with user-friendly software tools. They reside in the expansion slots and are used to speed up the neural 

network computations. The speed-up that can be achieved is at about one order of magnitude compared 

to sequential implementations. Accelerator boards are usually based on neural network chips but some 

just use fast digital signal processors (DSP) that do very fast multiple-accumulate operations. A 

drawback of accelerator boards is that they are specialized for certain tasks, and thus lack flexibility 

and do not offer many possibilities for setting up novel paradigms.  

 

A good example of accelerator boards is IBM ZISC ISA and PCI Cards. The ZISC036 chip was 

developed at the IBM Essonnes Lab [16]. A single ZISC036 holds 36 neurons, or prototypes, to 

implement an RBF network trained with the RCE (or ROI) algorithm. The ISA card holds to 16 

ZISC036 chips, giving 576 prototype neurons. The PCI card holds up to 19 chips for 684 prototypes. 

PCI card can process 165,000 patterns/sec, where patterns are 64 8-bit element vectors.  

  

Other accelerator systems include SAIC SIGMA-1 [25], Neuro Turbo [26], HNC [27], etc. 

 

5.2 Neurocomputers Built from General Purpose Processors 

General-purpose processors offer enough programmability for the implementation of neural functions.  

These implementations will of course never be maximally efficient. But because of their wide 

availability and relatively low prices, a number of neurocomputers have been assembled from general- 

purpose chips. Implementations range from architectures of simple, low-cost elements (for example, 

the BSP400 [28] and COKOS [29]) to architectures with rather sophisticated processors like 

transputers, which are unique for their parallel I/O lines [30], or DSPs, which were primarily developed 

for correlators and discrete Fourier transforms [31].  Much experience has been gained from these 

implementations, which can be useful for the design of "true" neurocomputers, i.e., dedicated 

neurocomputers completely built from special purpose elements like neurochips.  For instance, in 

many cases the sigmoid function forms the most computationally expensive part of the neural 

calculation.  A solution for this can be found in using a look-up table rather than calculating the 

function [32]. Finding an interconnection strategy for large numbers of processors has turned out to be 

another non-trivial problem. Fortunately, much knowledge about the architectures of these massively 



parallel computers can be directly applied in the design of neural architectures.   

  

The RAP (Ring Array Processor) [33] is an example of neurocomputers built from general-purpose 

processors. It was developed at the ICSI (International Computer Science Institute, Berkeley, CA) and 

has been used as an essential component in the development of connectionist algorithms for speech 

recognition since 1990. Implementations consist of 4 to 40 Texas Instruments TITMS320C30 floating 

point DSPs containing 256 Kbytes of fast static RAM and 4 Mbytes of dynamic RAM each. These 

chips are connected via a ring of Xilinx programmable gate arrays (PGAs), each implementing a 

simple two-register data pipeline. Additionally each board has a VME bus interface logic, which allows 

it to connect to a host computer. The software support of RAP contains a workstation based command 

interpreter, tools for the standard C environment and a library of matrix and vector routines. A single 

board can perform 57 MCPS when computing a multi-layer perceptron network in forward operation, 

and 13.2 MCPS with backpropagation training. 

   

5.3 Neurochips 

For neurocomputers in Section 5.2 the neural functions are programmed on general-purpose processors. 

Dedicated circuits are devised in special purpose chips for the neural functions. This will speed up the 

neural iteration time by about 2 orders of magnitude compared to general-purpose processor 

implementations. Several implementation technologies can be chosen for the design of neurochips. The 

main distinction lies in choice of a fully digital, fully analog, or hybrid design. Direct implementation 

in circuits in many cases alters the exact functioning of the original (simulated or analyzed) 

computational elements. This is mainly due to limited precision. The influence of this limited precision 

is of great importance to the proper functioning of the original paradigm. In order to build large-scale 

implementations, many neurochips have to be interconnected.  Some chips are therefore supplied with 

special communication channels. Other neurochips are to be interconnected by specially designed 

communication elements.  

 

5.3.1 Digital Neurochips 

Digital Neural ASICs are the most powerful and mature neurochips. Digital techniques offer high 

computational precision, high reliability, and high programmability. Furthermore, powerful design tools 

are available for digital full- and semi-custom design. Disadvantages are the relatively large circuit size 

compared to analog implementations. Synaptic weights can be stored on or off chip. This choice is 

determined by the trade-off between speed and size. 

 

Section 6 will discuss two well-known digital Neurochips, CNAPS [15] and SYNAPSE-1 [34], in 

much detail. Unlike CNAPS and the SYNAPSE which were designed for a wide range of neural 

network algorithms, the NESPINN (Neurocomputer for Spiking Neural Networks), designed at the 

Institute of Microelectronics of the Technical University of Berlin, is optimized more strictly to a 



certain class of neural networks: spiking neural networks. Spiking neural networks model neurons on a 

level relating more closely to biology. They do not only incorporate synaptic weighting, postsynaptic 

summation, static threshold and saturation, but also computation of membrane potentials, synaptic time 

delays and dynamical thresholds. One NESPINN-Board is designed to compute about 10 5  
programmable neurons in real-time [35].  

 

5.3.2 Analog Neurochips 

Analog electronics have some interesting characteristics that can directly be used for neural network 

implementation. Operational amplifiers (Opamps), for instance, are easily built from single transistors 

and automatically perform neuron-like functions, such as integration and sigmoid transfer. These 

otherwise computationally intensive calculations are automatically performed by physical processes 

such as summing of currents or charges. Analog electronics are very compact and offer high speed at 

low energy dissipation. With current state-of-the-art micro electronics, simple neural (non-learning) 

associative memory chips with more than 1000 neurons and 1000 inputs each can be integrated on a 

single chip performing about 100 GCPS.  

 

Disadvantages of analog technology are the susceptibility to noise and process-parameter variations 

that limit computational precision and make it harder to understand what exactly is computed. Chips 

built according to the same design will never function in exactly the same way.  

 

Apart from the difficulties involved in designing analog circuits, the problem of representing adaptable 

weights is limiting the applicability of analog circuits. Weights can for instance be represented by 

resistors, but these are not adaptable after the production of the chips. Chips with fixed weights can 

only be used in the recall phase. Implementation techniques that do allow for adaptable weights are: 

capacitors, floating gate transistors, charge coupled devices (CCDs), etc [1]. The main problems with 

these techniques arise from process-parameter variations across the chip, limited storage times 

(volatility), and lack of compatibility with standard VLSI processing technology. The weight sets for 

these train-able chips are obtained by training on a remote system (PC or workstation) and are then 

downloaded onto the chip. Then another short learning phase can be carried out in the chip used for the 

forward phase, and the remote system updates the weights until the network stabilizes. This yields a 

weight matrix that is adjusted to compensate for the inevitable disparities in analog computations due 

to process variance. This ``chip in loop'' method has been used for Intel's analog ETANN chip [36]. It 

should be clear that these chips are suited for many different applications, but do not allow for on-board 

training. 

 

In order to get the benefits of fast analog implementation and the adaptability properties of neural 

networks, one has to implement learning mechanisms on the chip. Only then can the adaptive real-time 

aspects of neural networks be fully exploited. However, the implementation of most learning rules into 



analog VLSI turns out to be very hard. One of the problems in multi-layered networks is that the target 

values of the hidden nodes are not defined. The backpropagation method gets around this by passing 

error signals recursively backwards from the output layer, estimating the effect of intermediate weight 

changes on each error signal via a relatively complex backwards pass. Information is non-local, which 

renders extra difficulties for implementation. In order to overcome these difficulties many research 

groups are investigating learning methods that better suit implementation in analog circuits. Most 

proposed methods use the so-called weight perturbation technique that only requires a feed forward 

phase. These methods have proved to be quite successful [37, 38]. 

 

Although analog chips will never reach the flexibility attainable with digital chips, their speed and 

compactness make them very attractive for neural network research, especially when they adopt the 

adaptive properties of the original neural network paradigms. A final promising advantage is that they 

more directly interface with the real, analog world, whereas digital implementations will always require 

fast analog-to-digital converters to read in world information and digital-to-analog converters to put 

their data back into the world. 

 

Besides the Intel ETANN chip, other fully analog chips include [39], [40], etc. 

 

5.3.3 Hybrid Neurochips 

Both digital and analog techniques offer unique advantages, as was discussed in the former sections but 

they also have drawbacks with regard to their suitability for neural network implementations. The main 

shortcomings of digital techniques are the relative slowness of computation and the large amount of 

silicon and power that is required for multiplication circuits. Shortcomings of analog techniques are, 

for instance, the sensitivity to noise and susceptibility to interference and process variations. The right 

mixture of analog and digital techniques for the implementation of these processes will be very 

advantageous. In order to gain advantages of both techniques, and avoid the major drawbacks, several 

research groups have implemented hybrid systems. 

 

The ANNA (Analog Neural Network Arithmetic and Logic Unit) chip was designed at AT&T Bell Labs. 

It can be used for a wide variety of neural network architectures (see [41] for an OCR application) but 

is optimized for locally connected, weight-sharing networks and time-delay neural networks (TDNNs). 

Synaptic weights are trained off chip, quantized to the chip's resolution, and then downloaded into the 

chip's weight memory. They are represented by voltages. The interface to the chip is purely digital with 

two on-chip DACs converting the 6-bit digital weight values into the appropriate voltages. The system 

board for the ANNA chip is provided by a floating point DSP-32C for the learning process and 

calculation of the output layer of the backpropagation network. The ANNA chip comprises 4096 

synapses and 8 linear neurons, and can handle up to 256 neural state inputs. Performance: 5000 MCPS 

(peak), 1000 to 2000 MCPS (average).  



 

The Epsilon [42] (Edinburgh Pulse Stream Implementation of a Learning Oriented Network) chip is a 

hybrid neurochip that uses pulse coding techniques.  In pulse coding techniques, the analog neural 

states are represented as sequences of pulses. This offers a number of advantages with regard to power 

consumption, calculations and their propagation.The Epsilon chip consists of 30 nodes and 3600 

synaptic weights, and can be used both as a ``save'' accelerator to a conventional computer and as an 

``autonomous'' processor.  With this chip it has been shown that it is possible to implement robust and 

reliable networks using the pulse stream technique. Performance can achieve 360 MCPS. 

 

A more recent neurochip that uses pulse stream technique is The PDM (Pulse Density Modulating) 

digital neural network system [43]. It is a neural network hardware that can simulate feedback and 

feedforward neural networks in a fully parallel and continuous manner. Analog output from each 

neuron is transmitted by a pulse stream whose frequency is proportional to the output. In total, there are 

1,008 neurons and 1,028,160 synapses in the system.  

 

6 Case Studies 
 

6.1 CNAPS 

One of the most well known commercially available neurocomputers is the CNAPS (Connected 

Network of Adaptive Processors) [15] from Adaptive Solutions. The basic building block of the 

CNAPS system is the neurochip N6400. As shown in Figure 5, the N6400 itself consists of 64 

processing elements (referred to as processing nodes PN) that are connected by a broadcast bus in a 

SIMD (Single Instruction Multiple Data) mode. Two 8-bit buses allow the broadcasting of input and 

output data to all PNs. 

 
Figure5: SIMD-Architecture of the CNAPS 

One of the big advantages of the CNAPS architecture is the scalability of the system: due to the 

broadcast bus, inter-processor communication and the SIMD mode, additional N6400 chips can be 

easily added as depicted in Figure 5. The standard CNAPS system consists of a common sequencer 

chip and four processor chips (systems with up to eight chips and altogether 1064 PNs are available). 

The regularity of the broadcast bus structure is exploited also in another way in the CNAPS system: the 

N6400 die measures about one square inch with more than 13 million transistors integrated. The yield 

is kept at an acceptable level by introducing redundancies and reconfiguring faulty elements after 



fabrication. Out of 80 PNs integrated 64 PNs are used after test and reconfiguration, resulting in a 90% 

yield. 

 

The PNs are designed like simple DSPs including fixed-point adder and multiplier. Each PN is 

equipped with 4-KByte local on-chip SRAM that needs to hold the weights. The size of the local 

memory is the bottleneck for large networks: once the connectivity cannot be stored locally anymore a 

communication via the broadcast bus becomes necessary. Of course the system performance drops 

dramatically when 64 PNs try to communicate over two 8bit buses. Since the two data buses do not 

allow an efficient communication between PNs, networks must be mapped n-parallel onto the CNAPS. 

When employing backpropagation learning each processing node has to store not only the weight 

matrix but also the inverse as well. In that case the size of networks the CNAPS architecture can handle 

is smaller. 

 

However, the versatile character of the PN provides programmability for a broad range of algorithms: 

the possibility of implementing several algorithms including backpropagation and Kohonen 

self-organizing feature maps as well as image processing algorithms. Also, for convenient 

programming CNAPS tools include a C-compiler with extensions to take full advantage of the parallel 

architecture. According to the previously mentioned taxonomy of ANN hardware, one would consider 

the complete CNAPS system a neurocomputer built of neurochips. However, the N6400 has also been 

used to build accelerator boards. 

 

6.2 SYNAPSE-1 

Siemens' MA-16 neurochip is the basic building block for the neurocomputer SYNAPSE-1 (Synthesis 

of Neural Algorithms on a Parallel Systolic Engine). MA-16 is designed for fast 4x4 matrix operations 

with 16-bit fixed-point precision [34]. Multiple MA-16 chips can be cascaded to form systolic arrays. 

This way inputs and outputs are passed from one MA-16 chip to another in a pipelined manner 

ensuring an optimal throughput as shown in Figure 6. 

 

The SYNAPSE-1 consists of eight MA-16 chips connected in two parallel rings controlled by two 

Motorola MC68040 processors. Weights are stored in an off-chip DRAM that amounts to 128 MByte 

and can be further expanded up to 512 MByte. The neural network is mapped sp-parallel for the 

forward phase and np-parallel for the learning phase. The neuron transfer functions are calculated 

off-chip using look-up tables. Especially the high capacity of the on-line weight memory qualifies the 

SYNAPSE-1 for complex applications. Like the CNAPS, SYNAPSE-1 is not dedicated to specific 

algorithms. Several networks have been mapped onto SYNAPSE-1, e.g. backpropagation and Hopfield 

networks. In opposite to the simple SIMD architecture of the CNAPS, programming the SYNAPSE-1 

is difficult. The fairly complex processing elements and the 2-dimensional structure of the systolic 

array hinder a straightforward programming even though a neural Algorithmic Programming Language 



is available. 

 

Figure 6: Scalar product chain of the MA-16 chip 

 
7 Neural Network Hardware Applications 
 

Neural network hardware is appearing in ever increasing numbers of real world applications and are 

making real money. This section illustrates its applications in Optical Character Recognition (OCR), 

speech recognition, neuromorphic systems and high energy physics. 

 

7.1 OCR 

OCR has become one of the biggest commercial applications of neural networks. Nowadays a purchase 

of a new scanner typically includes a commercial OCR program. To turn a picture of text into a text file, 

a dozen or more steps must be completed successfully by the OCR program, including cleaning up 

image, segmenting characters, extracting features, classifying and verifying characters, and so on. Most 

OCR programs choose to accomplish one or more of these steps with ANNs while using for other steps 

other techniques such as conventional AI (If-Then rules), statistical models, hidden Markov models, 

etc.    

 

OCR neural network hardware illustrates two extremes:  for high throughput, special high 

performance hardware is required; for consumer products a cheap dedicated chip would be needed. 

Adaptive Solutions form and image capture systems [44] exemplifies the first case. A large and 

elaborate high end OCR system is designed for high speed and high volume processing of forms. 

Ligature Ltd. OCR-on-a-Chip [45] illustrates the second case. OCR-on-a-Chip is a powerful OCR tool 

that provides reading capabilities to any machine or integrated system without the need for a PC or 

extensive memory. The first product on the market featuring Ligature's OCR-on-a-Chip technology is 

Wizcom's Quicktionary, a hand-held pen-scanner that uses 64K RAM to scan and translate text clips.  



7.2 Speech Recognition 

Sensory Inc. has specialized in neural chips for speech recognition [46]. The chips cost only a few 

dollars. The chips recognize a limited vocabulary, e.g. 10-100 words, can be either speaker independent 

or dependent. They are intended for consumer applications such as cell phones, toys, etc. They involve 

preprocessing of the raw acoustic signal into a rate and distortion-independent representation that is fed 

into the neural network. The neural network is structured to perform nonlinear Bayesian classification. 

Training data consists of a large corpus of 300-600 voice samples representative of potential 

application users.  

 

7.3 Neuromorphic Hardware 

NeuroMorphic refers to systems that closely follow the structure and functions of biological neural 

systems, such as: silicon retinas and analog cochlears [47]. Such devices are mostly analog, particularly 

at the front-end sensor stage. One commercially successful product is Synaptics Touchpad [48]. It is a 

small, touch-sensitive pad that senses the position of a person's finger on its surface to provide screen                

navigation, cursor movement, and a platform for interactive input. Synaptics Touchpad uses ideas from 

retina and touch research, especially the way that a neuron's output is influenced by its connections to 

other neurons nearby. The Synaptics TouchPad can be used in a wide variety of applications that 

require a thin, robust, accurate, and easy to use input and navigation device. A neuromorphic device 

like the touchpad does more of the front end processing with analog circuits before the conversion to 

digital and so reduces the bandwidth required.  

  

7.4 High Energy Physics Online Filter 

High energy physics experiments involve the collision of sub-atomic particles, such as protons with 

electrons, in particle accelerators. The particles emitted in the debris are detected in enormous sensors 

that surround the collision region. Most collisions are glancing ones and usually do not produce 

anything interesting.  Collision rates can exceed 100s of MHz rates so sophisticated online filters must 

reject most of the "events" and only record those likely to be of interest. Hardware neural networks 

have been used to classify patterns in less than 10ms [49].       

At the Fermilab Tevatron proton-antiproton collider, the analog Intel ETANN chip, classified energy 

deposits in a calorimeter as either from electrons or gamma rays for the CDF experiment [50].  

      

8 Discussion 
           

Among the challenges neural network hardware faces today the competition with general-purpose 

hardware is probably the toughest one: computer architecture is a highly competitive domain that 

advances at an incredible pace. Neural networks in software have become well-established money 

making tools in a diverse range of pattern recognition and AI applications. The area of ANN hardware 

on the other hand is not yet as commercialized as general-purpose hardware. Also neural networks 



hardware tends to be more algorithm-specific. This requires a good knowledge about algorithms as 

well as system design and leads to a high time-to-market. Therefore, general-purpose computers can 

profit more often from advances in technology and architectural revisions. Also, in many other respects 

general-purpose hardware seems to be more user-friendly: it is not bound to algorithmic 

a-priori-assumptions and therefore offers high flexibility. Uniform programming interfaces exist for 

general-purpose hardware. This can be important not only to get a better start when programming a 

system, but also to allow reusability when moving on to the next hardware generation. 

 

On the other hand, there are ANN problems, exceeding the computational capabilities of workstations 

or PCs such as real-time applications, the simulation of large networks or networks employing very 

complex neuron models. For these applications neurohardware is attractive. Other niche areas for 

neural hardware are embedded applications of simple, hardwired networks, for example, voice 

recognition chips, and neuromorphic systems that directly implement a desired function, such as 

touchpad and silicon retinas. Neurohardware might provide a much better cost-to-performance ratio, 

lower power consumption and smaller size.  

                 

The field of neural network hardware has become maturer since it's ``gold rush'' period in late 1980s 

and early 1990s. Clearly an algorithmic success in artificial neural networks would revive the area of 

neurohardware. As long as conventional hardware can not provide sufficient performance, there is a 

need for neural network hardware.  
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