
Neural Networks in Hardware: A Survey

Yihua Liao
Department of Computer Science, University of California, Davis

One Shields Avenue, Davis, CA 95616
liaoy@cs.ucdavis.edu

Abstract

Over the past decade a large variety of hardware has been designed to exploit the inherent parallelism of the

artificial neural network models. This paper presents an overview of neural network hardware. Neural network

basics, hardware specification and performance evaluation are introduced. Major categories of neural network

architectures are reviewed. Two examples of neurohardware, CNAPS and SYNAPSE-1, and some real-world

applications of neural network hardware, are described in detail. The challenges and future of hardware

implementation of neural networks are also discussed.

1 Introduction

Neural network hardware has undergone rapid development during the last decade. Unlike the

conventional von-Neumann architecture that is sequential in nature, artificial neural networks (ANNs)

profit from massively parallel processing. A large variety of hardware has been designed to exploit

the inherent parallelism of the neural network models. Despite the tremendous growth in the digital

computing power of general-purpose processors, neural network hardware has been found to be

promising in some specialized applications, such as image processing, speech synthesis and analysis,

pattern recognition, high energy physics and so on.

Neural network hardware is usually defined as those devices designed to implement neural

architectures and learning algorithms, especially those devices that take advantage of the parallel nature

inherent to ANNs. A few surveys of neural network hardware have been published [1-6]. Due to the

fast growth and huge diversity of neurohardware, these overviews are either outdated or limited on

certain aspects of hardware implementations of artificial neural networks. The purpose of this paper is

to present the state of the art in neural network hardware architectures and provide a broad view of

principles and practice of hardware implementation of neural networks. Neural network hardware

specification and classification, various architectures and design issues, latest development and real

world applications are reviewed in detail. The future direction of neural network hardware is also

discussed. However, the general purpose massively parallel computers, or neurocomputer designs

based on other implementation techniques, such as opto-electronics, electro-chemical and molecular

techniques, are not within the scope of this survey.

2 Artificial Neuron Model and Neural Network Structures
The study of artificial neural networks has been inspired in part by the observation that biological

learning system are built of very complex webs of interconnected neurons. Typically, the human brain

consists of approximately 10 11 neurons, each with an average of 10 3 - 10 4 connections. It is believed
that the immense computing power of the brain is the result of the parallel and distributed computing

performed by these neurons [7]. The transmission of signals in biological neurons through synapses is a

complicated chemical process in which specific transmitter substances are released from the sending

side of the synapse. The effect is to raise or lower the electrical potential inside the body of the

receiving cell. The neuron fires if the potential reaches a threshold. This is the characteristic that the

artificial neuron model proposed by McCulloch and Pitts [8] attempts to reproduce. This neuron model

is widely used in artificial neuron networks with some variations (Figure 1).

Figure 1: Artificial neuron model

The artificial neuron presented in Figure 1 has N inputs, denoted as x 1 , x 2 ,…, x n . Each line

connecting these inputs to the neuron is assigned a weight, denoted as w1 , w 2 ,..., w n , respectively.

The action, which determines whether the neuron is to be fired or not, is given by the formula:

a = ∑
=

n

j
jw

1

x j

The output of the neuron is a function of its action:

y = f(a)

Originally the neuron output function f(a) proposed in McCulloch-Pitts model was a threshold function.

However, linear, ramp and sigmoid functions are also widely used today.

An ANN system consists of a number of artificial neurons and a huge number of interconnections

among them. According to the structure of the connections, two different classes of neural network

architectures are identified [9](Figure 2).

In layered neural networks, the neurons are organized in the form of layers. The neurons in one layer

get input from the previous layer and feed their output to the next layer. This type of network is called

feedforward neural network. The first and last layers are input layer and output layer respectively, and

the layers that are not input or output are called {\it hidden layers}. Networks with one or more hidden

layers are called multi-layer networks. Multi-Layer perceptron is a well-known feedforward layered

neural network, on which the Backpropagation learning algorithm [10] is implemented.

Figure 2: (a) Layered feed forward neural network. (b) Recurrent neural network.

The structure, where connections to the neurons are to the same layer or the previous layers, shown in

Figure 2 (b), is called recurrent neural network. Hopfield Neural Network [11] is an example of widely

used recurrent networks.

Kohonen's selforganizing map (SOM) is another well-known neural network paradigm introduced by

Kohonen[12]. Many other ANN learning algorithms have been proposed, including algorithms for

more specialized tasks.

ANN models have been proved to be successful in a number of applications, including text to speech

conversion [13], protein structure analysis, autonomous navigation, game playing, image and signal

processing, intelligent vision, pattern recognition, etc. These artificial models rely heavily on highly

interconnected computational units functioning in parallel.

3 Hardware versus Software

A significant amount of work has been done in developing simulation environments for ANNs on

sequential machines. An overview of sequential ANN simulators can be found in [14]. The

performance of conventional von-Neuman processors, for example, the Intel Pentium series, continues

to improve dramatically. When the particular task at hand does not require super fast speed, most

designers of neural network solutions find a software implementation on a PC or workstation with no

special hardware add-ons a satisfactory solution. However, even the fastest sequential processor cannot

provide real-time response and learning for networks with large numbers of neurons and synapses.

Parallel processing with multiple simple processing elements (PEs), on the other hand, can provide

tremendous speedups. Some specialized applications have motivated the use of hardware neural

networks. For example, cheap dedicated devices, such as those for speech recognition in consumer

products, and analog neuromorphic devices, such as silicon retinas, which directly implement the

desired functions.

When implemented in hardware, neural networks can take full advantage of their inherent parallelism

and run orders of magnitude faster than software simulations. Section 7 will present some real-world

applications of neural network hardware.

In general, neural network hardware designers have taken two different approaches. One is to build a

general, but probably expensive, system that can be re-programmed for many kinds of tasks, such as

Adaptive Solutions CNAPS [15]. Another approach is to build a specialized but cheap chip to do one

thing very quickly and efficiently, such as IBM ZISC [16].

4 Block Representation and Specification

Over the past decade a huge diversity of hardware for ANNs has been designed. Figure 3 presents a

block level architectural representation for almost all neuro-chips and neurocomputer processing

elements [17].

Figure 3: Block level representation for neuro-chips and neurocomputer processing elements after [17].

The activation Block in Figure 3, which performs the multiplications w j x j and the summation of

these multiplied terms as in Equation (1), is always on the neuro-chip (or the processing element of the

neurocomputer). Other blocks, i.e., the Neuron State Block, Weights Block and Transfer Function

Block may be on the chip or off the chip, and some of these functions may be performed by a host

computer. The data flow between these blocks is controlled by the Control Unit that is always on the

chip. The control parameters are used for controlling the hardware by a host.

The data flow is such that the weights from the Weights Block and the inputs from outside or from the

outputs are multiplied and the products are summed in the Activation Block, then the outputs are

obtained in the Neuron State Block from the transferred sum of the products. Neuron states and weights

can be stored in digital or analog form. Weights can be loaded statically, only once, before the

activation computation, or they can be updated dynamically by the host or the Activation Block in the

learning phase while activation steps are being performed.

For multi-layer perceptron and Hopfield network (such as [18]) the transfer function may be a

threshold, linear, ramp, or sigmoid function. For Kohonen network (for example [19]), what is

computed by the Activation Block corresponds to the Euclidean distance between input and weight

vectors, and the Activation Block, and the Transfer Function block (in cooperation with the Activation

Block) implement the operation of finding the minimal one among all Euclidean distances between

input and weight vectors and determining the indexes that denotes the neuron in the Self Organizing

Feature Map where the minimum occurred.

Neural network hardware is usually specified by the number of artificial neurons, or processing

elements, and the number of connections between them. The number of neurons and number of

connections vary from less than 10 to 10 6 . Another important parameter is the precision by which the
arithmetical units perform the basic operations. The precision is mostly limited to 16-bit fixed point for

the weights of a neural network and to 8-bit fixed point for the neuron outputs. In case of the

multi-layer perceptron and the standard error backpropagation learning algorithm this precision was

shown to be sufficient in most cases [20].However Kohonen's SOM algorithm can learn very well with

only 6-bit weights [21]. Recurrent neural networks may require an arithmetical precision of more than

16 bits [22].

The traditional approach for quantifying neural network hardware performance is to measure the

number of multiply and accumulate operations performed in the unit time (measured in MCPS or

Millions of Connections Per Second) and the rate of Weight updates (measured in MCUPS or Millions

of Connection Update Per Second). These two measurements somewhat correspond to the MIPS or the

MFLOPS measured on traditional systems. They only serve as indications and have to be compared

with care since the implementations differ in precision and size.

Due to the lack of widely available and portable software, no serious effort has been made to develop a

comprehensive benchmark suit for neural network hardware. The NETtalk network [13], which

translates text to phonemes, is often used for the learning and recall phase of backpropagation networks.

Other hardware benchmark proposals have been made in [2] and [23].

5 Classification of Neural Network Hardware

Neural network hardware ranges from single stand-alone neurochips to full-fledged neurocomputers. A

variety of attributes have been used to classify neural network hardware, such as system architecture,

degree of parallelism, inter-processor communication network, general purpose or special purpose

device, on-chip or off-chip learning, and so on. Neural network hardware can be categorized into 4

classes by the degree of parallelism: coarse-grained, medium-grained, fine-grained and massive

parallelism [24]. The number of processing elements yields the degree of parallelism of a system. The

more parallel units there are, the faster data is processed. However, parallelism is expensive in terms of

chip area or chip count. Therefore highly parallel systems usually employ simpler processing elements.

The parallelism can be rated from only a few processing elements referred to as coarse-grained up to

almost a one-to-one implementation of neural processing nodes called massive. There are no definite

borders between these different categories.

Parallel processing elements only speed up the computation when they do not run idle. Thus, for the

system performance it is crucial that the inter-processor communication network provides the

processing elements with sufficient data. Broadcast bus, linear array, systolic ring, crossbar and

bidimensional mesh are the most frequently encountered communication networks of ANN systems

[24].

Here we follow the scheme proposed in [5] and group neural network hardware into four main

categories as shown in Figure 4.

Figure 4: Neural network hardware categories after [5].

The first two main categories consist of neurocomputers based on standard ICs. They consist of

Accelerator boards which speed up a conventional computer like a PC or workstation, and parallel

multiprocessor systems, which mostly run stand alone and can be monitored by a host computer. The

other main categories are neurochips built from dedicated neural ASICs (Application Specific

Integrated Circuits). These neurochips can be digital, analog, or hybrid. The rest of this section will

look at each of these categories and discuss their advantages and disadvantages.

5.1 Accelerator Boards

Accelerator boards are the most frequently used neural commercial hardware, because they are

relatively cheap, widely available, simple to connect to the PC or workstation, and typically provided

with user-friendly software tools. They reside in the expansion slots and are used to speed up the neural

network computations. The speed-up that can be achieved is at about one order of magnitude compared

to sequential implementations. Accelerator boards are usually based on neural network chips but some

just use fast digital signal processors (DSP) that do very fast multiple-accumulate operations. A

drawback of accelerator boards is that they are specialized for certain tasks, and thus lack flexibility

and do not offer many possibilities for setting up novel paradigms.

A good example of accelerator boards is IBM ZISC ISA and PCI Cards. The ZISC036 chip was

developed at the IBM Essonnes Lab [16]. A single ZISC036 holds 36 neurons, or prototypes, to

implement an RBF network trained with the RCE (or ROI) algorithm. The ISA card holds to 16

ZISC036 chips, giving 576 prototype neurons. The PCI card holds up to 19 chips for 684 prototypes.

PCI card can process 165,000 patterns/sec, where patterns are 64 8-bit element vectors.

Other accelerator systems include SAIC SIGMA-1 [25], Neuro Turbo [26], HNC [27], etc.

5.2 Neurocomputers Built from General Purpose Processors

General-purpose processors offer enough programmability for the implementation of neural functions.

These implementations will of course never be maximally efficient. But because of their wide

availability and relatively low prices, a number of neurocomputers have been assembled from general-

purpose chips. Implementations range from architectures of simple, low-cost elements (for example,

the BSP400 [28] and COKOS [29]) to architectures with rather sophisticated processors like

transputers, which are unique for their parallel I/O lines [30], or DSPs, which were primarily developed

for correlators and discrete Fourier transforms [31]. Much experience has been gained from these

implementations, which can be useful for the design of "true" neurocomputers, i.e., dedicated

neurocomputers completely built from special purpose elements like neurochips. For instance, in

many cases the sigmoid function forms the most computationally expensive part of the neural

calculation. A solution for this can be found in using a look-up table rather than calculating the

function [32]. Finding an interconnection strategy for large numbers of processors has turned out to be

another non-trivial problem. Fortunately, much knowledge about the architectures of these massively

parallel computers can be directly applied in the design of neural architectures.

The RAP (Ring Array Processor) [33] is an example of neurocomputers built from general-purpose

processors. It was developed at the ICSI (International Computer Science Institute, Berkeley, CA) and

has been used as an essential component in the development of connectionist algorithms for speech

recognition since 1990. Implementations consist of 4 to 40 Texas Instruments TITMS320C30 floating

point DSPs containing 256 Kbytes of fast static RAM and 4 Mbytes of dynamic RAM each. These

chips are connected via a ring of Xilinx programmable gate arrays (PGAs), each implementing a

simple two-register data pipeline. Additionally each board has a VME bus interface logic, which allows

it to connect to a host computer. The software support of RAP contains a workstation based command

interpreter, tools for the standard C environment and a library of matrix and vector routines. A single

board can perform 57 MCPS when computing a multi-layer perceptron network in forward operation,

and 13.2 MCPS with backpropagation training.

5.3 Neurochips

For neurocomputers in Section 5.2 the neural functions are programmed on general-purpose processors.

Dedicated circuits are devised in special purpose chips for the neural functions. This will speed up the

neural iteration time by about 2 orders of magnitude compared to general-purpose processor

implementations. Several implementation technologies can be chosen for the design of neurochips. The

main distinction lies in choice of a fully digital, fully analog, or hybrid design. Direct implementation

in circuits in many cases alters the exact functioning of the original (simulated or analyzed)

computational elements. This is mainly due to limited precision. The influence of this limited precision

is of great importance to the proper functioning of the original paradigm. In order to build large-scale

implementations, many neurochips have to be interconnected. Some chips are therefore supplied with

special communication channels. Other neurochips are to be interconnected by specially designed

communication elements.

5.3.1 Digital Neurochips

Digital Neural ASICs are the most powerful and mature neurochips. Digital techniques offer high

computational precision, high reliability, and high programmability. Furthermore, powerful design tools

are available for digital full- and semi-custom design. Disadvantages are the relatively large circuit size

compared to analog implementations. Synaptic weights can be stored on or off chip. This choice is

determined by the trade-off between speed and size.

Section 6 will discuss two well-known digital Neurochips, CNAPS [15] and SYNAPSE-1 [34], in

much detail. Unlike CNAPS and the SYNAPSE which were designed for a wide range of neural

network algorithms, the NESPINN (Neurocomputer for Spiking Neural Networks), designed at the

Institute of Microelectronics of the Technical University of Berlin, is optimized more strictly to a

certain class of neural networks: spiking neural networks. Spiking neural networks model neurons on a

level relating more closely to biology. They do not only incorporate synaptic weighting, postsynaptic

summation, static threshold and saturation, but also computation of membrane potentials, synaptic time

delays and dynamical thresholds. One NESPINN-Board is designed to compute about 10 5
programmable neurons in real-time [35].

5.3.2 Analog Neurochips

Analog electronics have some interesting characteristics that can directly be used for neural network

implementation. Operational amplifiers (Opamps), for instance, are easily built from single transistors

and automatically perform neuron-like functions, such as integration and sigmoid transfer. These

otherwise computationally intensive calculations are automatically performed by physical processes

such as summing of currents or charges. Analog electronics are very compact and offer high speed at

low energy dissipation. With current state-of-the-art micro electronics, simple neural (non-learning)

associative memory chips with more than 1000 neurons and 1000 inputs each can be integrated on a

single chip performing about 100 GCPS.

Disadvantages of analog technology are the susceptibility to noise and process-parameter variations

that limit computational precision and make it harder to understand what exactly is computed. Chips

built according to the same design will never function in exactly the same way.

Apart from the difficulties involved in designing analog circuits, the problem of representing adaptable

weights is limiting the applicability of analog circuits. Weights can for instance be represented by

resistors, but these are not adaptable after the production of the chips. Chips with fixed weights can

only be used in the recall phase. Implementation techniques that do allow for adaptable weights are:

capacitors, floating gate transistors, charge coupled devices (CCDs), etc [1]. The main problems with

these techniques arise from process-parameter variations across the chip, limited storage times

(volatility), and lack of compatibility with standard VLSI processing technology. The weight sets for

these train-able chips are obtained by training on a remote system (PC or workstation) and are then

downloaded onto the chip. Then another short learning phase can be carried out in the chip used for the

forward phase, and the remote system updates the weights until the network stabilizes. This yields a

weight matrix that is adjusted to compensate for the inevitable disparities in analog computations due

to process variance. This ``chip in loop'' method has been used for Intel's analog ETANN chip [36]. It

should be clear that these chips are suited for many different applications, but do not allow for on-board

training.

In order to get the benefits of fast analog implementation and the adaptability properties of neural

networks, one has to implement learning mechanisms on the chip. Only then can the adaptive real-time

aspects of neural networks be fully exploited. However, the implementation of most learning rules into

analog VLSI turns out to be very hard. One of the problems in multi-layered networks is that the target

values of the hidden nodes are not defined. The backpropagation method gets around this by passing

error signals recursively backwards from the output layer, estimating the effect of intermediate weight

changes on each error signal via a relatively complex backwards pass. Information is non-local, which

renders extra difficulties for implementation. In order to overcome these difficulties many research

groups are investigating learning methods that better suit implementation in analog circuits. Most

proposed methods use the so-called weight perturbation technique that only requires a feed forward

phase. These methods have proved to be quite successful [37, 38].

Although analog chips will never reach the flexibility attainable with digital chips, their speed and

compactness make them very attractive for neural network research, especially when they adopt the

adaptive properties of the original neural network paradigms. A final promising advantage is that they

more directly interface with the real, analog world, whereas digital implementations will always require

fast analog-to-digital converters to read in world information and digital-to-analog converters to put

their data back into the world.

Besides the Intel ETANN chip, other fully analog chips include [39], [40], etc.

5.3.3 Hybrid Neurochips

Both digital and analog techniques offer unique advantages, as was discussed in the former sections but

they also have drawbacks with regard to their suitability for neural network implementations. The main

shortcomings of digital techniques are the relative slowness of computation and the large amount of

silicon and power that is required for multiplication circuits. Shortcomings of analog techniques are,

for instance, the sensitivity to noise and susceptibility to interference and process variations. The right

mixture of analog and digital techniques for the implementation of these processes will be very

advantageous. In order to gain advantages of both techniques, and avoid the major drawbacks, several

research groups have implemented hybrid systems.

The ANNA (Analog Neural Network Arithmetic and Logic Unit) chip was designed at AT&T Bell Labs.

It can be used for a wide variety of neural network architectures (see [41] for an OCR application) but

is optimized for locally connected, weight-sharing networks and time-delay neural networks (TDNNs).

Synaptic weights are trained off chip, quantized to the chip's resolution, and then downloaded into the

chip's weight memory. They are represented by voltages. The interface to the chip is purely digital with

two on-chip DACs converting the 6-bit digital weight values into the appropriate voltages. The system

board for the ANNA chip is provided by a floating point DSP-32C for the learning process and

calculation of the output layer of the backpropagation network. The ANNA chip comprises 4096

synapses and 8 linear neurons, and can handle up to 256 neural state inputs. Performance: 5000 MCPS

(peak), 1000 to 2000 MCPS (average).

The Epsilon [42] (Edinburgh Pulse Stream Implementation of a Learning Oriented Network) chip is a

hybrid neurochip that uses pulse coding techniques. In pulse coding techniques, the analog neural

states are represented as sequences of pulses. This offers a number of advantages with regard to power

consumption, calculations and their propagation.The Epsilon chip consists of 30 nodes and 3600

synaptic weights, and can be used both as a ``save'' accelerator to a conventional computer and as an

``autonomous'' processor. With this chip it has been shown that it is possible to implement robust and

reliable networks using the pulse stream technique. Performance can achieve 360 MCPS.

A more recent neurochip that uses pulse stream technique is The PDM (Pulse Density Modulating)

digital neural network system [43]. It is a neural network hardware that can simulate feedback and

feedforward neural networks in a fully parallel and continuous manner. Analog output from each

neuron is transmitted by a pulse stream whose frequency is proportional to the output. In total, there are

1,008 neurons and 1,028,160 synapses in the system.

6 Case Studies

6.1 CNAPS

One of the most well known commercially available neurocomputers is the CNAPS (Connected

Network of Adaptive Processors) [15] from Adaptive Solutions. The basic building block of the

CNAPS system is the neurochip N6400. As shown in Figure 5, the N6400 itself consists of 64

processing elements (referred to as processing nodes PN) that are connected by a broadcast bus in a

SIMD (Single Instruction Multiple Data) mode. Two 8-bit buses allow the broadcasting of input and

output data to all PNs.

Figure5: SIMD-Architecture of the CNAPS

One of the big advantages of the CNAPS architecture is the scalability of the system: due to the

broadcast bus, inter-processor communication and the SIMD mode, additional N6400 chips can be

easily added as depicted in Figure 5. The standard CNAPS system consists of a common sequencer

chip and four processor chips (systems with up to eight chips and altogether 1064 PNs are available).

The regularity of the broadcast bus structure is exploited also in another way in the CNAPS system: the

N6400 die measures about one square inch with more than 13 million transistors integrated. The yield

is kept at an acceptable level by introducing redundancies and reconfiguring faulty elements after

fabrication. Out of 80 PNs integrated 64 PNs are used after test and reconfiguration, resulting in a 90%

yield.

The PNs are designed like simple DSPs including fixed-point adder and multiplier. Each PN is

equipped with 4-KByte local on-chip SRAM that needs to hold the weights. The size of the local

memory is the bottleneck for large networks: once the connectivity cannot be stored locally anymore a

communication via the broadcast bus becomes necessary. Of course the system performance drops

dramatically when 64 PNs try to communicate over two 8bit buses. Since the two data buses do not

allow an efficient communication between PNs, networks must be mapped n-parallel onto the CNAPS.

When employing backpropagation learning each processing node has to store not only the weight

matrix but also the inverse as well. In that case the size of networks the CNAPS architecture can handle

is smaller.

However, the versatile character of the PN provides programmability for a broad range of algorithms:

the possibility of implementing several algorithms including backpropagation and Kohonen

self-organizing feature maps as well as image processing algorithms. Also, for convenient

programming CNAPS tools include a C-compiler with extensions to take full advantage of the parallel

architecture. According to the previously mentioned taxonomy of ANN hardware, one would consider

the complete CNAPS system a neurocomputer built of neurochips. However, the N6400 has also been

used to build accelerator boards.

6.2 SYNAPSE-1

Siemens' MA-16 neurochip is the basic building block for the neurocomputer SYNAPSE-1 (Synthesis

of Neural Algorithms on a Parallel Systolic Engine). MA-16 is designed for fast 4x4 matrix operations

with 16-bit fixed-point precision [34]. Multiple MA-16 chips can be cascaded to form systolic arrays.

This way inputs and outputs are passed from one MA-16 chip to another in a pipelined manner

ensuring an optimal throughput as shown in Figure 6.

The SYNAPSE-1 consists of eight MA-16 chips connected in two parallel rings controlled by two

Motorola MC68040 processors. Weights are stored in an off-chip DRAM that amounts to 128 MByte

and can be further expanded up to 512 MByte. The neural network is mapped sp-parallel for the

forward phase and np-parallel for the learning phase. The neuron transfer functions are calculated

off-chip using look-up tables. Especially the high capacity of the on-line weight memory qualifies the

SYNAPSE-1 for complex applications. Like the CNAPS, SYNAPSE-1 is not dedicated to specific

algorithms. Several networks have been mapped onto SYNAPSE-1, e.g. backpropagation and Hopfield

networks. In opposite to the simple SIMD architecture of the CNAPS, programming the SYNAPSE-1

is difficult. The fairly complex processing elements and the 2-dimensional structure of the systolic

array hinder a straightforward programming even though a neural Algorithmic Programming Language

is available.

Figure 6: Scalar product chain of the MA-16 chip

7 Neural Network Hardware Applications

Neural network hardware is appearing in ever increasing numbers of real world applications and are

making real money. This section illustrates its applications in Optical Character Recognition (OCR),

speech recognition, neuromorphic systems and high energy physics.

7.1 OCR

OCR has become one of the biggest commercial applications of neural networks. Nowadays a purchase

of a new scanner typically includes a commercial OCR program. To turn a picture of text into a text file,

a dozen or more steps must be completed successfully by the OCR program, including cleaning up

image, segmenting characters, extracting features, classifying and verifying characters, and so on. Most

OCR programs choose to accomplish one or more of these steps with ANNs while using for other steps

other techniques such as conventional AI (If-Then rules), statistical models, hidden Markov models,

etc.

OCR neural network hardware illustrates two extremes: for high throughput, special high

performance hardware is required; for consumer products a cheap dedicated chip would be needed.

Adaptive Solutions form and image capture systems [44] exemplifies the first case. A large and

elaborate high end OCR system is designed for high speed and high volume processing of forms.

Ligature Ltd. OCR-on-a-Chip [45] illustrates the second case. OCR-on-a-Chip is a powerful OCR tool

that provides reading capabilities to any machine or integrated system without the need for a PC or

extensive memory. The first product on the market featuring Ligature's OCR-on-a-Chip technology is

Wizcom's Quicktionary, a hand-held pen-scanner that uses 64K RAM to scan and translate text clips.

7.2 Speech Recognition

Sensory Inc. has specialized in neural chips for speech recognition [46]. The chips cost only a few

dollars. The chips recognize a limited vocabulary, e.g. 10-100 words, can be either speaker independent

or dependent. They are intended for consumer applications such as cell phones, toys, etc. They involve

preprocessing of the raw acoustic signal into a rate and distortion-independent representation that is fed

into the neural network. The neural network is structured to perform nonlinear Bayesian classification.

Training data consists of a large corpus of 300-600 voice samples representative of potential

application users.

7.3 Neuromorphic Hardware

NeuroMorphic refers to systems that closely follow the structure and functions of biological neural

systems, such as: silicon retinas and analog cochlears [47]. Such devices are mostly analog, particularly

at the front-end sensor stage. One commercially successful product is Synaptics Touchpad [48]. It is a

small, touch-sensitive pad that senses the position of a person's finger on its surface to provide screen

navigation, cursor movement, and a platform for interactive input. Synaptics Touchpad uses ideas from

retina and touch research, especially the way that a neuron's output is influenced by its connections to

other neurons nearby. The Synaptics TouchPad can be used in a wide variety of applications that

require a thin, robust, accurate, and easy to use input and navigation device. A neuromorphic device

like the touchpad does more of the front end processing with analog circuits before the conversion to

digital and so reduces the bandwidth required.

7.4 High Energy Physics Online Filter

High energy physics experiments involve the collision of sub-atomic particles, such as protons with

electrons, in particle accelerators. The particles emitted in the debris are detected in enormous sensors

that surround the collision region. Most collisions are glancing ones and usually do not produce

anything interesting. Collision rates can exceed 100s of MHz rates so sophisticated online filters must

reject most of the "events" and only record those likely to be of interest. Hardware neural networks

have been used to classify patterns in less than 10ms [49].

At the Fermilab Tevatron proton-antiproton collider, the analog Intel ETANN chip, classified energy

deposits in a calorimeter as either from electrons or gamma rays for the CDF experiment [50].

8 Discussion

Among the challenges neural network hardware faces today the competition with general-purpose

hardware is probably the toughest one: computer architecture is a highly competitive domain that

advances at an incredible pace. Neural networks in software have become well-established money

making tools in a diverse range of pattern recognition and AI applications. The area of ANN hardware

on the other hand is not yet as commercialized as general-purpose hardware. Also neural networks

hardware tends to be more algorithm-specific. This requires a good knowledge about algorithms as

well as system design and leads to a high time-to-market. Therefore, general-purpose computers can

profit more often from advances in technology and architectural revisions. Also, in many other respects

general-purpose hardware seems to be more user-friendly: it is not bound to algorithmic

a-priori-assumptions and therefore offers high flexibility. Uniform programming interfaces exist for

general-purpose hardware. This can be important not only to get a better start when programming a

system, but also to allow reusability when moving on to the next hardware generation.

On the other hand, there are ANN problems, exceeding the computational capabilities of workstations

or PCs such as real-time applications, the simulation of large networks or networks employing very

complex neuron models. For these applications neurohardware is attractive. Other niche areas for

neural hardware are embedded applications of simple, hardwired networks, for example, voice

recognition chips, and neuromorphic systems that directly implement a desired function, such as

touchpad and silicon retinas. Neurohardware might provide a much better cost-to-performance ratio,

lower power consumption and smaller size.

The field of neural network hardware has become maturer since it's ``gold rush'' period in late 1980s

and early 1990s. Clearly an algorithmic success in artificial neural networks would revive the area of

neurohardware. As long as conventional hardware can not provide sufficient performance, there is a

need for neural network hardware.

References
[1] Schwartz, T.J., 1990, A Neural Chips Survey, AI Expert, 5, 12, 34-39, 1990.

[2] Ienne, P., 1994, Architecture for Neuro-Computers: Review and Performance Evaluation, Technical

Report no. 93/21, Microcomputing Laboratory, Swiss Federal Institute of Technology, Lausanne, 1994.

[3] Glesner, M. and Pochmuller, W., 1994, An Overview of Neural Networks in VLSI, Chapman & Hall,

London, 1994.

[4] Lindsey, C. and Lindblad, T., 1994, Review of Hardware Neural Networks: A User's Perspective.

Proceeding of 3rd Workshop on Neural Networks: From Biology to High Energy Physics, Isola d'Elba,

Italy, Sept. 26-30, 1994.

[5] Heemskerk, J. N. H., 1995, Overview of Neural Hardware. Neurocomputers for Brain-Style

Processing. Design, Implementation and Application, PhD Thesis, Unit of Experimental and

Theoretical Psychology, Leiden University, the Netherlands.

[6] Misra, M., 1997, Parallel Environment for Implementing Neural Networks. Neural Computing

Survey, Vol. 1, 48-60, 1997.

[7] Rumelhart, D. E., McClelland, J. L. and the PDP Research Group, 1986, Parallel Distributed

Processing: Exploration in the Microstructure of Cognition, vol. 1, MIT Press, Cambridge,

Massachusetts, 1986.

[8] McCulloch, W. S. and Pitts, W., 1943, A Logical Calculus of the Ideas Immanet in Nervous Activity.

Bulletin of Mathematical Biophysics, vol. 5, 115-133, 1943.

[9] Gelenbe, E. and Halici U., 1994, Lecture Notes on Neural Networks, METU.

[10] Rumelhart, D. E. and McClelland, J. L., 1986, Parallel Distributed Processing: Exploration in the

Microstructure of Cognition (Vols. 1&2). Cambridge, MA: MIT Press.

[11] Hopfield, J. J., 1982, Neural Networks and Physical Systems with Emergent Collective

Computational Abilities. Proceedings of the National Academy of Sciences USA, 79, 2554-2558.

[12] Kohonen, T., 1984, Selforganization and Associative Memory, Springer-Verlag.

[13] Sejnowski, T. J. and Rosenberg, C. R., 1987, Parallel Networks That Learn to Pronounce English

Text. Complex Systems, 1:145-168, 1987.

[14] Murre, J. M. J., 1995, Neurosimulators, In Arbib, M. A. editor, Handbook of Brain Research and

Neural Networks, MIT Press 1995.

[15] McCartor, H., 1991, A Highly Parallel Digital Architecture for Neural Network Emulation. In

Delgado-Frias, J. G. and Moore, W. R. (eds.), VLSI for Artificial Intelligence and Neural Networks,

357-366, Plenum Press, New York, 1991.

[16] Lindsey, C. S., Lindblad, Th., Sekniaidze, G., Minerskjold, M., Szekely, S., and Eide, A., 1995,

Experience with the IBM ZISC Neural Network Chip. Proceedings of 3rd Int. Workshop on Software

Engineering, Artificial Intelligence, and Expert Systems, for High Energy and Nuclear Physics, Pisa,

Italy, April 3-8, 1995.

[17] Aybay, I., Cetinkaya, S. and Halici, U., 1996, Classification of Neural Network Hardware.

Neural Network World, IDG Co., Vol. 6 No. 1, 11-29, 1996.

[18] Abramson, D., Smith, K., Logothetis, P. and Duke, D., 1998, FPGA Based Implementation of a

Hopfield Neural Network for Solving Constraint Satisfaction Problems. Proceedings of Workshop on

Computational Intelligence of the 24th Euromicro Conference, Vasteras, Sweden, August 25th-27th,

1998.

[19] Speckmann, H., Thole, P. and Rosenstiel, W., 1993, Hardware Synthesis for Neural Networks from

a Behavioral Description with VHDL. Proceedings of International Joint Conference on Neural

Networks, Nagoya, 1993.

[20] Holt, J. and Hwang, J., 1993, Finite Precision Error Analysis of the Neural Network Hardware

Implementations. IEEE Trans. on Computers, 42:281-290, 1993.

[21] Thiran, P., Peiris, V., Heim, P. and Hochet, B., 1994, Quantization Effects in Digitally Behaving

Circuit Implementations of Kohonen Networks. IEEE Trans. on Neural Networks, 5(3):450-458, 1994.

[22] Strey, A. and Avellana, N., 1996, A New Concept for Parallel Neurocomputer Architectures.

Proceedings of the Euro-Par'96 Conference, Lyon (France), Springer LNCS 1124, Berlin, 470-477,

1996.

[23] Van Keulen, E., Colak, S., Withagen, H., and Hegt, H., 1994, Neural Network Hardware

Performance Criteria. {\it Proceedings of IEEE International Conference on Neural Networks},

1885-1888, 1994.

[24] Schoenauer, T., Jahnke, A., Roth, U. and Klar, H., 1998, Digital Neurohardware: Principles and

Perspectives. Proceedings of Neuronal Networks in Applications (NN'98), Magdeburg, 1998.

[25] Treleaven, P. C., 1989, Neurocomputers. International Journal of Neurocomputing, 1, 4-31, 1989.

[26] Arif, A. F., Kuno, S., Iwata., A. and Yoshita, Y., 1993, A Neural Network Accelerator Using Matrix

Memory with Broadcast Bus. Proceedings of the IJCNN-93-Nagoya, 3050-3053, 1993.

[27] HNC, 1993, High-Performance Parallel Computing. SIMD Numerical Array Processor, Data

Sheet, San Diego.

[28] Heemskerk, J.N.H., Hoekstra, J., Murre, J.M.J., Kemna, L.H.J.K. and Hudson, P.T.W., 1994, The

BSP400: A Modular Neurocomputer. Microprocessors and Microsystems, 18, 2, 67-78, 1994.

[29] Speckman, H., Thole, P. and Rosentiel, W., 1993, COKOS: A Coprocessor for Kohonen's

Selforganizing Map. Proceedings of the ICANN-93-Amsterdam, London: Springer-Verlag, 1040-1045,

1993.

[30] Foo, S. K., Saratchandran, P. and Sundararajan, N., 1993, Parallel Implementation of

Backpropagation on Transputers. Proceedings of the IJCNN-93-Nagoya, 3058-3061, 1993.

[31] Onuki, J., Maenosono, T., Shibata, M., Iima, N., Mitsui, H., Yoshida, Y. and Sobne., M., 1993,

ANN Accelerator by Parallel Processor Based on DSP. Proceedings of the IJCNN-93-Nagoya,

1913-1916, 1993.

[32] Shams, S. and Gaudiot, J., 1992, Efficient Implementation of Neural Networks on the DREAM

Machine. Proceedings of the 11th International Conference on Pattern Recognition, The Hague, The

Netherlands, 204-208, 1992.

[33] Morgan, N., Beck, J., Kohn, P., Bilmes, J., Allman, E. and Beer, J., 1992, The Ring Array

Processor: A Multiprocessing Peripheral for Connectionist Applications. Journal of Parallel and

Distributed Computing, 14, 248-259, 1992.

[34] Ramacher, U., Raab, W., Anlauf, J., Hachmann, U., Beichter, J., Bruls, N., Webeling, M. and

Sicheneder, E., 1993, Multiprocessor and Memory Architecture of the Neurocomputers SYNAPSE-1.

Proceedings of the 3rd International Conference on Microelectronics for Neural Networks (Micro

Neuro), 227-231, 1993.

[35] Jahnke, A., Roth, U. and Klar, H., 1996, A SIMD/Dataflow Architecture for a Neurocomputer for

Spike-Processing Neural Networks (NESPINN). Proceedings of the 6th International Conference on

Microelectronics for Neural Networks (Micro Neuro), 232-237, 1996.

[36] Tam, S., Gupta, B., Castro, H. and Holler, M., 1990, Learning on an Analog VLSI Neural Network

Chip. Proceedings of the IEEE International Conference on Systems, Man & Cybernetics, 1990.

[37] Jabri, M. and Flower, B., 1991, Weight Perturbation: An Optimal Architecture and Learning

Technique for Analog VLSI Feedforward and Recurrent Multi-Layer Networks. Neural Computation, 3,

546-565, 1991.

[38] Woodburn, R., Reekie, H.M. and Murray, A.F., 1994, Pulse-Stream Circuits for On-Chip Learning

in Analogue VLSI Neural Networks. Proceedings of the IEEE International Symposium on Circuits

and Systems, London, 103-106, 1994.

[39] Maeda, Y., Hirano, H. and Kanata, Y., 1993, AN Analog Neural Network Circuit with a Learning

Rule via Simutaneous Perturbation. Proceedings of the IJCNN-93-Nagoya, 853-856, 1993.

[40] Withagen, H., 1994, Implementing Backpropagation with Analog Hardware. Proceedings of the

IEEE ICNN-94-Orlando Florida, 2015-2017, 1994.

[41] Sackinger, E., Boser, E.B., Bromley, J., LeCun, Y. and Jackel, L.D., 1992, Application of the

ANNA Neural Network Chip to High Speed Character Recognition. IEEE Transactions on Neural

Networks, 3, 3, 498-505, 1992.

[42] Churcher, S., Baxter, D.J., Hamilton, A., Murray, A.F. and Reekie, H.M., 1992, Generic Analog

Neural Computation-the Epsilon Chip. Advances in Neural Information Processing Systems:

Proceedings of the 1992 Conference}, Denver, Colorado.

[43] Hirai, Y. 1998, A 1,000-Neuron System with One Million 7-bit Physical Interconnections. In

Jordan, M.I., Kearns, M.J. and Solla, S.A. eds. Advances in Neural Information Processing

Systems 10, A Bradford Book, The MIT Press, Cambridge, Massachusetts, pp.705-711, 1998.

[44] Adaptive Solutions, http://www.asi.com/

[45] Ligature Ltd. OCR-on-a-Chip, http://www.ligatureltd.com/products/ocr.html

[46] Sensory Inc., http://www.sensoryinc.com/

[47] Caltech center for Neuromorphic Systems Engineering, http://www.erc.caltech.edu/

[48] Synaptics Touchpad, http://www.synaptics.com/products/touchpad.cfm

[49] Neural Networks in HEP, http://www1.cern.ch/NeuralNets/nnwInHepHard.html.

[50] The Collider Detector at Fermilab, http://www-cdf.fnal.gov/.

http://www.asi.com/
http://www.ligatureltd.com/products/ocr.html
http://www.sensoryinc.com/
http://www.erc.caltech.edu/
http://www.synaptics.com/products/touchpad.cfm
http://www1.cern.ch/NeuralNets/nnwInHepHard.html
http://www-cdf.fnal.gov/

