
Simulation of Spiking Neural Networks -

Architectures and Implementations

Martin Schfer a Tim Sch�nauer b Carsten Wol� a;1

Georg Hartmann a Heinrich Klar b Ulrich Rckert a

aHeinz Nixdorf Institute, University of Paderborn, 33102 Paderborn, Germany,

Email: fhartmann,schaefer,wol�g@get.uni-paderborn.de,

rueckert@hni.uni-paderborn.de

bInstitute of Microelectronics and Solid State Electronics,

Technical University of Berlin, Einsteinufer 17, 10587 Berlin, Germany,

Email: fklar,timg@mikro.ee.tu-berlin.de

Abstract

The fast simulation of large networks of spiking neurons is a major task for the

examination of biology-inspired vision systems. Networks of this type label features

by synchronization of spikes and there is strong demand to simulate these e�ects

in real world environments. As the calculations for one model neuron are complex,

the digital simulation of large networks is not e�cient using existing simulation sys-

tems. Consequently, it is necessary to develop special simulation techniques. This

article introduces a wide range of concepts for the di�erent parts of digital sim-

ulator systems for large vision networks and presents accelerators based on these

foundations.

Key words: Spiking Neural Networks; PCNN Simulation; Accelerators; Vision

Networks

1 Introduction

Within the research area of arti�cial neural networks (ANN) pulse-coded neu-

ral networks are of major interest - especially for pattern recognition purposes.

Pulse-coded neural networks (PCNN) are also known as pulse-coupled, pulse-

coding or spiking neural networks. In the context of this article these terms

are used synonymously for spike-response- and intregate-and-�re-models [21].

1 Supported by the Deutsche Forschungsgemeinschaft DFG, Me872/4-1

Preprint submitted to Elsevier Preprint 20 May 2001

Pulse-coded neural networks are examined for two reasons. Firstly to under-

stand and to reproduce processing in the brain. Secondly the results of this

research are for use in technical systems. The pattern recognition capabilities

are of interest especially in image processing tasks because PCNNs can pro-

duce e�ects which cannot be achieved by less biology-inspired model neurons.

Pulse-coded neurons transfer their activity into pulse- or spike-trains and the

exact timing of these spikes can be used to represent features in images. Neu-

rons representing a coherent feature - e.g. a continuous line in their receptive

�eld - synchronize their pulses. Di�erent features are separated with a di�er-

ent phase of the spikes of the neuron groups representing these features. This

mechanism is supposed to be advantageous for many perception tasks, e.g. ob-

ject segmentation [9, 32], and several examinations have shown this behaviour

in brains [2, 3, 8]. To understand these e�ects and to demonstrate their capa-

bilities the real time processing of real world sceneries is applied. This requires

the simulation of large networks (several million neurons) at the processing

speed of biological systems. The simulation performance of standard work-

stations is not su�cient for such simulations [15, 26] causing a demand for a

special simulator system. This article presents methods and architectures de-

veloped at the Institute of Microelectronics at Berlin and at the Heinz Nixdorf

Institute at Paderborn. In the following chapters the characteristics of pulse-

coded vision networks and the model neuron are presented. The description

of a basic simulation algorithm is followed by a chapter about the di�erent

techniques for simulation acceleration. Subsequently the integration of learn-

ing algorithms into these architectures is dealt with. The di�erent accelerator

systems developed in the two working groups are presented. Advantages and

disadvantages are discussed and a performance evaluation is given in conclu-

sion.

2 Pulse-Coded Neural Vision Networks

The communication in PCNNs is based on spike exchange. In contrast to con-

ventional model neurons, e.g. McCulloch & Pitts neurons, the generation of a

spike requires high computational e�ort in connection with the time behaviour

in the biological example. The computational e�ort for individual neuron cal-

culations compared to whole network processing is much higher in PCNNs

than in conventional ANNs.

Common simulation techniques for neural networks make use of vector rep-

resentations for the neurons and matrix representations for the connection

network [11]. These techniques are not suitable for PCNNs because the actual

activity of one neuron is not representable by only one value. Hence, common

simulation techniques based on the acceleration of matrix-vector- calculations

are not su�cient for PCNNs. A new simulation paradigm is required with

2

respect to the special characteristics of neural vision networks.

Vision networks are based on retinal sampling of images. Neurons only re-

spond to stimulation in a limited retinal area called the receptive �eld (RF)

of the neuron. Consequently, each neuron type in the network is represented

by one neuron for each receptive �eld [12, 13]. Thus, the neurons are arranged

in layers and each neuron in a layer corresponds to an area in the presented

image. The neurons connected with neurons in another layer all use similar

connection schemes because they all do the same processing - only the recep-

tive �eld is di�erent. This leads to a systematic network architecture and a

regular connection topology. The network is not fully connected but mainly

the neighboured layers are connected which causes a sparse connectivity.

Neuron layers extract relevant information from the image and, furthermore,

these layers only process special features. Di�erent features can be found in

di�erent image areas but the neuron layers contain neurons for the entire

image area. Hence, only few neurons in a specialized neuron layer receive

input matching their special feature and due to this only few neurons are

active while most neurons retain their rest values. Only the active neurons

can emit a spike and due to the refractory period only very few spikes are

produced in the whole network. In a discrete timeslot simulation this can be

de�ned as a low spike rate. Additionally, the activity in vision networks is

controlled by inhibition neurons that inhibit groups of neurons depending on

the activity in this group or in another group.

Table 1

Typical features of conventional ANNs compared to PCNNs for vision purposes.

conventional ANNs PCNNs for vision purposes

simple model neurons complex model neurons

no considerations of timing e�ects modelling of neural timing

continuous activation activity conversion into spike trains

almost full connectivity sparse connectivity

all neurons involved few neurons involved

mainly supervised learning unsupervised learning

Learning in ANNs usually deals with the modi�cation of connections. In PC-

NNs, connections represent the axon, the synapse and the dendrite of bio-

logical neurons. The connection parameters are subject to temporal changes

which are divided - with respect to the time range of these changes - into

long term and short term potentiation. Slow connection changes within a long

time range are also known as Long Term Memory (LTM) and changes within

a short time range are known as Short Term Memory (STM). Neurons are

divided into presynaptic and postsynaptic neurons - depending on their po-

3

sition related to the synapse. The connections are described by the following

parameters:

� connection weight

� various delays (axonal, synaptic and dendritic delay)

� type of inuence on the postsynaptic neuron (excitation, inhibition)

Several rules derived from the Hebbian learning rule are used concerning long

term potentiation. These procedures are based on local data. Only the data

from the presynaptic and the postsynaptic neuron is used for modi�cation of

the connection and no global network data has to be calculated. The learning

procedure is triggered by a spike. Short term potentiation is considered as a

further �lter function for the synapses.

In conclusion, PCNNs for vision tasks can be characterized by the following

features:

� systematic network architecture with neuron layers and receptive �elds

� mainly regular and similar connection schemes

� sparse connectivity

� low network activity and low spike rates

� inhibition neurons for activity control

� several learning rules based on local data

E�cient simulation techniques and hardware architectures have to make use

of these features.

3 Model Neuron

Pulse-coded neurons transfer their activity - the membrane potential of bio-

logical neurons - to a spike train. A threshold operation decides whether the

neuron emits a spike or not. The spike is weighted, delayed and transferred

via the network topology and used for the modi�cation of the postsynaptic

neuron activity. The model neuron is divided into several parts representing

the dendrites, the soma, the axon and the synapse of a biological neuron.

The dendrites are commonly modelled with leaky integrators which represent

a whole group of similar dendrites of one neuron. The leaky integrators process

the spatio-temporal integration of the received spikes for one dendritic tree and

they form the dendritic potential (DP) of this tree (see Fig. 1). Other �lter

functions for the dendritic trees are also possible. The membrane potential

(MP) of the neuron is calculated from these dendritic potentials. The dendritic

potentials can be excitatory leading to an addition, they can be inhibitory

4

and then they are subtracted or they can be modulatory and then they are

multiplied. The use of a modulatory linking tree is characteristic for Eckhorn

neurons [2, 3]. The spike generation is processed from a threshold comparison

of the membrane potential (MP) and a dynamic threshold (DT). The dynamic

threshold similar to French & Stein [6] is used to reproduce the refractory

period of a biological neuron.

�
�

� � � �

�

� � � �� � � � �

� �

�

� � � �

� � � �

�

�

��

�

�
	
 �

�

�

�
	
 �

�

�

�
	

� � � � � � � � � � � � � � � �
 � � �

� � � � � � � � � � � � � � � �
 � � �

� � � � �
� � � � � � � � � �

� � � � �
 �
� � � � � � � �

� � � � � � � � � �

� � � � � �
� �
 � �

 � � � �
� �
 � � �

� � �

� �

� � �

� � �

� �

�

� � �

Fig. 1. The pulse-coded model neuron corresponding to Eckhorn [2, 3]

The spikes are weighted via the topology with the connection weight (w) and

summed up to give the input of the postsynaptic neuron. The spikes can be

delayed with an axonal delay referring to all spikes of one presynaptic neuron

or they can be delayed with a dendritic or synaptic delay referring to only

one synapse of the neuron. Hence, the axonal delay has to be calculated for

the presynaptic spike and the synaptic or dendritic delay has to be calculated

for the postsynaptic spike. Both delays and the connection weight may be

modi�able.

The following simulation techniques and hardware architectures do not sup-

port all features listed above. In all cases a model neuron with at least four

dendritic trees with excitatory, inhibitory and modulatory inuence, a dy-

namic threshold and axonal delays is supported. For the leaky integrators at

least exponential decay functions are available.

4 Basic Ideas

For digital simulation it is necessary to develop a discrete model close enough

to the desired example. Hence, a suitable resolution for the parameters and

variables has to be found and a timeslot simulation with an appropriate divi-

sion of the simulation time has to be established. In the case of PCNNs the

chosen time division has to guarantee the reproduction of the spike timing

with the desired exactness. This exactness depends on the application and is

5

chosen to one millisecond represented with one timeslot for the vision purposes

considered in this contribution. The presented algorithms are of course also

suitable for other time divisions.

The main task of the simulation procedure is to calculate at least those net-

work parameters that allow the generation of all spikes occuring in a continu-

ous network processing. Spike emission is derived from the neurons membrane

potential and from the dynamic threshold. Hence, the simulation procedure

has to process valid values for the membrane potential derived from the den-

dritic potentials and for the dynamic threshold of all neurons which will emit

a spike in the following timeslot. Furthermore, valid connection weights and

delays are required. Therefore, the simulation procedure has to provide valid

values of the data of all neurons and connections that are possibly involved

in the emission of a spike. These parameters can be stored in a memory and

the network state is represented by this memory. The simulation is processed

using this data.

Common ANNs work with matrix and vector representations of this data. Us-

ing the simple neurons and connections the network state can be derived from

matrix-vector calculations. PCNNs - in contrast - require the calculation of

individual neurons and synapses because their complex model neurons are not

suitable for matrix-vector representations. Because the large numbers of neu-

rons and synapses cannot be represented individually by their own calculation

units, at least partly sequential processing is needed.

A sequential simulation has to guarantee consistent data concerning the time.

One possiblity is to calculate the spike emission of all neurons in a �rst step

before these spikes are used in a second step to modify the dendritic potentials

of all the postsynaptic neurons. Hence, the timeslot is divided into these two

steps. Furthermore, synapses have to be modi�ed before they are used for

spike transmission in the following timeslot. In the case of other - e.g. parallel

- simulation procedures the use of consistent data concerning time also has to

be considered. To provide this consistency, in all cases data has to be stored

until one calculation step has been �nished for all neurons. Presynaptic spikes

are well suited for this storage, because on the one hand they represent the

relevant information and on the other hand they form a small amount of

information due to the low spike rates in vision PCNNs.

Based on these two simulation phases a trivial algorithm for PCNN simula-

tion can be designed (see Fig. 2). In the �rst phase the dendritic potentials of

the neurons are read from the neuron memory and the membrane potential

is calculated. The dendritic potentials are decayed and written to the neuron

memory. If the neuron's membrane potential is supraliminal, a spike is pro-

duced and collected in a spike list. The dynamic threshold is incremented and

decayed or - if the neuron is not supraliminal - only decayed. In the second

6

step of the timeslot the spikes are read from the spike list, weighted (with

weight wij) and distributed via the network topology and used for the mod-

i�cation of the dendritic potentials of the postsynaptic neurons. In the case

of learning, the synapses can be modi�ed with respect to the spikes from the

spike list after this step. The network is modi�ed to an actual state and the

next timeslot can be started. The single steps in one timeslot can be combined

or calculated in parallel if the consistency of the data is guaranteed.

� �
 � � �
 � �

� � � � � � � � � � �

� � �

� � �

� � �

� �

� � � � � � � � � � � � �

	
 �

�

� � � 	 � � � � � � � � � � �

� � � � � � � � � � �� �
 � � � �
 � � � � � � � �

� � � � � � � � � � � � � � � �
� � � � �
 �
 � � � � � � � � � �

� � � � � � � � � � � � � � � �
� � � � �
 �
 � � � � � � � � � �

Fig. 2. Basic algorithm for digital PCNN simulation

For this type of network processing, the spike has to carry information about

the emitting neuron. The address of the neuron's data in the neuron memory

is used as such a label for a spike leading to a simulation based on address

events. These addresses are called neuron address in the following. In the decay

phase the neuron addresses of spiking neurons are collected in the spike list

bu�er and in the stimulation phase they are used to address the postsynaptic

neurons via the network topology.

The calculation of neurons and synapses can be processed with sequential,

parallel or pipelined units. In the case of pipelining, for each calculation step

of a neuron or a synapse one unit is provided and these units are arranged in

a pipeline which may be fed with one neuron or synapse in each clock cycle.

Parallel units can process neuron calculations simultaneously - e.g. decaying

of all dendritic potentials in one step or processing of synapses and neurons

with parallel units. A further parallel approach is the distribution of neurons

7

or synapses into several equal processing units [22, 23, 33]. The communica-

tion between the units is based on spikes or spike list exchange. As a neuron is

connected to other neurons by one axon but many synapses, many postsynap-

tic spikes are calculated from one presynaptic spike. This leads to a smaller

communication amount for systems based on presynaptic spike exchange.

In addition to simulation acceleration by parallelism or pipelining, simulation

time can be reduced by exploration of the special characteristics of vision

PCNNs (see Chapter 2) if the number of processed neurons and synapses can

be reduced to those involved in spike generation. Based on the low activity in

vision networks and with utilisation of event-driven simulation techniques the

calculation amount can be limited to the steps required for a correct spike-

train generation. These basic considerations can be transferred to hardware

architectures. Some main problem classes are shared by all these architectures

and the basic approaches for solving these problems are mentioned below.

� Calculation steps: The number of calculation steps can be greatly reduced

by utilisation of the special characteristics of vision PCNNs. Combined with

techniques like parallelism and pipelining architectures this leads to a col-

lection of methods for an optimized simulation time.

� Storage capacity: The problem of limited number and size is especially

urgent for the dedicated fast memories of special processing units. There-

fore, large but slow shared memories have to be used. For small dedicated

memories techniques for e�cient usage are presented.

� Memory bandwidth: Shared memories commonly su�er from limited band-

width and access. To solve these problems, methods for the reduction of

accesses and transferred data amount are described.

� Communication: Especially parallel processing units have to use limited

communication resources. Hence, fast communication techniques in the con-

text of PCNNs and procedures for the reduction of communication are re-

quired.

� Load balancing: Due to the simulation of network parts on several processing

units the problem of load balancing occurs. This problem has to be solved

in the context of the unknown activity distribution in PCNNs.

5 Concepts for Accelerated Simulation of Large PCNNs

For an accelerated simulation of PCNNs the mentioned problem classes have

to be treated. There are two points of view that can be used: the neuron

processing time and the synapse processing time. Spikes are the central events

of the simulation and therefore the reduction of calculations is based on the

following approaches:

8

� Only the spike emitting and spike receiving neurons are processed.

� Only the neuron parts involved in spike generation are processed.

� Only the spike transmitting synapses are processed.

These approaches can be divided into methods concerning the spike emitting

neurons and methods concerning the spike receiving neurons.

5.1 Reducing the Neuron Calculations

Concerning the spike emitting neurons, the neurons that may generate a spike

in one timeslot are collected or marked in the preceding timeslot. This can be

achieved with a decay list [4, 5, 10], where all neurons with dendritic potentials

higher than the rest value are collected (valid potentials). Only these neurons

can become supraliminal and their neuron addresses are stored in the decay

list during the decay phase. In the stimulation phase neuron addresses of spike

receiving neurons are also stored, as their dendritic potentials are modi�ed.

Multiple entries are avoided by using a tag memory. In the following timeslot,

only the neurons from the decay list are processed.

Using a very �ne time division many neurons in the decay list only perform

decay steps during their refractory period or while decaying to their rest val-

ues. These neurons are not involved in spike processing and their calculation

has to be avoided. They can be dismissed until their refractory period is over

and then they have to be resubmitted and to be modi�ed in one decay step.

The resubmission has to be processed if the neuron receives input or is able

to generate a new spike. Otherwise the neuron can be removed from the re-

submission list after a given time period [33, 34]. The resubmission time can

be calculated from the time when - after an increment caused by a spike

emission - the decaying dynamic threshold reaches again the decaying mem-

brane potential of the neuron. This prediction is quite time consuming due

to the many components forming the membrane potential. This leads to an

approximate calculation by predicting the time when the threshold reaches

the old membrane potential of the neuron at the time of dismissal followed

by a new resubmission time calculation using the membrane potential at this

time. The expense for further resubmission steps is relativated by the fact that

a resubmission is required for every spike received by the neuron during the

resubmission time.

Calculation e�ort for a single neuron can be reduced by only processing rel-

evant dendritic potentials (DP) of the neurons during the decay phase. Ex-

tended to a DP-tagging for the valid neurons this technique can replace the

decay list. Instead of processing the whole valid neuron only the valid dendritic

potentials of this neuron are processed with respect to a threshold. As in the

9

decay list and resubmission list algorithm, spike receiving neurons have to be

considered supplementary. Even these valid potentials can be irrelevant for a

spike emission, e.g. because of a linking potential at a zero value. With a Pre-

Analysis of the potentials while feeding them into the processing pipeline these

potentials can be excluded from calculation. DP-tagging reduces the required

memory bandwidth for the neuron state memory because only valid data is

read. The simulation time can be drastically reduced if the DP-tagging is com-

bined with Pre-Analysis especially for neurons with many dendritic potentials

and a calculation pipeline with only few processing units for the dendritic

potentials [30].

The simulation of PCNNs is an IO-bounded problem [26] because many pa-

rameters are required for the few processing steps of a single neuron. Espe-

cially integrated circuits for PCNN simulation are not only limited from their

calculation capability but also from their IO bandwidth. This fact becomes

even more crucial with respect to parallel processing. DP-compression can be

used to exploit a processors bandwidth more e�ciently [29]. To achieve this

compression, in contrast to the neuron state memory with an entry for each

neuron at a dedicated neuron address a neuron memory with entries only for

the valid potentials is used. These potentials are stored in a de�ned order

and can be fed continuously into parallel processing pipelines. The calculation

of the neuron address of a concrete potential is performed from the distance

of a tag bit to the tag bit of a preceding neuron. Hence, the potentials can

be read together with the tag-bits from one central memory in a continuous

data stream which leads to less required storage capacity and a better load

balancing of the processing pipeline.

Furthermore, a reduction of processing e�ort can be achieved using a special

feature of vision PCNNs: the inhibition neurons. The inhibition e�ect of these

neurons can be combined with the calculation of the inhibited target neurons

by using an increment or decrement directly for the membrane potential or

the dynamic thresholds of these target neurons [30]. The inhibition neurons

are not required any more which leads to a substantial reduction of calculation

amount and especially of communication.

5.2 Reducing the Synapse Calculations

After introducing algorithms for a wide reduction of neuron calculations, in

the following methods concerning the synapse and topology calculations are

presented. As in the neuron calculations the main task is to reduce the number

of synapses that have to be computed to the spike transmitting ones. For

synapse considerations there are two points of view, a sender-oriented from

the spike emitting presynaptic neuron or a receiver-oriented view from the

10

spike receiving postsynaptic neuron. In both cases the synapse computation

is triggered by a spiking neuron which leads to calculation of only the spike

transmitting synapses. The spiking neurons can be taken from the spike list

where they have been stored during the neuron calculations.

In conventional ANNs the network connections are usually stored in a weight

matrix [11] where each matrix element represents a possible connection be-

tween one neuron marked by the matrix column index and one marked by

the matrix row index. This matrix representation can also be used for vision

PCNNs but it is ine�cient due to the sparse connectivity. A much more ef-

�cient way of connection storage is the use of connection lists [4, 5, 10] (Fig.

3) similar to the adjacency lists commonly used in computer science. There

is one list for each neuron containing only the connections to its postsynaptic

neurons. The single connection is composed of the neuron address (NA) of the

postsynaptic neuron, the connection weight wij, and some further informa-

tion. Because a connection list can contain di�erent numbers of connections

for di�erent neurons they are stored consecutively and addressed indirectly

via a blockstart-memory (BSM) with a blockstart-address (BSA).

! � � � " � � � � � "
� � � � � �

$ %

� � � � � � � � � � � � � � �

 � � � � �
 � � � � � � � � � � � � �
 � � � � � � � � �

$ � #

	
 �

�

� � � 	 � � � � � � � � � � �

	

 �

& %
'& %

& % � � � �
$ %
$ �
$ � #

& � � � � � � % � � � � � � � � � �
� � � � $ � � � � � % � � � � � �
� � � � $ � � � � � � � � � � �
$ �
 � � � �
 � � � � � � � � � � �
 � � � # � � �

Fig. 3. Network topology representation with connection lists

The connection lists are named as stimulation information blocks (SIB). Dur-

ing the simulation only the SIBs of spiking neurons are addressed and conse-

quently only the spike transmitting synapses from these SIBs are computed.

This leads to a low number of calculated connections corresponding to the

low spike rates. Although - compared to matrix representation - the storage

requirement using SIBs is reduced, the number of connections in vision net-

works leads to large topology memories. Especially if many highly integrated,

parallel processing units are used, the dedicated memories of these units can-

not o�er the required storage capacity. Hence, di�erent methods for compact

topology storage are needed.

This compact topology storage can bene�t from the high regularity in vision

PCNNs. Whole layers of neurons are connected via regular connection schemes

11

with their target layers [25, 33]. Because all neurons of one source layer share

the same connection scheme the method can be named weight sharing. The

connection scheme can be described with a mathematical function on the co-

ordinates of the target neuron layer and corresponds to the detector masks

known from computer vision. With these connection schemes the topology can

be stored in a very compact manner and the individual connections are cal-

culated on-line only if they are required. One possibility to store the schemes

is to store the parameters of the describing mathematical function [25]. For

a sender-oriented topology representation this can lead to the calculation of

a high number of possible but not existing connections. Also, only a limited

and �xed number of function classes can be implemented. Only if sending and

receiving neuron are both known, the connection weight can be calculated

faster than with other methods because no search operations are required. A

second possibility of regular connection storage is the use of connection masks

[33] similar to the SIBs. These connection lists do not contain absolute target

neuron addresses but relative positions of target neurons and the connection

weights. A regular SIB is addressed via a BSM and used for all neurons of a

source layer. The absolute target neuron addresses can be processed from the

mask and the source neuron address with few calculations. A main disadvan-

tage of regular connection schemes is the missing learning ability. Learning

modi�es individual connections but the connection schemes contain one vir-

tual connection for many real connections.

The learning ability and the use of highly non-regular connection schemes can

only be o�ered with a SIB representation of all connections. Hence, a large

topology memory is required which su�ers from communication bandwidth

especially if accessed by many parallel units. To overcome this bottleneck

caching strategies are useful:

With SIB-Caching [33], frequently used SIBs are stored in a cache memory

dedicated to the processing unit which processes the presynaptic neuron of

the SIB. If the neuron emits a spike and the SIB is stored in the cache, the

stimulations can be processed without access of the main topology memory.

As spiking neurons will not emit a spike during their refractory period the SIB

has to be stored signi�cantly longer than in a standard caching algorithm. A

further point to be considered is the consistency of the cache during learning.

Modi�ed SIBs have to be exchanged with the old ones stored in the cache.

Due to the low activity and high locality in vision tasks - objects in real scenes

need many timeslots to move - the hit rate of even a small cache memory is

very high.

A further caching approach, weight caching [29], reduces the communication

between topology memory and processing unit by incrementing the weights for

each postsynaptic dendritic potential in a special memory during the timeslot.

Hence, for the next neuron calculation only the increments of the dendritic

12

potentials have to be transferred to the processing unit and the required band-

width is reduced. A further advantage is the parallel execution of synapse

calculations and neuron processing. While a neuron unit is processing the

neurons and emitting the spikes, the connection unit can calculate the incre-

ments for the dendritic potentials. In the next timeslot the neuron unit reads

the dendritic potentials for membrane potential calculation and receives the

corresponding increments at the same time. The dendritic potential can be

modi�ed and decayed in one step instead of two steps for a separate decay

and stimulation phase.

After considering the sender-oriented strategies some special features of a

receiver-oriented topology storage are mentioned in the following. The stor-

age of connections can be implemented with SIBs or connection masks, but

these connections are not stored in the direction from the presynaptic to the

postsynaptic neuron but vice versa. The main advantage of this topology rep-

resentation is the interlocked execution of decaying and stimulating the den-

dritic potentials because for a neuron processed for decaying all synapses that

might stimulate the neuron are known from its SIB. As with weight caching

the double access of dendritic potential memory is unnecessary. A further ad-

vantage is achieved for several learning procedures which require the state

of the presynaptic neuron to modify the connections of a spiking postsynap-

tic neuron. Because many learning algorithms make use of both sender- and

receiver-oriented topology storage a connection memory with an additional

pointer memory can be helpful. This shall be dealt with in the following chap-

ter.

$ � � � � � � �
 �
& � � 	 � � � �
% � � �
 � � � � � � � (
) � � � � � �
� � � � � � �
 � � �
$ � � � � � �

� � � � � � �
 � �

� � � � � � �
 � �

) � � � ! �
 � �
 � � � �
 � �

� � � � � � � � � � � � � �

� � � " % � � � �
 �

* � ! � � � � �
 !
 �
 � �

$ � � � � � � + �
 � � � � � � � � � � � � � �

) � � �
 , � � � + �
 � � � � � � � � � � � � � �

) � � � � � � � � � � � � �
 � � � � � � � � �
 � � �

- �
 � � � � � � � �
 � � �

$ � # � � � � �
 � � �

$ �
 � � � �
 � �

$ � � � � �
� � � � � � �
 ,
 � �

� � 	
& � � 	 � � �
% � �
 ,
 � � (
� � 	
$ �
 � � �
) � � � �

� � �
 !
 �
 � �
& � � � � � �
� � �
% � �
 ,
 � �
� � � � � �

� � � �
 � �
� �
& � � 	 � � �
% � �
 ,
 � �

. .

. ..

. .

. . .

. .

. .

" "

" "

. . .

.

. . .

. . .

. . .

. . .

. .

.

.

.

.

. .

.

.

.

.

.

. .

"

"

/

/

/

/

/

/ /

/

/

/

" "

" "

"

/

/ /

/

/

/

/

"

/

/

/

.

"

/

/

/

/

/

� � � � � � � � � � � � � � � � �

& � � 	 � � � � 0 � � � � � �

. . . 1 � �
 � � � ! � � � �
 � � � � � � � � � � � � � (� � / 1 � � � �
 � � � � � � � � � � � � � � � � (� " " " � � � � � �
 , � �
 � � � � � � � � � � � � � � � � �

Fig. 4. Impact of the diverse network features on the e�ciency of the acceleration

concepts

13

6 Integration of Learning Algorithms

Learning in neural networks normally means changing connection weights be-

tween the neurons in order to optimize the behavior of the network. Dealing

with pulse-coded neural networks, we will concentrate on biologically moti-

vated learning methods. In biology there are several known mechanisms mod-

ifying synaptic e�cacy leading from short-time e�ects in the range of millisec-

onds to lifelong changes of the nervous structure. Building a neuro-computer

for pulse-coded neural networks, we have to de�ne a model for synaptic modi-

�cation that includes the properties we want to simulate. Aiming at some ex-

ibility in simulation approaches, such a model should support at least some

biological e�ects. On the the other hand modeling of learning is restricted

to the hardware realization. Data structures or speed of simulation have to

be considered. The accelerated calculation of some million neuron parameters

has to be compared to the modi�cation of connections which may count some

hundredfold. Clearly, problems concerning hardware-architecture must not be

the main aspect for the de�nition of a learning-model, but the approach has

to be suitable for a hardware realization.

Focus of interest in simulating biologically motivated neural networks is heb-

bian learning. Hebbian learning can be seen as a class of learning rules in which

correlation of pre- and postsynaptic activity determines synaptic modi�cation.

In a general form hebbian learning may be described by four terms:

(1) A connection is strengthened if pre- and postsynaptic neuron are simul-

taneously active.

(2) A connection is weakened if only the presynaptic neuron is active.

(3) A connection is weakened if only the postsynaptic neuron is active.

(4) A connection remains unchanged if none of the neurons is active.

Synaptic modi�cation is determined only by local parameters at the synapse,

global parameters as the mean network activity or assembly activities do not

inuence synaptic strength. There is no right or wrong network behavior and

thus there is no teacher who de�nes synaptic modi�cation. Therefore, hebbian

learning is an unsupervied learning method.

Variants of hebbian learning have been developed by various groups. A simple

rule for rate-coded neural networks is de�ned by: �wij(t) = (xi(t)��xi)(xj(t)�

�xj). Synaptic modi�cation is determined by the correlation of the neural out-

put activities xi and xj, which can be interpreted as mean �ring rates. Since

simulation of pulse-coded neural networks is motivated by the investigation of

biological information processing by spikes, this kind of learning rule seems not

to be very suitable in this case. Instead we have to look for more biologically

motivated learning rules.

14

For a hardware-realization of pulse-coded neural networks neurophysical mod-

els of long-term-potentiation (LTP) and long-term-depression (LTD) are a

good choice for learning methods. A brief functional description of LTP and

LTD is that the e�cacy of an active synapse is increased if the postsynaptic

membrane potential is depolarised and it is decreased if not. The �rst case is

named LTP, the second LTD. Both cases can be compared to the terms 1)

and 2) in the description of hebbian learning above. Term 3) is not part of this

behavior because synaptic modi�cation is only observed at an active synapse.

In order to reach a exible simulation environment, it is a good idea to add

term 3) to the learning-model, even if it does not �t to the known experimental

results of LTP. One reason for this is that hebbian learning with rate-coded

neurons was shown to be able to simulate biology-inspired self-organization

e�ects [1, 18, 19, 20]. Another fact is, that in biology synapses that do not

a�ect postsynaptic activity vanish on long time scale.

Two important results can be observed on taking a more detailed look at the

experiments concerning LTP:

(1) There is a kind of threshold in postsynaptic depolarisation which activates

either LTP or LTD.

(2) Inuence of backpropagated postsynaptic spikes form a learning-behavior

depending on the time-di�erence between pre- and postsynaptic spikes.

Both results lead to two learning rules that are very interesting for biologically

motivated simulation of pulse-coded neural networks.

6.1 Threshold-Based Learning

���

���

����

������

��	 ���

������
�����������

��������������� �����������

���

����

���	

Fig. 5. Threshold based learning rule (synaptic modi�cation �wij versus postsy-

naptic membrane potential MPi)

The modi�cation of synaptic e�cacy depends on depolarisation of the post-

synaptic membrane potential. Between the thresholds �LTD and �LTP the

synaptic e�cacy is decreased. If the postsynaptic membrane potential MP of

an active synapse lies within this interval, LTD takes place [31]. If MP ex-

ceeds �LTP the synapse is strengthened and LTP occurs. Compared to the

model of hebbian learning, the transmission of a presynaptic spike de�nes the

15

presynaptic activity. Postsynaptic activity is given by the value of MP.

Since this model describes synaptic modi�cation for an active synapse, the

emission of a presynaptic spike can operate as a trigger for a learning event.

Synaptic strength has to be updated only if a presynaptic spike occurs. This

fact satis�es the requirement for an e�cient simulation, since a neural spike

is rather seldom. Thus, only a small part of all synapses have to be processed

during one simulation step.

A further simpli�cation with regard to a hardware realization can be reached

if �LTD is set to zero. The resulting learning process can be described by the

following algorithm:

if presynaptic neuron j emits a spike

if MPi > �LTP

increase wij

else

decrease wij

Here wij is the connection weight from neuron j to neuron i,MPi is the post-

synaptic membrane potential. However, the algorithm above only describes

terms 1) and 2). Term 3), which de�nes synaptic modi�cation only if the post-

synaptic neuron is active, is still missing. The following algorithm completes

the desired learning behavior:

if MPi > �LTP

if presynaptic neuron j does not emit a spike

decrease wij

This learning process is only activated if the membrane potential of the post-

synaptic neuron exceeds �LTP . This happens far more frequently than the

emission of a spike, but rarely occurs due to sparsely coding of pulse-coded

neural networks.

6.2 Correlation-Based Learning

A further model of synaptic modi�cation deals with time di�erences between

pre- and postsynaptic spikes. Presynaptic spikes and postsynaptic spikes back-

propagated to the dendritic tree add up to the postsynaptic membrane po-

tential and determine synaptic modi�cation. Since both signals have an e�ect

on a short time scale, correlation of both is decisive for connection changes.

Thus, the time di�erence between pre- and postsynaptic spikes is the main pa-

rameter for learning. Change of connection weight can be described by the so

called window of learning [17]. Setting the occurrence of the presynaptic spike

16

��

���

�

�

�

���
����
����

��
�
����
����

�����

�

Fig. 6. Correlation based learning rule with learning window

to t = t
0
, the time of postsynaptic �ring de�nes the weight modi�cation �wij

(Fig. 6). The window of learning is composed by superposition of exponential-

functions. Its values tend to zero for large absolute time di�erences. In a digital

simulation it can be approximated by a function with a �nite width that is

mainly determined by the refractory period of the postsynaptic neuron. Thus,

most neurons �re not more than once within the window. To enable registra-

tion of postsynaptic spikes following the presynaptic one, the learning event

has to be delayed by tdelay. Postsynaptic spikes occurring after this delay time

do not inuence synaptic modi�cation. With the considerations above, corre-

lation based learning can be written as an algorithm triggered by the �ring of

the presynaptic neuron:

if presynaptic neuron j sent out a spike tdelay before

look for last time of postsynaptic �ring

change wij according to this time

As in the �rst algorithm for threshold based learning term 3) is missing. Again

there is the necessity for completion:

if postsynaptic neuron i �res

if presynaptic neuron j does not emit a spike

decrease wij

Biologically motivated learning with a threshold learning rule or one based

on spike correlation can be described by two event-driven algorithms. Event-

driven in this case means that only the synapses that actually underlie modi-

�cation have to be processed. The two events triggering learning processes are

presynaptic spikes and the level of postsynaptic membrane potential.

6.3 Sender- and Receiver-Oriented Learning

For hardware realization there is a signi�cant di�erence between learning pro-

cesses triggered by presynaptic events and those triggered by postsynaptic

17

events. In the �rst case, starting from a �ring neuron all synapses transmit-

ting spikes from this neuron have to be processed. Quantity of modi�cation

depends on the state of the postsynaptic neuron, either the membrane poten-

tial or time of last �ring. This process is very similar to the sender-oriented

stimulation. Addressed by the presynaptic neuron the contents of the block-

start memory provide a pointer to the �rst connection in connection memory.

During the stimulation phase, connection weights are read out and added to

the addressed target neurons. Similarly, in the case of learning connection

weights are read, modi�ed according to the states of the addressed target neu-

rons and �nally written back. As in the sender-oriented stimulation, we call

this sender-oriented learning (see Fig. 7).

In the second case, a postsynaptic event triggers learning and modi�cation

depends on the state of the presynaptic neuron, which refers to the emission

of a spike in both learning rules described above. This process is called receiver-

oriented learning. To meet the requirements of a exible simulation basis, both

types of learning should be implemented. Thus, access to connections must be

provided from two directions: from the neuron address of the presynaptic and

the neuron address of the postsynaptic neuron. This is essential for hardware

realization. Sender-oriented learning �ts very well into the sender-oriented

architecture described above. Data-ow is similar. Connections are processed

sequentially, starting from the �rst one that is addressed by the blockstart

memory.

���

���
� ��

��

��

��

���

���

�����

��

��

�	

�	

�����������

���������������
����������

��

��

����������	����	����������

 ��!����������"�#$�%&

��

����	�'����

	��

��

� ��

	��� �� � ��
��

� ��

#$�%

Fig. 7. Sender-oriented learning (neuron address N, weight w)

In general, not all connections in a network are modi�ed by learning. Many

may remain unchanged for the whole simulation. Thus, there are plastic and

static connections in a network. According to this, a SIB in the connection

memory that contains all connections starting from one neuron is divided into

two blocks (Fig. 8). The �rst block stores all plastic connections, the second the

static ones. The �rst static connection is marked by an LE-bit (Learn-End),

the last by the BE-bit (Block-End) mentioned above.

18

�	

�����������	���

���������������
����������

��

�� �	

'()(

������
��		����	�

����
��		����	

������������		*

Fig. 8. SIB partition for plastic and static connections

Stimulation starts at the �rst position in SIB and processes sequentially all

connections including the last one marked by the BE-bit. Similarly, learning

starts at the �rst position, however it ends at the �rst static connection marked

by the LE-bit. Consequently, only plastic connections are calculated and no

simulation time is wasted by processing static connections. In the sender-

oriented storage of connection data, there is no information about connections

leading to a given neuron. Therefore an extension is required. This is possible

by adding a second pointer memory that provides the address to the �rst

connection leading to a given neuron in the connection memory (Fig. 9). This

pointer memory acts just like the blockstart memory. Further additions are

required for the connection memory. Each connection word must contain a

pointer to the next connection leading to the same postsynaptic neuron. The

address of the presynaptic neuron provides access to the state of the sender.

A control-bit ctlr marks the end of a receiver-oriented list of connections.

Triggered by the occurance of a postsynaptic neuron, the pointer memory

addresses the �rst connection leading to this neuron. This connection can

be modi�ed, depending on the state of the corresponding presynaptic neuron.

Additionally, the connection word provides a pointer to the second connection,

and so on. All plastic connections leading to the same neuron form a list, which

is processed sequentially until the last connection is detected by the ctlr-bit.

According to a connection count of 16M and 1152K sending neurons, as used in

the SPIKE128k system presented below, the pointer to the next connections is

a 24 bit-word and the number of the presynaptic neuron is a 21bit-word. With

the pointer memory for the �rst connection, the total additional requirement

for the receiver oriented extension is somewhat more than the one for the

receiver-oriented structure.

In the receiver-oriented term of the threshold based learning rule, a learning

event occurs if the postsynaptic membrane potentialMPi exceeds the learning

threshold �LTP . If a neuron is active, this happens for a series of following

19

���

���

��

���

���

�����

��

�	

�	

�����$+%����$�+%��,�$�%

� �

� ��
��

	��� ��

 ���!����������"�#$�%&	��� �� � ��
��

� ��

#$�%

��

��

��

��

����������	����	����������

����	�'����

	����
�$��%

��

�������$��%

��

��

��

��

��

��,�$�%

�	

��

������
�$��%

�����-�������	�
����	���	 ��	
�������	�
�������

���	����������������
�����-�	����		����	

�

��������
�����	����
	����	

Fig. 9. Receiver-oriented pointer memory (neuron address N, weight w)

simulation steps (Fig. 10). In contrast, an action potential occurs only for

one single simulation step. Thus, most learning events are receiver-oriented.

Depending on the simulated net, the relation of sender-oriented events to

receiver-oriented ones is about 1 to 10. One way to rectify this unbalanced be-

havior is the use of a su�ciently small decrement in term 3). As learning should

be a rather slow process, connections must not change abruptly, and therefore

a high resolution for connection weights is required. In the SPIKE128k system

this is not the case as connections are stored in 9bit-words.

Restriction of receiver-oriented processes to every n-th step instead of every

simulation step, with n approximately 10..100, leads to the same result. In

simulations with some thousand simulation steps average network behavior

is the same, even if �w has the same order for sender- and receiver-oriented

processes. The advantage of this approach is the possibility to choose a rather

large value for �w and consequently a lower resolution for connection weights.

This leads to a signi�cant simpli�cation in storage and processing.

If a loss in simulation speed and a slight modi�cation of learning behavior

is accepted, the hardware requirement for the receiver-oriented extension is

not necessary. In this case receiver-oriented changes of connection weights can

be triggered by presynaptic neurons. In every n-th simulation step a learning

process is started referring to ALL presynaptic neurons. In threshold-based

learning a connection is weakened if the membrane potential of the postsynap-

tic neuron is above �LTP . The same happens for correlation-based learning if

20

the postsynaptic neuron sent out a spike in the last m simulation steps, where

m is the width of the discrete window of learning.

���
�

���

���
 ���

�

.#�

���

.#��/�0'1#

0'1#

�����-�������	��	�

����	�	����������

Fig. 10. Fine (w1

ij) and coarse (w2

ij) modi�cation of synaptic weight

There are two disadvantages in connection with a signi�cant simpli�cation of

hardware structure. Receiver-oriented learning is not triggered by the state

of the postsynaptic neuron but by the virtual spiking of every presynaptic

neuron. Since in this approach all plastic connections are processed, simulation

is relatively slow. The state of a presynaptic neuron does not inuence weight

modi�cation. If the presynaptic neuron sends out a spike, a connection should

be strengthened according to term 1) instead of the receiver-oriented term 3)

which decreases connection weights. The coincidence of presynaptic spike and

learning is infrequent. Thus, on average, the error in learning behavior leads to

a slight decrease of the increment according to term 1). This can be adjusted

by choosing suitable values for �w.

7 Simulation Platforms for Complex PCNNs

In the following several platforms developed at the Technical University of

Berlin and the University of Paderborn for the simulation of complex PCNNs

are presented. For platforms that have already been implemented, measured

results are given, otherwise performance estimations are based on system sim-

ulations. As benchmarks two networks designed by the group of Prof. Eckhorn

at the University of Marburg [32] were employed. The networks perform image

segmentation and exhibit similar characteristics: the number of active neurons

is about 15-20% and on average about 0.5% of all neurons emit a spike.

21

7.1 SPIKE128k

The SPIKE128k was developed and implemented by the group of Prof. Hart-

mann at Paderborn [4, 5, 10, 28]. This platform is based on a single processor

unit as dedicated hardware that allows the computation of a neuron in a

pipeline. Thereby a throughput of one neuron per cycle is achieved. Network

topology is stored in a sender-oriented form in SIB-lists. The model neuron

of SPIKE128k may consist of up to four dendrite potentials, axonal delays

and an exponential and three other types of functions for the decay of den-

drite potentials. In order to speed up simulation, the concepts of a decay list

and a spike event list are implemented. Di�erent algorithms of Hebbian or

modi�ed Hebbian learning are supported. The SPIKE128k consists of SRAM

and DRAM, programmable logic such as PLDs and FPGAs as well as com-

mercial arithmetic and logic components. As a modular system, it is based

on a VME-backplane. Transputers are employed for communication between

di�erent modules and to the host. The system is capable of simulating up to

130,000 neurons with 16 million synapses.

� � � � � � � � � 	 �
 �

� � � � � � � � � � �

� � 	 �
 �

� � � �
 � � � � � � 	 �
 �

� � � � � � �
� � 	 �
 �

� � � � � �
 � � � 	 �
 �

� � � � � � � � � � � � �

� 	 	 � � � � � �

� � � � � � � �

� � � � � � �

� � � � � � � � �

� � � �
 � � � � � � �

� 	 	 � � � � � �

� � � � � � � �

� � � � � � �

� � � � � � � � 	 	 � � � � � �

� � 	 � � � � � � �

� � � � � � � �
 � � � �

� � � � � � � � �

� � � � � � � �

� � �

� �

� � � �
 � � � � � � � � � �

Fig. 11. Modular structure of the SPIKE128k-platform (simulation ow with

hatched arrows similar to Fig. 2, topology module similar to Fig. 3)

The processing of neurons and the decay list takes place in a neuron mod-

ule, containing six submodules for computing dendrite potentials, dynamic

thresholds and axonal delays. Spikes are stored in a spike event list within

a communication module. The communication module also stores incoming

22

spikes from other systems or the host and sends outgoing spikes to other sys-

tems. Communication is controlled by a transputer. In a topology module,

the addresses of spiking neurons address a blockstart memory containing a

pointer to the corresponding SIBs in a topology memory. SIBs are propagated

to the neuron module where they stimulate dendrite potentials. Additionally,

a learning module receives the addresses of the spiking neurons together with

a ready-for-learning (RFL)-ag. This ag is the result of a comparison of the

membrane potential with the learning threshold. Based upon this information

the learning module modi�es synaptic weights in the memory of the topology

module. The simulation of one time-slice is divided in two phases: in a decay

phase neurons from the decay list are computed and spikes are stored in the

spike event list. In a subsequent stimulation phase the spike event list is read

by the topology module and SIBs from the topology memory stimulate den-

drite potentials. Learning is performed in parallel to the decay phase of the

next time-slice. By employing a spike event list, out of 4 million synapses only

25,000 need to be computed. The decay list reduces the number of neurons to

compute from 130,000 to 17,500 within the example network.

Threshold-based learning and correlation-based learning represent two varia-

tions of hebbian learning. Both of them may be described as event-controlled

algorithms. The main di�erence is in the choice of postsynaptic parameters

responsible for the modi�cation of synaptic weights. For threshold-based learn-

ing the value of the membrane potential is decisive, for the correlation-based

learning the occurrence of the last spike is crucial. Formally, learning may be

described as wnew
ij = f(wold

ij ; P (i);MODE), where the new, modi�ed weight is

a function of the old weight, the state of the postsynaptic neuron and the learn-

ing mode. Learning modes are sender-oriented and receiver-oriented learning

procedures. A look-up table adequately ful�lls such a function and is easily

realized by a simple memory component. Thus, the actual learning algorithm

does not require explicit calculation which would otherwise require complex

processing components.

As previously pointed out, learning takes place in parallel to the decay phase

when no access to the SIBs in the topology memory is required by the mem-

brane module. However during the decay phase neuron parameters may not be

accessed by the learning module. They are therefore transferred in two steps

to the learning module via a FIFO-memory 1 depending on the learning algo-

rithm. Sender-oriented learning considers spiking presynaptic neurons. Their

addresses are transferred to FIFO-memory 1 during the stimulation phase,

where they initiate learning actions. For receiver oriented learning a mirrored

receiver-oriented topology list presents an e�cient way of accessing all postsy-

naptic neurons connected to a presynaptic neuron. However in the SPIKE128k

all presynaptic neurons are still considered as starting points. Their addresses

are generated by a counter instead of being read from FIFO-memory 1.

23

���������������	

������	

�����

���	������

��	�����	
�����	

������

��

�

�
�
�
�
�
	�
��
��
��
��
��
�
�

�
	�
�

�
�
�
���
��
�
�
	�
�
��
�
�

��������	������	

��������	������

����	�	��
���	��
����������

�

������

��
��
�
��
���
�
�

�
�
��

�����

�����

 ����

�����!���"���������#� �����

������

�

�
�
��
��
��
�
�
��
�

�
$

�
�
�
	�
�
��
�
�

�

������

�����

������

��

������	

��������	������	

���������������	

������	

���	������

��	�����	
�����	

������	

Fig. 12. Block diagram of the combined learning and topology module of the

SPIKE128k during the two main simulation phases [28] (black arrows = active

datapath)

7.2 ParSPIKE

The ParSPIKE-System [33, 34] was also developed by the group of Prof. Hart-

mann at Paderborn. The system is a further development of the SPIKE128k

to a parallel computer consisting of digital signal processors (DSP). DSPs take

over the main processing unit of the SPIKE128k, the neuron module.

A prototype implementation of the system using the SHARC ADSP21160

from Analog Devices is foreseen. For parallelization, neurons are distributed

to several of these processors. Due to the reduced computational power and

memory capacity of the SHARC in comparism with the SPIKE128k, the DSP

can simulate 16,384 neurons at the most. Since the algorithm of the DSP is

implemented in software, ParSPIKE o�ers high exibility concerning neuron

models and their computation. Performance evaluation of the ParSPIKE is

based on the neuron model of the SPIKE128k using a decay list. The use of a

24

� �

� �

� �

� �

� �

� � �

� � �

� �

	 �

� �

� �

� �

� � �

� � � � 	
 � � � �

� � � � �

� � � � � � � �
� � � � �

� � � � � � � � � � � � � � � � � �

� � � � � �
� � � � � � � � � �
� � �

� � � 	 � �
� � � �

� � �
 � � � � � � � � � � � �
 � � � � � � � �

� � �
 � � � 	 � � � �

� � � � � � � � � � !

� � �
� �
� �

� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � �

Fig. 13. Structure of the ParSPIKE-system for non-regular connections (nrc).

resubmission list showed only minimal performance improvement: out of 128k

neurons of the benchmark network, 17,500 need to be computed when using

a decay list and 15,000 when using a resubmission list. For this example the

network received a static input with a frequent stimulation of similar neurons,

so that only short dismissal times occurred.

There are two alternatives for storing the network topology. To support learn-

ing and irregular connection schemes a global sender-oriented SIB-memory

is employed. For each accessing DSP there is a small local SIB-cache. An-

other alternative supports only regular connections. These are stored locally

in the on-chip-memory of the DSPs as SIB-connection masks. The SHARC-

DSP as a processing node o�ers several special characteristics. It contains

a 512kByte on-chip-memory with link ports and a multi-processor-interface.

In the ParSPIKE-system, the multi-processor-interface is used as output for

the addresses of presynaptic spiking neurons. They are transferred through a

tree-structure of hardware-switches (CU) to other SHARCs or to the global

topology memory, which is controlled by a controller (WMC) (see Fig. 13).

Out of the read SIBs, WMC sends each DSP the corresponding stimulation

data via a dedicated linking port. Apart from the WMC, the global mem-

ory subsystem consists of a learning unit (LU). The learning unit supports

the learning algorithms of the SPIKE128k, in particular the threshold-based

25

learning using the RFL-signals, in conjunction with a sender-oriented topol-

ogy memory and an inverse receiver-oriented pointer memory. The memory

subsystem consists of SDRAMs, for the CUs, the WMC and the LU the use of

FPGAs is planned. The prototype is conceived as a VME-Bus-System. Boards

for irregular connections contain 16 DSP and the memory subsystem, while

boards for regular connections consist only of DSPs and CUs. An irregular-

connection-board (nrc) may simulate up to 256k neurons with up to 32M

synapses, a regular-connection-board (rc) 512k neurons. The prototype archi-

tecture with 2 irregular-connection and one regular-connection board, as well

as a VME-workstation can simulate up to 1M neurons.

7.3 NESPINN

At the same time as the SPIKE128k was developed in Paderborn, Profes-

sor Klar's group in Berlin conceived the NESPINN-System (Neuro-Computer

for Spiking Neural Networks) [14]. Compared to the FPGA-based approach

of the SPIKE128k, NESPINN's main processing unit consists of two ASICs

(Application Speci�c Integrated Circuits): the NESPINN-Chip, which is ded-

icated to the processing of the model neuron, as well as a Connection-Chip

[25], which computes the regular connections of the network (Fig. 14). The use

of ASICs allows an increased clocking frequency (SPIKE128K: 10MHz; NE-

SPINN: 50MHz). As in the SPIKE128k, a NESPINN-Board is connected to a

host computer and other NESPINN-Boards via a VME-bus. Main units on the

NESPINN-board are a spike event list, a regular connection unit (Connection

Chip), an irregular connection unit (DRAM-Unit) and a neuron-processor, the

NESPINN-Chip. Addresses of neurons emitting a spike are written to the spike

event list. For each spiking neuron the connection units supply the receiver-

neurons and respective connection weights. The NESPINN-Chip adds these

connection weights to the current dendrite potentials and combines them into a

membrane potential. Dendrite potentials represent the actual excitation state

of the neuron and are stored in the neuron state memory. If the membrane

potential exceeds a threshold, the neuron emits a spike and its address is again

written to the spike event list. With the capability of the Connection Chip to

compute not only all receivers of a sender neuron, but also all senders to a

receiver neuron, the regular connection unit allows the application of hebbian

and modi�ed hebbian learning rules.

In contrast to the SPIKE128k, NESPINN is not limited to a �xed neuron

model, but allows the con�guration of a neuron model with up to 16 dendrite

potentials with di�erent functionality (e.g. inhibitory, excitatory, multiplica-

tive). Instead of a decay list, NESPINN marks active dendrite potentials and

thereby prevents not only unnecessary computation of inactive neurons, but

furthermore neglects inactive dendrite potentials of active neurons.

26

" � #

$ � � � � �

� # !

� # %

� # �

� # �

& ' !

& ' �

� (� �

� (� �

� (� �

� (� �

	 �
 � � �

� � � � �

' � � �

� � � � � � � � � � � �) �

* � � � � �

� � � � � � � � � � � � � � �

! " # � � � � � � �

& � � � + � � ,

* � � � � � � � - .

$ � � � � � � � � � � � � � % � � � � � � � � �

� � � � �

Fig. 14. Structure of the NESPINN-system (Processing Chip = NESPINN Chip)

7.4 MASPINN

After the NESPINN-System, the MASPINN-System was designed in Berlin

[29]. The NESPINN-System aimed at the real-time simulation of about 105

spiking neurons. However, since network sizes attractive for image processing

task are in the order of 106 neurons, the goal of the MASPINN (Memory opti-

mized Accelerator for Spiking Neural Networks) was to gain another order of

magnitude in speed. The basic structure of MASPINN is quite similar to the

NESPINN architecture. MASPINN consists of a spike event list, a Connection

Unit and a Neuron Unit, with a core processor: the NeuroPipe-Chip [30] (see

Fig. 15). The NeuroPipe-Chip also allows a con�gurable neuron model with

up to 16 dendrite potentials. The gain in performance compared to NESPINN

is achieved by a higher system frequency of 100MHz and new architectural

features. Such features are applied on board-level and chip-level. On board-

level, weight caches have been introduced. They allow a further parallelization

of the processing steps necessary for the simulation of a spiking neural net-

work. Furthermore, a compressed Dendrite Potential (DP)-Memory, relaxes

the bandwidth requirements of the neuron-processor-chip. On chip-level, the

NeuroPipe-Chip applies pre-analysis of dendrite potentials to be processed.

Pre-analysis tests the relevance of a dendrite potential in the context of the

other dendrite potentials of the corresponding neuron. This reduces the com-

putational load during the computation of the membrane potential in the

pipeline of the NeuroPipe-Chip. Also on chip-level, an inhibition unit in the

NeuroPipe-Chip may emulate the inhibition of the entire network or large

parts of it. Since all parameters related to inhibition and their computation

are hosted on-chip, the bandwidth and computational requirements of the en-

tire system are also reduced. The performance of the NeuroChip has been

evaluated on register-transfer-level by a VHDL-simulation (HDL: Hardware

Description Language) [27]. A prototype of the chip has been fabricated in

May 2000.

27

& � � � + �

$ � � + � �

� $ �

� � � �

� � � �

� $ �

� � �
$ � � � � � � � � �

$ + � �

* � � � � � � �
 $ + � �

% � � � � � � � �

* � �
 � �

� � � � �

& � � � + �

� � � � �

� � � � �

 & � � �
� � � �

� � � . / � � � + � � ,

� � � . / � � � + �
 � � � �

0 � � � � � � � � � � �

� � � � � � � � � � � � � � �

1 � � �

$ � � � � � �

� # � $ � % % �

� � � �
� � (� �

� # � !

� � � � � � � � � � $ + � �

� (� � � (� �

� � (� �

� # � �

� # � �

� # � %

� �

� � � � �

� �
 � � �

� � � � �

& � � � + �

$ � � + � !

Fig. 15. Structure of the MASPINN-system (2 ASICs: NeuroPipe Chip and Con-

nection Chip)

7.5 Parallel PVM-Software-Simulator

Based on the examinations for the ParSPIKE-System in the group of Prof.

Hartmann in Paderborn a parallel software simulator based on PVM (Paral-

lel Virtual Machine) for a Sun-workstation-cluster has been developed (Fig.

16). The simulation is organized as a farmer-worker-system. The simulator

realizes the parallel algorithm of the ParSPIKE for the nrc-topology represen-

tation in combination with the SIB-cache and for the rc-topology representa-

tion by using locally stored SIB-masks (see Chap. 7.2). As a third option, the

distribution of the nrc-SIB-topology to the workers is possible, because the

workstations o�er a much higher capacity of local memory than the DSPs of

ParSPIKE. The performance evaluation of the ParSPIKE-approach is based

on data from the simulation of the PVM-software-simulator in conjunction

with results from a DSP-evaluation-system. In particular, the possibility of

parallelizing the simulation has been examined in order to �nd an optimal

mapping of neurons with minimal communication and optimal load balancing

between the workers.

As a division of the network with a minimum of connections cut is desirable,

graph-partitioning libraries [24] are applied. Depending on the partitioning

communication and loads vary. In particular communication is an issue for

the nrc-topology with SIB-cache. In case of a cache-miss, the SIB must be

transferred from the farmer via the network to the worker. Connections of

neurons between two di�erent workers may not be stored in the cache. The

cache-hit-rate is therefore a good indicator of the number of cut connections.

28

& � 	 �
� � � � 2

� / � � � +

� ! � � � � �

& � 	 �
� � � � 2

� ! � � � � �

& � 	 �
� � � � 2

& � 	 �
� � � � 2

& � 	 �
� � � � 2

& � 	 �
� � � � 2

& � 	 �
� � � � 2

& � 	 �
� � � � 2

� ! � � � � �

� ! � � � � �

� ! � � � � �

� ! � � � � �� ! � � � � �

� ! � � � � �

3 � � �
' � � � 2� ! ! � � � � �

� � � � 	
 � � � �

� � � � �

� � �

� � � � � � � � � � � � � � �

� � �

� � � 	 �

� � � �

' � � �

� � - � � � * � � � �

� �

� �

� �

� �

� �

* � � � � � � � � � �

� � �

� � � � $ � � + �

� � �

� � � �

� �

Fig. 16. PVM software simulator for workstation cluster

In the presented system of 8 workers cache-hit-rates of 60% were achieved.

Concerning the computational load of workers distributions with variations

of +/- 5% were found. Further investigations have shown that distributions

with good load balancing require a high number of cut connections, while

distributions with only few connection cuts result in bad load balancing.

� � � � � � � - � $ � � � � � � � � � � 4 # � � 5 	 � � � � � 4 # * # � � � * * � � � � � * * � " �

� � � � � � � � � �

� � � � � � � � � �

(� � � 6 � � � � � � � � � � � �

$ � � � � � � � - � � � �

� �
 � � � � � � � �

7 � � 6 � � � � � + � 6 � � � � �

� � � - � � 8 � � � � � - � � � � � � � � � �

(� � � �) � � 8 � � � � � - � � � � � � � � � �

(� � � � � � $ � � � � � � � � � � $ � � � � � � � � � � �

& � � � + � � $ � � + � � � �

� � � � $ � � + � � � �

� + � � + � � - � � � � � � � � �

� � � � � $ � � � � � � - � � � � � � � � �

Fig. 17. Supported concepts of implementations

29

8 Summary and Conclusion

The simulation of complex PCNNs operating on a similar time-scale to bio-

logical neural networks requires extreme computational power which conven-

tional computers do not supply [15, 26]. Therefore concepts are necessary to

provide the required power in terms of computation and communication e.g.

as a dedicated hardware to compute such complex PCNNs in real-time. The

presented concepts take advantage of the characteristics of PCNNs in image

processing, in order to minimize simulation time and facilitate implementation

in hardware. The concepts were developed by the groups of Prof. Hartmann

in Paderborn and Prof. Klar in Berlin and were used in various combina-

tions for simulator systems. Hence, the performance of the concepts may only

be evaluated in the context of these simulator systems. Their performance

was partially measured in existing implementations and partially estimated

by simulations and extrapolations (marked *). The results shall facilitate a

classi�cation of the system. Note that PE (processor element) refers to a pro-

cessing pipeline which in the case of the SPIKE128k corresponds to an entire

board, in the case of the ParSPIKE to a DSP and in the case of NESPINN,

MASPINN and CNAPS to a single pipeline on the processor-ASIC. NESPINN-

and MASPINN boards may be used for further parallelization beyond parallel

PE on a single chip. The evaluation is based on benchmark networks [32] with

128k neurons, 4M synapses, 15% activity and 0.5% spikes per time step. A

resolution of 1ms per time-step is desirable. For larger networks performance

data was determined by extrapolation. In doing so, for SPIKE128k and Par-

SPIKE a load distribution similar to the one of the benchmark network was

assumed. Performance data for the CNAPS-Neurocomputer were taken from

[15] for comparison 2 .

* � � 6 �
� � �
* � � � � �

� � 	

� � 5 	

2 � � 	

� �

� � � 4 # � � 5 	
� ! � 1 9
�
 5 � #

� � � � � 4 #
� ! ! � 1 9
� : � # � 0

* # � � � * *
2 ! � 1 9
: � # � 0

� � � � � * *
� ! ! � 1 9
: � # 0

� � � � ' � � �

� � � � � � �
� ! ! � 1 9

� # $
� � � + �
� � � � 1 9

� � � � �
� � � � � � � � � �
� � � � 1 9

$ * � � �
2 ! � 1 9
� 2 � � #

� � � �

5 2 � �

� 5 � �

� : ! � �

� � � �

5 2 � �

: ; � � � 0

� . 2 � �

< � �

� . 2 � �

= � �

� � � � > : � # ? 0

� � � � > 5 � # ? 0

@ � � �

@ � � �

� . 2 � �

2 � �

! . % 5 � �

% � �

� � � �

� % . : � �

! . ! � � �

! . % = � �

� . 2 � � �

% . � � �

Fig. 18. Performance evaluation of di�erent simulator-implementations

The presented implementations and concepts pursue di�erent goals and there-

fore are not comparable solely on the basis of simulation speed. Apart from a

maximum simulation performance, composed of simulation time and number

of neurons, these goals are:

2 The required simulation time to simulate one time-step is partially estimated by

extrapolations and simulations (*). PE (processor element) refers to an entire board

for the SPIKE128k, to a DSP for ParSPIKE and for the rest of the systems to a

single pipeline on-chip.

30

� an e�cient implementation that can be designed quickly and with little

expense in terms of size, �nancial and human resources,

� a high degree of exibility concerning the neuron model, network topology

and learning,

� good handling with an easy-to-use simulation environment, e�cient network

speci�cation and extensive debug-capabilities.

Neurocomputers based on dedicated neuroprocessor-ASICs like NESPINN and

MASPINN certainly o�er maximum simulation speed. Commercial processors

like DSPs require several ten or hundred clock cycles to compute a neuron or a

synapse and therefore cannot compete with the capability of an ASIC in com-

puting main simulation steps within one clock cycle in a deep pipeline. The

realization of the NESPINN and MASPINN-ASICs on a VME- and PCI-board

provides the capability for a good integration into software simulator environ-

ments. On the other hand there are limitations concerning debug capabilities

and exibility to change i.e. the neuron model is only given within the fore-

seen programmability of the neuron model. Since NESPINN and MASPINN

are based on processing with a very coarse granularity of parallelization, load

balancing is not as crucial as for a software simulation on a parallel computer

or the ParSPIKE-system. On the other hand the implementation of systems

like MASPINN and NESPINN takes the highest e�orts and costs since, apart

from conventional components, ASICs need to be fabricated. Due to the dedi-

cated hardware of these systems advances and modi�cations in algorithms are

di�cult and costly to implement. MASPINN as the successor of NESPINN

presents the superior system.

Concerning exibility, handling and the ease of implementation a software so-

lution is superior to dedicated hardware. However the simulation performance

for real scenarios is still insu�cient. Even parallel implementation, e.g. on

the basis of PVM, does not achieve a su�cient performance. Also, the �ne

granularity of parallelization on high-performance commercial parallel com-

puters leads to the common problems of parallel processing. Communication

between processing nodes with a high number of small data packages, as they

frequently occur during the simulation of PCNNs, becomes the main bottle-

neck and prevents a satisfying simulation performance.

The ParSPIKE-concept combines commercial hardware with dedicated com-

munication hardware to overcome this bottleneck in parallel processing. How-

ever a simulation performance comparable to the MASPINN-system is only

achieved using a very high number of processors and good partitioning of the

network. Due to the use of solely commercial processors and programmable

logic, the implementation e�ort of ParSPIKE is smaller. Since all components

are programmable, high exibility is also guaranteed. Handling of ParSPIKE-

boards is comparable to NESPINN- and MASPINN-boards. However the map-

ping of networks to the ParSPIKE-architecture with �ne granularity of paral-

31

lelization is di�cult.

Between the extremes of the ParSPIKE- and the MASPINN-system there is

the SPIKE128k. Its implementation is mainly based on programmable logic,

but as in the MASPINN a dedicated neuroprocessor-pipeline is realized. The

system furthermore constitutes the basis for the presented learning algorithms

for PCNNs. Even though latest technological achievements are not included

in this system it shows a far superior performance than software implementa-

tions. Flexibility of the system is limited by the dedicated pipeline. Addition-

ally, handling is reduced by the use of transputer communication links that

are seldom used nowadays and the size of the system (one VME-chassis for

128k neurons).

The application of the presented systems and architectures pursues two as-

pects. On the one hand PCNNs should be developed and examined and on

the other hand PCNNs should be applied to real-world tasks. For the develop-

ment of PCNNs the required simulation performance is less crucial while there

is a strong demand for exibility and handling. Suitable simulators for such

a task are software- simulators and for an increased simulation performance

systems like SPIKE128K or ParSPIKE. For applications of real-world tasks on

the other hand, systems like NESPINN and MASPINN - and to some extent

ParSPIKE - present a superior platform for the simulation of PCNNs.

References

[1] E. L. Bienenstock, L. N. Cooper, P. W. Munro: Theory of the Develop-

ment of Neuron Selectivity: Orientation Speci�city and Binocular Inter-

action in Visual Cortex. Journal of Neuroscience 2, pp. 32-48 (1982)

[2] R. Eckhorn, H. J. Reitb�ck, M. Arndt, P. Dicke: Feature Linking

via Stimulus - Evoked Oscillations: Experimental Results for Cat Vi-

sual Cortex and Functional Implications from a Network Model. Proc.

IJCNN89, Vol. I, pp. 723-730 (1989)

[3] R. Eckhorn, H. J. Reitb�ck, M. Arndt, D. Dicke: Feature Linking via

Synchronization among Distributed Assemblies: Simulations of Results

from Cat Visual Cortex. Neural Computations 2, pp. 293-307 (1990)

[4] G. Frank, G. Hartmann: An Arti�cial Neural Network Accelerator

for Pulse-Coded Model Neurons. ICNN95, Perth, Australia, In: Proc.

ICNN95, Vol. 4, pp. 2014-2018 (1995)

[5] G. Frank: Ein digitales Hardwaresystem zur echtzeitfhigen Simulation

biologienaher neuronaler Netze. HNI-Verlagsschriftenreihe, Georg Hart-

mann (Hrsg.), Bd. 26, Dissertation, Paderborn (1997)

[6] A. S. French, R. B. Stein: A Flexible Analog Using Integrated Circuits.

IEEE Transactions on Bio-Medical Engineering, Vol. BME-17, No. 3,

pp. 248-253 (1970)

32

[7] W. Gerstner, R. Kempter, J. L. van Hemmen, H. Wagner: A neuronal

learning rule for sub-millisecond temporal coding. Nature, vol. 383, pp.

76-78 (1996)

[8] C. M. Gray, W. Singer: Stimulus-speci�c neuronal oscillations in orien-

tation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA, 86, pp,

1698-1702 (1989)

[9] G. Hartmann, S. Dre: Self Organization of a Network Linking Features by

Synchronization. Parallel Processing in Neural Systems and Computers,

G. Hauske (ed.), pp. 361-364 (1990)

[10] G. Hartmann, G. Frank, M. Schfer, C. Wol�: SPIKE128K - An Accelera-

tor for Dynamic Simulation of Large Pulse-Coded Networks.MicroNeuro

97, Dresden, pp. 130-139 (1997)

[11] J.N.H. Heemskerk : Neurocomputer for Brain-Style Processing. Design,

Implementation and Application. Ph.D. thesis at Leiden University, Ri-

jksuniverditeit Leiden, Netherlands (1995)

[12] D. H. Hubel, T.N. Wiesel: Receptive Fields, Binocular Interaction and

Functional Architecture in the Cat's Visual Cortex. The Journal of Phys-

iol., Vol. 160, pp. 106-154 (1962)

[13] D. H. Hubel: Exploration of the Primary Visual Cortex, 1955-78.Nature,

Vol. 299, pp. 515-524 (1982)

[14] A. Jahnke, U. Roth, H. Klar: A SIMD/Dataow Architecture for a

Neurocomputer for Spike-Processing Neural Networks (NESPINN). Mi-

croNeuro 96, Lausanne, Switzerland, pp. 232-237 (1996)

[15] A. Jahnke, T. Schoenauer, U. Roth, K. Mohraz, H. Klar: Simulation of

Spiking Neural Networks on Di�erent Hardware Platforms. ICANN97.

Springer Verlag, Berlin, pp.1187-1192 (1997)

[16] R. Kempter:Hebbsches Lernen zeitlicher Codierung: Theorie der Schall-

ortung im H�rsystem der Schleiereule. Darmstadt DDD , Naturwis-

senschatliche Reihe, Bd 17, Dissertation TU Mnchen (1997)

[17] R. Kempter, W. Gerstner, J.L. van Hemmen: Hebbian Learning and

Spiking Neurons. Submitted to Physikal Review E vol. 59, pp.4498-4515

(1999)

[18] R. Linsker: From basic network principles to neural architecture: Emer-

gence of spatial-opponent cells. Proceedings of Natl. Acad. Sci. USA, vol.

83, pp. 7508-7512 (1986)

[19] R. Linsker: From basic network principles to neural architecture: Emer-

gence of orientation-selective cells. Proceedings of Natl. Acad. Sci. USA,

vol. 83, pp. 8390-8394 (1986)

[20] R. Linsker: From basic network principles to neural architecture: Emer-

gence of orientation columns. Proceedings of Natl. Acad. Sci. USA, vol.

83, pp. 8779-8783 (1986)

[21] W. Maass, C. M. Bishop: Pulsed Neural Networks. W. Maass and C. M.

Bishop (Eds.), MIT Press (1998)

[22] K. Mohraz, U. Schott, M. Pauly: Parallel Simulation of Pulse-Coded

Neural Networks. Proceedings of the IMACSWorld Congress '97, Berlin,

33

Vol. 6, pp. 523-528 (1997)

[23] E. Nierbur, D. Brettle: E�cient Simulation of Biological Neural Net-

works on Massively Parallel Supercomputers with Hypercube Architec-

ture. Advances in Neural Information Processing Systems 6, pp 904-910

(1994)

[24] R. Preis, R. Diekmann: PARTY - a software library for graph parti-

tioning. B.H.V. Topping, editor, Advances in Computational Mechanics

with Parallel and Distributed Processing, pp 63-71 (1997)

[25] U. Roth, F. Eckhardt, A. Jahnke, H. Klar: E�cient On-Line Computa-

tion of Connectivity: Architecture of the Connection Unit of NESPINN.

MicroNeuro 97, Dresden, pp. 31-38 (1997)

[26] U. Roth, A. Jahnke, H. Klar: Hardware Requirements for Spike-

Processing Neural Networks. IWANN 95, Malaga, Spain, pp. 720-

727(1995)

[27] T. Sch�nauer, S. Attasoy, N. Mehrtash, H. Klar: Simulation of a Digital

Neuro-Chip for Spiking Neural Networks. International Joint Conference

on Neural Networks, IJCNN'00, Como, Italy (2000)

[28] M. Schfer, G. Hartmann: A Flexible Hardware Architecture for Online

Hebbian Learning in the Sender-Oriented Neurocomputer Spike 128K.

MicroNeuro 99, Granada, pp. 316-323(1999)

[29] T. Sch�nauer, N. Mehrtash, A. Jahnke, H. Klar:MASPINN: Novel Con-

cepts for a Neuro-Accelerator for Spiking Neural Networks. VIDYNN'98,

Stockholm, (1998)

[30] T. Sch�nauer, N. Mehrtash and H. Klar: Architecture of a Neuropro-

cessor Chip for Pulse-Coded Neural Networks. ICCIN'98 - International

Conference on Computational Intelligence and Neuroscience, RTP, N.

Carolina, USA, pp. 17-20 (1998)

[31] W. Singer: Development and Plasticity of Cortical Processing Architec-

tures. Science, vol. 270, pp. 758-764 (1995)

[32] L. Weitzel,K. Kopecz, C. Spengler, R. Eckhorn, H. J. Reitb�ck:Contour

Segmentation with Recurrent Neural Networks of Pulse-Coding Neurons.

CAIP'97, Kiel (1997)

[33] C. Wol�, G. Hartmann, U. Rckert: ParSPIKE - A Parallel DSP-

Accelerator for Dynamic Simulation of Large Spiking Neural Networks.

MicroNeuro 99, Granada, pp. 324-331 (1999)

[34] C. Wol�, G. Hartmann, H. Rahne: Parallele Simulation groer

pulscodierter neuronaler Netze auf DSPs. DSP Deutschland 99, Mnchen,

pp. 267-273 (1999)

34

