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ABSTRACT

Distributed systems are widely used in high performance computing for performing computa-
tionally extensive calculations. In programming terms, distributed systems have usually been ex-
ploited through the use of dedicated APIs such as OpenMP and MPI. With these programming
models, synchronization is achieved using locks and barriers, and is complex to implement cor-
rectly. Transactional memory is a new promising parallel programming model that aims to replace
conventional locking mechanisms with transactions. Major transactional memory research has fo-
cused on Chip MultiProcessors(CMPs), leaving the area of distributed systems unexplored. In this
paper a prototype distributed software transactional memory framework is described.
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1 Introduction

Parallel programming for distributed systems is a difficult and challenging task. With the
conventional parallel programming models and languages, the programmer must ensure
memory consistency via explicit coordination and synchronization. This explicit synchro-
nization is achieved by the use of locks, semaphores, barriers etc. Parallel and distributed
programming has been the domain, until now, of a small number of specialists who build
tailor-made custom applications. The introduction of multicore architectures [OHO5], how-
ever, necessitates the creation of new parallel programming models that abstract away from
the user the error-prone complexities of explicit synchronization.

Transactional memory (TM) is an alternative paradigm to lock-based concurrent pro-
gramming. Derived from transactional databases, TM uses transactional semantics for crit-
ical code regions that require synchronization. Programmers utilizing TM just have to en-
close segments of code that access shared variables in transactions. Consequently, the TM
system guarantees the atomicity, consistency and isolation of executing critical regions. If
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successfully executed (i.e. no conflicts detected), transactions “commit”. In the presence of
a conflict, a contention manager is consulted in order to resolve the conflict. After conflict
resolution, a single conflicting transaction will continue execution, while the remaining con-
flicting ones will be “aborted”.

A number of hardware [NCWT07] and software [HLMWNSO03, HF03] TM systems have
been developed testing different approaches. Researchers have not yet concluded on a uni-
versal TM approach and attention is focused on establishing high performance TM systems.

This paper describes the preliminary design and implemenation of a distributed software
transactional system. The system focuses on exploiting transactional memory on clusters
with distributed memory (i.e. no underlying shared memory system).

2 Motivation

The majority of the systems developed examine TM in the domain of CMPs. However, sub-
stantial research has also been conducted in order to exploit TM on clusters [MMAO6]. While
in CMPs we have a single shared memory, in clusters, if not supported by underlying mech-
anisms (DSM [KDCZ94]), the memory is distributed among the processors. The presence of
non-shared memory creates new research challenges. Memory coherence and consistency
must be preserved by updating remote objects, which involves network delays. Hence, ef-
ticient consistency models must be designed in order to minimize expensive network com-
munications. Furthemore, efficient contention management algorithms must be employed
in order to resolve local and remote conflicts.

3 Preliminary Design

Concerning the memory model, the transactional coherence and consistency (TCC) [HWCT04]
model is adopted. According to TCC, when a transaction attempts to “commit” it broadcasts
its modification set to the system in order to detect any conflicting transactions. The fact that
in TCC transactions broadcast their write set in one single packet and only once (before they
commit) makes it suitable for clusters as it minimizes network communications.

In the case of a direct update TM system, updates must be redirected to the master
node where conflict detection takes place. The contention manager resolves conflicts and
“aborted” transactions are re-executed. Although easier to implement, a significant bottle-
neck will be created on the master node, degrading the system’s performance and scalability.

In the case of a deferred update TM system, remote nodes can maintain local copies of the
global data. Distributed systems offer the luxury of maintaining copies of data since there
is an abundance of physical memory. Upon distributed “commit”, if transactions modify re-
mote objects, they broadcast their changes to the other nodes and wait for an acknowledge-
ment in order to commit. If a directory of the remote objects does not exist then a transaction
that attempts to commit must broadcast to all remaining nodes. If a directory does exist,
the committing transaction should broadcast to the nodes that keep a copy of the modified
objects. If the transaction commits, remote nodes update their local copies in order to be
consistent with the modified global objects.

The logic of the deferred update TMs is adopted in order to benefit from the amount of
physical memory available. Subjects such as communication protocols, contention manage-



Master
Global Structures
Caovnoad ][] ons—
Balancer

upon commit o _eT--- o mmmes
update global copy = -=-=ccccacdoacnn--

Transaction distribution

> Update local copies upon commit

Request
Handler Worker

Request

Request
Handler Worker

Handler VWorker

. | ransav::ti-:- . [ ransav::tin
| 53 [ 53

request for update request for update

Figure 1: Design of Distributed STM system
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ment and concurrency control are ongoing research. A preliminary snapshot of the imple-
mented system is depicted in Figure

4 Experimental Setup

The distributed software transactional memory system implemented uses the ProActive
grid middleware framework [BBCT06]. Transactions are wrapped in active objects and dis-
tributed across the nodes. The transaction execution engine is a modified version of DSTM2
[HLMO6]. Experiments will be carried out on a 4-way node cluster utilizing in total 40
Opterons 2.4Ghz cores. The boards of the cluster are connected to each other via a Giga-
bit ethernet switch.
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