
March 1, 2008

Computer Science
Univers i ty o f Manchester

On the Characterisation of Complex
Transactional Memory Applications

Mohammad Ansari

Christos Kotselidis

Kimberly Jarvis

Mikel Luján

Chris Kirkham

Ian Watson

School of Computer Science
The University of Manchester

Preprint Series
CSPP-44

On the Characterisation of Complex

Transactional Memory Applications

Mohammad Ansari

Christos Kotselidis

Kimberly Jarvis

Mikel Luján

Chris Kirkham

Ian Watson ∗

March 1, 2008

Abstract

Transactional Memory (TM) has become an active research area as it promises to sim-
plify the development of highly scalable parallel programs. Scalability is quickly becoming
an essential software requirement as successive commodity processors integrate ever larger
numbers of cores. However, complex TM applications to test TM implementations have
only recently begun to emerge, and their execution characteristics have not been fully inves-
tigated. Complicating matters further, the complex TM applications have been written in
different programming languages, using different TM implementations, making comparisons
difficult.

We have ported several complex TM applications to a single TM implementation, and
built into it a framework to profile their execution. This paper presents performance figures
and execution characteristics of major complex TM applications up to 8 processors, and
for the first time, due to executing under a single TM implementation, presents directly
comparable performance figures and execution characteristics. Also the priority contention
manager is found to provide the best overall results for these applications, in contrast to pre-
viously published results that suggest the polka contention manageer gives the best overall
results.

Copyright c© 2008, The University of Manchester. All rights reserved. Reproduction (electronically or by other
means) of all or part of this work is permitted for educational or research purposes only, on condition that no
commercial gain is involved.

Recent preprints issued by the School of Computer Science, The University of Manchester, are available on

WWW via URL http://www.cs.man.ac.uk/preprints/index.html or by ftp from ftp.cs.man.ac.uk in the

directory pub/preprints.

∗School of Computer Science, The University of Manchester

0

1 Introduction

Transactional Memory (TM) [1, 2] is a promising concurrent programming abstraction that
makes it easier to write scalable parallel programs. It aims to provide the scalability of fine-
grain locking, but with the programming ease of coarse-grain locking. TM has seen a rise in
research activity as the demand for scalable software increases in order to take advantage of
future Chip Multiprocessors (CMPs) [3].

TM implementations usually consist of a runtime system and language-based constructs
(or library calls) to mark code blocks as transactions. Whenever a transaction executes, the
runtime system records the transaction’s data accesses into a readset and a writeset. These sets
are compared with the sets of other concurrently executing transactions for access conflicts.
If conflicting accesses (e.g. write/write or read/write) are detected, then one of the conflicting
transactions is aborted and restarted. A contention manager, part of the TM runtime system,
decides which transaction to abort based upon a policy [4]. A transaction that completes
execution of its code block, has no conflicts, and has not been aborted, can commit its writeset.
TM implementations exist in a variety of flavours, including software-based (STM), hardware-
based (HTM), and hardware/software hybrids (HyTM), and readers can refer to Larus and
Rajwar [5] for details.

Several nontrivial programs specifically designed for parallelisation with TM have appeared
in the last year [6, 7, 8, 9]. However, their execution characteristics have not been fully in-
vestigated. Complicating matters further, the complex TM applications have been written in
different programming languages, using different TM implementations, making comparisons
difficult.

This paper presents performance figures and execution characteristics of Genome, Vaca-
tion and KMeans (from the STAMP suite version 0.9.5 [6]) and Lee’s routing algorithm [7].
These applications have been ported to a single state-of-the-art TM implementation, the Java-
based Software TM (STM) called DSTM2 [10], which has been extended with a TM execution
profiling framework. Furthermore, executing the complex TM applications in a single TM im-
plementation allows, for the first time, comparisons between their performance and execution
characteristics. Execution characteristics are derived from the analysis of metrics, and this
paper also reports two new metrics that have not been used in previous related work [11, 12];
running percentage commit rates, and transaction execution time histograms (see Section 3 for
their definitions).

The execution behaviour reveals observations such as a phase during the execution of the
Genome application (see description in Section 2.1) where observed parallelism is significantly
lower than the rest of the execution. Another example observation is that this collection of
applications generate transactions with a wide range of execution times, and a wide degree
of homogeneity/heterogeneity among the transactions that form part of an application. The
metrics are illustrated and their relationship with the observed application scalability is pursued.

This paper is organised as follows: Section 2 describes briefly the parallelisation of the
complex TM applications under investigation and the execution parameters used. Section 3
explains and motivates the metrics generated to characterise the TM behaviour of the applica-
tions. Section 4 walks through the different performance figures and execution characteristics
trying to understand the scalability results, while Section 5 introduces related work. Section 6
completes the paper with a summary of the observations of the recorded TM behaviour.

1

2 Complex TM Applications

Recently, several research groups have worked towards building complex TM applications for
thorough TM implementation analysis [6, 7, 8, 9]. Informally, by complex TM applications we
mean those that have all or most of the following features:

• have the potential for large amounts of parallelism, but are difficult to parallelise using
fine-grain locking,

• execute several different types of transactions (i.e. several code blocks marked as transac-
tions),

• have dynamic amounts of parallelism over a single execution,

• execute transactions of varying length (varying amounts of computation),

• execute transactions of varying size (varying amounts of data accessed), and

• are based on real-world applications.

Complex TM applications are important for TM research as they allow performance analysis
of TM implementations in realistic scenarios. For example, workloads with dynamic amounts
of parallelism can be used to improve emerging adaptive concurrency mechanisms [13].

This paper analyses Lee’s routing algorithm [7], and all the STAMP suite version 0.9.5;
i.e. Genome, Kmeans, and Vacation [6]. Lee’s routing algorithm, originally in Java, has been
implemented using transactions with DSTM2 keywords. STAMP applications have been ported
from C to Java, and converted from using TL2 [14], a STM, to DSTM2 [10]. STAMP applica-
tions also required the implementation of additional utility classes in DSTM2: a transactional
linked list and a transactional hash map. The remainder of this section briefly describes each
application and its parallel execution characteristics.

2.1 Analysed Applications

Lee’s routing algorithm is used in circuit routing to make connections automatically between
points. Routing is performed on a 3D grid, implemented as a multidimensional array, and
each array element is called a grid cell. The application loads connections (as pairs of spatial
coordinates) from an input file into a global pool, and sorts them into ascending length order
(to reduce ‘spaghetti’ routing). It then attempts to find a route from the first point to the
second point of each connection by performing a breadth-first search, avoiding any grid cells
occupied by previous routings. If a route is found, backtracking lays the route by occupying
grid cells. Concurrent routing requires writes to the grid to be performed transactionally, and
synchronised access to the global pool of connections. Lee’s routing algorithm is fully parallel,
with conflicts at points where connections attempt to write to the same grid cell. Since routes
are sorted in ascending length order, and the probability of a conflict rises with route length,
the available parallelism should fall as execution progresses.

Genome is a gene sequencing program that rebuilds a gene sequence from a large number
of equal-length overlapping gene segments. Each gene segment is an object consisting of a
character string, a link to the start segment, next segment, and end segment, and overlap
length. The application executes in three phases. The first phase removes duplicate segments
by transactionally inserting them into a hash set. The second phase attempts to link segments

2

by matching overlapping string subsegments. If two segments are found to overlap then linking
the two segments (by modifying the links in each gene segment object, and setting the overlap
length) and removing them from the hash set is done transactionally, as multiple gene segments
may match and result in conflict. The matching is done in a for-loop that starts by searching
for the largest overlap (length-1 characters, since duplicates were removed in the first phase),
down to the smallest overlap (1 character). Thus, conflict is likely to rise as execution progresses
since smaller overlaps will lead to more matches. In the third phase, a single thread passes over
the linked chain of segments to output the rebuilt gene sequence. The execution of Genome
is completely parallel except for the third phase, and the available parallelism should fall as
execution progresses.

Kmeans is an application that clusters objects into a specified number of clusters. The
application loads objects from an input file, and then works in two alternating phases. One
phase allocates objects to their nearest cluster (initially cluster centres are assigned randomly).
The other phase re-calculates cluster centres based on the mean of the objects in each cluster.
Execution repeatedly alternates between the two phases until two consecutive iterations gen-
erate, within a specified threshold, similar cluster assignments. Assignment of an object to a
cluster is done transactionally, thus parallelism is controlled by the number of clusters. Execu-
tion consists of the parallel phase assigning objects to clusters, and the serial phase checking
the variation between the current assignment and the previous. Available parallelism should re-
main the steady throughout execution as the object-to-cluster assignment conflicts are unlikely
to change significantly.

Vacation simulates a travel booking database in which multiple threads book or cancel cars,
hotels, and flights on behalf of customers transactionally. Threads can also execute changes in
the availability of cars, hotels, and flights transactionally. Each customer has a linked list hold-
ing his reservations. The execution of Vacation is completely parallel, but available parallelism
is limited by the number of relations in the database and the number of customers.

At this time, and given the page limit, we have not included Delaunay triangulation in the
study given that the transactional part of the application is approximately 8% of the execution
time on a SunFire machine or 1.2% on a Niagara-based machine [9]. Similarly, we have not
included STMBench7, which is derived from the OO7 benchmark for object-oriented databases,
but STMBench7 with its default execution parameters “performs very poorly” [8]. In future
work, we will present the results of these two benchmarks; the porting effort is well underway.

3 Analysed Metrics

DSTM2 has been instrumented to capture execution data that is used to generate metrics
for characterising the execution of the applications mentioned above. This section defines the
metrics used for execution characterisation. Although we only motivate their use in character-
ising complex TM applications, these metrics can additionally be used for characterising any
transactional application or benchmark.

Scalability is the classic metric presented to show how well applications speed up with
more processing resources. Scalability is calculated as total time divided by the number of
threads used. It is a key measure of the application’s parallelism, and the TM runtime system’s
efficiency. Poor scalability motivates the study of the metrics described below.

In transactions (InTX) is the percentage of total time the applications spent executing
aborted and committed transactions, i.e. the percentage of total time spent in parallel execution.

3

The remaining percentage of time is spent executing serial code. InTX is important when
judging scalability, as less time spent in transactions leads to reduced maximum achievable
scalability.

Wasted work shows the percentage of transaction execution time spent executing aborted
transactions. It is calculated by dividing the total time spent in aborted transactions by the
time spent in all (committed and aborted) transactions. High amounts of wasted work can be
an indicator for poor contention management decision-making, low amounts of parallelism in
the application.

Aborts per Commit (ApC) shows the average number of aborted transactions per com-
mitted transaction. ApC is not directly related to wasted work, but is an indicator for the
same issues mentioned for wasted work. For example, high wasted work in combination with a
low ApC (aborting a few long/large transactions, and favouring many short/small transactions)
may indicate poor contention management decision-making, and studying the application may
lead to better contention management policies.

Abort histograms detail how the ApC is spread amongst the transactions; e.g. is the ApC
due to a minority of transactions aborting many times before committing, or vice versa?

Contention Management Time (CMT) measures the percentage of time an average
committed transaction spends in performing contention management when conflicts are de-
tected. In combination with wasted work and abort histogram data, it is possible to understand
which contention manager may be most effective for the profiled application.

Transaction execution time histograms show the spread of execution times of commit-
ted transactions. A wide range of transaction execution times is one of the characteristics of a
complex TM application, and the wider the spread of transaction execution times, the higher
the confidence in a TM implementation’s performance. This metric describes how homogeneous
or heterogenous is the amount of work contained in transactions for a given application.

Running Percentage of Commit Rate (RPCR) shows the percentage of committed
transactions at sample points during the execution of the application. These traces help identify
phases where wasted work occurs during the execution of an application. This information can
be useful, for example, in improving emerging adaptive concurrency techniques for TM [13].

Readset & writeset sizes are a measure of the memory-boundedness of committed trans-
actions in an application. They can be used for selecting buffer or cache sizes for Hardware TM
(HTM) implementations [5]. Data from complex TM applications gives higher confidence that
the hardware will not overflow for a large proportion of transactions. Note that, in this work, a
writeset is always a subset of its corresponding readset because all applications first read data
before writing. For other applications, these sets may only overlap, or be distinct.

Readset-to-writeset ratio (RStoWS) shows the average number of reads that lead to a
write in a committed transaction. Although this varies widely from application to application,
a very high ratio combined with short running transactions will make the overhead of recording
the readset and writeset in STMs more significant and make it difficult to scale. HTMs eliminate,
or reduce by orders of magnitude, this recording overhead and the combination of RStoWS and
transaction execution time histograms may indicate that such applications only scale on HTMs.

Writes-to-writeset ratio captures the average number of writes to a transactional data
element in a committed transaction. Multiple writes indicate further refinement in the applica-
tion, when using a STM, is possible since only the last write is valid, and all other writes add
runtime system monitoring overhead. The data for this metric is omitted for the applications
studied as they do not exhibit multiple writes to a transactional data element.

Reads-to-readset ratio captures the average number of reads to a transactional data

4

Configuration Name Application Configuration

Gen Genome gene length:16384, segment length:64,
number of segments:4194304

KMeansL Kmeans low contention min clusters:40, max clusters:40,
threshold:0.00001, input file:random10000 12

KMeansH Kmeans high contention min clusters:20, max clusters:20,
threshold:0.00001, input file:random10000 12

VacL Vacation low contention relations:65536, % of relations queried:90,
queries per transaction:4, number of transactions:1024768

VacH Vacation high contention as above, but % of relations queried:10,
queries per transactions:8

Lee Lee w/o early release early release:false, input file:mainboard.txt
LeeER Lee with early release early release:true, input file:mainboard.txt

Table 1: Application parameters used to gather performance figures and execution characteris-
tics.

element in a committed transaction. Reading transactionally shared data incurs extra costs,
and a high RtoRS, when using a STM, indicates the need to study the implementation and
remove multiple reads to the same transactional data element. For compilers, it describes an
upper limit of how many read operations can be optimised away by not recording them again
and again. For brevity this data is ommitted as only Lee’s algorithm was found to have a high
ratio, and this information is also visible in the RStoWS graphs because none of the applications
performed multiple writes to a transactional data element.

4 Characterisation

All experiments are performed on a 4 x dual-core 2.2GHz Opteron-based (i.e. an 8-core NUMA
shared memory) machine with openSuSE 10.1, 16GB RAM, and using Sun Java 1.6.0 64-
bit. The default configuration of DSTM2 is used: shadow factory and eager conflict detection
[10]. Table 1 shows the configurations executed for each application. STAMP applications
are executed using the parameters suggested in the guidance notes supplied with the suite.
Lee’s routing algorithm is executed using the default dataset (a real circuit) with and without
early release [4]. Each experiment is repeated twenty times and the best result presented. All
popular contention managers [15, 16, 17] have been used, but only results with the priority

manager are presented as it gives the best overall performance results. The priority manager
aborts younger transactions (those with a later start time). Execution time is measured from
the point where multiple threads start executing transactions to the point where they stop
executing transactions, thus excluding any setup time (e.g. of application data structures) and
any shutdown time (e.g. of validating results, reporting metrics). We begin by presenting the
performance results, and then study the applications’ execution characteristics to understand
the observed performance. Hereonwards, experiments are referred to by their configuration
names introduced in Table 1.

Each experiment is a combination of:

• number of threads (1,2,4 or 8),

• application configuration (e.g. Vacation with high contention), and

5

• contention manager.

Figure 1 presents the graphs for the scalability metric (speedups). LeeER (early release)
shows a clear positive effect on scalability compared with Lee. Only LeeER is able to reach
speedups above 2 on 4 and 8 threads. KmeansL, KmeansH, VacL and VacH generally obtain
less than 1.5 speedup, with only Gen reaching above a speedup of 2 on 4 and 8 threads. An
unexpected result is that VacH (high contention) outperforms VacL (low contention). This could
be attributed to errors in porting the code, and to eliminate this possibility, the unmodified
C/TL2 code is executed twenty times and the best run is shown in Figure 2. Except for Gen,
that is able to scale close to linearly, the other results have a similar trend but with smaller
speedups than their Java/DSTM2 counterparts.

Figure 3 shows the results for the metric InTX. LeeER, VacL, and VacH do not show
significant serial execution (less than 15%), or increasing serial execution with the number of
threads. The single thread result of Gen shows that the serialised final phase of constructing the
gene sequence represents a small component of the execution time (less than 10%). The upper
bound of the scalability for KMeansH and KMeansL is limited by the significant sequential
phase (approximately 55% to 75%). Lee has no serial component by default, as shown in the
single thread result. Gen, KmeansH, KmeansL and Lee, have increasing percentages of serial
execution time as the number of threads rises given that the total execution time is reduced
(see Figure 1).

Figure 4 presents the graph for the metric wasted work. Each application configuration
executes a large number of transactions (between thousands to millions) as will be shown in
Figure 7. Gen, VacL, and VacH have little wasted work (less than 10%). KmeansH, KmeansL,
Lee, and LeeER have large amounts of wasted work (e.g. on 8 threads the wasted work is
in the range 35% to 70%), suggesting there is possible room for improvement in contention
management for these applications. Combined with the results in Figure 3, it is now clearer
the reasons behind KmeansH and KmeansL only reaching a speedup below 1.5. Both have a
significant sequential component, and they are further hampered by costly aborts depicted as
wasted work. Interestingly, LeeER, VacH, and VacL all have little serial execution, yet LeeER
has more wasted work and scales much better than VacH or VacL. In other words, a large
wasted work may not prevent scalability but poor scalability can have its root in wasted work
(see Lee).

Figure 5 shows the graph with the ApC metric for each application. It is difficult to deter-
mine what threshold represents a small ApC with respect to scalability or even wasted work.
Note, for example, that although KmeansH has approximately 4 times higher ApC than Lee,
Lee is the one with larger wasted work. LeeER shows low ApC, yet significant wasted work,
suggesting that large/long transactions are being aborted. Also note VacH and VacL have the
smallest ApC, but hide a wasted work higher than Gen. For these applications we find ApC
the least indicative metric to understand the TM behaviour.

Figure 6 illustrates the results with the metric CMT. Consistently the priority contention
manager provides a negligible overhead (cannot be seen for Gen, Lee, LeeER, VacH and VacL),
thus giving the overall best performance results. Interestingly, we observed that at 8 threads
KmeansH has 20% CMT, KmeansL has 10% CMT, but Lee has almost none, despite having
more wasted work. This is due to the average transaction execution time being far greater in
Lee than in KMeansH or KMeansL, as is shown later in Figure 8, and their high ApC shown
in Figure 5.

Abort histograms are presented in Figure 7. The single thread results (no possible abort)

6

show that Gen, VacH, and VacL execute around 1 million transactions, KmeansH and KmeansL
approximately 250,000 transactions, and Lee and LeeER above 1500 transactions. This indicates
that the number of transactions executed is not the reason for the poor scalability observed in
most of the configurations. Each bar represents the number of transactions that aborted a given
number of times before actually committing. The first bar from the left represents, for example,
zero aborts. Moving from zero aborts to one abort, a drop in the number of transactions between
three orders of magnitude (Gen) to one order of magnitude (e.g. KmeansH and Lee) is observed.
Note the y-axis is log scale. Beyond 3 aborts, each bar represents a range rather than only one
value. Thus, for example, the fifth bar from the left counts how many transactions aborted
between 4 and 9 times before being able to commit. Gen shows a unique trend amongst the
TM applications; a few transactions takes 100+ or 1000+ aborts, even with 2 threads, before
committing. On 2 and 4 threads the histogram has a u-shape, that is levelled on 8 threads. On
the other histograms we do not find such a lack of aborts in the range 4-100, but rather a natural
growth from left to right as the number of threads increases. KmeansH and KmeansL, both
with high ApC, show a fairly even spread of abort distribution in the range 1-49. Compared
to each other, VacH and VacH show similar abort distributions suggesting that the difference
between the low and high contention configurations (i.e. the recommended parameters) is not
significant enough to have an impact. LeeER is considerably better than Lee, reducing the
abort distribution by orders of magnitude, again highlighting the benefit of early release. The
minimum number of aborts appears in LeeER with 3 or fewer aborts on 2 threads and 9 or
fewer aborts on 8 threads.

Figure 8 shows transaction execution time histograms. Each bar represents the number of
committed transactions that have executed in the given time range, up to, but not including
the upperbound. KmeansH and KmeansL have the sharpest apex in their second bar (0.01-
0.99ms) with the next largest bar being normally two orders of magnitude smaller. Note the log
scale in the y-axis. The average transaction of KmeansH and KmeansL is the shortest average
transaction. KmeansH and KmeansL also have the most homogenous profile; the majority of
the transactions fall into the same range or have similar execution time. Gen, VacH and VacL
have similar profiles with the majority of the transactions falling into three ranges (covering
from 0.0 to 1.0 ms). Given these results, Gen, VacH and VacL can be classified as intermediate
homogeneity. Lee and LeeER have fewer transactions (around 1500 connections to be laid
on a real circuit) than the other applications. However the minimum execution time of any
transactions is at least 5 times longer than the other applications. Also note that for both Lee
and LeeTM the number of transactions is distributed evenly among four bars (covering from
10 to 999ms) and the neighbour bars normally only falling by one order of magnitude. This
profile corresponds to a heterogenous mix of transaction execution times. The lengths of the
connections in the circuit map into this heterogeneous profile.

7

1 thread
2 thread
4 thread
8 thread

 0.00

 0.50

 1.00

 1.50

 2.00

 2.50

 3.00

 3.50

 4.00

Gen KMeansHKMeansL Lee LeeER VacH VacL

S
pe

ed
up

Figure 1: Speedup of the applications with
DSTM2.

1 thread
2 thread
4 thread
8 thread

 0.00

 0.50

 1.00

 1.50

 2.00

 2.50

 3.00

 3.50

 4.00

Gen KmeansH KmeansL VacH VacL

S
pe

ed
up

Figure 2: Speedup of unmodified C code with
TL2.

Outside Tx
In Tx

 0

 20

 40

 60

 80

 100

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

P
er

ce
nt

ag
e

of
 T

ot
al

 T
im

e

Gen KMeansH KMeansL Lee LeeER VacH VacL

Figure 3: Execution time spent in transactions
(InTX).

Wasted Work
Useful Work

 0

 20

 40

 60

 80

 100

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

P
er

ce
nt

ag
e

of
 T

ot
al

 T
im

e

Gen KMeansH KMeansL Lee LeeER VacH VacL

Figure 4: Wasted work (time in aborted trans-
actions).

1 thread
2 thread
4 thread
8 thread

 0.00

 0.50

 1.00

 1.50

 2.00

 2.50

 3.00

 3.50

 4.00

 4.50

Gen KMeansHKMeansL Lee LeeER VacH VacL

A
bo

rt
s

pe
r

co
m

m
it

Figure 5: Average Aborts per Commit (ApC).

Contention Management
Work

 0

 20

 40

 60

 80

 100

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

P
er

ce
nt

ag
e

of
 T

ot
al

 T
im

e

Gen KMeansH KMeansL Lee LeeER VacH VacL

Figure 6: Proportion of time spent in con-
tention management (CMT).

8

Application Readset Writeset

1 thread 2 threads 4 threads 8 threads 1 thread 2 threads 4 threads 8 threads

Gen 8 8 8 8 7 7 7 7
KMeansH 152 152 152 152 152 152 152 152
KMeansL 157 156 156 156 157 156 156 156
Lee 243231 196590 162015 130081 423 421 422 421
LeeER 427 425 426 427 423 421 422 423
VacH 168 166 165 165 30 30 30 30
VacL 77 75 74 72 20 20 21 20

Table 2: Readset and writeset sizes per average committed transaction (in bytes).

Figure 9 illustrates the graphs with the metric RPCR. They are obtained by sampling the
percentage of committed transactions every 5 seconds. The x-axis represents the execution
time of the application. Some of the lines representing the RPCR with a given number of
threads are shorter in the x-direction than others as the execution of the application executes
faster. KMeansH and KMeansL show a steady RPCR, thus wasted work is distributed evenly
throughout execution. VacH and VacL exhibit a RPCR that rises slightly as execution pro-
gresses, and hardly varies with the number of threads. Gen shows a large dip in the middle,
revealing an execution phase where a large proportion of the wasted work occurs. Lee shows
a continual reduction in RPCR, and LeeER fluctuates significantly although it is possible to
see that increasing threads reduces the overall RPCR, which is also reflected in the wasted
work. A possible pitfall of using RPCR is illustrated with Lee and LeeTM. The sampling rate
is too frequent compared with the execution time of the transactions in Lee and LeeER. Thus,
poor samples record instances of the execution where several transactions are active, but few
or none have had enough time to finish and commit, leading to the exacerbated peaks observed
(sometimes dropping down to zero). The RPCR graphs should only be looked at in conjunction
with the transaction execution time histograms.

In trying to understand the scalability results the missing piece in the puzzle is the difference
between Gen, and VacH and VacL. Until now these three applications have had similar metrics,
but Gen has been able to scale better than VacH and VacL (see Figure 1). Table 2 shows the
readset and writeset sizes of the complex TM applications. The readset and writeset of Gen is
3-21 times smaller than VacH and VacL. Given the overhead of STM for recording these sets,
this can explain the difference in the scalability behaviour of these applications. In section 3
it was mentioned that readset and writeset information is useful for selecting hardware buffer
sizes. These applications would comfortably fit in a 512-byte buffer, except for Lee which would
need a 256-KByte buffer. Also note how early release, LeeER, considerably reduces the set
sizes.

Finally, Figure 10 presents RStoWS. The benefit of early release in Lee’s routing algorithm
is highlighted; Lee has a very high ratio, and LeeER improves it significantly, with a good
impact on all characteristics, as has been shown in this section. VacH has a slightly higher ratio
than VacL, as expected from the configuration parameters.

5 Related Work

Chung et al. [12] presented the most comprehensive study looking at 35 different TM bench-
marks covering from mainly scientific computing (JavaGrande, SPLASH-2, NAS, and SPEComp),

9

0
1
2
3
4−9
10−19
20−49
50−99
100−999
1000+

 0

 1

 10

 100

 1000

 10000

 100000

 1000000

 10000000

1 2 4 8

N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g

sc
al

e)

Number of threads

Gen

0
1
2
3
4−9
10−19
20−49
50−99
100−999
1000+

 0

 1

 10

 100

 1000

 10000

 100000

 1000000

1 2 4 8

N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g

sc
al

e)

Number of threads

0
1
2
3
4−9
10−19
20−49
50−99
100−999
1000+

 0

 1

 10

 100

 1000

 10000

 100000

 1000000

1 2 4 8

N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g

sc
al

e)

Number of threads

KMeansH KMeansL

0
1
2
3
4−9
10−19
20−49
50−99
100−999
1000+

 0

 1

 10

 100

 1000

 10000

1 2 4 8

N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g

sc
al

e)

Number of threads

0
1
2
3
4−9
10−19
20−49
50−99
100−999
1000+

 0

 1

 10

 100

 1000

 10000

1 2 4 8

N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g

sc
al

e)

Number of threads

Lee LeeER

0
1
2
3
4−9
10−19
20−49
50−99
100−999
1000+

 0

 1

 10

 100

 1000

 10000

 100000

 1000000

 10000000

1 2 4 8

N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g

sc
al

e)

Number of threads

0
1
2
3
4−9
10−19
20−49
50−99
100−999
1000+

 0

 1

 10

 100

 1000

 10000

 100000

 1000000

 10000000

1 2 4 8

N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g

sc
al

e)

Number of threads

VacH VacL

Figure 7: Abort histograms for each complex TM application. Legend shows number of aborts
per transaction.

10

0.0−0.01
0.01−0.1
0.1−1.0
1.0−5.0
5.0−10.0
10.0−20.0
20.0−50.0
50.0−100.0
100.0−1000.0
1000.0−10000.0
10000.0+

 0

 1

 10

 100

 1000

 10000

 100000

 1000000

1 2 4 8

N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g

sc
al

e)

Number of threads

Gen

0.0−0.01
0.01−0.1
0.1−1.0
1.0−5.0
5.0−10.0
10.0−20.0
20.0−50.0
50.0−100.0
100.0−1000.0
1000.0−10000.0
10000.0+

 0

 1

 10

 100

 1000

 10000

 100000

 1000000

1 2 4 8

N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g

sc
al

e)

Number of threads

0.0−0.01
0.01−0.1
0.1−1.0
1.0−5.0
5.0−10.0
10.0−20.0
20.0−50.0
50.0−100.0
100.0−1000.0
1000.0−10000.0
10000.0+

 0

 1

 10

 100

 1000

 10000

 100000

 1000000

1 2 4 8

N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g

sc
al

e)

Number of threads

KMeansH KMeansL

0.0−0.01
0.01−0.1
0.1−1.0
1.0−5.0
5.0−10.0
10.0−20.0
20.0−50.0
50.0−100.0
100.0−1000.0
1000.0−10000.0
10000.0+

 0

 1

 10

 100

 1000

1 2 4 8

N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g

sc
al

e)

Number of threads

0.0−0.01
0.01−0.1
0.1−1.0
1.0−5.0
5.0−10.0
10.0−20.0
20.0−50.0
50.0−100.0
100.0−1000.0
1000.0−10000.0
10000.0+

 0

 1

 10

 100

 1000

1 2 4 8

N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g

sc
al

e)

Number of threads

Lee LeeER

0.0−0.01
0.01−0.1
0.1−1.0
1.0−5.0
5.0−10.0
10.0−20.0
20.0−50.0
50.0−100.0
100.0−1000.0
1000.0−10000.0
10000.0+

 0

 1

 10

 100

 1000

 10000

 100000

 1000000

1 2 4 8

N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g

sc
al

e)

Number of threads

0.0−0.01
0.01−0.1
0.1−1.0
1.0−5.0
5.0−10.0
10.0−20.0
20.0−50.0
50.0−100.0
100.0−1000.0
1000.0−10000.0
10000.0+

 0

 1

 10

 100

 1000

 10000

 100000

 1000000

1 2 4 8

N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g

sc
al

e)

Number of threads

VacH VacL

Figure 8: Transaction execution time histograms for each complex TM application. Legend
shows execution time range in milliseconds. Each range is up to, but not including its respective
upperbound.

11

 0

 20

 40

 60

 80

 100

C
om

m
it

R
at

e
(%

)

Time

2 thread
4 thread
8 thread

Gen

 0

 20

 40

 60

 80

 100

C
om

m
it

R
at

e
(%

)

Time

2 thread
4 thread
8 thread

 0

 20

 40

 60

 80

 100

C
om

m
it

R
at

e
(%

)

Time

2 thread
4 thread
8 thread

KMeansH KMeansL

 0

 20

 40

 60

 80

 100

C
om

m
it

R
at

e
(%

)

Time

2 thread
4 thread
8 thread

 0

 20

 40

 60

 80

 100

C
om

m
it

R
at

e
(%

)

Time

2 thread
4 thread
8 thread

Lee LeeER

 0

 20

 40

 60

 80

 100

C
om

m
it

R
at

e
(%

)

Time

2 thread
4 thread
8 thread

 0

 20

 40

 60

 80

 100

C
om

m
it

R
at

e
(%

)

Time

2 thread
4 thread
8 thread

VacH VacL

Figure 9: Running commit rate percentage (RPCR) for each complex TM application.

12

1 thread
2 thread
4 thread
8 thread

 0.10

 1.00

 10.00

 100.00

 1000.00

Gen KMeansHKMeansL Lee LeeER VacH VacL

R
at

io
 R

ea
ds

et
/W

rit
es

et
 (

lo
g

sc
al

e)

Figure 10: Ratio of readset to writeset (RStoWS).

to commercial workloads (DaCAPO, and SPECjbb). These TM benchmarks were generated fol-
lowing a direct translation from the original parallel benchmarks. The performance evaluation
provided a wealth of data with respect to size of transactions, readset and writeset sizes, nested
transaction depth, and so on. Chung et al. [12] acknowledge a limitation of their methodology
which is not able to generate the frequency of transactional aborts.

Perfumo et al. [11] perform a similar execution characterisations of Haskell TM benchmarks,
but does not present the same range of metrics shown in this work, nor study any of the complex
TM applications considered in this paper. Specifically, we have not found the same relationship
between the size of the readset and the ApC that they present; larger readset leads to larger
probability of aborts.

The complex TM applications used in this work have been investigated in their respective
publications. Gen, KMeansH, KMeansL, VacH and VacL [6] were used to show the scalability
of a new hybrid (hardware/software) TM implementation, and the metrics presented included
the average number of instructions, read and write barriers per transaction, and the percentage
of time spent executing transactions. Our work has extended the characteristics of these TM
applications.

Lee’s routing algorithm [7] was described as a suitable complex TM application, and its study
of aborts led to the use of early release. Early release showed dramatically improved scalability.
However the evaluation was performed in an abstracted TM environment. This paper has
presented a range of execution characteristics for Lee and LeeER, as well as performance figures
from executing on a state-of-the-art STM implementation.

Finally STMBench7 and Delaunay triangulation are complex TM applications that have
been omitted in this paper. An effort is well underway to have them in our framework. STM-
Bench7 [8], based on the database application OO7, was used as a comparison between TM-
based execution (using ASTM [18]) and using lock-based execution. The results showed the
TM-based execution scaled poorly with respect to locks. Delaunay triangulation, using RSTM
[19], was found that the transactional part of the application is approximately 8% of the exe-
cution time on a SunFire machine or 1.2% on a Niagara machine [9]. Both works highlighted
the need for complex TM applications, but did not study execution characteristics extensively.

13

6 Summary

This paper has presented metrics to describe TM behaviour and has reported performance
figures and execution characteristics for a set of complex TM applications that have been
recently published: the STAMP suite (Genome, KMeans, and Vacation), and Lee’s routing
algorithm. The study has been performed by developing a profiling framework into a state-
of-the-art STM implementation (DSTM2) to gather execution data, and generating metrics to
observe the execution characteristics of the complex TM applications up to 8 threads. The
paper has navigated through the metrics to understand the observed scalability. The study has
provided the following observations:

• Vacation has little wasted work, low ApC, negligible CMT, and a high average RPCR,
yet the scalability on 8 threads is at best around 1.5 because of the small execution times
of the transactions compared to the cost in a STM to record the relatively large readset
and writeset.

• KMeans executes hundreds of thousands of transactions, but the scalability is limited due
to the low amount of time spent executing transactions, and the large amount of wasted
work

• Lee’s routing algorithm shows the potential all-round benefits of early release, by increas-
ing scalability, and reducing wasted work, contention time, and aborted transactions.

• Genome has a phase of execution in which significant amounts of the total wasted work
occurs, which could be targeted for improving emerging adaptive concurrency techniques.

• The priority contention manager was found to give the best performance for these complex
TM applications. This is in contrast to previously published results that suggested the
polka contention manager gives the best overall performance. Although we have not
presented details of the performance difference between these two contention managers,
we note that the previous evaluation did not the same TM applications.

• The ApC graph was found to offer the least information.

• According to the distribution of transaction execution times, Lee’s routing algorithm is
the most heterogenous, Kmeans is the most homogeneous, while Genome and Vacation
sit in the middle.

• Overall, the InTX, wasted work, RPCR and sizes of readset and writeset, and transaction
execution time histograms metrics were the most informative to understand the observed
scalability.

References

[1] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural support for
lock-free data structures. In ISCA ’93: Proceedings of the 20th Annual iIternational Sym-

posium on Computer Architecture, pages 289–300, New York, NY, USA, May 1993. ACM
Press.

14

[2] Nir Shavit and Dan Touitou. Software transactional memory. In PODC ’95: Proceedings of

the 14th Annual ACM Symposium on Principles of Distributed Computing, pages 204–213,
New York, NY, USA, August 1995. ACM Press.

[3] Richard McDougall. Extreme software scaling. ACM Queue, 3(7):36–46, 2005.

[4] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer III. Software
transactional memory for dynamic-sized data structures. In PODC ’03: Proceedings of

the 22nd Annual Symposium on Principles of Distributed Computing, pages 92–101, New
York, NY, USA, 2003. ACM Press.

[5] James R. Larus and Ravi Rajwar. Transactional Memory. Morgan and Claypool, 2006.

[6] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen McDonald, Nathan Bronson,
Jared Casper, Christos Kozyrakis, and Kunle Olukotun. An effective hybrid transactional
memory system with strong isolation guarantees. In ISCA ’07: Proceedings of the 34th

Annual International Symposium on Computer Architecture, pages 69–80, New York, NY,
USA, Jun 2007. ACM Press.

[7] Ian Watson, Chris Kirkham, and Mikel Luján. A study of a transactional parallel routing
algorithm. In PACT ’07: Proceedings of the 16th International Conference on Parallel

Architectures and Compilation Techniques, pages 388–400, September 2007.

[8] Rachid Guerraoui, Micha l Kapa lka, and Jan Vitek. STMBench7: A benchmark for soft-
ware transactional memory. In EuroSys ’07: Proceedings of the 2nd European Systems

Conference, pages 315–324. ACM Press, March 2007.

[9] Michael L. Scott, Michael F. Spear, Luke Dalessandro, and Virendra J. Marathe. Delaunay
triangulation with transactions and barriers. In Proceedings of the 2007 IEEE International

Symposium on Workload Characterization, pages 107–113. 2007.

[10] Maurice Herlihy, Victor Luchangco, and Mark Moir. A flexible framework for implement-
ing software transactional memory. In OOPSLA ’06: Proceedings of the 21st Annual

Conference on Object-Oriented Programming Systems, Languages, and Applications, pages
253–262, New York, NY, USA, 2006. ACM Press.

[11] Cristian Perfumo, Nehir Sonmez, Adrian Cristal, Osman Unsal, Mateo Valero, and Time
Harris. Dissecting transactional executions in haskell. In TRANSACT ’07: Second ACM

SIGPLAN Workshop on Transactional Computing, Aug 2007.

[12] JaeWoong Chung, Hassan Chafi, Chi Cao Minh, Austen McDonald, Brian D. Carlstrom,
Christos Kozyrakis, , and Kunle Olukotun. The common case transactional behavior of
multithreaded programs. In HPCA ’06: Proceedings of the 12th International Symposium

on High Performance Computer Architecture, pages 266–277. Feb 2006.

[13] Mohammad Ansari, Christos Kotselidis, Kim Jarvis, Mikel Luján, Chris Kirkham, and Ian
Watson. Adaptive concurrency control for transactional memory. In MULTIPROG ’08:

First Workshop on Programmability Issues for Multi-Core Computers, January 2008.

[14] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In DISC ’06: Proceedings

of the 20th International Symposium on Distributed Computing, Sept 2006.

15

[15] William Scherer III and Michael Scott. Contention management in dynamic software trans-
actional memory. In CSJP ’04: Proceedings of the ACM PODC Workshop on Concurrency

and Synchronization in Java Programs, St. John’s, NL, Canada, Jul 2004.

[16] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. Toward a theory of transac-
tional contention managers. In PODC ’05: Proceedings of the 24th Annual Symposium

on Principles of Distributed Computing, pages 258–264, New York, NY, USA, 2005. ACM
Press.

[17] William Scherer III and Michael Scott. Advanced contention management for dynamic
software transactional memory. In PODC ’05: Proceedings of the 24th Annual Symposium

on Principles of Distributed Computing, pages 240–248, New York, NY, USA, 2005. ACM
Press.

[18] Virendra Marathe, William Scherer III, and Michael Scott. Adaptive software transactional
memory. In DISC ’05: Proceedings of the 19th International Symposium on Distributed

Computing, Cracow, Poland, Sep 2005.

[19] Virendra Marathe, Michael Spear, Christopher Herio, Athul Acharya, David Eisenstat,
William Scherer III, and Michael Scott. Lowering the overhead of software transactional
memory. In TRANSACT ’06: First ACM SIGPLAN Workshop on Transactional Com-

puting, Jun 2006.

16

