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Abstract. Transactional Memory (TM) is a concurrent programming
paradigm that aims to make concurrent programming easier than fine-
grain locking, whilst providing similar performance and scalability. Sev-
eral TM systems have been made available for research purposes. How-
ever, there is a lack of a wide range of non-trivial benchmarks with which
to thoroughly evaluate these TM systems.
This paper introduces Lee-TM, a non-trivial and realistic TM bench-
mark suite based on Lee’s routing algorithm. The benchmark suite pro-
vides sequential, lock-based, and transactional implementations to en-
able direct performance comparison. Lee’s routing algorithm has sev-
eral of the desirable properties of a non-trivial TM benchmark, such as
large amounts of parallelism, complex contention characteristics, and a
wide range of transaction durations and lengths. A sample evaluation
shows unfavourable transactional performance and scalability compared
to lock-based execution, in contrast to much of the published TM eval-
uations, and highlights the need for non-trivial TM benchmarks.

1 Introduction

Concurrent programming is a complex discipline known for its difficulty even
to obtain correct programs. Orchestrating lock acquisition and release between
multiple threads to ensure functionally correct execution is challenging and time-
consuming. Transactional Memory [1, 2] (TM) is an alternative concurrent pro-
gramming paradigm that promises to abstract away the difficulties of managing
access to shared resources, but still maintain good scalability and performance.
With the growing need for widespread concurrent programming to take advan-
tage of multi-core processors [3], TM research has surged.

Following from database theory, TM guarantees atomicity, consistency, and
isolation among threads accessing shared structures, but abstracts away the de-
tails of how these guarantees are achieved. Programmers simply have to annotate
those parts of their code that access shared structures as transactions, and the
TM system automatically detects and manages access conflicts.

Recently, several Software TM (STM) systems have been proposed in the
literature that provide sufficient performance for use as research platforms such
as DSTM2 [4], McRT-STM [5], RSTM [6], tinySTM [7], and TL2 [8]. However,



there is a lack of non-trivial benchmarks with which to evaluate them, and with
which to evaluate novel TM ideas.

Lee-TM is a new non-trivial benchmark suite for TM systems based on the
well known Lee’s routing algorithm [9] used in circuit routing. Lee’s routing algo-
rithm has many of the desirable properties of a non-trivial TM benchmark such
as large amounts of parallelism, complex contention characteristics, and a wide
range of transaction durations and lengths. Lee-TM provides the following im-
plementations of Lee’s routing algorithm: sequential, coarse-grain and medium-
grain locking, and transactional and optimized transactional. Lock-based imple-
mentations are provided to enable direct performance comparison with transac-
tional versions, and meaningfully measure the benefit of using TM.

The rest of this paper is organized as follows. Section 2 gives an overview of
TM and the desirable properties of non-trivial benchmarks. Section 3 describes
Lee’s routing algorithm, and Section 4 describes the implementations provided
by the Lee-TM benchmark suite. Section 5 presents a sample evaluation using
a state-of-the-art TM system. Section 6 describes related work, and Section 7
concludes this paper.

2 TM and Non-trivial Benchmarks

TM is a concurrent programming paradigm that aims to make parallel program-
ming as straightforward as programming with coarse-grain locks, but provide the
performance and scalability of fine-grain locks. TM requires a programmer to an-
notate those parts of their code that access shared structures as transactions, and
an underlying TM run-time automatically detects and manages access conflicts.
A transaction performs writes on shadow memory as the run-time maintains a
read set of accessed data, and write set of modified data. Access conflicts be-
tween concurrently executing transactions occur as read/write or write/write
conflicts to shared data, and are detected by the TM run-time by comparing the
read and write sets of all transactions. This validation of sets can be lazy (at
the end of a transaction’s execution its sets are compared against all others), or
eager (each read or write request is compared as it happens). When a conflict
is detected, it is necessary to abort (and restart) one of the conflicting transac-
tions. Contention management is invoked to make this decision, and there are
several contention management policies in the literature [10–12]. Only when a
transaction completes execution (i.e. commits), are the values in its write set
made visible to the rest of the program.

However, there is a lack of complex TM benchmarks with which to evaluate
TM systems, and it has been argued [13] that non-trivial, or realistic, benchmarks
are needed to further TM research (by studying their execution), and to present
the ‘real’ benefits of TM. Informally, the desirable features of a non-trivial TM
benchmark are:

– large amounts of potential parallelism
– difficult to fine-grain parallelize using locks (making TM attractive),



– based on a real-world application (giving confidence in TM),
– several types of transactions (several annotated code blocks),
– complex contention (amount of contention varies widely during execution),
– transactions with a wide range of durations (length), and
– transactions with a wide range of numbers of data accesses (size).

Recently, non-trivial TM benchmarks have become an active research area,
and a few non-trivial benchmarks have appeared in the literature [13, 14] that
meet many of the characteristics mentioned above, and they are compared with
Lee’s routing algorithm in the related work (Section 6). Lee’s algorithm is pre-
sented in the next section.

3 Lee’s Routing Algorithm

Circuit routing is the process of automatically producing an interconnection
between electronic components. Lee’s routing algorithm is attractive for paral-
lelization as realistic circuits consist of thousands of routes, and each one can
potentially be concurrently routed. Table 1 presents key terminology used in
this paper. Lee’s routing algorithm connects a source grid cell to a target grid
cell in two phases: expansion and backtracking (Figure 1). Expansion performs a
breadth-first search from the source grid cell until the target grid cell is located,
or all cells have been visited. During the search each grid cell is checked that
it is not occupied, and then numbered by its distance from the source grid cell.
Occupied cells cannot be crossed directly, and routing must divert around them.

Grid — represents abstractly the final printed circuit board on which all components
and routes will be placed. The grid can be multi-layered, permitting a 3D grid

Grid cell — a grid consists of indivisible grid cells.

Grid block — contiguous grid cells can be grouped into grid blocks.

Route — a list of grid cells that connects a source grid cell to a target grid cell.

Obstruction — a predefined grid block inaccessible for routing. Examples are electronic
components, mounting holes, servicing areas, etc.

Table 1. Circuit routing terminology.

Backtracking executes if expansion locates the target grid cell. Backtracking
starts at the target grid cell and iteratively finds a neighboring grid cell with a
lower number than its own and occupies it, until it reaches the source grid cell.

It is usual to perform routing in ascending order of length, i.e. shortest routes
first. This ensures that longer routes, which naturally have more alternatives, do
not displace shorter ones from their natural positions. This also minimizes the
number of unroutable routes; a desirable property for performance comparisons.

In addition, to achieve successful and realistic routing of the example circuits,
a certain amount of refinement in both the expansion and backtracking phases



Expansion phase from source grid Backtrack phase connecting target
cell S to target grid cell T. grid cell T to source grid cell S.

Fig. 1. Illustration of expansion and backtracking in Lee’s routing algorithm.

of the algorithm have been added. These are concerned with constraining the
routes in certain ways so that the routing does not generate a ‘spaghetti’ layout,
and their detail is omitted in this paper.

4 Lee-TM

Lee-TM is a benchmark suite that has five implementations of Lee’s routing
algorithm: sequential, coarse-grain and medium-grain lock-based, and transac-
tional and optimized transactional. They are named Lee-TM-seq, Lee-TM-cg,
Lee-TM-mg, Lee-TM-t, and Lee-TM-ter, respectively, and are described below.

4.1 Sequential (Lee-TM-seq)

First, the source and target grid cell coordinates of each route, and coordinates
for each obstruction, are read from a file. The obstructions are marked on the grid
immediately, whilst the source-target pairs are added to a work queue. The work
queue is then sorted in ascending route length order, as motivated in Section 3.

The main program loop gets a route from the work queue by calling the
function getNextRoute(), and then performs expansion and backtracking with
layNextRoute(). Expansion is performed by reading from a main grid and
writing the expansion values on a private temporary grid. If the expansion is
successful, the values in the temporary grid are used in backtracking, which
writes to the main grid. The program finishes when the work queue is empty.

4.2 Concurrent Implementations

Minimal changes are required to make Lee-TM-seq multi-threaded. Each thread
needs its own temporary grid, and the work queue needs to be synchronized to
ensure multiple threads do not get the same route. The single work queue could
become a bottleneck, but the experiments have not yet shown contention in its



access. Nonetheless, a future version of the benchmark will decentralize the work
queue. Finally, access to the main grid needs to be kept consistent, and this is
explained separately for each concurrent implementation below.

Coarse-Grain Lock-based (Lee-TM-cg) Lee-TM-cg is simple: all threads
serialize on access to layNextRoute(). This prevents the main grid from being
read by a thread (expansion) while another thread is modifying it (backtracking),
which could lead to a race condition.

Medium-Grain Lock-based (Lee-TM-mg) Lee-TM-mg splits the main grid
into as many equal-sized grid blocks as there are threads and associates a lock
with each grid block. For each route, if the source and target coordinates are
located in the same grid block, then the associated lock is requested, and routing
is performed. If the source and target coordinates are in different grid blocks,
then multiple alternatives are available.

A complex alternative for routes that span multiple grid blocks is to acquire
locks for all the necessary grid blocks. A priori, it is impossible to know which
grid blocks may be needed, thus requiring progressive lock acquisition. Without
a careful lock acquisition/release protocol in place, threads will deadlock. This
approach is applicable to fine-grain locking, and quickly shows how challenging
that would be to implement (consequently making TM attractive).

Instead, Lee-TM-mg adopts a simpler alternative where routes that do not
fit in a single grid block are added to a deferred work queue. Once the main work
queue is exhausted, the grid blocks are re-sized such that there are half as many
as before, and the deferred work queue is swapped with the main queue. As grid
blocks double in size at each swap of work queues, more routes can be laid. This
reduction of grid blocks continues until there is only one grid block for the whole
grid, at which point any existing route will definitely be routed or discarded (as
unroutable), albeit serially.

Transactional (Lee-TM-t) There is something naturally transactional about
circuit routing. Each route can be treated as an independent transaction. Each
routing transaction can perform its own expansion, backtrack, and then try to
commit the route it has found. If any of the grid cells used by the route have
concurrently been occupied and committed by another route, then the transac-
tion must be abandoned and restarted. However, it is important to realize that
now the detection of interference, abandonment and restarting are fundamental
functionality provided by TM. There is no need to program safe access to the
main grid explicitly as is required with the previous lock-based implementations.

Lee-TM-t is implemented in DSTM2 [4], a state-of-the-art Java STM imple-
mentation. DSTM2 transactional semantics require concurrently accessed data
to be annotated as transactional data. Since DSTM2 offers object-level conflict
detection the main grid was changed from a three dimensional primitive array
into a three dimensional transactional object array. This was the only change
needed to provide the equivalent of fine-grain locking, but using transactions.



Optimized Transactional (Lee-TM-ter) Lee-TM-ter extends Lee-TM-t. Wat-
son et al. [15] studied Lee’s routing algorithm in an abstracted TM environment.
Their key insight was understanding that the expansion phase adds unnecessary
data to the read set, and that a transaction that generates a complete route
between a source point and a destination point simply needs in its read set those
grid cells that identify the complete route; no more, no less. They suggested
that using early release [16], which removes data from the read set before any
validation occurs, would optimize the read set and lead to dramatically more
exploitable parallelism. The optimized transactional implementation provided
by Lee-TM implements this approach.

4.3 Verifier

Lee-TM includes a verifier to check that all successful routes exist on the grid
when routing is complete. A verification error suggests either an error in the
code (if it has been changed) or in the TM system if executing transactional
implementations. This feature is useful when evaluating novel TM ideas, as subtle
errors in the TM system can be difficult to recognize from the, often large,
execution output of a non-trivial benchmark that has no verifier.

5 Workload Characterization

A sample evaluation using a state-of-the-art TM system, called DSTM2 [4], is
presented to highlight the value of Lee-TM. A discussion of the performance re-
sults is presented, followed by an investigation of the transactional characteristics
of Lee-TM’s transactional implementations to explain the observed performance.

5.1 Experimental Environment

The lock-based and transactional implementations provided by Lee-TM are com-
pared using one synthetic and two real circuit boards (Figure 2) — each circuit is
of size 600×600, and two layers. The workload characterization is performed on a
shared memory 8-core (i.e. 4 dual core) Opteron 2.4GHz machine running open-
SUSE 10.1 64-bit and Sun JDK 1.6 64-bit with flags -Xms1024m -Xmx4096m,
with 2, 4, or 8 threads. The transactional implementations are executed using all
contention management policies [10–12] provided with DSTM2, but results are
only shown for the Priority contention manager, as it had the best performance
overall. The Priority manager aborts younger transactions, i.e. those with the
most recent start time. Experiments are run three times and the best results
reported.

5.2 Sample Performance Evaluation

The first experiment employs a trivial synthetic circuit layout, shown in Figure
2a. It contains 841 sparsely spaced short routes with no overlaps, i.e. 841 trans-
actions to commit, with no possible contention. The aim of this experiment is to



present baseline performance and scalability that can be achieved by lock-based
and transactional implementations.

Figure 2b shows the execution time to route the circuit simple. For Lee-TM-
cg there is no speedup regardless of the number of threads used. This occurs
since the the coarse-grain lock on the whole main grid effectively leads to se-
rial execution. Lee-TM-mg shows poor results initially, but has a speedup of
2.5 from 2 to 8 threads, and surpasses coarse-grain performance at 8 threads.
Lee-TM-mg shows poorer than expected results because the routes, all having
identical length, are ordered top-left to bottom-right, thus all threads are usually
attempting to acquire the same grid block lock. The transactional implementa-
tions perform best in all cases except at two threads, and scale well with a 3.4
fold speedup from 2 to 8 threads.

Figures 2c and 2e show two complex circuit called main and mem, respec-
tively. Both are microcode microprocessor layouts consisting of 1506 and 3101
routes, i.e. transactions to commit, respectively, and were used in routing algo-
rithm research. The layouts contain a rich variety of route lengths and overlaps.
Their execution times are shown in Figures 2d and 2f, respectively.

Lee-TM-cg again shows no scalability regardless of the number of threads.
Lee-TM-mg has better initial performance than with the circuit simple because
it is less prone to the problem of route ordering, but shows worse scalability
with a speedup of only 1.2 from 2 to 8 threads. However, the most significant
outcome is that of the transactional implementations.

Lee-TM-t is consistently worse than both lock-based implementations by a
large margin. Even in the best case (at 2 threads) it is 3.8 times slower than
Lee-TM-mg, and the scalability is far worse than seen with the circuit simple,
with a speedup of only 1.16 from 2 to 8 threads. Lee-TM-ter performs 2-3 times
better than Lee-TM-t, and has a speedup of 2.15 from 2 to 8 threads, but is only
on par with Lee-TM-cg performance at 8 threads.

It is obvious that transactional performance and scalability seen in the circuit
simple has not been realized with the two more complex circuits. To better
understand the losses in performance, the next section analyzes profiled data to
characterize the transactional behavior of Lee’s routing algorithm.

5.3 Analysis of the Transactional Profile

Figure 3a shows the ratio of aborts to commits for each experiment. The experi-
ment with the circuit simple has no aborts by design, but the other two complex
circuits have an increasing ratio of aborts as the number of threads rises. The
benefit of early release is obvious as the ratio of aborts to commits falls dra-
matically for both main and mem, re-emphasizing the benefit of early release as
concluded by Watson et al. [15].

Figure 3b shows the percentage of time spent executing wasted work (aborted
transactions). Both main and mem show increasing amounts of wasted work
as the number of threads rises, but the wasted work for Lee-TM-t increases by
greater amounts. This helps explain difference in execution time between the two
implementations: Lee-TM-t spends more time executing aborted transactions.
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Fig. 2. Circuits used in the sample evaluation, and their execution times using lock-
based and transactional implementations.
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Fig. 3. Transactional profiling data: a) shows the ratio of aborted transactions to com-
mitted transactions, b) shows the percentage of total execution time spent executing
aborted transactions (wasted work). Circuit simple is not shown as it has no aborts
or wasted work. Note: Lee-TM-t results have ‘w/t’ suffix, and Lee-TM-ter results have
‘w/ter’ suffix

Since the ratios in Figure 3a correlate to those in Figure 3b, there may be benefit
in attempting to detect doomed (to abort) transactions sooner, and abort them
early to reduce the amount of wasted work, and improve execution time.

Figure 4 shows the abort histograms for the circuits main and mem (the
histograms for the circuit simple have been omitted as it has no aborts). These
graphs show the count of routes aborted by a given number before finally com-
mitting, and present perhaps the most interesting results because the histogram
for Lee-TM-t indicates that a few routes take tens of aborted attempts before
committing. For circuit main at 8 threads, Lee-TM-ter commits all routes within
nine aborts each, while Lee-TM-t commits 26 routes with more than nine aborts
each (the abort profile of the circuit mem shows similar statistics). Although
this represents 1.7% of the routes (i.e. workload), it is almost solely responsible
for a 35% difference in wasted work between Lee-TM-t and Lee-TM-ter for the
circuit main at 8 threads. The large amount of aborts experienced by a small
number of transactions is another sign that the contention manager could be
enhanced to make better decisions, and thus may be an avenue to explore in
future work to reduce the amount of wasted work.

simple main mem

2 threads 41 453 288
4 threads 41 342 226
8 threads 41 267 190

Table 2. Ratio of avg committed transaction read set size in Lee-TM-t to Lee-TM-ter.
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Fig. 4. Abort histograms of routes in complex circuits main and mem. Circuit simple

is not shown as it has no aborts.

Finally, Table 2 shows the ratio of the average committed transaction read
set size in Lee-TM-t to Lee-TM-ter. The benefit of early release is significant in
the execution of all three circuits, resulting in Lee-TM-ter’s read set shrinking
by at least 41 times over Lee-TM-t’s read set. Reducing the read set results in
faster execution time as it reduces cache thrashing.

6 Related Work

The lack of complex benchmarks for studying TM is a known issue. The major-
ity of benchmarks used in the evaluation of TM systems fit into the following
categories:

– micro-benchmarks, such as linked lists, and concurrent hash tables;
– benchmarks whose parallelism is already explicit and optimized, such as

JavaGrande, and SPECjbb; and
– benchmarks with limited concurrency, such as SPEC JVM98.

Apart from Lee-TM, few other benchmarks provide complex transactional
behavior. Those seen in the literature are STMBench7 [13], and the STAMP
benchmark suite [14]. STMBench7 is adapted from OO7, a database benchmark,
and has over 5000 lines of code. It simulates real-world scenarios by perform-
ing dynamic and complex modifications and traversals on a non-trivial shared



data structure. STMBench7 provides a coarse-grain and medium-grain locking
implementation for comparison with the transactional one. The STAMP bench-
mark suite consists of three benchmarks: genome (gene sequencing), kmeans (k-
clustering), and vacation (travel booking system). Each of these is over 1000 lines
of code, and is supplied with a transactional and a sequential implementation,
but no lock-based solution. Lee-TM has a smaller code base (<800 lines), yet pro-
vides complex transactional behavior through the complex circuits employed for
routing. Lee-TM has sequential, coarse-grain and medium-grain locking, trans-
actional, and optimized transactional (using early release) implementations.

Both STMBench7 and STAMP benchmarks (except for genome), due to the
nature of their computation, lack a verifier as there is no simple way to validate
the final data structure. Lee-TM comes with a verifier since it is easy to use the
original circuit layout data set and follow, for each route, from the source grid
cell to the target grid cell.

7 Summary

Lee-TM is a new benchmark suite based on Lee’s routing algorithm with sequen-
tial, lock-based, and transactional implementations. Lee’s routing algorithm pro-
vides many of the desirable properties of a non-trivial TM benchmark through
complex circuit layouts, such as large amounts of parallelism, complex contention
behavior, and large variety of transaction durations and sizes.

A sample performance evaluation using complex circuits, which had poten-
tial parallelism in the thousands, showed optimized transactional performance
only reaching par with coarse-grain locking at 8 threads, and never reaching
the performance of medium-grain locking. Unoptimized transactional execution
was, in the best case, four times slower than medium-grain locking. This result
highlights the need for complex benchmarks to stress TM systems.

The analysis of the transactional characteristics of Lee-TM’s transactional
implementations showered there is much work wasted in executing doomed (to
abort) transactions. At 8 threads, less than 2% of the transactions, due to being
aborted tens of times, resulted in unoptimized transactional execution having
35% more wasted work than the optimized transactional execution, and conse-
quently 2.7x slower execution time. The analysis identified contention manage-
ment as a target of future research to make better decisions that result in less
wasted work, and thus better performance.
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