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Abstract

Traditional parallel programming models achieve syn-
chronization with error-prone and complex-to-debug con-
structs such as locks and barriers. Transactional Memory
(TM) is a promising new parallel programming abstraction
that replaces conventional locks with critical sections ex-
pressed as transactions. Most TM research has focused on
single address space parallel machines, leaving the area of
distributed systems unexplored. In this paper we introduce a
flexible Java Software TM (STM) to enable evaluation and
prototyping of TM protocols on clusters. Our STM builds
on top of the ProActive framework and has as an under-
lying transactional engine the state-of-the-art DSTM2. It
does not rely on software or hardware distributed shared
memory for the execution. This follows the transactional
semantics at object granularity level and its feasibility is
evaluated with non-trivial TM-specific benchmarks.

1. Introduction

The advent of multicore chips provides huge incentives
for the development of easy-to-use parallel programming
models. In this direction and borrowing from the success
in databases, Transactional Memory (TM) [9] is gather-
ing momentum. Until now, synchronization in parallel ap-
plications has been achieved by the use of mutually ex-
clusive locks and barriers. The problems of using such
mechanism are the limited scalability, unless fine-grained
locking is implemented, and the difficulty in programming.
TM promises to address these problems by replacing these
synchronization mechanism with atomic regions executed
transactionally. These transactions are speculatively exe-
cuted in parallel with the read and write operations gener-
ating an associated read and write set. At some stage of
the transaction a validation phase reveals any conflicts with
(non-empty intersections with the read set and write set of)

other concurrently executing transactions. In that stage, a
conflict resolution policy is employed to determine whether
the transaction is aborted or delayed.

The research community has developed numerous TM
systems divided into Software (STMs) [7, 5] and Hardware
(HTMs) [4, 1] or Hybrid Software/Hardware (HyTMs) [3]
solutions to understand TM behavior and how to implement
it. The majority of these TM systems, however, focus on
shared-memory parallel architectures leaving unexplored
the domain of distributed systems. Limited research has
been conducted on utilizing TM on clusters. The only
related published work that tackles distributed execution
is Distributed MultiVersioning (DMV) [7]. Transactional
execution is achieved by modifying the underlying software
Distributed Shared Memory system (DSM) [8]. The role of
the DSM is to provide a shared memory view among the
nodes of the cluster.

Our framework, the Distributed Dynamic Software
Transactional Memory System (DDSTM), differs signifi-
cantly from DMV in the sense that it does not rely on any
DSM mechanism to achieve memory coherence. DDSTM
employs transactional semantics at object granularity in-
stead of page granularity as DMV. The contributions of this
paper are:

e The first Java-based distributed STM system.

e The first distributed STM that does not rely on any
underlying software or hardware memory consistency
mechanism. Memory is distributed across the nodes of
the cluster and the TM system is responsible for main-
taining memory coherence.

e The first evaluation of distributed TM behaviour using
non-trivial TM-specific benchmarks that have recently
emerged in the literature.

The current DDSTM has been built for flexibility not for
performance. At this stage it is important to have a platform



to establish feasibility and on which to quickly prototype
different transactional protocols, contention managers, etc.
appropriate for cluster-based TM execution.Remote com-
munication across nodes is based on the ProActive frame-
work [2] while the state-of-the-art DSTM2 [5] STM im-
plementation executes transactions locally on the nodes.
DDSTM is evaluated on a 32 processor cluster with the
3 benchmarks from the STAMP suite and a complex TM
application which implements Lee’s routing algorithm for
circuit boards. This evaluation provides a first insight into
transactional execution on clusters.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the core components of DDSTM. Section 3
describes the implemented distributed transactional proto-
col. Section 4 describes the platform as well as the bench-
marks used to evaluate our system. Section 5 presents the
experimental results and Section 6 summarizes the paper.

2. Distributed Dynamic Software Transac-
tional Memory

DDSTM is written entirely in Java and it builds on two
core components: the underlying transactional execution
engine and the remote communication system. As a trans-
actional engine we have adopted an extended version of
DSTM2 [5]. The remote communication is based on the
ProActive Grid framework [2] which is a high level API for
Java RMI. The following subsections describe further how
these components are integrated.

2.1. DSTM2 Transactional Engine

DSTM2 [5, 6] is a software TM system entirely writ-
ten in Java which supports transactional execution for
dynamically-sized data structures. All transactions are ex-
ecuted speculatively. When a transaction attempts to mod-
ify an object, instead of modifying directly the actual ob-
ject, a cloned version of the object is used and kept pri-
vate until it is safe for the transaction to commit. The com-
mit phase follows a validation phase where any conflicts
are detected and resolved. The validation phase reveals
any conflicts (write-after-write or read-after-write). Upon
conflict detection, a contention manager is consulted in or-
der to resolve the conflict by aborting or delaying one or
more of the conflicting transactions. After the validation
phase finishes the “winning” transaction can safely commit;
making public its changes (replacing shared objects with
their respective modified clone objects). DSTM2 employs
an obstruction-free synchronization policy which guaran-
tees forward progress as any halted threads do not pre-
vent active threads from making progress. However, the
obstruction-free synchronization policy [6] does not prevent
active threads from causing livelocks.

We selected DSTM2 because it offers a wide array of
contention managers and atomic factories (mechanisms that
describe how transactions are synchronized). Furthermore,
it allows the user to plug-in custom managers and factories
making it an ideal platform for experimentation purposes.
Due to space limitation, we cannot expand more on the de-
tails DSTM2. Further information can be retrieved from

[5].

2.1.1 Extensions

We have added distributed functionality to DSTM2 with
minimal changes to its architecture. The two main modi-
fications regard the way transactions commit and the way
objects are identified amongst the nodes of the cluster.

Initially in DSTM2, the commit stage included two
phases: the validation() and the commit() phases. Upon
validation, potential conflicts are discovered and if none,
the transactions attempt to commit by Compare AndSwap-
ing (CASing) their status flags from ACTIVE to COMMIT.
In that scheme an extra step has been added which vali-
dates the transaction against the transactions executing on
remote nodes. The remoteValidate() function broadcasts
each transaction’s read and write sets (these sets contain the
objects’ identifiers (see next paragraph) read/written from
the transactions) to the rest of the nodes. The objects con-
tained in the read and write sets are validated against the
objects contained in the write and read sets of the transac-
tions currently executing on the remote nodes. There are
two feasible results of conflict detection. Either the incom-
ing transaction (the transaction that broadcasts its sets in
order to be validated) is aborted (remoteValidate() returns
false) or all conflicting local transactions (the transactions
of the remote node which are validated against the incom-
ing one) of the node are aborted (remoteValidate() returns
true).

Each node of the cluster runs an instance of the Java
Virtual Machine (JVM). Transactional objects reside on
each node and each node holds a copy of the working
transactional dataset (objects accessed transactionally from
threads). Storing the hashcodes of objects in the transac-
tions’ read and write sets and comparing them between dis-
tributed transactions does not guarantee correct validation.
The fact that objects are created on different JVMs results
in the creation of different hashcodes. Therefore a trans-
actional object A at node 1 may have a different hashcode
at node 2 using the default Java hashcode implementation.
Consequently, if a transaction writes that object and in turn
attempts to validate its write set against transactions run-
ning on other nodes, the system must ensure that object A
will be identified as the same. To achieve that, an index-
ing technique had to be added. Each entry in a transaction’s
read/write set has a pair of its hashcode and its index in the



data structure used as well as the value of the object read or
written. Validation is achieved by checking the values of the
pairs, which map indexes with hashcodes, of the incoming
transaction against those of the residing local transactions
of a node ensuring correct validation.

2.2. Remote Communication

Remote communication enables distributed execution of
transactions over the multiple instances of DSTM2 run-
ning on each node of the cluster. The remote communi-
cation layer is entirely written in Java as it is based on the
ProActive framework [2]. The key concept of the ProActive
framework is the notion of “Active Objects”. Each active
object has its own thread of execution and can be distributed
over the network. Based on this primitive, each node has a
number of active objects serving various requests. The ar-
chitecture used at the first implementation of DDSTM is
master centric with the master node coordinating the exe-
cution on the cluster. Upon bootstrap, a VM is created on
every node, including the master node. DDSTM begins ex-
ecution on the main thread (master node) creating the nec-
essary structures on the remaining nodes. The main thread
on the master node is an active object in order to serve re-
quests from the worker nodes. The VM on each worker
node has two active objects. The first one (an instance of
the DDSTMClient class) is the main thread which coordi-
nates the execution on the node. In addition it is responsible
for updating the worker node’s datasets upon a transaction’s
commit, maintaining consistency among the various copies
of the datasets residing on the cluster. The second one re-
siding on each of the worker nodes is the Provalidator
active object. The role of the Provalidator object is
to accept transactions from other nodes wanting to be vali-
dated against the transactions running on that node. Figure
1 depicts DDSTM’s architecture.

3. A Centralized Distributed Transactional
Protocol

The master node initializes the worker nodes and their
active threads. In turn, the worker nodes initialize the
worker threads of each node and wait for incoming tasks
to execute. After the tasks from the master are enqueued on
the worker nodes, Fig. 1 (1), threads begin executing them.
Each thread executes one transaction at a time. Transactions
or threads do not spawn or migrate over multiple nodes. Lo-
cal conflicts (i.e. between transactions executed within the
same node) are resolved by DSTM2’s underlying mecha-
nisms. When a transaction attempts to commit, it first has
to validate itself against the locally executed transactions,
then against all distributed transactions of the cluster, and
finally commit. We selected the Transactional Coherence

and Consistency (TCC) [4] validation protocol as it per-
forms lazy validation (each transaction attempts to validate
its read/write set only once; during an arbitration phase be-
fore the commit stage). The aim is to minimize the expen-
sive broadcasting action for validation purposes — only once
at commit. To maintain coherence, transactions acquire a
“ticket” (global serialization number) from the master node
before they start remote validation. This “ticket” assists in
the conflict resolution policy adopted in the first version of
DDSTM. We have adopted the policy of the oldest-commit-
first (oldest in terms of remote validation time - which trans-
action attempts to remotely validate its read/write sets first).

Upon remote validation, Fig. 1 (2), a transaction’s read
and write set (incoming transaction) are compared against
the read and write sets of the transactions executed on a
remote node (local transactions) resulting in three possible
scenarios:

1. There is no conflict — No transaction is aborted and
the remoteValidation () method returns true, so
the caller can proceed committing its transaction.

2. There is a conflict with a “younger” local transac-
tion — In that case, a conflict is detected against a
transaction which has a greater “ticket” number than
the incoming transaction. That means that the incom-
ing transaction has acquired the ticket before the trans-
action it is validated against (local transaction of the
remote node). The local transaction is considered to
be “younger” and therefore it is aborted. Instead of
aborting the transaction immediately, we store its id
in a temporary buffer. Each transaction with a larger
“ticket” will be stored in the buffer and will be aborted
only when the validation of the incoming transaction
has finished and there has been no conflict with a lo-
cal transaction with a smaller “ticket” number. The
validation phase is performed serially. Each trans-
action’s read/write sets are validated serially against
the read/write sets of other transactions. Furthermore,
all transactions which attempt to be validated against
the transactions running on another node are queuing
up and each one performs the remotevalidate ()
function serially. Therefore, there might be the case
where the first transaction to be validated against is
younger while the second one is older. If we were to
abort the first transaction immediately then the incom-
ing transaction could be aborted by the second (older)
transaction and, hence, we would have falsely aborted
the first one.

If the validation phase finishes and the incoming trans-
action has not been aborted by any older one on the
remote node, the transactions stored in the temporary
buffer are aborted and the remotevValidation ()
method returns true so the caller can proceed in com-
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Figure 1. DDSTM’s architecture.

mitting its transaction.

3. There is a conflict with an “older” transaction —
In that case, a conflict is detected against a trans-
action which has a smaller “ticket” number than the
incoming transaction, i.e. it is older and should
abort the incoming transaction. In that case, the
remoteValidate () function returns false and the
buffer with the transactions to be aborted is released.

If the transaction successfully passes the validation phases,
it attempts to commit locally and then globally, Fig. 1 (3).
After having committed locally, all the transactions run-
ning at the same node can access the up-to-date copy of
the dataset. On the other hand any other transactions run-
ning on a different node may access “dirty” values. There-
fore in order to preserve memory consistency, the commit-
ted transaction must make its changes available to the rest
of the nodes. There may be various ways of achieving that.
In our first implementation we adopted a master-centric, ea-
ger approach. The committed transaction updates the global
dataset at the master node and in turn the master node ea-
gerly forces the remaining nodes to fetch the new dataset
(4). Upon fetching the new data, an eager validation phase
takes place aborting any conflicting transactions. The role
of this eager validation phase is to discover if any trans-
actions at any node have started executing before the com-
mited transaction makes its changes visible to the remaining
of the nodes. If any transaction has read any object modified
by the committed transaction it is aborted and re-executed
after the node gets a consistent view of the data.

4. Experimental Platform

The hardware platform used in our experimentation is a
cluster with 40 cores in total. We use five nodes, the mas-

ter node and four others. The master node has 2 dual-core
AMD Opteron CPUs at 2.4GHz with 8GB of RAM. All
the remaining worker nodes are 4-way nodes with 4 dual
core AMD Opterons at 2.4GHz with 16GB of RAM each.
Each worker node has 8 cores and thus a maximum of 8
threads (excluding the threads of the “active objects”) are
spawned (to keep thread-switching to a minimum). By
using the cluster’s four nodes we create from 1 to 8 threads
per run utilizing in total from 4 (one thread per node) to 32
(8 threads per node) execution threads. All the nodes run
OpenSuse 10.1 and Sun Java6 build 1.6.0-b105 with maxi-
mum heap size set to 8GB.

Common microbenchmarks used for TM systems’ evalu-
ation on CMPs are not adequate for evaluating a distributed
TM system because they are not computationally intensive
and the majority of the time spent in executing transactions
would be spent on remote requests. To confirm our assump-
tions a List benchmark has been tested and it spent 99% of
its execution time on remote requests resulting in poor per-
formance.

Benchmarks for TM systems are still few. Lock-based
parallel applications translated to transactional ones do not
seem adequate. Complex benchmarks for stretching TM
systems have only recently emerged in the literature. In or-
der to evaluate our system, the benchmarks of the STAMP
benchmark suite [3] as well as Lee’s transactional routing
algorithm [10] have been ported to our system. In total four
benchmarks have been used to evaluate our system: Lee’s
algorithm, KMeans, Vacation and Genome.

Lee’s algorithm is the classic algorithm of laying routes
on a circuit board. Each thread attempts to lay a route on the
mainboard. Conflicts occur when two threads try to write
the same point on the circuit. A real mainboard configura-
tion of 1506 routes is used the evaluation.
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Figure 2. DDSTM’s normalized performance
results.

KMeans is a clustering algorithm where a number of ob-
jects with numerous attributes are partitioned into a number
of clusters. Conflicts occur when two threads attempt to in-
sert objects into the same partition. Varying the number of
partitions affects the amount of contention.

Vacation is a simulator of an enterprise server. It is sim-
ilar to the SpecJBB benchmark. Several threads acting as
clients try to book, view, edit their records while perform-
ing actions of renting cars or booking flights or hotel rooms.

Genome performs gene sequencing from randomly
generated segments. Conflicts occur when different threads
try to use the same segment during the segment matching
phase.

Concerning the transactional engine, we used the Prior-
ity contention manager (older always commit) and the ob-
struction freedom synchronization policy (in regards to lo-
cal transaction execution). DSTM2 offers a wide range of
contention managers, but as a first step we decided to be
consistent with the conflict resolution policy used during
the validation of distributed transactions (older always com-
mit).

5. Experimental Results

This section contains the results of evaluating DDSTM
against the mentioned benchmarks. The results shown
are the averages of ten iterations. Figure 2 illustrates the
normalized execution time over the increasing number of
threads with respect to executing with one thread per node.

A first observation that can be drawn from the results
is the limited scalability. The best performance is ob-
served on Lee’s and Vacation benchmarks. The maximum
speed-up achieved overall is 60% for Vacation and 51%
for Lee’s-both at 20 threads (5 threads per node excluding
the “active” threads). In general, all benchmarks except

KMeans gain in performance up to a certain point. After
they reach their peak, performance starts degrading.

Regarding Genome, any improvement of its performance
is limited to 9%. To understand where the time is being
spent, we split it down in Figure 3. The time spent at each
step of a transaction’s lifetime has been measured and aver-
aged in order to separate the amount of execution time spent
for local actions (local validation and commit) from that for
remote operations (remote validation and commit). Finally,
execution time contains the pure time a transaction spent in
computation.

The cause of the deterioration in the performance of
KMeans by up to 90% is the high abort rate among trans-
actions. This causes transactions to be invalidated in a high
rate and consequently be serialized resulting in poor perfor-
mance.
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Figure 3. Percentages of time spent on tran-
scations’ stages.

As shown in Figure 3 Lee’s is the only benchmark to per-
form heavy computations. In general all benchmarks from
the STAMP suite utilize “atomic” data structures and par-
allelism is gained from performing concurrent actions on
them. Inserting, deleting or looking up elements from a
hash table or a list are performed in parallel and the level
of contention is determined by the sizes of these struc-
tures as well as the number of concurrent threads accessing
them. Lee’s benchmark threads perform heavy computa-
tions along with the transactional access of the data struc-
tures used in it. We can see that while executing with 4
threads (one thread per node) the percentage of time spent in
executing is 75% dropping gradually to 60% when execut-
ing with 32 threads (8 threads per node). The reason behind
this is that when executing with more threads, a transaction
must spent more time in remote validation. However, we
still gain in performance in Lee’s benchmark.

On the contrary, the performance of the STAMP bench-
marks is dominated by network traffic and remote requests.



Therefore performance, especially in Genome is identical
no matter the number of threads used. On the other hand
because of the high contention KMeans’ performance drops
dramatically while Vacation’s performance improves due to
low contention. If remote requests’ percentages are aggre-
gated, we can notice that over 95% of the time is spent on
remote requests. Therefore we do not gain much by execut-
ing non-computational intensive benchmarks on the cluster.

Currently, remote validation is performed serially. All
transactions that want to be validated against a remote
node’s transaction are queuing up in a buffer and are val-
idated serially. Furthermore, upon commit, when transac-
tions attempt to update the global copy of the dataset again
they are queuing up. These two bottlenecks are also respon-
sible for the limited scalability. Trying to achieve a mem-
ory consistent system as a first version of DDSTM, we have
been conservative in some of our design choices.

6. Conclusions

Research on TM for shared memory chip multiproces-
sors has been ongoing for some years. Clusters, being a
core part of high performance computing and enterprise ap-
plications, remain open for evaluation with TM. To this end,
the flexible Java-based DDSTM has been designed and im-
plemented.

DDSTM has been evaluated with the most complex and
established TM-specific benchmarks existing in the litera-
ture giving a first insight into transactional execution on dis-
tributed systems. Our first experimental results underline
the important role remote communication plays in transac-
tions’ validation phases. Aggregate remote requests may
vary from 25% to 99.9% influencing dramatically the per-
formance of the system. Computationally intensive appli-
cations with loosely coupled datasets seem to benefit most
from distributed transactional execution. For example, in
Lee’s benchmark we observe a 50% time improvement.
Non-computationally-intensive benchmarks however seem
not to benefit at all as their time totally depends on the net-
work traffic and the serialization bottleneck points upon re-
mote validation and commit.

Concerning future work, the two bottlenecks we have al-
ready spotted will be tackled in order to enhance DDSTM’s
performance. Having achieved a flexible and stable under-
lying platform for TM on clusters, we can start experiments
to optimize it. Lazy and optimistic validation techniques
will also be employed and compared with the current eager
ones in order to identify suitable configurations.
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