
Investigating Contention Management for

Complex Transactional Memory Benchmarks

Mohammad Ansari, Christos Kotselidis, Mikel Luján,
Chris Kirkham, and Ian Watson

The University of Manchester
{ansari,kotselidis,mikel,chris,watson}@cs.manchester.ac.uk

Abstract. In Transactional Memory (TM), contention management is
the process of selecting which transaction should be aborted when a
data access conflict arises. In this paper, the performance of published
CMs (contention managers) is re-investigated using complex benchmarks

recently published in the literature.
Our results redefine the CM performance hierarchy. Greedy and Priority
are found to give the best performance overall. Polka is still competi-
tive, but by no means best performing as previously published, and in
some cases degrading performance by orders of magnitude. In the worst
example, execution of a benchmark completes in 6.5 seconds with Pri-
ority, yet fails to complete even after 20 minutes with Polka. Analysis
of the benchmark found it aborted only 22% of all transactions, spread
consistently over the duration of its execution.
More generally, all delay-based CMs, which pause a transaction for some
finite duration upon conflict, are found to be unsuitable for the evaluated
benchmarks with even moderate amounts of contention. This has signifi-
cant implications, given that TM is primarily aimed at easing concurrent
programming for mainstream software development, where applications
are unlikely to be highly optimised to reduce aborts.

1 Introduction

Transactional Memory (TM) [1, 2] promises to ease concurrent programming
effort in comparison to fine-grain locking, yet still provide similar scalability
and performance. TM has seen a rise in research activity as it became clear
that scalable software would be essential to take advantage of future multi-core
technology.

In TM, code blocks that access shared data are defined as transactions, simi-
lar to how they are guarded by locks in traditional explicit concurrent program-
ming. However, in contrast to locks, a TM runtime manages conflicting data
accesses between the code blocks, and the developer is freed from the responsi-
bility of orchestrating lock acquisition and release. The TM runtime logs all read
and write accesses for each transaction, and compares them to detect conflicts.
A CM (CM) is invoked when two transactions have conflicting accesses, and
aborts one of the transactions. A transaction commits if it completes executing
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its code block and does not aborted due to conflicts, making its writes to shared
data globally visible.

Several CMs (or contention management policies) have been published [3–6]
that offer a variety of algorithms for selecting the victim transaction to abort.
Since their publication in 2004-5, the CMs have not been re-evaluated in the light
of new, complex, TM benchmarks. In this paper, we investigate the performance
of eight well-known CMs using Lee’s routing algorithm [7] and a port of the
STAMP benchmark suite [8]. Our investigation reveals several interesting results.

The most important result is that Polka, the published best-performing CM,
suffers severe performance degradation when even a moderate (22%) proportion
of executed transactions abort. This trend extends to other delay-based CMs in-
vestigated. Overall, Greedy and Priority provide the best performance, although
Greedy offers stronger progress guarantees.

The paper is organised as follows: Section 2 describes the CMs, and Section
3 describes the complex benchmarks used in the evaluation. Section 4 presents
the evaluation, and Section 5 further investigates the effect of changing Polka’s
parameters on its performance. Section 7 summarises the paper.

2 CMs

A CM is invoked by a transaction (the calling transaction) when it finds itself in
conflict with another transaction (the opponent transaction). The CM decides
which transaction should be aborted, although delay-based CMs wait for a fi-
nite amount of time to give the opponent transaction a chance to commit. The
CMs investigated are: Aggressive, Polite (called Backoff in this paper), Eruption,
Karma, and Kindergarten from [3], Polka from [4], Greedy from [5], and Priority,
a new variant on Timestamp [3]. Of these, the following are delay-based CMs:
Backoff, Eruption, Karma, and Polka. Brief descriptions of each CM follow.

Backoff gives the opponent transaction exponentially increasing amounts of
time (delay) to commit, for a fixed number of iterations, before aborting it.
Default parameters [3]: minimum delay of 24ns, maximum delay of 226ns, and
22 iterations.

Aggressive always aborts the opponent transaction immediately.

Karma assigns a transaction dynamic priority equal to the number of reads
performed by it. Karma gives the opponent transaction, for a dynamic number of
iterations, a fixed amount of time delay per iteration to commit. If the opponent
transaction has not completed after all the iterations of delay, it is aborted. The
delay given is 1000ns per iteration, and the number of iterations is equal to the
opponent’s priority minus the caller’s priority.

Eruption, like Karma, assigns dynamic priorities to transactions based on the
number of reads. Conflicting transactions with lower priorities add their priority
to their opponent, increasing the opponent’s priority, to allow the opponent to
‘erupt’ through any conflicts it has, or may have, to completion.
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Kindergarten makes transactions abort themselves when they conflict with a
transaction the first time, but abort the opponent if it is encountered in a conflict
a second time, and so on.
Polka combines Karma and Backoff by extending Karma to give the opponent
transaction exponentially increasing amounts of time delay to commit, before
aborting the opponent transaction. The delay parameters used are identical to
Backoff’s. Additionally, if a conflicting object is being read by several transac-
tions, Polka will immediately abort all of them if the calling transaction wishes
to write to the conflicting object.
Greedy aborts an opponent transaction if it is younger or sleeping, else waits
for it indefinitely (i.e., if the opponent is older, and not sleeping). A waiting, or
suspended (e.g. during I/O) transaction is marked as ‘sleeping’.
Priority aborts the younger of the conflicting transactions immediately. Priority
can lead to a transaction never completing if it conflicts with an older transaction
that has a fault that prevents it from completing. Greedy provides stronger
progress guarantees than Priority by not allowing such a situation if the faulty
transaction is suspended.

3 Platform & Benchmarks

Results are obtained on a 4x dual-core (8 core) Opteron 2.4GHz system with
16GB RAM, openSUSE 10.1, and Sun Java 1.6 64-bit with the parameters
-Xms1024m -Xmx14000m. DSTM2 [9], a software TM implementation, is used
to evaluate the CMs. Past research in contention management has also used
DSTM2, its variants, or predecessors. In this paper, DSTM2 is set to its default
configuration of eager validation, visible reads, and visible writes.

The benchmarks used are Lee’s routing algorithm [7], and KMeans and Va-
cation from the STAMP benchmark suite (version 0.9.5) [8]. All the benchmarks
have been ported to DSTM2. STAMP’s Genome benchmark has been investi-
gated, but is not presented as it generates very few conflicts on the hardware
used in the experiments, and its results give no greater insight than the results
from Vacation. As shown in Table 1, eight benchmark configurations are used1,
with a range of transactional conflict rates (contention) are used in this eval-
uation. The parameters used for each benchmark are those suggested by their
respective providers, except KMeansHS and KMeansLS, which we created for
quick experiments. Below, the benchmarks are briefly described, and in partic-
ular their concurrency characteristics are mentioned with respect to the inputs
detailed in Table 1.

Lee’s routing algorithm is a circuit routing algorithm that automatically con-
nects pairs of points in parallel, without overlapping any existing connections.

1 Note to reviewers: all eight configurations are presented for completeness, but the
four high-contention configurations suffice, and only using them would allow for
larger graphs in Figures 1 and 3. We intend to present only those four configurations
in the final paper, unless requested otherwise.
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Configuration Name Application Configuration

KMeansL KMeans low contention clusters:40, threshold:0.00001,
input file:random50000 12

KMeansH KMeans high contention clusters:20, threshold:0.00001,
input file:random50000 12

KMeansLS KMeans low contention clusters:40, threshold:0.0001,
with small data set input file:random10000 12

KMeansHS KMeans high contention clusters:20, threshold:0.0001,
with small data set input file:random10000 12

VacL Vacation low contention relations:65536,
percent of relations queried:90,
queries per transaction:4,
number of transactions:4194304

VacH Vacation high contention relations:65536,
percent of relations queried:10,
queries per transaction:8,
number of transactions:4194304

Lee-TM-ter Lee low contention early release:true, file:mainboard
Lee-TM-t Lee high contention early release:false, file:mainboard

Table 1. Parameters used for each benchmark configuration used in the evaluation.

The application loads pairs of points from an input file (measured execution
time excludes parsing of the input file). Threads attempt to find a route be-
tween a pair of points by performing a breadth-first search of the grid from
the first point, avoiding any grid cells occupied by previous connections. If a
route is found, ‘backtracking’ writes the route onto the grid. Transaction-based
routing requires backtracking to be performed transactionally. An early release
[10] variant (Lee-TM-ter) removes data from the transaction’s read set during
the breadth-first search, which reduces false-positive conflicts. Execution is com-
pletely parallel, and the amount of parallelism is controlled by the amount of
overlap in the connections attempted. The input file used has 1506 connections,
i.e. transactions to commit, many of which are quite long, which increases con-
tention and transaction execution time.

KMeans groups a large pool of objects into a specified number of clusters in two
alternating phases. A parallel phase transactionally assigns objects to their near-
est cluster, and a serial phase re-calculates cluster centres based on the mean of
the objects in each cluster (initial cluster centres are random). Execution contin-
ues until two consecutive iterations generate similar cluster assignments within
a specified threshold. The input files supply a large number of objects to cluster,
and thus transactions to execute, but parallelism is controlled by the distribution
of objects to the randomised cluster centres. Furthermore, randomised cluster
centres result in considerable execution time variance, as observed in Section 4,
Figure 1. Transactions are extremely short since they only read cluster centres
and assign objects to the closest one.
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Vacation is a travel booking database simulation that has operations to book
or cancel cars, hotels, and flights on behalf of customers transactionally, and
must update the customer’s linked list of reservations as necessary. Threads can
also modify the availability of cars, hotels, and flights transactionally. The input
parameters lead to low contention for the hardware used, and transactions are
short since they update the simulated database and customers’ linked lists.

4 Initial Evaluation

Each benchmark configuration is executed using each CM, and using 1, 2, 4,
and 8 threads. Each unique combination of benchmark configuration, CM, and
threads is called an experiment. Each experiment is automatically terminated
after 20 minutes, and when this occurs the associated CM is deemed ‘too poor’
for the given experiment, and we say the CM has failed the experiment. Results
are averaged over eight runs of each experiment, except the failed experiments,
which are run only three times to reduce doubt.

Figure 1 and Table 2 show the execution time results. Single thread results
are presented to give an idea of execution time variance for the benchmarks,
as obviously there is no contention or non-determinism when using a single
thread, and thus execution times should be almost identical. This is true for all
benchmarks except KMeans, where the randomised initial cluster centres have
a significant impact on execution time. For performance comparisons, only the
multi-threaded results are of interest, and less so with KMeans due to the large
variances observed in it, although KMeans is still important due to the failures
seen.

The results are mixed, with different CMs showing competitive performance
with different benchmarks, reflecting the varying contention and execution char-
acteristics of the benchmarks. For instance, Polka shows good performance in
VacH and VacL, but Kindergarten does not, and the opposite is true in Lee-TM-t
and Lee-TM-ter, especially as the number of threads increase. In general, a high
consistency of good performance is only seen with Greedy and Priority. Aver-
aged either over all threads, or only over 2-8 threads, the performance difference
between them is less than 0.6%.

Polka is the published best CM [4], in the past producing best or near-best
execution times for all benchmarks it has been executed with in comparison to
other CMs. For VacH and VacL this is certainly the case, but this benchmark re-
sults in low contention on the hardware used. Strikingly, Polka is one of the worst
in Lee-TM-t, and consistently joint worst in KMeansH and KMeansL. KMeans
experiments, and Lee-TM-t exhibit large amounts of contention that increase
with the number of threads, as shown in Figure 2. Worryingly, KMeansL at 4
threads has at least a 78% commit rate (using Priority CM, not theoretical best
commit rate), but Polka fails to complete. Polka manages to complete execution
with Lee-TM-t as there are only 1506 routes to connect transactionally, and
thus the number of transactions executed is much fewer than KMeans, which
typically executes millions of transactions. In KMeansHS and KMeansLS, which
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Fig. 1. Execution times with ±1 standard deviation. Times that go beyond the y-axis
range are experiments in which the CM failed (to finish within 20 minutes). Less is
better.
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<= 110% of best execution time
<= 125% of best execution time
> 125% of best execution time, and < 20 minutes
> 20 minutes (DNF)

Benchmark Thread
CM

Aggressive Backoff Eruption Greedy Karma Kindergarten Polka Priority

KmeansH
2 304 203 196 208 179

4 218 159

8 244 243

KmeansL
2 292 187 169 186 211
4 179 144

8 192 161

KmeansHS
2 27.7 14.7 14.6 12.5 12.1

4 88.9 14.8 10.6

8 279.8 21.8 13.4

KmeansLS
2 18.3 10.7 11.3 11.6 10.6

4 44.8 9.7 8.0

8 159.7 12.0 6.5

Lee-TM-t
2 361 290 409 303 398 369 417 433
4 322 276 448 264 409 326 437 388
8 314 370 571 310 563 311 584 403

Lee-TM-ter
2 232 230 252 241 249 231 254 232
4 147 143 198 161 184 145 182 145
8 116 122 242 143 189 104 202 98

VacH
2 373 371 366 366 368 366 371 363

4 297 306 294 286 294 328 293 288
8 423 304 296 393 302 431 292 291

VacL
2 405 404 398 389 404 407 396 392
4 373 382 367 357 368 375 364 358
8 459 386 364 416 371 442 384 387

Table 2. Execution times (in seconds). Bold indicates best time for an experiment
(i.e., a row).
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typically take less than 20 seconds to complete with the well-performing CMs,
Polka fails to complete in 20 minutes.

Critically, wherever Polka fails, Karma also always fails, but Backoff does not
also always fail. As mentioned earlier, Polka combines Karma and Backoff. The
difference between the first two and the latter is the number of delay intervals:
Backoff has a fixed number of 22, whereas the other two calculate it dynamically.
By deduction, the average number of iterations in Polka and Karma must have
been larger than 22. We also note that Eruption similarly fails in KMeans exper-
iments, and performs poorly in Lee-TM-t. This suggests that delay-based CMs
in general are not suitable for applications that exhibit non-negligible amounts
of contention.

Finally, KMeans experiments with 2 threads deserve further attention be-
cause in these Polka completes execution with a competitive execution time,
and Karma does not. The difference between Polka and Karma are a) that
Polka aborts a set of reading transactions immediately if the calling transaction
wishes to write, and b) the amounts of time delay per iteration. Although the
first point may explain Polka’s higher performance, the second point calls into
question the choice of parameters used for Polka, and, more generally, whether
they were to blame for the poor performance observed in other experiments
above. We investigate this further in the next section.

5 Investigation of Polka’s Parameters

Polka has two tuning parameters: LOG MIN BACKOFF and LOG MAX BACKOFF, which
bound the exponential delay. Polka calculates delay for an iteration as 2n nanosec-
onds where n starts at LOG MIN BACKOFF, and increments by one every iteration
up to LOG MAX BACKOFF. A spin loop that calls Java’s System.nanoTime() is
used to determine if the required delay time has passed. In this section, we in-
vestigate the performance effect of altering Polka’s parameters. Scherer et al. [4]
do not suggest a method by which the parameters should be calculated so we
use the scheme explained below.

Through empirical evaluation we determined the minimum timing accuracy
of our system to be 3600±100 nanoseconds. This is significantly higher than the
published minimum value of 24ns (by using a LOG MIN BACKOFF of 4), but testing
on other x86/Linux platforms similarly gave us minimum accuracies much higher
than 24ns, and never less than 2500ns. Thus we set LOG MIN BACKOFF to 11, to
give a calculated minimum delay of 211 nanoseconds = 2048 nanoseconds ≈ 2
microseconds, but which of course rounds up to the minimum system accuracy.
Since the original values were based on SPARC/Solaris, Polka potentially needs
parameter re-tuning for every new hardware platform used.

For LOG MAX BACKOFF we select a range of values based on approximately
half the average committed transaction execution time for each benchmark.
The observed values are shown in Table 3 . We select LOG MAX BACKOFF values of
13 (≈8 microseconds), 16 (≈65 microseconds), 19 (≈528 microseconds), and 28
(≈134 milliseconds). The results of the executions are shown in Figure 3, again
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averaged over eight runs for all experiments, except failed experiments, which
are again only run three times.

KMeans* Lee-TM* Vac*

1 thread 12 264288 126

2 threads 19 330592 167

4 threads 210 380275 265

8 threads 422 524702 537

Table 3. Average committed transaction execution time for each benchmark, in mi-
croseconds. Both high and low contentions not shown as execution times in the same
order of magnitude for exponential delay calculation.

There is minimal effect of changing the parameters in VacL and VacH, as
these have low contention, which leads to the CM being invoked rarely. For the
remaining experiments, different parameters give the best performance improve-
ment over the default parameters. Although the improvements are slight, this
suggests per-application parameter tuning may be necessary. However, the im-
portant results have not changed, and Polka continues to give extremely poor
performance in all KMeans experiments with 4 or more threads, irrespective of
the wide range of tuning parameters used. This strengthens our original hypothe-
sis: delay-based contention management may be unsuitable for applications with
appreciable amounts of aborting transactions.

6 Related Work

Guerraoui et al. [5] developed the Greedy CM, which has provable progress
properties, and their evaluation showed Greedy performed on par with Polka.
Our results confirm their findings. Scherer and Scott [4] evaluated Polka using
six benchmarks in nine benchmark configurations. Three benchmarks added,
removed, and queried elements in a set, the fourth implemented a concurrent
stack, the fifth a ‘torture test’ that updated all values in an array per transac-
tion, and the sixth an LFU cache simulator. Clearly their benchmarks exhibited
contention to provide variation in execution time between CMs, and they found
Polka to be a consistent top performer, often by large margins over other CMs.
Their investigation differs from ours in one critical way. All the CMs they investi-
gated are delay-based, except Kindergarten, and they did not include Greedy or
Priority, as neither had been published. Our investigation found all delay-based
CMs and Kindergarten performed poorly compared to Greedy and Priority in
benchmarks with appreciable amounts of aborts.

Our previous work in adaptive concurrency control [11], which dynamically
changes the number of transactions executing simultaneously with respect to the
measured transaction commit rate, resulted in applications’ performance at any
number of initial threads being similar to best-case statically-assigned number
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Fig. 3. Execution times with ±1 standard deviation for Greedy, Priority, and Polka
with several minimum and maximum delay parameters. Lower is better.



11

of threads, for a given CM. Our adaptive mechanism would have had a dramatic
positive effect on the performance of Polka in its failed experiments. Additionally,
our work in reducing repeat conflicts [12] showed Polka’s performance could be
improved in applications that exhibit repeat conflicts.

7 Summary

This paper re-evaluates well-known CMs (CMs) in the light of newly published
complex benchmarks. A number of important findings result from this investiga-
tion. In general, we found Priority and Greedy to be joint best-performing CMs,
although Greedy provides stronger progress guarantees than Priority.

Although Polka still provides competitive performance in benchmarks with
very low contention, the most important finding of our investigation suggests
Polka, the established best-performing CM, and in general all delay-based CMs,
are unsuitable for the evaluated benchmarks that exhibit even moderate amounts
of aborting transactions. Although we do not quantify what is meant by ‘moder-
ate’, in one benchmark Priority executed in 6.5 seconds with an average of 78%
of transactions committing (i.e., 22% aborting), whilst Polka failed to complete
executing the benchmark in 20 minutes (after which time the execution was ter-
minated). This result has wider implications given that TM is strongly aimed
at easing concurrent programming for mainstream software development, where
execution is unlikely to be highly optimised to reduce aborts in the general case.

Polka has two tuning parameters, and investigating a range of values con-
cluded there was no benefit in tuning them to improve the extremely poor results
seen in KMeans experiments, although tuning led to a degree of performance
improvement in the remaining results. However, different parameters provided
better performance for different applications, suggesting the need for application-
specific tuning. Furthermore, the need to re-evaluate the parameters for every
hardware platform used was also highlighted. Conversely, Greedy and Priority
have no parameters.
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