Experiences using Adaptive Concurrency in Transactional
Memory with Lee’s Routing Algorithm

Mohammad Ansari

The University of Manchester
ansari@cs.manchester.ac.uk

Mikel Lujén
The University of Manchester
mikel@cs.manchester.ac.uk

Abstract

Experience in profiling Lee’s routing algorithm, a new complex TM
application, showed that transactional applications may exhibit dy-
namic exploitable parallelism, i.e. the amount of useful parallelism
available at any point in time varies during the execution of the
application. Obviously, executing too many transactions at times
when the available parallelism is low will lead to high contention
and wasted computation in aborted transactions, and vice versa.
Current Transactional Memory (TM) implementations do not ac-
count for this behavior.

This work employs adaptive concurrency to dynamically adjust
the number of threads executing transactions concurrently. Our
preliminary evaluation is performed in DSTM?2 using Lee’s routing
algorithm, both of which were simple to modify to enable adaptive
concurrency, and shows significant reduction in resource usage, and
modest performance gains.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel Programming

General Terms Algorithms, Experimentation, Performance

Keywords Adaptive Concurrency, DSTM2, Transactional Mem-
ory

1. Introduction

Chip Multiprocessors (CMPs) have become mainstream, and it is
well-known that a challenge for future software is to be highly scal-
able. The difficulty with achieving high scalability is the lack of
easy-to-use concurrent programming paradigms. Locks and barri-
ers have been used for decades to program parallel applications, but
are known to be difficult to use to build large, correctly functioning
software, and this has typically been a domain for experts. Transac-
tional Memory (TM) is a new concurrent programming paradigm
that promises to ease programmer effort significantly.

Copyright is held by the author/owner(s).

PPoPP’08, February 20-23, 2008, Salt Lake City, Utah, USA.
ACM 978-1-59593-960-9/08/0002.

Christos Kotselidis

The University of Manchester
kotselidis@cs.manchester.ac.uk

Chris Kirkham

The University of Manchester
chris@cs.manchester.ac.uk

Kim Jarvis

The University of Manchester
jarvisk@cs.manchester.ac.uk

Tan Watson

The University of Manchester
watson@cs.manchester.ac.uk

70

60 1

Tx Commit Rate (%)
N
o

20 1

10 1 1 1 1 1 1
0 50 100 150 200 250 300 350

Time (s)

Figure 1. Dynamic amounts of exploitable parallelism in Lee’s
routing algorithm (8 threads).

TM makes concurrent programming easier by requiring pro-
grammers to label code blocks that access shared variables as trans-
actions. A runtime layer monitors execution of code within trans-
actions and automatically resolves conflicts between multiple ac-
cesses to shared variables from different threads. The difficulty is
moved from the application developer to the TM implementation
developer.

Due to the relative infancy of TM, recent research has focused
on many areas of TM implementation; work has been done on
improving performance, strengthening isolation, TM-specific com-
plex applications, extending TM theory, and more. This work ex-
plores a new area by searching the combined space of performance
and complex applications.

Our investigations into the execution profile of Lee’s routing al-
gorithm [3], a new complex application for TM, showed that it ex-
hibited dynamic exploitable parallelism during execution. By this
we mean the number of transactions that can be usefully executed
in parallel (without conflicts) varies over time. Figure 1 shows the
percentage of transactions committed at sampled points during the
execution of Lee’s routing algorithm, Attempting to execute more,
or fewer, transactions than the available parallelism is inefficient:
executing more leads to conflicts and aborts, whilst executing fewer
leads to poor exploitation of the available parallelism.

Threads || Non-adaptive (s) | Adaptive (s) | Speedup w/adaptive
1 417.27 317.15 1.32
2 349.28 321.89 1.09
4 327.24 311.33 1.05
8 301.93 307.99 0.98

Table 1. Execution times and speedup of adaptive-enabled execu-
tion and non-adaptive execution.

This paper presents adaptive concurrency, the first attempt to
harness dynamic amounts of exploitable parallelism in TM appli-
cations. Adaptive concurrency controls the number of transactions
executed in parallel by dynamically changing the number of threads
used based on the sampled transaction commit percentage.

2. Adaptive Concurrency Implementation

This section describes the basic adaptive algorithm, and the changes
made to the TM implementation (DSTM2 [2]). The adaptive algo-
rithm is a basic first attempt, and remains subject to improvement,
but discussion of adaptive algorithms is beyond the scope of this
paper and the topic of TM. DSTM2 collects per-thread statistics of
total transactions executed, and the number committed. The adap-
tive algorithm averages these results over all executing threads to
produce an average transaction commit percentage.

If the transaction commit percentage is above an upper thresh-
old, the number of threads executing is increased by one, and vice
versa. If the percentage is within the threshold range, no change is
made. For the results submitted in this paper the upper threshold is
80%, the lower threshold is 30%, and the adaptive algorithm fires
every 20 seconds, i.e. the sampling period is 20 seconds.

Modifications made to DSTM2 converted the static array of
threads into a variable thread pool, with flags added to allow the
adaptive algorithm to enable/disable threads. Lee’s routing algo-
rithm generates all transactions at the start and places them in a
shared queue. The small change needed to Lee’s routing algorithm
was to ensure a thread that has been disabled, and aborts its final
transaction, returns the transaction to the shared queue for another
active thread to execute and commit.

3. Evaluation with Lee’s Routing Algorithm

Evaluation is performed on an 4 x dual-core Opteron-based ma-
chine with OpenSUSE 10.1, Sun Java 1.6 64-bit using the standard
dataset supplied with Lee’s routing algorithm that generates a mi-
crocode microprocessor PCB. All contention managers were used
[4], but only results from the Priority manager [1] are presented
here as it gave the best execution time results.

The benchmark was executed using 1, 2, 4, and 8 threads. The
non-adaptive execution uses the same number of threads through-
out, and the adaptive-enabled execution starts with the number of
threads specified, but changes it according to the transaction com-
mit percentage.

Table 1 shows the speedup of the adaptive-enabled execution
over the non-adaptive execution. Adaptive execution is signifi-
cantly faster than non-adaptive single-threaded execution, but in
all other cases the performance difference is marginal. One clear
benefit of the adaptive execution, however, is that the difference
in execution time between the runs is significantly reduced. This
offers a significant advantage to developers using TM in that they
no longer need to specify the number of threads with which the
application should execute, as the adaptive algorithm automatically
changes it to suit the application’s commit profile.

For the resource utilization results, we approximated one pro-
cessor to one thread, and calculate resource usage as number of

Threads || Resource usage ratio adaptive/non-adaptive
1 1.97
2 1.08
4 0.85
8 0.59

Table 2. Amount of resources used by adaptive-enabled execution
over non-adaptive execution.

threads multiplied by the period for which that number of threads
executed. Table 2 shows the ratio of adaptive-enabled resource us-
age compared to non-adaptive. For single-threaded (initial num-
ber), adaptive-enabled uses nearly twice as many resources as non-
adaptive, and correspondingly gets significant speedup as well,
as shown in Table 1. At 8 threads, adaptive-enabled resouce us-
age drops significantly, yet still the execution time is only slightly
slower.

These results show that adaptive-enabled execution correctly
utilizes more resources when exploitable parallelism is available,
and correctly conserves resources when parallelism is not available.
In the former case, performance improves, and in the later case
performance remains comparable, which is a positive result for
adaptive-enabled execution.

4. Summary

This work has presented the first application of adaptive concur-
rency based on the percentage of committed transactions over a pe-
riod of time. It has shown that, for applications that exhibit dynamic
amounts of exploitable parallelism such as Lee’s routing algorithm,
adaptive concurrency can result in either good resource savings, or
increased resource usage, but with a corresponding increase in per-
formance.

The algorithm presented is basic, and many improvements are
possible [4]. Furthermore, the key parameters (lower threshold,
upper threshold, sample period) have not been thoroughly explored.
Finally, from a TM perspective, we have not explored other TM
statistics to guide the adaptive concurrency algorithm; this may
yield even better results.

References

[1] William Scherer III and Michael Scott, Contention Management
in Dynamic Software Transactional Memory, Proceedings of the
ACM PODC Workshop on Concurrency and Synchronization in Java
Programs, St. John’s, NL, Canada, Jul, 2004

Maurice Herlihy and Victor Luchangco and Mark Moir, A flexi-
ble framework for implementing software transactional memory,
OOPSLA 06: Proceedings of the 21st Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications, Port-
land, Oregon, USA, Oct, 2006

Tan Watson and Chris Kirkham and Mikel Lujan, A Study of a
Transactional Parallel Routing Algorithm, PACT '07: Proceedings
of the 16th International Conference on Parallel Architectures and
Compilation Techniques, Brasov, Romania, Sept, 2007

[2

—

[3

=

[4

=

Mohammad Ansari and Christos Kotselidis and Kimberly Jarvis
and Mikel Lujan and Chris Kirkham and Ian Watson, Adaptive
Concurrency Control for Transactional Memory, Technical Report
CSPP-43, School of Computer Science, University of Manchester,
Sept, 2007

