MANCHESTER

1324

Adaptive Concurrency Control for Transactional Memory
Using 40% fewer cores without degrading performance

Mohammad Ansari, Christos Kotselidis, Kim Jarvis, Mikel Lujan, Chris Kirkham, lan Watson
Advanced Processor Technologies Group

The University
of Manchester

1. What is Transactional Memory?

* Multi-cores add a new requirement to mainstream programming: parallel and scalable software.
* Currently, such software is built using fine-grain locks, but they are challenging to use in building robust and correct software.
* Transactional memory is an alternative to fine-grain locks that aims to be easier, while maintaining performance.

Figure 1. Decaying available parallelism
in a Lee's routing algorithm input dataset

2. Motivating Adaptive Concurrency Control

* Figure 1: Lee's routing algorithm [2], for some datasets, showed 100
decaying available parallelism, i.e. the number of transactions
that could be executed concurrently without any aborts.

* Executing more, or fewer, transactions than the available
parallelism is inefficient: executing too many leads to aborts and
wasted work, executing too few degrades performance.

* Concurrency control attempts to dynamically change the humber
of transactions executed concurrently at runtime in response to
the available parallelism.

80 -

60

40

20

Transaction Commit Rate
(%)

Time

3. Implementation . L .
Figure 2. Execution time comparison

in a Lee’'s routing algorithm input dataset
* Available parallelism is approximated by calculating Transaction

Commit Rate (TCR) as numCommittedTx/numTotalTx*100.

—&— Concurrency Control —m— Static Threads

* TCR calculated every 20 seconds, then control algorithm 440
invoked: 420 -
- Control algorithm: If (TCR < 50%) decrease number of threads by 3 ;‘gg
one, if (TCR > 80%) increase by one, else leave unchanged. S 360
* Implemented and evaluated in DSTM2 [3] using Lee's routing = 340
algorithm. Parameters chosen through tuning experiments. gig * N\.
0 2 4 6 8 10

Number of initial threads

4. Evaluation

’ Elght. core hardwar_e platform used. _ Figure 3. Resource utilization comparison
* Priority [4] contention manager results presented as it gave best in a Lee's routing algorithm input dataset

overall execution time with static number of threads, thus these
results show the minimum benefit of concurrency control.

* Figure 2: Concurrency controlled execution time improves when 10
a static number of threads under-exploit the available
parallelism.

* Figure 2: For all numbers of initial threads, execution time
variance reduces and Is near best-case static number of threads
execution time, reducing need to select the number of threads.

* Figure 3: At 8 threads, concurrency control reduces resource 0 l
usage by 41%, yet only increases execution time by 2%. Time

1 Concurrency Control —— Static Threads

Number of threads
AN D

5. Summary

* Adaptive concurrency control automatically improves performance when available parallelism is under-exploited.

* Adaptive concurrency control automatically reduces resource usage when available parallelism is over-exploited, with minimal
performance degradation.

* Concurrency reduces the need to specify a number of threads as it gives performance near to the best-case performance seen
with a static number of threads, regardless of the nhumber of initial threads specified.

References
[1] Ansari et al., Adaptive concurrency control for transactional memory, MULTIPROG ‘08 [2] Watson et al., A study of a transactional parallel routing algorithm, PACT ‘07
[3] Herlihy et al., A flexible framework for implementing software transactional memory, OOPSLA °06 [4] Scherer Ill et al., Contention management in dynamic software transactional memory, CSJP ‘04

Email: ansari@cs.manchester.ac.uk Further info: http://www.cs.manchester.ac.uk/apt/people/ansarim/



