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1. What is Transactional Memory?

* Multi-cores add a new requirement to mainstream programming: parallel and scalable software.
* Currently, such software is built using fine-grain locks, but they are challenging to use in building robust and correct software.
* Transactional memory is an alternative to fine-grain locks that aims to be easier, while maintaining performance.

Figure 1. Decaying available parallelism
in a Lee's routing algorithm input dataset

2. Motivating Adaptive Concurrency Control

* Figure 1: Lee's routing algorithm [2], for some datasets, showed 100
decaying available parallelism, i.e. the number of transactions
that could be executed concurrently without any aborts.

* Executing more, or fewer, transactions than the available
parallelism is inefficient: executing too many leads to aborts and
wasted work, executing too few degrades performance.

* Concurrency control attempts to dynamically change the humber
of transactions executed concurrently at runtime in response to
the available parallelism.
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3. Implementation . L .
Figure 2. Execution time comparison

in a Lee’'s routing algorithm input dataset
* Available parallelism is approximated by calculating Transaction

Commit Rate (TCR) as numCommittedTx/numTotalTx*100.
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* TCR calculated every 20 seconds, then control algorithm 440
invoked: 420 -
- Control algorithm: If (TCR < 50%) decrease number of threads by 3 ;‘gg
one, if (TCR > 80%) increase by one, else leave unchanged. S 360
* Implemented and evaluated in DSTM2 [3] using Lee's routing = 340
algorithm. Parameters chosen through tuning experiments. gig * N\.
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4. Evaluation

’ Elght. core hardwar_e platform used. _ Figure 3. Resource utilization comparison
* Priority [4] contention manager results presented as it gave best in a Lee's routing algorithm input dataset

overall execution time with static number of threads, thus these
results show the minimum benefit of concurrency control.

* Figure 2: Concurrency controlled execution time improves when 10
a static number of threads under-exploit the available
parallelism.

* Figure 2: For all numbers of initial threads, execution time
variance reduces and Is near best-case static number of threads
execution time, reducing need to select the number of threads.

* Figure 3: At 8 threads, concurrency control reduces resource 0 l
usage by 41%, yet only increases execution time by 2%. Time
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5. Summary

* Adaptive concurrency control automatically improves performance when available parallelism is under-exploited.

* Adaptive concurrency control automatically reduces resource usage when available parallelism is over-exploited, with minimal
performance degradation.

* Concurrency reduces the need to specify a number of threads as it gives performance near to the best-case performance seen
with a static number of threads, regardless of the nhumber of initial threads specified.
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