

Subversion code management system
(A. K. A. SVN)

Sergio Davies

APT group – School of Computer Science
The University of Manchester

“If C gives you enough rope to hang yourself, think
of Subversion as a sort of rope storage facility”

- Brian W. Fitzpatrick

Subversion features
Revision numbers are global across the whole

repository and identify how the entire repository looks
in a specific instant
(i.e. You can identify a specific build of the software in the repository just using the
repository revision number)

No additional space required for file or directory
copies (i.e.: cheap copies or symbolic links)

Directory versioning

Atomic commits (all or nothing)

Small database space needed (compressed diffs)

File & directory metadata

Subversion architecture

Software repository
database

Currently hosted on:
apollo.cs.man.ac.uk

WAN
or

LAN

Working copy on your
computer

(folder in your hard
drive)

Downloading repository content

USE THIS ONLY THE FIRST TIME YOU WANT TO INITIALIZE A
WORKING COPY FOLDER ON YOUR PC!!!

On your computer, using a terminal window, type:

svn checkout file:///home/amu4/spinnaker/svnsvn checkout file:///home/amu4/spinnaker/svn

This will download the entire repository tree into a working directory.
To checkout only a part of the tree use:

svn checkout svn checkout
file:///home/amu4/spinnaker/svn/path_of_repo_neededfile:///home/amu4/spinnaker/svn/path_of_repo_needed

Basic work cycle
All the commands described are to type in a terminal
window after changing directory into your working dir

Beginning of the day:
svn update

Working on files:
Use your favourite text editor.

Subversion is not affected by this!

Examine changes:
svn status

End of the day:
svn commit -m “describe here what you did”

Basic work cycle – file operations
All the commands described are to type in a terminal
window after changing directory into your working dir

Adding files to the repository:
svn add file_path/file_name

Deleting files from the repository:
svn delete file_path/file_name

Copying files/dirs from one folder to another:
svn copy src_path/src_name dst_path
svn copy src_dir_path dst_dir_path

(always recursive)

Moving files/dirs from one folder to another:
svn move src_path/src_name dst_path/dst_name

svn move src_dir_path dst_dir_path
(always recursive)

Undoing changes
All the commands described are to type in a terminal
window after changing directory into your working dir

Resurrecting deleted files:
svn update -r repository_revision

file_path/file_name

Undoing modifications from the latest revision
svn revert file_path/file_name

Repository architecture
+-Working dir
|
+-+-Project 1
| +---Branches
| +---Tag
| +---Trunk
|
+-+-Project2
| +---Branches
| +---Tag
| +---Trunk
|
…

Trunk: must always host a compilable and “working” copy
of the source code
Tag: contains a snapshot of a project in a specific instant
Branches: contains copies of the main project (contained

in \trunk) where users are working on (development
branches) and new features are not tested/stable

Branching policy (1)
The never-branch system
Users commit their day-to-day work on /trunk.
Occasionally /trunk "breaks" (doesn't compile, or fails

functional tests) when a user begins to commit a series of
complicated changes.
Pros: Very easy policy to follow. New developers have

low barrier to entry. Nobody needs to learn how to branch
or merge.
Cons: Chaotic development, code could be unstable at

any time.

NO!!!!!!
From: Subversion Best Practices -
http://svn.apache.org/repos/asf/subversion/trunk/doc/user/svn-best-practices.html

Branching policy (2)
The always-branch system
Each user creates/works on a private branch for every

coding task.
When coding is complete, someone (original coder, peer,

etc...) reviews all private branch changes and merges them
to /trunk
Pros: /trunk is guaranteed to be extremely stable at all

times.
Cons: more merge conflicts than necessary. Requires

users to do lots of extra merging.

TOO COMPLEX!!!
From: Subversion Best Practices -
http://svn.apache.org/repos/asf/subversion/trunk/doc/user/svn-best-practices.html

Branching policy (3)
The branch-when-needed system
Users commit day-to-day work on /trunk
/trunk must compile and pass regression tests at all times.

(Committers who violate this rule will be publicly humiliated.)

If a commit is needed before testing (e.g. changes very
wide in the software), users generates a branch
Pros:/trunk is guaranteed to be stable at all times. The

hassle of branching/merging is somewhat rare.
Cons: Users must compile and test before every commit.

OK!!!
From: Subversion Best Practices -
http://svn.apache.org/repos/asf/subversion/trunk/doc/user/svn-best-practices.html

How to use branches

Live example

Branches +---r3------r4---------+---r6---+
 / / \
Trunk ---r2---+-------------------r5-+------------+---r7---

How to use tags

Tag +---r2-------------...
 /
Trunk ---r1---+---r3------r4------r5------r6---...

Repositories location
In our group there are (at least) two SVN repositories:

Software repository:
/home/amu4/spinnaker/svn

Paper repository:
/home/amu4/spinnaker/svn_papers

For strange situations

ASK ME, PLEASE!!!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

