
International Journal of Parallel Programming manuscript No.
(will be inserted by the editor)

Managing Burstiness and Scalability in Event-Driven Models
on the SpiNNaker Neuromimetic System

Alexander D. Rast · Javier Navaridas · Xin
Jin · Francesco Galluppi · Luis A. Plana ·

Jose Miguel-Alonso · Cameron Patterson ·

Mikel Luj án · Steve Furber ·

Received: date / Accepted: date

Abstract Neural networks present a fundamentally different model ofcomputation
from the conventional sequential digital model, for which conventional hardware is
typically poorly matched. However, a combination of model and scalability limi-
tations has meant that neither dedicated neural chips nor FPGA’s have offered an
entirely satisfactory solution. SpiNNaker introduces a different approach, the “neu-
romimetic” architecture, that maintains the neural optimisation of dedicated chips
while offering FPGA-like universal configurability. This parallel multiprocessor em-
ploys an asynchronous event-driven model that uses interrupt-generating dedicated
hardware on the chip to support real-time neural simulation. Nonetheless, event han-
dling, particularly packet servicing, requires careful and innovative design in order
to avoid local processor congestion and possible deadlock.We explore the impact
that spatial locality, temporal causality and burstiness of traffic have on network per-
formance, using tunable, biologically similar synthetic traffic patterns. Having estab-
lished the viability of the system for real-time operation,we use two exemplar neural
models to illustrate how to implement efficient event-handling service routines that
mitigate the problem of burstiness in the traffic. Extendingwork published in ACM
Computing Frontiers 2010 with on-chip testing, simulationresults indicate the via-
bility of SpiNNaker for large-scale neural modelling, while emphasizing the need for
effective burst management and network mapping. Ultimately, the goal is the cre-
ation of a library-based development system that can translate a high-level neural
model from any description environment into an efficient SpiNNaker instantiation.
The complete system represents a general-purpose platformthat can generate an ar-
bitrary neural network and run it with hardware speed and scale.

Alexander Rast
School of Computer Science
University of Manchester
Oxford Road
Manchester, UK M13 9PL
Tel.: +123-45-678910
Fax: +123-45-678910
E-mail: rasta@cs.man.ac.uk



2 A. D. Rast, J. Navaridas, et al.

Keywords Asynchronous· Burst · Network · Event-driven· Universal· Neural·
Multiprocessor· Interconnection· Real-time· Traffic · Characterisation

CR Subject Classification C.1.3

1 Introduction

Neural networks present an emphatically different model ofcomputation from the
conventional sequential digital model. This make it unclear, at best, whether run-
ning neural networks on industry-standard computer architectures represents a good,
much less an optimum, implementation strategy. Such concerns have become par-
ticularly pressing with the emergence of large-scale spiking models [22] attempting
biologically realistic simulation of brain-scale networks. While dedicated hardware
is thus becoming increasingly attractive [28], it is also becoming clear that a fixed-
model design would be a poor choice [55], given that just as there is debate over
the architectural model in the computational community, there is no consensus on
the correct model of the neuron in the biological community [23]. Our proposed so-
lution is the “neuromimetic” architecture: a system whose hardware retains enough
of the native parallelism and asynchronous event-driven dynamics of “real” neural
systems to be an analogue of the brain, enough general-purpose programmability to
experiment with arbitrary biological and computational models. This neuromimetic
device, SpiNNaker, is a scalable universal neural network chip that for the first time
provides a hardware platform for neural model exploration able to support large-scale
networks with millions of neurons.

The SpiNNaker chip (fig. 1) is a plastic platform containing configurable blocks
of generic processing and connectivity whose structure andfunction are designed
and optimised for neural computation. This distinguishes it strongly from completely
general-purpose FPGA’s and also from dedicated devices that offer a fixed selection
of neural models. The primary features of the neuromimetic architecture are:

Native Parallelism: There are multiple processors per device, each operating com-
pletely independently from each other.

Event-Driven Processing: An external, self-contained, instantaneous signal drives
state change in each process, which contains a trigger that will initiate or alter the
process flow,

Incoherent Memory: Any processor may modify any memory location it can access
without notifying or synchronising with other processors.

Incremental Reconfiguration: The structural configurationof the hardware can
change dynamically while the system is running.

These characteristics mean SpiNNaker has an entirely different model of compu-
tation from the conventional sequential one. In ACM Computing Frontiers 2010, we
used SpiNNaker simulations as an example to illustrate the differences between asyn-
chronous and conventional parallel processing [51], [41].Here, we demonstrate the
example in practice with additional models tested on the physical hardware.



Managing Scalability in Event-Driven Models on the SpiNNaker System 3

Fig. 1 SpiNNaker test chip.

2 Neural System Architectures

Neural networks are parallel processing architectures that involve simple atomic com-
putations occurring in individual elements - neurons - interconnected among each
other through links - synapses - that themselves perform some limited computa-
tion. In addition, synapses modify their computation in time (over timescales long
compared to the process dynamics of neurons), usually by adjusting a weight which
simply scales the relative contribution of the individual synapse. Many modern neu-
ral networks use spiking dynamics, involving a solution of differential equations for
each neuron’s state: these are typical of biological models. Some networks, aimed at
purely computational applications, forego this continuous-time differential formula-
tion in favour of a discrete-time process that simply evaluates a static nonlinearity at
the neuron. Regardless of the model used, however, the question of the appropriate
computational platform for a neural network simulation hasbeen one of the dominant
topics in the field.

2.1 Pure Software Simulation

The conventional way, and still by far the most widely-used method, to simulate neu-
ral networks is through software simulation on conventional computers. The comput-
ing platform may vary all the way from a single uniprocessor PC [21], through PC
clusters [37] [42], to large mainframes [36] [2]. Software is equally varied but tends
to depend strongly on the research domain. For biologicallyrealistic modelling at the
microscopic level with fully accurate dynamics, the dominant applications are NEU-
RON [18] and GENESIS (http://genesis-sim.org). Simulators like Brian [13] are in
common use for dynamic-level simulation where complete biological realism is sec-
ondary to the basic dynamics at the spiking level. Such software tends to abstract



4 A. D. Rast, J. Navaridas, et al.

neurons to a spatial point, and spikes to zero-time events. In the realm of artificial
neural networks for computing applications, software suchas JNNS (http://www-
ra.informatik.uni-tuebingen.de/software/JavaNNS/welcomee.html) has seen some
use, although these applications are waning with the emergence of spiking networks.
Finally, many users use Matlab [23] or C/C++ [52] to write their own neural simula-
tors.

Software simulation tends to be slow and may require large computers for de-
tailed simulations on large-scale models. To improve performance, recent software
tools have turned to event-driven computing [58] [34] [7]. However, conventional
sequential computers do not usually have direct hardware support for event-driven
applications, and thus most event-driven simulators actually run an emulation by us-
ing a small timestep, recording events in an event queue, andupdating all processes
dependent upon the events in the queue at the appropriate timestep [32], [53]. While
this improves efficiency over fully synchronous approaches, it still encounters lim-
itations with very large networks that require either usingsimple dynamics such as
leaky integrate-and-fire, or modelling populations of neurons as a single object rather
than each individual neuron.

2.2 Adapted General-Purpose Hardware

The emergence of various general-purpose devices supporting some level of parallel
processing has generated numerous attempts to map various neural algorithms to the
hardware. A remarkable early attempt using a processor withstrong similarities to
SpiNNaker, the Datawave chip [24], appears not to have been pursued further be-
cause of the limited commercial success and eventual disappearance of the hardware.
While the increasing ubiquity of standard multicore microprocessors introduces an
obvious opportunity to exploit parallelism, other, more creative approaches use field-
programmable gate arrays (FPGA’s) [45] and graphics processor units (GPU’s) [38].
FPGA’s, in particular, offer an attractive possibility: reconfigurable computing. In re-
configurable architectures, the model can modify the hardware configuration of the
chip while the simulation is running. Either through component swapping [12] or
network remapping [56], these approaches seek to circumvent scalability limitations,
with some success, but with both FPGA’s and GPU’s scalability has proven to be the
main problem, with FPGA’s running into routing barriers dueto their circuit-switched
fabric [33] and GPU’s running into memory access barriers. Even more problematic
has been power consumption: a typical large FPGA may dissipate∼ 50W and a GPU
accelerator∼ 200W. Thus adapting general-purpose hardware seems to be a realistic
approach only for small-scale model prototyping.

2.3 Dedicated Neural Hardware

Given the limitations of off-the-shelf hardware, many groups have implemented ded-
icated neural hardware systems, usually involving a customIC. Attempts began as
early as the late 1980’s [14], [9]. This approach yields the greatest scope for architec-
tural diversity as well as performance: different designs have used analogue [19] or



Managing Scalability in Event-Driven Models on the SpiNNaker System 5

Fig. 2 SpiNNaker system topology.

digital [59] technology, hardwired [4] or configurable [57]architecture, continuous-
activation [31] or spiking [43] signalling, coarse- [54] orfine-grained [8] parallelism.
In recent years, however, interest has moved primarily towards processors for the
simulation of spiking neural networks. Here again there have been two threads of
development. In the “neuromorphic” approach [20], chips use analogue circuitry to
emulate as closely as possible the actual biophysics of realneurons [60]. The “neuro-
processor” approach [35], by contrast, attempts to use general-purpose digital com-
ponents with an internal structure optimised for massivelyparallel neural processing.
Each has its limitations: neuromorphic chips are power- andcomponent-efficient,
but relatively small-scale, and have limited or fixed model support. Neuroproces-
sors have, to date, suffered from interconnect limitations, a combination of limited
bus bandwidth, synchronous shared-access protocols, and circuit-switched architec-
ture [16]. Thus, despite the obvious speed improvements, dedicated neural devices
have not thus far achieved the scalability that would permittruly large-scale simula-
tion, due to hardware limitations. To minimise such limitations while providing the
neural acceleration that only dedicated hardware can provide, we have introduced the
SpiNNaker neuromimetic architecture.

3 The SpiNNaker Neuromimetic IC

The SpiNNaker chip is the core building block component of a large-scale system
using an array of chips arranged in a 2-dimensional triangular torus topology (fig. 2).
Using this diagonal-link topology increases system robustness through the connection
redundancy inherent in the toroidal physical topology, while permitting an arbitrary
mapping of large-scale neural networks to physical chips and links.



6 A. D. Rast, J. Navaridas, et al.

Fig. 3 SpiNNaker Architecture. The dashed box indicates the extent of the SpiNNaker chip. Dotted grey
boxes indicate local memory areas.

3.1 Implementation of the Neuromimetic Architecture

SpiNNaker integrates the essential elements of the “neuromimetic” architecture: a
hardware model designed to support flexibility in model exploration while imple-
menting as many known features of the neural model of computation as practica-
ble explicitly in hardware for maximal performance [51]. Itimplements these key
architectural features using a mixture of off-the-shelf and custom components. By
design the system is optimised for spiking models, but this does not constrain it ex-
clusively to spiking neural networks. We identify four features as fundamental to the
neuromimetic architecture.

3.1.1 Native Parallelism

“Real” neural networks are massively parallel processors.Native parallelism is there-
fore basic to the neuromimetic architecture. SpiNNaker (fig. 3) contains multiple (2
in the test implementation, 18 in a recently fabricated version) independent ARM968
processors, each simulating a variable number of neurons which could be as few as
1 or as many as 1,700. Each processor operates entirely independently (on separate
clocks) and has its own private subsystem containing various devices to support neu-
ral functionality. The principal devices are a communications controller that handles



Managing Scalability in Event-Driven Models on the SpiNNaker System 7

input and output traffic in the form of “spike” packets, a DMA controller that pro-
vides fast virtual access to synaptic data residing off-chip in a separate memory, and
a Timer that supports the generation of fixed time steps wheremodels need them.
The entire subsystem is therefore a self-contained processing element modelling a
neural group. This “processing node” is truly concurrent, in that it uses only local
information to control execution and operates asynchronously from other processing
nodes.

3.1.2 Event-Driven Processing

Biological neurons communicate primarily through spikes:short-duration impulses
whose precise shape is usually considered immaterial. Spikes appear to function as
events - essentially point processes. SpiNNaker’s communication network is a config-
urable packet-switched asynchronous interconnect using Address-Event Representa-
tion (AER) [30] to transmit neural signals between processors. AER is an emerging
neural communication standard [3] that abstracts spikes from neurobiology into a sin-
gle atomic event, transmitting only the address of the neuron that fired; SpiNNaker
extends this basic standard with an optional 32-bit payload. The interconnect itself
extends both on-chip and off-chip as the Communications Network-on-Chip (Comms
NoC). Previous work ([44], [29]) describes the design of andconfiguration procedure
for the Comms NoC. At the processor node, the communicationscontroller receives
and generates AER spikes, issuing an interrupt (i.e., an event) to the processor when
a new packet arrives. From the point of view of the neuromimetic architecture, this
fabric implements the support infrastructure for incremental reconfiguration and the
event-driven model.

3.1.3 Incoherent Distributed Memory

The notion of controlled shared access to a central memory store simply does not exist
in biology; neurons update using purely local information.Thus any processor may
modify any memory location it can access without notifying or synchronising with
other processors. SpiNNaker processors have access to 2 primary memory resources:
their own local “Tightly-Coupled Memory” (TCM) and a globalSDRAM device,
neither of which require or have support for coherence mechanisms. The TCM is
only accessible to its own processor and contains both the executing code (in the
“Instruction TCM” (ITCM)) and any variables that must be accessible on-demand
(in the “Data TCM” (DTCM)). The global SDRAM contains the synaptic data (and
possibly other large data structures). Since each synapse in the SDRAM connects to
a single target neuron residing in a specific processor, the SDRAM is segmented into
discrete regions for each processor, grouped by postsynaptic neuron. This obviates
the need for coherence checking because only one processor node will access a given
address range. At the processor node, the DMA controller makes the synapse appear
virtually local to the processor by bringing its data into DTCM when an incoming
packet arrives [49]. The DMA controller also generates an event - DMA complete
- when the entire synaptic block has been transferred into local memory. Overall



8 A. D. Rast, J. Navaridas, et al.

therefore, the SDRAM behaves more as an extension of local memory into a large off-
chip area than a shared memory area, and thus from a system point of view, effectively
all memory is local.

3.1.4 Incremental Reconfiguration

Biological neural networks are plastic: the physical topology changes during oper-
ation. Likewise, the structural configuration of neuromimetic hardware can change
dynamically while the system is running. SpiNNaker uses a distributed routing sub-
system to direct packets through the Comms NoC, which converts spike events into
AER packets. Each chip has a packet-switching router that handles these packets and
distributes them seamlessly to all connected neurons through the GALS interconnect.
The design of the router incorporates a multicast diffusionmechanism devised to sup-
port biologically realistic neural fan-out (∼ 1000 connections/neuron) A 1024-word
associative routing table within each router defines the neural connectivity. To min-
imise the risk of local failure, an “emergency routing” mechanism allows bypass of
a failed link using an automated routing algorithm that routes packets in a triangular
path around a local link obstruction. Routes are fully reprogrammable by changing
the routing table, just as the model dynamics are reprogrammable by swapping the
running code, making it possible, at least in principle, to reconfigure the model on
the fly.

3.2 Nondeterministic process dynamics

While this event-driven solution is far more scalable than either synchronous or
circuit-switched systems, it presents significant implementation challenges when the
network is large and packet traffic dense.

No instantaneous global state: Since communications are asynchronous the notion
of global state is meaningless. It is therefore impossible to get an instantaneous
“snapshot” of the system, and processors can only use local information to control
process flow.

One-way communication: The network is source-routed. Fromthe point of view of
the source, the transmission is “fire-and-forget”: it can expect no response to its
packet. From the point of view of the destination, the transmission is “use-it-or-
lose-it”: either it must process the incoming packet immediately, or drop it.

No processor can be prevented from issuing a packet: Since there is no global infor-
mation and no return information from destinations, no source could wait indef-
initely to transmit. To prevent starvation, therefore, processors must be able to
transmit in finite time.

Limited time to process a packet at destination: Similar considerations at the desti-
nation mean that it cannot wait indefinitely to accept incoming packets. There is
therefore a finite time to process any incoming packet.

Finite and unbuffered local network capacity: Notwithstanding the previous require-
ments, the network is a physical interconnect with finite bandwidth, and critically,
no buffering. The router includes alimited Emergency Routing mechanism that



Managing Scalability in Event-Driven Models on the SpiNNaker System 9

avoids congested or malfunctioning links by routing packets through the next
clockwise port. Thus the only management options to local congestion are net-
work rerouting and destination buffering.

No shared-resource admission control: Processors have access to shared resources
but since each one is temporally independent, there can be nomechanism to pre-
vent conflicting accesses. Therefore the memory model is incoherent.

These behaviours, decisively different from what is typical in synchronous sequential
or parallel systems, require a correspondingly different software model, as much a
part of the neuromimeticsystemas the hardware, and which demonstrates much about
the concurrent model of computation.

4 Event-Driven Processing

The software model uses a hardware-design-like flow based onhierarchical levels of
abstraction. In a previous work [47] we introduced this 3-level software model for
SpiNNaker, with a Model Level, a System Level, and a Device Level (fig. 4). The
model defines an instantiation chain that proceeds from a behavioural neural model
down to a specific machine-level implementation.

4.1 The event-driven model at the Model Level

Model Level treats the system as a process abstraction that hides all the hardware
detail and considers the model purely in terms of neural properties. For spiking neural
networks the event-driven abstraction is obvious: a spike is an event, and the dynamic
equations are the response to each input spike. New input spikes trigger update of the
dynamics. In nonspiking networks different abstractions are necessary. One easy and
common method is time sampling: events could happen at a fixedtime interval, and
this periodic event signal triggers the update. Alternatively, to reduce event rate with
slowly-variable signals, a neuron may only generate an event when its output changes
by some fixed amplitude. For models with no time component, the dataflow itself can
act as an event: a neuron receives an input event, completes its processing with that
input, and sends the output to its target neurons as an event.Decisions about the event
representation at the Model Level could be almost entirely arbitrary, but in order to
implement the model efficiently on SpiNNaker the representation chosen should have
a simple correspondence to the physical hardware. Therefore, Model Level does not
define the event representation, but rather has an interfaceto automated tools that
generate the mapping operating at a lower level, one which has visibility both of
SpiNNaker hardware and of the Model-Level definitions.

4.2 The event-driven model at the System Level

System Level is the level that provides visibility both of the model and of SpiNNaker.
At the system level the internal components of SpiNNaker become visible, but only as



10 A. D. Rast, J. Navaridas, et al.

Fig. 4 SpiNNaker Software Model

high-level objects. At this level, events are transactionsbetween objects representing
individual components. Responses to events are the subroutine calls (or methods) to
execute when the event arrives. These callbacks will be different for different neural
models, and because automated tools must be able to associate a given model with
a given series of SpiNNaker system objects, System Level is mostly a collection of
libraries for different neural models. Each library definesthe event representation as
set of callback functions: a Packet-Received event, a DMA event, a Timer event, and
an Internal (processor) event. It must also account for important system properties: no
global state information and one-way communication. System-Level event functions
must as a result use only local information, and if the current local information is
insufficient to process the event, they must be able to transform it into afutureevent.
There are several ways to do this: issue a DMA request, set a timer, or trigger an
internal event. Given that much of the low-level hardware operation is common across
all models, the System Level uses common device-driver support functions where
possible, drawn from a base library written at a lower level.



Managing Scalability in Event-Driven Models on the SpiNNaker System 11

4.3 The event-driven model at the Device Level

Device Level ignores the neural model altogether and considers SpiNNaker at the
signalling level of its devices. At this level an event is itsactual hardware nature:
an interrupt, and the response likewise is the interrupt service routine (ISR) together
with any deferred processes the ISR triggers. The hardware packet encoding is visible
along with the physical registers in the DMA and communications controllers. Most
of the Device Level code is therefore a series of interrupt-driven device drivers acting
as support functions for the system level. Since Device Level code does not consider
the neural model, these drivers are common across many models (and libraries), and
includes operating-system-like system support, startup and configuration routines es-
sential for the operation of the chip as a whole, but irrelevant from the point of view
of the model. Device-Level ISR’s must consider carefully asynchronous timing ef-
fects and the absence of network buffering: if the system expects a high event rate it
needs to provide an event queue. As with any ISR, the objective is to defer as much
processing as possible and exit the interrupt exception mode. Usually the deferred
process is a System-Level function, so that the typical flow of control is that the
System Level passes control to the Device-Level ISR when theinitial event occurs,
which then does the minimal processing necessary to capturethe event and set/reset
devices, then passes control back to the System-Level function. How this works in
detail is easiest to see by considering actual model implementations on SpiNNaker.

5 Model Implementations

To test SpiNNaker functionality and performance, we have implemented both an ab-
stract high-level model of the network and 3 different execution-level neural net-
work models: 2 spiking models and a classical MLP model. The abstract model is
designed to be a reasonably realistic approximation of network behaviour under typ-
ical operating conditions. We implemented the high level model in INSEE, a fast,
flexible and mature simulation environment [40] for interconnection networks. The
execution-level models are sufficiently different in design to form an effective first
test of SpiNNaker universality while sufficiently representative to be reference exam-
ples for future model implementations. We first tested thesemodels using ARM SoC
Designer simulator, with additional low-level Verilog testing using Synopsys VCS,
then ran the models on the SpiNNaker test chip in various network configurations.

5.1 Network system models

The developed network model contains most of the features ofthe router, as well as
the topological arrangement. This study evaluates the largest possible system config-
uration: 64K nodes arranged on a256× 256 layout. The model of the router includes
the emergency routing and deadlock avoidance mechanisms, whose parameters we
set to the values suggested in [39]. To avoid coupling the evaluation to any particu-
lar biological network, table-based routing is not used (which significantly reduces



12 A. D. Rast, J. Navaridas, et al.

Fig. 5 Poisson distributions modelling traffic locality

the computing resources required to perform simulations).As actual routes between
chips in the real system will attempt to use a minimal path with a single inflection
point, the simulation sends packet through minimal routes using Dimension Order
Routing (DOR) [5]. In DOR, diagonal links are considered to be a third dimension
(Z). Routes followed by packets are always XY, XZ or YZ (an XYZroute cannot be
a minimal path). The system models nodes as independent traffic sources that inject
packets following a Bernoulli temporal distribution, withtunable packet injection rate
ir (packets/cycle/node). We provide them with the capabilityto react to receipt of a
packet by generating a new packet or a burst of packets. Two parameters model such
reactive traffic, the probabilityp to trigger a new packet (modelling causality) and the
number of packetsn that are triggered (simulating burstiness). The actual per-node
generation rateG depends on both independent and reactive traffic:

G = ir + ir ·

∞∑

k=1

n · pk

Models of the connection-level activity of brain-scale neural networks have thus
far only described the general characteristics [15]. To simulate potentially realistic
networks, we therefore use Poisson distributions that allow modelling of different
degrees oflocality by varying the lambda (λ) parameter. In general, the larger the
value of λ the more distant the generated traffic. More specifically, weuse seven
different values from very local (λ = 2) to very far-flung (λ = 128). The traffic
generation process is as follows. A sending node randomly selects a distance,d, fol-
lowing the given Poisson distribution, and then randomly selects a destination node,
n, locatedd hops away. The node then injects a packet addressed ton. For the sake
of simplicity, we restrict the study to a single distribution and use unicast rather than
multicast packets. Figure 5 shows the distance distributions for each value ofλ.



Managing Scalability in Event-Driven Models on the SpiNNaker System 13

5.2 Spiking neural network models

Two models implement spiking neural networks, using eitherIzhikevich or Leaky-
Integrate-and-Fire (LIF) neurons and Spike-Timing Dependent Plasticity (STDP) or
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) synapses. The Izhike-
vich model [21] has been the reference spiking model drivingdesign choices during
hardware development because it is simple yet exhibits the full range of observed
neural behaviour. We describe many of the algorithmic details of these models in
the following papers: Izhikevich model [26], LIF model [50]STDP implementa-
tion [46], [27]. Here we focus on the event processing.

There are 3 main processes in the model, corresponding to the3 event sources.
The first process operates upon receipt of the input packet event, an interrupt from
the communications controller. The second process operates upon receipt of the DMA
completed event. The final process operates upon receipt of the Timer event.

5.2.1 Packet Received

The Packet Received event is a high-priority FIQ interrupt,in keeping with the use-it-
or-lose-it nature: new packets must receive immediate, pre-emptive servicing or they
will be lost. The process operates at Device Level and schedules the neural processing
as a System Level function using the deferred-event model. When an input arrives,
the process performs an associative lookup on the packet address to find a source
ID. It then signals the DMA controller to transfer the corresponding row of synapses
in memory into the next-available of an array of synaptic buffers, incrementing the
available buffer number. It then exits and returns control to the scheduler.

5.2.2 DMA Completed

The DMA Completed, and all other events, are normal IRQ’s, thus they may need to
account for the arrival of other packets. In the case of DMA Completed, this means
that its processing may not have completed before another DMA Completed event
arrives, triggered by a packet arriving. The Device Level service routine therefore ac-
knowledges the interrupt immediately, freeing the DMA controller for further trans-
fers. Next, it tests the values of the synaptic buffer head and tail, to determine whether
servicing of a DMA was still in progress when the next such interrupt arrived. If the
difference is zero, i.e. no DMA service was in progress, it triggers a System Level
deferred service process operating in User mode; otherwiseit can simply return to
the interrupted process. In its deferred service, the process goes through the synaptic
buffers in sequence. For each buffer, it first performs synaptic weight updates, then
computes the new contribution to the net input current at thedelay value appropriate
to each active synapse. Once it finishes with any given buffer, it updates the buffer
queue head position, and if there remain buffers to service it continues on to the next
one, exiting otherwise.



14 A. D. Rast, J. Navaridas, et al.

5.2.3 Timer

The Timer event has a higher priority than DMA Completed, since it operates on the
current time rather than on future (delayed) time. Unlike the DMA Completed event
no additional timer events can happen so it can operate continuously in an exception
mode, however, to permit additional DMA interrupts it must exit from IRQ mode
as soon as possible. Therefore, the Device Level service simply stacks registers and
return addresses to the SVC (supervisor mode) stack, acknowledges the interrupt, and
changes to supervisor mode. Operating at System Level in supervisor mode, it can
avoid interfering with any potential deferred DMA operations still in progress while
freeing the interrupt for DMA use. The SVC-mode process performs an efficient
update of the neural states, computing and triggering any possible output spike, and
with it update of postsynaptic information. The SVC-mode process must complete
before the next (1ms) Timer interrupt.

5.3 MLP model

The second network is a classical multilayer perceptron (MLP) model using delta-rule
backpropagation synapses with sigmoidal threshold neurons. The MLP is a broadly-
used model ideal as a standard reference to test SpiNNaker’sperformance with non-
spiking models. Some details of the model are in [48], however, this work largely
discusses the topology and mapping. Here we consider the dynamics, or more accu-
rately, the transformation of the MLP to a dynamic event-driven model. Since signals
are continuous-valued “timeless” vectors, it is necessaryto define an event represen-
tation for the dataflow. From this the process model will follow.

Because the mapping of the MLP to SpiNNaker (fig. 6) distributes unit process-
ing among several processors (see [48] [25]) actual processing varies depending on
whether the processor in concern implements the weight, sum, or threshold part of a
unit.

5.3.1 MLP event representation

Representing MLP dynamics as events has two parts, a packet format and an event
definition. SpiNNaker’s AER packet format allows for a payload in addition to the
address. In the model, therefore, the packet retains the useof the address to indicate
source unit ID1 and uses the payload to transmit that unit’s activation. MLPneurons
propagate input vectors between units in a unidirectional,feedforward manner: for
each input presented one signal will pass over any given connection. Therefore one
event is the arrival of a single vector component at any givenunit: Packet Received.
However, the dataflow and processing falls into 2 distinct phases: the forward pass,
and the backward pass. This suggests another event: reverse-direction, that an indi-
vidual unit can readily detect by triggering a software (SWI)event on Output Sent.

1 Technically, a “unit” instead of a neuron: in the MLP the unitis a processing element not necessarily
associated with a single neuron.



Managing Scalability in Event-Driven Models on the SpiNNaker System 15

Fig. 6 SpiNNaker MLP mapping. Each dotted oval is one processor. Processors of all 3 types map a group
of inputs i to outputs j. Each output j corresponds to a singleneuron (or unit), while the inputs i depend on
the stage. At each stage the unit sums the contributions from each previous stage. Note that one processor
may implement the input path for more than one final output neuron (shown for the threshold stage here
but not for other stages). It is possible to cascade sum processors to create a neuron with arbitrary fan-in.

These 2 events, importantly, preserve the characteristic of beinglocal: a unit does not
need to have a global view of system state in order to detect the event.

5.3.2 Packet Received

The Packet Received event drives most of the MLP processing.Unlike the spiking
case, the payload is critical, so the Device-level ISR for this event immediately places
it in a queue for further processing. The rest of the processing occurs at System level.



16 A. D. Rast, J. Navaridas, et al.

Exact processing depends upon the stage; we denote the internal input variable asI
and the output variable asJ . The processing then goes as follows:

1. Dequeue a packet and payload.
2. Test the packet’s source ID (address) against a scoreboard indicating which con-

nections remain to be updated. If the connection needs updating,
(a) For weight processors,I = wijOi, wherewij is the weight, andOi the pay-

load. For all others,I = Oi.
(b) For weight processors in the backward pass only, computethe weight delta

for learning. (We have used standard momentum descent)
(c) Accumulate the output for neuronj: J = J + I

3. If noconnections remain to be updated,
(a) For threshold processors only, use a look-up table to compute a coarse sig-

moid: J = LUT (J) in the forward direction. Get the sigmoid derivative
LUT ′(Jf ) in the backward direction. (Jf is theforwardJ , Jb thebackward.)

(b) For threshold processors only, use a spline-based interpolation to improve
precision ofJ .

(c) For threshold processors in the backward pass only, multiply the derivative by
the new input:J = Jb(LUT ′(Jf )).

(d) Output a new packet with payloadJ .
4. If the packet queue is not empty, return to the start of the loop.

The critical concern with this process, since time is not a factor, is load balancing.
If the processing in a given unit is much faster than other units, the packet traffic to
the subsequent unit may become very bursty. This causes transient congestion, and
in extremis, may deadlock the model. Obviously the sum processors have atrivial
computation relative to weight and threshold, creating thepotential for exactly such
a problem. We developed 2 solutions: reduce the number of sums in any given stage
(which for large fan-ins is the same as lengthening the processing pipeline), and com-
bine the sum process with other processes, forcing it to compete for CPU time.

5.3.3 Output Sent

Output Sent occurs when all inputs have arrived, and the communications controller
transitions to empty. At this point the processor triggers aFlipDirection SWI pro-
cess that toggles the mode between forward and backward. Themost general way to
detecting the condition “all inputs arrived” is by a scoreboard, a bit-mapped repre-
sentation of the arrival of packet-received events for eachcomponent. The test itself
is then simple: XOR the scoreboard with a mask of expected components. While this
method accurately detects both the needed condition and component errors, it has
an important limitation: all inputsmustarrive before the unit changes direction. This
could be a potential problem if neighbouring units had already sent while the current
one still expected input. “Fire-and-forget” signalling provides no delivery guarantees,
so a receiving unit mightneverreceive an expected input. This would effectively stop
the simulation, because the network as a whole can proceed nofaster than its slowest-
to-output unit.



Managing Scalability in Event-Driven Models on the SpiNNaker System 17

Fig. 7 Packet dropped ratio per configuration using Poisson-spatial traffic from independent sources. The
X-axis shows the traffic generation rate and the Y-axis the measured ratio of dropped/injected packets.

6 Experimental Results

We ran simulations with 3 major objectives: packet processing performance, chip
verification, and confirmation of accurate heterogeneous model support. Packet pro-
cessing tests used INSEE [40] to assess the adequacy of the interconnection network.
Simulations for chip verification used ARM SoC Designer Simulator on a complete
SystemC model of the SpiNNaker chip. The heterogeneous model tests ran on the
physical SpiNNaker test chip, using PyNN [6] as a standard simulation front-end.
Our simulations used a 4-chip system with 2 processors per chip (corresponding to
the first test board).

6.1 Packet Performance Testing

The first set of experiments focuses on measuring the impact that traffic locality,
causality and burstiness have on the performance of the interconnection network.
We modeled the workloads so that the locality, causality andburstiness of the traffic
can be tuned using a collection of parameters. By sweeping over these parameters,
we were able to assess the viability of the network interconnect in handling typical
workloads during “Regular Operation” (RO) - a figure of meritderived in a previous
work [39] from the maximum expected firing rate of neurons, the number of neurons
supported in each chip and the packet size.

The locality experiments plotted in Fig. 7 used independenttraffic sources (non-
causal traffic) with various traffic generation rates from0.1×RO (0.001 pkt/cyc/node)
to 10×RO (0.1 pkt/cyc/node), and permit the observation of the relation between the
degree of locality and the ratio of dropped packets. Most values are equal to zero: no
packet is dropped, implying that the system behaves properly. Most configurations



18 A. D. Rast, J. Navaridas, et al.

can fully handle traffic with loads over 10 times those expected in the real system.
Only those configurations where the traffic is sent to very distant areas (λ = 128 and
λ = 64) show degradation, and even then it is limited to3.7 and7 times the maxi-
mum expected during regular operation of the system. This behaviour reinforces the
impression of robustness encountered in previous experimentation [39]. At any rate,
the load that the system can handle increases inversely withthe distance. While lack
of locality severely affects performance, it occurs at loads well abovethose required
during regular operation of SpiNNaker. Because the system virtualises the network
topology, an astute choice of mapping will almost always make it possible to keep
routes mostly local, and thus degradation of network performance for load conditions
in any event far outside the expected operating regime is of minimal concern.

Another interesting finding from the experiments is that, inthose cases in which
the network reaches saturation, the distance distributioncomputed at injection and
that measured at consumption (considering those packets that are actually consumed)
are noticeably different. Figure 8 shows the cumulative distance distribution of the
system when being fed by the most distant traffic (λ = 128), at loads below and over
the saturation point. Three figures of merit are plotted: thefirst one is the distance
distribution at injection (Di), computed as the number of hops in the shortest path
between source and destination. The second is the distance distribution at consump-
tion (Dc), also computed as the shortest path. Finally, the third is the distribution of
the distance actually travelled by the packets, measured asthe actual number of hops
the packet traveled (Dt). Note that utilization of the emergency routing mechanism
only affectsDt.

(a) Network fed at RO level (non-saturated) (b) Saturated network at 10×RO load

Fig. 8 Cumulative distance distribution functions measured at injection and consumption

These three distributions are almost identical when the system is handling ex-
pected loads (RO in Figure 8(a)) indicating that the networkis not saturated. By
contrast, when the system handles excessively high loads (10 RO in Fig. 8(b)), it
reaches saturation and these distributions are very different. The distribution at injec-
tion shows no noticeable change compared with the previous scenario. However the
distance distributions at consumption are noticeably different.Dc is shifted to the left
(shorter distances), meaning that those packets that have to travel longer distances are
more likely to be dropped. In contrast,Dt is shifted to the right (longer distances).



Managing Scalability in Event-Driven Models on the SpiNNaker System 19

This is because an increase in the number of hops actually travelled by the pack-
ets reflects frequent activation of the emergency routing mechanism. Taken together,
the locality and emergency routing tests suggest that good neural mappings should
attempt to cluster routes towards local processor nodes. The performance figures sug-
gest, however, that the neuron-to-node mapping, while being important, is not going
to become a critical issue when simulating actual neural activity with SpiNNaker.

(a) Single Packets (b) 5-packet bursts

(c) 10-packet bursts (d) 20-packet bursts

Fig. 9 Packet dropped ratio - 256x256 SpiNNaker network. Poisson traffic with causality. X and Y axes
are as in fig. 7. Generation rates are shown in a shorter range for clarity.

Of more potential concern is the presence of burst traffic. The second set of exper-
iments aims to measure the impact of traffic causality and burstines. Using the previ-
ously explained triggering mechanism we tested various configurations that manage
the sameoverall amount of traffic but with different levels of causal generation of
packets (i.e.,G is fixed andir, p andn are selected accordingly). We fixed gener-
ation rates (G) around the point where independent-only traffic forced thesystem
to drop packets (≈0.037 packets/cycle/node). Fig. 9 shows the results for themost
distant traffic (λ = 128) but results are similar for otherλ values when managing
loads close to their corresponding saturation points. (Valuesλ = 64 andλ = 32
were checked, but not plotted for the sake of brevity.) In allcases, the higher degree
of causality in the traffic, the lower the packet dropped ratio once the system reaches
saturation. This is inherent to the causality of the traffic,because when packets are
dropped they do not reach their destination; therefore theydo not trigger other pack-



20 A. D. Rast, J. Navaridas, et al.

ets. For this reason the actual generation rate is lower thanexpected, which can be
seen as a form of self-throttling of the workload. Notably, the larger the burst length
and the probability to trigger a burst the lower the injection rate at which the network
starts dropping packets, since large bursts generate congestion around the injecting
node. Source-side management of packet generation: a function of thesoftware, ap-
pears to be the more important factor in mitigating against packet loss thanhardware
limitations.

6.2 Simulation-Based Functionality Testing

Having established the traffic viability of the network, thenext series of tests verify
basic functionality: does the SpiNNaker chip faithfully reproduce the neural model?
We performed tests both with the spiking model and the MLP model.

(a) Far away from the target (b) Approaching the target

(c) Target reached

Fig. 10 Doughnut hunter test. Successive frames show the network’s “body” as it approaches the target.



Managing Scalability in Event-Driven Models on the SpiNNaker System 21

6.2.1 Spiking Tests

We ran two different simulations using the spiking model. Inthe first we implemented
a randomly-connected network with 48 excitatory and 16 inhibitory neurons having
40 connections per neuron with random 1-16 ms delay between neurons. We then
stimulated 6 excitatory neurons and 1 inhibitory neuron of the population with a con-
stant input in order to simulate external input. As we reported in [27] this network
produced spiking patterns and synaptic learning consistent with that expected. In the
second set of tests we created a synthetic environment: a “doughnut hunter” appli-
cation. The network in this case had visual input and motion output; the goal was to
get the position of the network’s (virtual) body to a target:a toroid or “doughnut”.
Testing (figs. 10(a), 10(b), and 10(c)) verified that the network could successfully
track and then move its body towards the doughnut, ultimately reaching the target.
Although basic, these tests verified the functionality: theneural model behaved as
expected both at the behavioural level and at the signal (spike) level.

6.2.2 MLP Tests

To test the MLP network we created an application based on the“digits” applica-
tion from LENS (http://tedlab.mit.edu/˜dr/lens), a software-based MLP simulator.
Our network removed extraneous structural complications from the example to ar-
rive at a simple feedforward network with 20 input, 20 hidden, and 4 output neurons.
We trained the network using momentum learning with a momentum of 0.875 and
a learning rate of 0.0078125, initialising the weights randomly between [-0.5, 0.5]
We augmented the Lens-supplied data set with digits from 0-9and added 2 sets of
distorted digits with values 0-9. We then ran the network through 3 successive train-
ing epochs. Results are in fig. 11. Once again these results are consistent with basic
functionality.

6.3 On-Chip Performance Testing

The final two tests used models running on the actual hardware- in this case on a PCB
equipped with 4 SpiNNaker test chips interconnected as shown in fig. 12(a). Each
chip connects to neighbouring chips over the correspondingphysical link of the 6
available (the black lines in the figure). Test chips containtwo cores, one for system-
maintenance “monitor” functionality and the other one to simulate neurons: up to
1000 spiking units per core. The tests investigate the behaviour of a real multi-chip
SpiNNaker system modelling networks of spiking neurons. Weused LIF neurons [50]
for these tests.

6.3.1 Synfire Chain

In order to test a scalable network and verify bursty networkdynamics, we imple-
mented a “synfire chain” model [1], [17]. A synfire chain is a feedforward neural
network composed of groups of neurons or “pools”, where every pool connects to the



22 A. D. Rast, J. Navaridas, et al.

Fig. 11 SpiNNaker MLP test, weight changes. To improve readability the diagram shows onlyselected
weights; unshown weights are similar. The weight changes show the expected evolution. Weight changes
reflect an overall downward trend, consistent with early stages of momentum learning. The oscillations are
characteristic of the learning rule.

next one in the hierarchy. Such a model propagates characteristic bursts of activity
through the network. We simulated 4 pools composed of 250 neurons for each chip
in a 4-chip testing environment, for a total of 16 pools and 4000 neurons (fig. 12(a)).

We number neuron pools from 1 to 16, each neuron in a pool connected to the cor-
responding neuron of the subsequent pool. The last pool is connected back to the first,
providing inhibitory feedback. Weights are set so that one spike received will make
the neuron fire, hence propagating the activity through the network. Presynaptic and
post-synaptic neurons may reside on different chips (eg. connections from pool #4
and pool #5) or locally (eg. connections from pool #1 to pool #2). Red straight ar-
rows indicate such routes. We stimulated 35 random neurons in the first population
by injecting them with a current strong enough to make them fire at∼20 Hz. The
activity is then propagated with random delays in the range 1-8 msec through the
other pools. Fig. 13 shows the results of the simulation, subdividing the raster plots
and mean activity firing rate by chip. The firing rate is averaged over the number of
neurons in the chip (1000), giving a mean population firing rate. Due to the nature of
the network structure and simulation the activity is bursty, oscillating with peaks of 7
Hz (averaged over the whole population with a sliding windowof 10 msec).

Table 12(b) shows spike activity and multicast (MC) packet counts for each chip.
During the simulation every pool emits 756 spikes, for a total of 3024 spikes per
chip. 3

4
of the connections are local, implying that the same proportion of produced

MC packets will be consumed locally (local to local packets), while 1

4
will be routed

off-chip. Every chip thus sends (local to external) and receives 756 (external to local)
MC packets. Chip [0,0] also routes packets from pool #8 (chip[0,1]) to pool #9
(chip [1,0]), giving 756 external to external (transit) packets in the table for chip [0,0].

The on-chip network implementations use the PyNN [6], [10] multiplatform neu-
ral description environment, permitting direct comparison of the performance on-chip



Managing Scalability in Event-Driven Models on the SpiNNaker System 23

2

43

11 12

910

13 14

15

7

65

Neuron Pool

Neural Connection Packet Route

Physical Link

1

16

8

1, 0

1, 10, 1

0, 0

(a) Configured Network Structure On Chip. Blue curved
arrows depict neural connections between pools. Such
connections arevirtual, existing only at a model level;
at the device level they correspond to routes over phys-
ical links (black lines).

Neurons per Pool: 250 Pools per Chip: 4

Neurons per Chip: 1000 Total Neurons: 4000

Spikes per Pool: 756 Total Spikes: 12096

CHIP ID

0,0 0,1 1,0 1,1
PACKET

2268 2268 2268 2268

756 0 0 0

756 756 756 756

756 756 756 756

TOTAL 4536 3780 3780 3780

local to 
local

external 
to 

external

external 
to local

local to 
external

(b) Spiking (multicast) packet activity sum-
mary

Fig. 12 Synfire network summary

0 200 400 600 800 1000
Time (ms)

0

200

400

600

800

Ne
ur

on
 #

Ch
ip

 0
, 0

0 200 400 600 800
Time (ms)

1
2
3
4
5
6
7
8

Fi
rin

g 
ra

te
 (H

z)

1000

1200

1400

1600

1800

Ne
ur

on
 #

Ch
ip

 0
, 1

1
2
3
4
5
6
7

Fi
rin

g 
ra

te
 (H

z)

2000

2200

2400

2600

2800

Ne
ur

on
 #

Ch
ip

 1
, 0

1
2
3
4
5
6

Fi
rin

g 
ra

te
 (H

z)

3000

3200

3400

3600

3800

Ne
ur

on
 #

Ch
ip

 1
, 1

1
2
3
4
5
6

Fi
rin

g 
ra

te
 (H

z)

Fig. 13 Raster Plot



24 A. D. Rast, J. Navaridas, et al.

0 200 400 600 800 1000
Time (ms)

0

200

400

600

800

1000

Ne
ur

on
 #

0 200 400 600 800 1000
Time (ms)

0

20

40

60

80

100

Fi
rin

g 
ra

te
 (H

z)

Fig. 14 Capacity limit testing: raster plot and mean firing rate for chip 0, 0. The firing rate is averaged
over a time window of 10 ms.

with a standard software simulator - in this case NEST [11]. On-chip simulations run
in real-time, thus the 1000 ms simulation time is the actual time to run. By compar-
ison, a NEST implementation of the same model took 4163 ms to complete. While
we hasten to emphasise that such a result is preliminary and based on a single ob-
servation, SpiNNaker thus demonstrates approximately a4× speedup at this (small)
scale.

6.3.2 Capacity limits testing

In order to investigate the capacity of the inter-chip communication interface we pop-
ulated each chip with 1000 neurons, connecting each neuron to the corresponding
neuron in the next chip (one-to-one connection). The last chip feeds excitatorially
back into the first. Every spike produced in a chip is thus sentto the next chip (i.e.
there are no locally processed spikes). We stimulated 500 neurons in the first chip
with a current sufficient to make them fire at∼20 Hz. Positive feedback makes the
activity build up up to∼90 Hz producing∼49,000 spikes in∼500msec (fig. 14). The
chip can sustain this level of activity for 500 msec but then the (software) communi-
cations buffer overflows, breaking the connection loop and leaving only the activity
due to the input (vertical stripes in the raster plot after 500ms). This test demon-
strates the ability of the communications infrastructure to sustain high activity rates
for short periods of time, as well as the current limitationsof the implemented mech-
anism. Further tests (not shown) indicated that the system could sustain continuous
activity at lower frequencies, but exhibited rapid breakdown at higher frequencies.



Managing Scalability in Event-Driven Models on the SpiNNaker System 25

Fig. 15 A general event-driven function pipeline for neural networks. The grey box is the SpiNNaker
realisation.

7 Discussion

From the models that have successfully run it is clear that SpiNNaker can support
multiple, very different neural networks; how general thiscapability is remains an
important question. We can define a generalised function pipeline that is adequate for
most neural models in existence (fig 15). The pipeline model emerges from a consid-
eration of what hardware can usually implement efficiently in combination with ob-
servations about the nature of neural models. Broadly, mostneural models, at the level
of the atomic processing operation, fall into 2 major classes, “sum-and-threshold”
types, that accumulate contributions from parallel inputsand pass the result through
a nonlinearity, and “dynamic” types, that use differentialstate equations to update in-
ternal variables. The former have the general formSj = T (ΣiwijSi) whereSj is the
output of the individual process, T is some nonlinear function, i are the input indices,
wij the scaling factors (usually, synaptic weights) for each input, andSi the inputs.
The latter are systems with the general formdX

dt
= E(X)+F (Y )+G(P ) whereE,

F , andG are arbitrary functions,X is a given process variable,Y the other variables,
andP various (constant) parameters. Meanwhile, SpiNNaker’s processors can easily
implement polynomial functions but other types, e.g. exponentials, are inefficient. In
such cases it is usually easier to implement a look-up table with polynomial interpo-
lation. Such a pipeline would already be sufficient for sum-and-threshold networks,
which self-evidently are a (possibly non-polynomial) function upon a polynomial.
It also adequately covers the right-hand-side of differential equations: thus, to solve
such equations, it remains to pass them into a solver. For very simple cases it may
be possible to solve them analytically, but for the general case, the Euler method
evaluation we have used appears to be adequate.

In principle, then, SpiNNaker can implement virtually any network. In practice,
as the packet experiments show, traffic density sets upper limits on model size and
speed. Burstiness in the generation of traffic may generate contention around the node
that is injecting. This contention may lead to dropping packets at loads at which the
network would operate flawlessly with non-causal traffic, but still significantly higher
than the load required during regular operation of the system. In mitigation, causal
traffic tends to self-throttle, because dropping of packetsleads to a reduction of the



26 A. D. Rast, J. Navaridas, et al.

packet generation rate. Another important discovery is that traffic burstiness affects
the injection rate at which the network is forced to drop packets. The larger the burst
length and the probability to trigger a burst are, the lower the generation rate at which
the network starts dropping packets. This is because large bursts generate congestion
around the injecting node, which can eventually spread to the whole network, forcing
packets to be dropped at theirsource. We remark, however, that the simulated loads
are more than three and a half times those required during regular operation of the
system and that the spatial distribution of the traffic is utterly pessimistic. Careful
analysis of the flow of execution on the SystemC model determined that the failure
mode was the speed of the ISR: by 3 packets per update packets were arriving faster
than the time to complete the Fast Interrupt (FIQ) ISR. In thehardware simulations,
a similar analysis showed that network breakdown in the spiking models was hap-
pening due to receive buffer overflow. Some of this may be attributable to known
inefficiencies in the queue implementation. Clearly, very efficient interrupt service
routines, together with aggressive source-side output management, are essential un-
der extreme loading conditions.

Careful management of memory variables is also an importantconsideration.
Both models involve multiple associative memories and lookup tables. If speed is
critical, these must reside in DTCM or ITCM, and this places avery high premium
on efficient table implementations. If it is possible to compute actual values from a
smaller fixed memory block this will often be a better implementation than a LUT
per neuron.

Solving differential equations introduces a third consideration: time efficiency
and accuracy. Most nonlinear differential equations have no analytic solution, but nu-
merical methods are computationally complex. The Euler method we used is usually
an acceptable tradeoff, but it does introduce a synchronouselement into the model.
Furthermore the time step limits simulation accuracy. It also places fixed, absolute
upper bounds on the computation time per neuron.

Both models break down catastrophically if the packet traffic overwhelms the
processors’ ability to keep up. In the spiking model, this occurs when the neurons
become excessively bursty. In the MLP model, this occurs when any one of the 3
component processes becomes disproportionately faster (i.e. simpler) than the oth-
ers. Large network sizes exacerbate the problem in both cases. This issue appears
to be fundamental in a truly concurrent processing system where individual proces-
sors operate asynchronously and independently. Finding effective ways to manage
the problem, which does not arise in synchronous systems because of the predictable
input timing relationships, is a critical future research topic.

Notwithstanding these challenges, we have now demonstrated the ability of SpiN-
Naker, even in a reduced test chip configuration, to run models of reasonable size
(∼4000 neurons). This represents only a start, with simple models. We are currently
working on implementing larger-scale, more biologically realistic models that sim-
ulate major subsystems of the brain and are scalable across awide range of model
sizes. Such models will include heterogeneous neuron and synaptic types operating
with the same simulation, and possibly at different levels of structural abstraction.
Part of this work includes the creation of more model types toexpand system-level
libraries, notably voltage-gated NMDA synapses with time-dependent channel kinet-



Managing Scalability in Event-Driven Models on the SpiNNaker System 27

ics. Work on refining the packet processing, particularly inthe host interface from
SpiNNaker to the user, is also a major activity. We are conducting a systematic re-
view and revision of the software model libraries, to streamline operation and im-
prove “plug-in” development capability. This work provides improved support for
full SpiNNaker chip, containing 18 cores and some enhanced features such as native
support for atomic operations and debugging packets, whichwas delivered and be-
gan testing in May 2011. This chip will, obviously, support far larger models, and
possibly more. There is evidence that in addition to neural models, SpiNNaker’s
parallel-processing architecture may find interesting uses outside the neural field, and
thus we are investigating these where appropriate. Certainly, the emergence of such
non-neural applications is an indication that SpiNNaker demonstrates important and
possibly fundamental properties of parallel computing.

The pre-eminent feature of the software model, characteristic of native parallel
computation, ismodularisation of dependencies. This includes not onlydata de-
pendencies (arguably, the usual interpretation of the term), but also temporal and
abstractional ones. In other words, the model does not placerestrictions on execution
order between modules, or on functional support between different levels of soft-
ware and hardware abstraction. Architecturally, the 3 levels of software abstraction
distribute the design considerations between different classes of service and allow
a service in one level to ignore the requirements of another,so that, for example, a
Model Level neuron can describe its behaviour without having to consider how or
even if a System Level service implements it. Structurally,it means that services op-
erate independently and ignore what may be happening in other services, which from
their point of view happen “in another universe” and only communicate via events
“dropping from the sky”, so to speak. Such a model accuratelyreflects the true na-
ture of parallel computing and stands in contrast to conventional parallel systems that
require coherence checking or coordination between processes.

8 Conclusions

By implementing an event-driven model directly in hardware, SpiNNaker comes con-
siderably closer to biological neural computation than clocked digital devices. At the
same time it brings into sharp relief the major differences from synchronous com-
putation that place a much greater programming emphasis in event-driven computing
on the unpredictability of the flow of control. This important programming difference
underscores the urgency for event-driven development tools, which at this point are
scarce to nonexistent. It is clear that most development tools today have an underly-
ing synchronous assumption, which in addition to complicating development, tends
to influence programmers’ conceptual thinking - thus perpetuating the synchronous
model. For example, even at a most basic level, the idea of programming in alan-
guageis fundamentally synchronous and sequential: it is confusing and difficult to
express event dynamics in a language-like form. Possibly a development environ-
ment that moved away from a linguistic model towards graphically-orientated devel-
opment, for example using Petri nets, might make it easier todevelop for event-driven
systems. If asynchronous dynamics is by definition a necessary feature of true paral-



28 A. D. Rast, J. Navaridas, et al.

lel processing, perhaps the linguistic model is one reason why developing effective
parallel programming tools has historically been difficult.

In the same way that the entire software model needs review, the hardware model
for the neuromimetic architecture remains a work in progress. SpiNNaker involves
various design compromises that future neuromimetic chipscould improve upon.
Most obvious is the use of (locally) synchronous ARM968 processors. Eventually
it would be ideal to have each of the local programmable processors be themselves
asynchronous. Meanwhile the interrupt mechanism in the ARM968 assumes a rela-
tively slow interrupt rate. More forceful hardware could rectify this limitation. For
example, if the vectored interrupt controller coulddirectly vector the processor to
the appropriate exception, bypassing the entry point processing, interrupt rate could
increase while narrowing critical time windows. Such a system might also have com-
pletely independent working memory (“register”) banks foreach exception, as well
as a common area to pass data between exception modes withoutmemory moves.
These kinds of features would be asking for data corruption in a synchronous model
but become logical in the event-driven model.

How far should neural network chips go in directly implementing the model in
hardware? For years the mesmerising concept of “direct implementation” has been
popular, yet it is fundamentally a misconception: since the“actual” model of comput-
ing in the brain is unknown, there can be no certainty a chip isdirectly implementing
anything. The SpiNNaker neuromimetic architecture provides a more realistic and
useful answer: instead of trying to answer the question, build systems that can define
the problem.

Acknowledgements The SpiNNaker project is supported by the Engineering and Physical Sciences Re-
search Council, partly through the Advanced Processor Technologies Portfolio Partnership at the Univer-
sity of Manchester, and through Grants EP/D07908X/1 and GR/S61270/01; and also by ARM and Silistix.
When this research was performed Dr. Javier Navaridas was supported by a post-doctoral grant of the Uni-
versity of the Basque Country and is now a Newton International Fellow with the University of Manchester.
Prof. Jose Miguel-Alonso is supported by the Spanish Ministry of Education and Science, grant TIN2010-
14931, and by Basque Government grant IT-242-07. Dr. Mikel Luján holds a Royal Society University
Research Fellowship. We appreciate the support of these sponsors and industrial partners.

References

1. Abeles, M.: Local cortical circuits : an electrophysiological study. Springer-Verlag (1982)
2. Ananthanarayanan, R., Modha, D.S.: Anatomy of a Cortical Simulator. In: Proc. 2007 ACM/IEEE

Int’l Conf. on Supercomputing (SC’07), pp. 1–12 (2007)
3. Boahen, K.A.: Point-to-Point Connectivity Between Neuromorphic Chips Using Address Events.

IEEE Trans. Circuits and Systems 2: Analog and Digital SignalProcessing47(5), 416–434 (2000)
4. Cauwenberghs, G.: An Analog VLSI Recurrent Neural Network Learning a Continuous-Time Trajec-

tory. IEEE Trans. Neural Networks7(2), 346–361 (1996)
5. Dally, W.J., Seitz, C.L.: Deadlock-Free Message Routingin Multiprocessor Interconnection Net-

works. IEEE Trans. ComputersC-36(5), 547–553 (1987)
6. Davison, A.P., Br̈uderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., Perrinet, L., Yger, P.:

PyNN: a common interface for neuronal network simulators. Frontiers in Neuroinformatics2(11)
(2009)

7. Delorme, A., Thorpe, S.J.: SpikeNET: an event-driven simulation package for modelling large net-
works of spiking neurons. Network: Computation in Neural Systems14(4), 613–627 (2003)



Managing Scalability in Event-Driven Models on the SpiNNaker System 29

8. Fieres, J., Schemmel, J., Meier, K.: Realizing biological spiking network models in a configurable
wafer-scale hardware system. In: Proc. 2008 Int’l Joint Conf. on Neural Networks (IJCNN2008), pp.
969–976. IEEE Press (2008)

9. Furman, B., White, J., Abidi, A.A.: CMOS Analog IC Implementing the Back Propagation Algorithm.
Neural Networks1(Supplement 1), 381 (1988)

10. Galluppi, F., Rast, A., Davies, S., Furber, S.: A General-purpose Model Translation System for a
Universal Neural Chip. In: Proc. 2010 Int’l Conf. Neural Information Processing (ICONIP 2010).
Springer-Verlag (2010)

11. Gewaltig, M.O., Diesmann, M.: NEST (NEural Simulation Tool). Scholarpedia2(4), 1430 (2007)
12. Glackin, B., McGinnity, T.M., Maguire, L.P., Wu, Q.X., Belatreche, A.: A Novel Approach for the

Implementation of Large Scale Spiking Neural Networks on FPGAHardware. In: Proc. 8th Int’l
Work Conf. Artificial Neural Networks (IWANN 2005), pp. 552–563. Springer-Verlag (2005)

13. Goodman, D., Brette, R.: Brian: a simulator for spiking neural networks in Python. Frontiers in
Neuroinformatics2(5) (2008)

14. Graf, H.P., Hubbard, W., Jackel, L.D., de Vegvar, P.G.N.: A CMOS Associative Memory Chip. In:
Proc. IEEE First Int’l Conf. on Neural Networks, pp. 461–468(1987)

15. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O.: Mapping
the Structural Core of Human Cerebral Cortex. PLoS Biology6(7), 1479–1493 (2008)

16. Harkin, J., Morgan, F., Hall, S., Dudek, P., Dowrick, T.,McDaid, L.: Reconfigurable platforms and
the challenges for large-scale implementations of spiking neural networks. In: Proc. 2008 Int’l Conf.
Field Programmable Logic and Applications (FPL 2008), pp. 483–486 (2008)

17. Hayon, G., Abeles, M., Lehmann, D.: A Model for Representing the Dynamics of a System of Synfire
Chains. J. Computational Sci.18(1), 41–53 (2005)

18. Hines, M.L., Carnevale, N.T.: The NEURON simulation environment. Neural Computation9(6),
1179–1209 (1997)

19. Holler, M., Tam, S., Castro, H., Benson, R.: An Electrically Trainable Artificial Neural Network
(ETANN) with 10240 “Floating Gate” Synapses. In: Proc. 1989Int’l Joint Conf. Neural Networks
(IJCNN1989), pp. 191–196 (1989)

20. Indiveri, G., Chicca, E., Douglas, R.: A VLSI Array of Low-Power Spiking Neurons and Bistable
Synapses With Spike-Timing Dependent Plasticity. IEEE Trans. Neural Networks17(1), 211–221
(2006)

21. Izhikevich, E.: Simple Model of Spiking Neurons. IEEE Trans. on Neural Networks14, 1569–1572
(2003)

22. Izhikevich, E., Edelman, G.M.: Large-scale model of mammalian thalamocortical systems. Proc.
National Academy of Sciences of the USA105(9), 3593–3598 (2008)

23. Izhikevich, E.M.: Which Model to Use for Cortical SpikingNeurons. IEEE Trans. Neural Networks
15(5), 1063–1070 (2004)

24. James, M., Hoang, D.: Design of Low-Cost, Real-Time Simulation Systems for Large Neural Net-
works. J. Parallel and Distributed Computing14(3), 221–235 (1992)

25. Jin, X., , Luj́an, M., Khan, M.M., Plana, L.A., Rast, A.D., Welbourne, S.R., Furber, S.B.: Efficient
Parallel Implementation of Multilayer Backpropagation Network on Torus-Connected CMPs. In:
Proc. 2010 ACM Int’l Conf. on Computing Frontiers (CF’10), pp. 89–90 (2010)

26. Jin, X., Furber, S., Woods, J.: Efficient Modelling of Spiking Neural Networks on a Scalable Chip
Multiprocessor. In: Proc. 2008 Int’l Joint Conf. on Neural Networks (IJCNN2008) (2008)

27. Jin, X., Rast, A., Galluppi, F., Khan, M.M., Furber, S.: Implementing learning on the SpiNNaker uni-
versal neural chip multiprocessor. In: Proc. 2009 Int’l Conf. Neural Information Processing (ICONIP
2009). Springer-Verlag (2009)

28. Johansson, C., Lansner, A.: Towards cortex sized artificial neural systems. Neural Networks20(1),
48–61 (2007)

29. Khan, M., Lester, D., Plana, L., Rast, A., Jin, X., Painkras, E., Furber, S.: SpiNNaker: Mapping Neural
Networks onto a Massively-Parallel Chip Multiprocessor. In: Proc. 2008 Int’l Joint Conf. on Neural
Networks (IJCNN2008) (2008)

30. Lazzaro, J., Wawrzynek, J., Mahowald, M., Silviotti, M., Gillespie, D.: Silicon Auditory Processors
as Computer Peripherals. IEEE Trans. Neural Networks4(3), 523–528 (1993)

31. Lee, B.J., Sheu, B.W.: General-Purpose Neural Chips with Electrically Programmable Synapses and
Gain-Adjustable Neurons. IEEE J. of Solid-State Circuits27(9), 1299–1302 (1992)

32. Lytton, W.H., Omurtag, A., Neymotin, S.A., Hines, M.L.: Just-in-Time Connectivity for Large Spik-
ing Networks. Neural Computation20(11), 2745–2756 (2008)



30 A. D. Rast, J. Navaridas, et al.

33. Maguire, L., McGinnity, T.M., Glackin, B., Ghani, A., Belatreche, A., Harkin, J.: Challenges for
large-scale implementations of spiking neural networks on FPGAs. Neurocomputing71(1–3), 13–29
(2007)

34. Mattia, M., Guidice, P.D.: Efficient Event-Driven Simulation of Large Networks of Spiking Neurons
and Dynamical Synapses. Neural Computation12(10), 2305–2329 (2000)

35. Mehrtash, N., Jung, D., Hellmich, H., Schönauer, T., Lu, V.T., Klar, H.: Synaptic Plasticity in Spiking
Neural Networks (SP2INN): a System Approach. IEEE Trans. Neural Networks14(5), 980–992
(2003)

36. Migliore, M., Cannia, C., Lytton, W.W., Markram, H., Hines, M.L.: Parallel network simulations with
NEURON. J. Computational Neuroscience21(2), 119–29 (2006)

37. Mouraud, A., Paugam-Moisy, H., Puzenat, D.: A distributed and multithreaded neural event driven
simulation framework. In: Proc. IASTED Int’l Conf. Parallel and Distributed Computing and Net-
works, pp. 212–217 (2006)

38. Nageswaran, J.M., Dutt, N., Krichmar, J.L., Nicolau, A.:A configurable simulation environment for
the efficient simulation of large-scale spiking neural networks on graphics processors. Neural Net-
works22(5–6) (2007)

39. Navaridas, J., Luján, M., Miguel-Alonso, J., Plana, L.A., Furber, S.B.: Understanding the Intercon-
nection Network of SpiNNaker. In: Proc. 23rd Int’l Conf. Supercomputing (ICS’09), pp. 286–295
(2009)

40. Navaridas, J., Miguel-Alonso, J., Pascual, J.A., Ridruejo, F.J.: Simulating and evaluating interconnec-
tion networks with INSEE. Simulation Modelling Practice andTheory19(1), 494–515 (2011)

41. Navaridas, J., Plana, L.A., Miguel-Alonso, J., Luján, M., Furber, S.B.: SpiNNaker: Impact of Traffic
Locality, Causality and Burstiness on the Performance of theInterconnection Network. In: Proc. 2010
ACM Conf. Computing Frontiers (CF’10), pp. 11–19 (2010)

42. Orellana, C.G., Caballero, R.G., Velasco, H.M.G., Aligue, F.J.L.: NeuSim: a modular neural networks
simulator for Beowulf clusters. In: Proc. 6th Int’l Work-Conference on Artifical and Natural Neural
Networks (IWANN 2001), Part II, pp. 72–79. Springer-Verlag(2001)

43. Pelayo, F.J., Ros, E., Arreguit, X., Prieto, A.: VLSI Implementation of a Neural Model Using Spikes.
Analog Integrated Circuits and Signal Processing13(1–2), 111–121 (1997)

44. Plana, L., Furber, S., Temple, S., Khan, M., Shi, Y., Wu, J., Yang, S.: A GALS Infrastructure for a
Massively Parallel Multiprocessor. IEEE Design & Test of Computers24(5), 454–463 (2007)

45. Porrmann, M., Witkowski, U., Kalte, H., R̈uckert, U.: Implementation of artificial neural networks
on a reconfigurable hardware accelerator. In: Proc. 2002 Euromicro Conf. Parallel, Distributed, and
Network-based processing, pp. 243–250 (2002)

46. Rast, A., Jin, X., Khan, M., Furber, S.: The Deferred Event Model for Hardware-Oriented Spiking
Neural Networks. In: Proc. 2008 Int’l Conf. Neural Information Processing (ICONIP 2008). Springer-
Verlag (2009)

47. Rast, A., Khan, M.M., Jin, X., Plana, L.A., Furber, S.: A Universal Abstract-Time Platform for Real-
Time Neural Networks. In: Proc. 2009 Int’l Joint Conf. on Neural Networks (IJCNN2009), pp. 2611–
2618 (2009)

48. Rast, A., Welbourne, S., Jin, X., Furber, S.: Optimal Connectivity in Hardware-Targetted MLP Net-
works. In: Proc. 2009 Int’l Joint Conf. on Neural Networks (IJCNN2009), pp. 2619–2626 (2009)

49. Rast, A., Yang, S., Khan, M., Furber, S.: Virtual Synaptic Interconnect Using an Asynchronous
Network-on-Chip. In: Proc. 2008 Int’l Joint Conf. on NeuralNetworks (IJCNN2008) (2008)

50. Rast, A.D., Galluppi, F., Jin, X., Furber, S.B.: The Leaky Integrate-and-Fire Neuron: A Platform for
Synaptic Model Exploration on the SpiNNaker Chip. In: Proc.2010 Int’l Joint Conf. Neural Networks
(IJCNN2010), pp. 3959–3966 (2010)

51. Rast, A.D., Jin, X., Galluppi, F., Plana, L.A., Patterson, C., Furber, S.B.: Scalable Event-Driven Native
Parallel Processing: The SpiNNaker Neuromimetic System. In: Proc. 2010 ACM Conf. Computing
Frontiers (CF’10), pp. 20–29 (2010)

52. Rice, K.L., Vutsinas, C.N., Taha, T.M.: A Preliminary Investigation of a Neocortex Model Implemen-
tation on the Cray XD1. In: Proc. 2007 ACM/IEEE Int’l Conf. onSupercomputing (SC’07), pp. 1–8
(2007)

53. Ros, E., Carrillo, R., Ortigosa, E.M.: Event-Driven Simulation Scheme for Spiking Neural Networks
Using Lookup Tables to Characterize Neuronal Activity. Neural Computation18(12), 2959–2993
(2006)

54. R̈uckert, U.: ULSI Architectures for Artificial Neural Networks. In: Proc. 9th Euromicro Wkshp. on
Parallel and Distributed Processing, pp. 436–442 (2001)



Managing Scalability in Event-Driven Models on the SpiNNaker System 31

55. Steinkraus, D., Buck, I., Simard, P.Y.: Using GPUs for machine learning algorithms. In: Proc. 8th
Int’l Conf. Document Analysis and Recognition, pp. 1115–1120 (2005)

56. Upegui, A., Pẽna-Reyes, C.A., Sanchez, E.: An FPGA platform for on-line topology exploration of
spiking neural networks. Microprocessors and Microsystems29(5), 211–223 (2005)

57. Vogelstein, R.J., Mallik, U., Vogelstein, J.T., Cauwenberghs, G.: Dynamically Reconfigurable Silicon
Array of Spiking Neurons With Conductance-Based Synapses. IEEE Trans. Neural Networks18(1),
253–265 (2007)

58. Watts, L.: Event-driven simulation of networks of spiking neurons. In: Advances in Neural Informa-
tion Processing (NIPS) 6, pp. 927–934. Morgan Kaufmann Publishers (1994)

59. Yasunaga, M., Masuda, N., Yagyu, M., Asai, M., Yamada, M.,Masaki, A.: Design, Fabrication and
Evaluation of a 5-inch Wafer Scale Neural Network LSI Composedof 576 Digital Neurons. In: Proc.
1990 Int’l Joint Conf. Neural Networks (IJCNN1990), pp. 527–535 (1990)

60. Yu, T., Cauwenberghs, G.: Analog VLSI Biophysical Neurons and Synapses With Programmable
Membrane Channel Kinetics. IEEE Trans. Biomedical Circuits and Systems4(3), 139–148 (2010)


