International Journal of Parallel Programming manuscript No.
(will be inserted by the editor)

Managing Burstiness and Scalability in Event-Driven Models
on the SpiNNaker Neuromimetic System

Alexander D. Rast - Javier Navaridas - Xin
Jin - Francesco Galluppi - Luis A. Plana -
Jose Miguel-Alonso - Cameron Patterson -
Mikel Luj an - Steve Furber -

Received: date / Accepted: date

Abstract Neural networks present a fundamentally different modedarhputation
from the conventional sequential digital model, for whiadneentional hardware is
typically poorly matched. However, a combination of modet ascalability limi-
tations has meant that neither dedicated neural chips nGABFhave offered an
entirely satisfactory solution. SpiNNaker introduces fedént approach, the “neu-
romimetic” architecture, that maintains the neural opgition of dedicated chips
while offering FPGA-like universal configurability. Thispallel multiprocessor em-
ploys an asynchronous event-driven model that uses iptegenerating dedicated
hardware on the chip to support real-time neural simulatidonetheless, event han-
dling, particularly packet servicing, requires carefutlannovative design in order
to avoid local processor congestion and possible dead\dekexplore the impact
that spatial locality, temporal causality and burstinddsaffic have on network per-
formance, using tunable, biologically similar synthetaffic patterns. Having estab-
lished the viability of the system for real-time operatiam use two exemplar neural
models to illustrate how to implement efficient event-hargllservice routines that
mitigate the problem of burstiness in the traffic. Extendivagk published in ACM
Computing Frontiers 2010 with on-chip testing, simulatresults indicate the via-
bility of SpiNNaker for large-scale neural modelling, wehémphasizing the need for
effective burst management and network mapping. Ultigatee goal is the cre-
ation of a library-based development system that can gl high-level neural
model from any description environment into an efficientNByéker instantiation.
The complete system represents a general-purpose platiatraan generate an ar-
bitrary neural network and run it with hardware speed antesca

Alexander Rast

School of Computer Science
University of Manchester
Oxford Road

Manchester, UK M13 9PL
Tel.: +123-45-678910

Fax: +123-45-678910
E-mail: rasta@cs.man.ac.uk



2 A. D. Rast, J. Navaridas, et al.

Keywords Asynchronous Burst- Network - Event-driven- Universal- Neural -
Multiprocessor Interconnection Real-time- Traffic - Characterisation

CR Subject Classification C.1.3

1 Introduction

Neural networks present an emphatically different modedahputation from the
conventional sequential digital model. This make it unclea best, whether run-
ning neural networks on industry-standard computer achites represents a good,
much less an optimum, implementation strategy. Such cosdeave become par-
ticularly pressing with the emergence of large-scale sgikhodels [22] attempting
biologically realistic simulation of brain-scale netwsrkWhile dedicated hardware
is thus becoming increasingly attractive [28], it is alsediaing clear that a fixed-
model design would be a poor choice [55], given that just asetlis debate over
the architectural model in the computational communitgr¢his no consensus on
the correct model of the neuron in the biological commun2§][ Our proposed so-
lution is the “neuromimetic” architecture: a system whosaedware retains enough
of the native parallelism and asynchronous event-drivaradhics of “real” neural
systems to be an analogue of the brain, enough generalgrigvogrammability to
experiment with arbitrary biological and computationaldats. This neuromimetic
device, SpiNNaker, is a scalable universal neural netwbilx that for the first time
provides a hardware platform for neural model exploratiole o support large-scale
networks with millions of neurons.

The SpiNNaker chip (fig. 1) is a plastic platform containirapfigurable blocks
of generic processing and connectivity whose structurefandtion are designed
and optimised for neural computation. This distinguisthegongly from completely
general-purpose FPGA's and also from dedicated devicéotten a fixed selection
of neural models. The primary features of the neuromimethigecture are:

Native Parallelism: There are multiple processors peradeveach operating com-
pletely independently from each other.

Event-Driven Processing: An external, self-containestantaneous signal drives
state change in each process, which contains a trigger thatitiate or alter the
process flow,

Incoherent Memory: Any processor may modify any memorytioceit can access
without notifying or synchronising with other processors.

Incremental Reconfiguration: The structural configuratbthe hardware can
change dynamically while the system is running.

These characteristics mean SpiNNaker has an entirelyreliffenodel of compu-
tation from the conventional sequential one. In ACM CompagiFrontiers 2010, we
used SpiNNaker simulations as an example to illustrateifferehces between asyn-
chronous and conventional parallel processing [51], [#Ere, we demonstrate the
example in practice with additional models tested on thesjglay hardware.



Managing Scalability in Event-Driven Models on the SpiNKaBystem 3

Fig. 1 SpiNNaker test chip.

2 Neural System Architectures

Neural networks are parallel processing architecturesrtalve simple atomic com-
putations occurring in individual elements - neurons -rcw@nected among each
other through links - synapses - that themselves performesiimited computa-
tion. In addition, synapses modify their computation indifover timescales long
compared to the process dynamics of neurons), usually st a weight which
simply scales the relative contribution of the individughapse. Many modern neu-
ral networks use spiking dynamics, involving a solution iffedential equations for
each neuron'’s state: these are typical of biological mo&sme networks, aimed at
purely computational applications, forego this continetime differential formula-
tion in favour of a discrete-time process that simply evidga static nonlinearity at
the neuron. Regardless of the model used, however, theiguestthe appropriate
computational platform for a neural network simulation haen one of the dominant
topics in the field.

2.1 Pure Software Simulation

The conventional way, and still by far the most widely-usestinod, to simulate neu-
ral networks is through software simulation on conventi@eanputers. The comput-
ing platform may vary all the way from a single uniprocess@r[R1], through PC
clusters [37] [42], to large mainframes [36] [2]. Softwaseequally varied but tends
to depend strongly on the research domain. For biologicadiistic modelling at the
microscopic level with fully accurate dynamics, the donminapplications are NEU-
RON [18] and GENESIS (http://genesis-sim.org). Simulaidee Brian [13] are in
common use for dynamic-level simulation where completéopical realism is sec-
ondary to the basic dynamics at the spiking level. Such soiwends to abstract



4 A. D. Rast, J. Navaridas, et al.

neurons to a spatial point, and spikes to zero-time evemtthd realm of artificial
neural networks for computing applications, software sashINNS (http://www:-
ra.informatik.uni-tuebingen.de/software/JavaNNSfwsete e.html) has seen some
use, although these applications are waning with the emeegef spiking networks.
Finally, many users use Matlab [23] or C/C++ [52] to writeith@vn neural simula-
tors.

Software simulation tends to be slow and may require largepeers for de-
tailed simulations on large-scale models. To improve parémce, recent software
tools have turned to event-driven computing [58] [34] [7wever, conventional
sequential computers do not usually have direct hardwagspastifor event-driven
applications, and thus most event-driven simulators #igtuam an emulation by us-
ing a small timestep, recording events in an event queueypddting all processes
dependent upon the events in the queue at the appropriastém[32], [53]. While
this improves efficiency over fully synchronous approaglitestill encounters lim-
itations with very large networks that require either uséigple dynamics such as
leaky integrate-and-fire, or modelling populations of m&sras a single object rather
than each individual neuron.

2.2 Adapted General-Purpose Hardware

The emergence of various general-purpose devices suppadime level of parallel
processing has generated numerous attempts to map vadota algorithms to the
hardware. A remarkable early attempt using a processor stiiting similarities to
SpiNNaker, the Datawave chip [24], appears not to have beesupd further be-
cause of the limited commercial success and eventual disagpce of the hardware.
While the increasing ubiquity of standard multicore mickpgssors introduces an
obvious opportunity to exploit parallelism, other, moreative approaches use field-
programmable gate arrays (FPGA’s) [45] and graphics pearamits (GPU's) [38].
FPGASs, in particular, offer an attractive possibilitycanfigurable computing. In re-
configurable architectures, the model can modify the harelwanfiguration of the
chip while the simulation is running. Either through componhswapping [12] or
network remapping [56], these approaches seek to circunseafability limitations,
with some success, but with both FPGA's and GPU'’s scalglhilis proven to be the
main problem, with FPGA's running into routing barriers da¢heir circuit-switched
fabric [33] and GPU'’s running into memory access barriex&rEmore problematic
has been power consumption: a typical large FPGA may digsipa0W and a GPU
accelerator- 200W. Thus adapting general-purpose hardware seems to basticeal
approach only for small-scale model prototyping.

2.3 Dedicated Neural Hardware

Given the limitations of off-the-shelf hardware, many goethave implemented ded-
icated neural hardware systems, usually involving a cust@rmAttempts began as
early as the late 1980’s [14], [9]. This approach yields treatest scope for architec-
tural diversity as well as performance: different desigagehused analogue [19] or



Managing Scalability in Event-Driven Models on the SpiNKaBystem 5

oo = : =8,
7 3 X A ? 2
g 1 * 9 ¢ N
e p ° Q
VANV, 0 . \)
o s % o e o
1 ~* X s [ § i .\
® ol o9 ¢ P R—a ‘
o Ay l . \
¢ > /s "
] o _aY s % e @
¢ ° s ) < ',“ o Al
[ o P S T - ! ] \
o > Py - »
p . X ] »
N o 3 ] v Jig
[N ® pe pe
Q @
t ° 4 Vad
s ° ° L 7
\ . s P
\ o ® ¢ pe gl 74
DS
B '. —————9 e Asynchronous
- L 4 - Interconnect
= Ethernet Link
i D
,,/S @® SpiNNaker CMP
4

Host System

Fig. 2 SpiNNaker system topology.

digital [59] technology, hardwired [4] or configurable [Safichitecture, continuous-
activation [31] or spiking [43] signalling, coarse- [54]fime-grained [8] parallelism.

In recent years, however, interest has moved primarily tds/@rocessors for the
simulation of spiking neural networks. Here again thereehlagen two threads of
development. In the “neuromorphic” approach [20], chips aealogue circuitry to

emulate as closely as possible the actual biophysics oheeabns [60]. The “neuro-

processor” approach [35], by contrast, attempts to usergepearpose digital com-

ponents with an internal structure optimised for massipalsallel neural processing.
Each has its limitations: neuromorphic chips are power- emmmiponent-efficient,

but relatively small-scale, and have limited or fixed modgbort. Neuroproces-
sors have, to date, suffered from interconnect limitati@amsombination of limited

bus bandwidth, synchronous shared-access protocols,i@uit-switched architec-

ture [16]. Thus, despite the obvious speed improvementiicalied neural devices
have not thus far achieved the scalability that would petraly large-scale simula-

tion, due to hardware limitations. To minimise such limtas while providing the

neural acceleration that only dedicated hardware cangeowe have introduced the
SpiNNaker neuromimetic architecture.

3 The SpiNNaker Neuromimetic IC

The SpiNNaker chip is the core building block component chmgé-scale system
using an array of chips arranged in a 2-dimensional trisargokus topology (fig. 2).
Using this diagonal-link topology increases system ratesss through the connection
redundancy inherent in the toroidal physical topology,le/peermitting an arbitrary
mapping of large-scale neural networks to physical chijpkliauks.



6 A. D. Rast, J. Navaridas, et al.

_— — — — — = = = = = —
( b 1 |
E Router CAM :
| S, ' Output |
—> Comms —>
> NoC
| Router |
| ] |
| v v |
| 'r ] TCM I r TCM I |
| | armoss ARMOGS | | ARMoes |
Core Core Core
| System NoC |
| SDRAM System |
Interface SRAM Ethernet
1
4 - --F- -

Fig. 3 SpiNNaker Architecture. The dashed box indicates the ¢xtiethe SpiNNaker chip. Dotted grey
boxes indicate local memory areas.

3.1 Implementation of the Neuromimetic Architecture

SpiNNaker integrates the essential elements of the “neiumetic” architecture: a
hardware model designed to support flexibility in model exgiion while imple-
menting as many known features of the neural model of comipatas practica-
ble explicitly in hardware for maximal performance [51].itiplements these key
architectural features using a mixture of off-the-shelfl @ustom components. By
design the system is optimised for spiking models, but tbsschot constrain it ex-
clusively to spiking neural networks. We identify four fesgs as fundamental to the
neuromimetic architecture.

3.1.1 Native Parallelism

“Real” neural networks are massively parallel procesddasive parallelism is there-
fore basic to the neuromimetic architecture. SpiNNaker @gcontains multiple (2

in the test implementation, 18 in a recently fabricatedieajsndependent ARM968

processors, each simulating a variable number of neuroichwebuld be as few as
1 or as many as 1,700. Each processor operates entirelyeindeptly (on separate
clocks) and has its own private subsystem containing vari@vices to support neu-
ral functionality. The principal devices are a communiaasi controller that handles



Managing Scalability in Event-Driven Models on the SpiNKaBystem 7

input and output traffic in the form of “spike” packets, a DMArtroller that pro-
vides fast virtual access to synaptic data residing off-ahia separate memory, and
a Timer that supports the generation of fixed time steps whargels need them.
The entire subsystem is therefore a self-contained privgestement modelling a
neural group. This “processing node” is truly concurrentthat it uses only local
information to control execution and operates asynchrslyduom other processing
nodes.

3.1.2 Event-Driven Processing

Biological neurons communicate primarily through spik&sort-duration impulses
whose precise shape is usually considered immaterialeSgigpear to function as
events - essentially point processes. SpiNNaker's comeatioh network is a config-
urable packet-switched asynchronous interconnect usiltiyess-Event Representa-
tion (AER) [30] to transmit neural signals between processAER is an emerging
neural communication standard [3] that abstracts spikes freurobiology into a sin-
gle atomic event, transmitting only the address of the netinat fired; SpiNNaker
extends this basic standard with an optional 32-bit payld&e interconnect itself
extends both on-chip and off-chip as the Communicationgvbigt-on-Chip (Comms
NoC). Previous work ([44], [29]) describes the design of eordfiguration procedure
for the Comms NoC. At the processor node, the communicationsoller receives
and generates AER spikes, issuing an interrupt (i.e., antetethe processor when
a new packet arrives. From the point of view of the neuromicretchitecture, this
fabric implements the support infrastructure for incretaéreconfiguration and the
event-driven model.

3.1.3 Incoherent Distributed Memory

The notion of controlled shared access to a central memorg simply does not exist
in biology; neurons update using purely local informatidhus any processor may
modify any memory location it can access without notifyingsgnchronising with
other processors. SpiNNaker processors have access to&prinemory resources:
their own local “Tightly-Coupled Memory” (TCM) and a glob8DRAM device,
neither of which require or have support for coherence mashes. The TCM is
only accessible to its own processor and contains both theuéing code (in the
“Instruction TCM” (ITCM)) and any variables that must be assible on-demand
(in the “Data TCM” (DTCM)). The global SDRAM contains the syptic data (and
possibly other large data structures). Since each synaphe SDRAM connects to
a single target neuron residing in a specific processor, B3/ is segmented into
discrete regions for each processor, grouped by postdgnagiron. This obviates
the need for coherence checking because only one process®mwill access a given
address range. At the processor node, the DMA controlleestile synapse appear
virtually local to the processor by bringing its data into ©W when an incoming
packet arrives [49]. The DMA controller also generates aanev DMA complete

- when the entire synaptic block has been transferred irtal lmemory. Overall



8 A. D. Rast, J. Navaridas, et al.

therefore, the SDRAM behaves more as an extension of loqalaneinto a large off-
chip area than a shared memory area, and thus from a systetwpaiew, effectively
all memory is local.

3.1.4 Incremental Reconfiguration

Biological neural networks are plastic: the physical togyl changes during oper-
ation. Likewise, the structural configuration of neuromiiméardware can change
dynamically while the system is running. SpiNNaker usess#ributed routing sub-
system to direct packets through the Comms NoC, which ctsgpike events into
AER packets. Each chip has a packet-switching router thatlea these packets and
distributes them seamlessly to all connected neuronsghrthe GALS interconnect.
The design of the router incorporates a multicast diffusi@thanism devised to sup-
port biologically realistic neural fan-out( 1000 connections/neuron) A 1024-word
associative routing table within each router defines theat@onnectivity. To min-
imise the risk of local failure, an “emergency routing” maafsm allows bypass of
a failed link using an automated routing algorithm that esypackets in a triangular
path around a local link obstruction. Routes are fully rgpaonmable by changing
the routing table, just as the model dynamics are reprogterby swapping the
running code, making it possible, at least in principle,goanfigure the model on
the fly.

3.2 Nondeterministic process dynamics

While this event-driven solution is far more scalable thathezi synchronous or
circuit-switched systems, it presents significant impletaion challenges when the
network is large and packet traffic dense.

No instantaneous global state: Since communications amchsonous the notion
of global state is meaningless. It is therefore impossiblget an instantaneous
“snapshot” of the system, and processors can only use ltfcaimation to control
process flow.

One-way communication: The network is source-routed. Ritmarpoint of view of
the source, the transmission is “fire-and-forget”: it capest no response to its
packet. From the point of view of the destination, the traigsian is “use-it-or-
lose-it"; either it must process the incoming packet imraéaly, or drop it.

No processor can be prevented from issuing a packet: Siece ifino global infor-
mation and no return information from destinations, no sewould wait indef-
initely to transmit. To prevent starvation, therefore, qg@esors must be able to
transmit in finite time.

Limited time to process a packet at destination; Similarsterations at the desti-
nation mean that it cannot wait indefinitely to accept inaognpackets. There is
therefore a finite time to process any incoming packet.

Finite and unbuffered local network capacity: Notwithstigzng the previous require-
ments, the network is a physical interconnect with finitedveidth, and critically,
no buffering. The router includeslanited Emergency Routing mechanism that



Managing Scalability in Event-Driven Models on the SpiNKaBystem 9

avoids congested or malfunctioning links by routing paskéirough the next
clockwise port. Thus the only management options to locabestion are net-
work rerouting and destination buffering.

No shared-resource admission control: Processors haessate shared resources
but since each one is temporally independent, there can breenbanism to pre-
vent conflicting accesses. Therefore the memory model ghierent.

These behaviours, decisively different from what is typicaynchronous sequential

or parallel systems, require a correspondingly differefitnveare model, as much a
part of the neuromimetisystenas the hardware, and which demonstrates much about
the concurrent model of computation.

4 Event-Driven Processing

The software model uses a hardware-design-like flow basdikoarchical levels of
abstraction. In a previous work [47] we introduced this \B&lesoftware model for
SpiNNaker, with a Model Level, a System Level, and a Deviceel ¢fig. 4). The
model defines an instantiation chain that proceeds from avielral neural model
down to a specific machine-level implementation.

4.1 The event-driven model at the Model Level

Model Level treats the system as a process abstraction idheg hll the hardware
detail and considers the model purely in terms of neuralgnttgs. For spiking neural
networks the event-driven abstraction is obvious: a spEileievent, and the dynamic
equations are the response to each input spike. New ingkgsspigger update of the
dynamics. In nonspiking networks different abstractioresreecessary. One easy and
common method is time sampling: events could happen at a tiixxedinterval, and
this periodic event signal triggers the update. Alterragivto reduce event rate with
slowly-variable signals, a neuron may only generate antevieen its output changes
by some fixed amplitude. For models with no time componestdttaflow itself can
act as an event: a neuron receives an input event, compigte®cessing with that
input, and sends the output to its target neurons as an &ecisions about the event
representation at the Model Level could be almost entirghjtrary, but in order to
implement the model efficiently on SpiNNaker the repres@mahosen should have
a simple correspondence to the physical hardware. Thesditmdel Level does not
define the event representation, but rather has an intetéeaatomated tools that
generate the mapping operating at a lower level, one whishvigbility both of
SpiNNaker hardware and of the Model-Level definitions.

4.2 The event-driven model at the System Level

System Level is the level that provides visibility both oéttmodel and of SpiNNaker.
At the system level the internal components of SpiNNakeolrexvisible, but only as



10 A. D. Rast, J. Navaridas, et al.

User Interface

Description

Configuration

System

Synapse
Models

Synapse
Hardware
Models

Fig. 4 SpiNNaker Software Model

high-level objects. At this level, events are transactioetsveen objects representing
individual components. Responses to events are the siteaalls (or methods) to
execute when the event arrives. These callbacks will berdifit for different neural
models, and because automated tools must be able to assagatn model with
a given series of SpiNNaker system objects, System Levebstlgna collection of
libraries for different neural models. Each library defities event representation as
set of callback functions: a Packet-Received event, a DM#g\a Timer event, and
an Internal (processor) event. It must also account for mapb system properties: no
global state information and one-way communication. Systevel event functions
must as a result use only local information, and if the curtecal information is
insufficient to process the event, they must be able to toamsit into afuture event.
There are several ways to do this: issue a DMA request, sebex,tor trigger an
internal event. Given that much of the low-level hardwareration is common across
all models, the System Level uses common device-driver @tifpnctions where
possible, drawn from a base library written at a lower level.



Managing Scalability in Event-Driven Models on the SpiNKaBystem 11

4.3 The event-driven model at the Device Level

Device Level ignores the neural model altogether and censi@piNNaker at the
signalling level of its devices. At this level an event is d@stual hardware nature:
an interrupt, and the response likewise is the interruptiseroutine (ISR) together
with any deferred processes the ISR triggers. The hardveankeepencoding is visible
along with the physical registers in the DMA and communaagi controllers. Most
of the Device Level code is therefore a series of interrupteth device drivers acting
as support functions for the system level. Since Device Lesde does not consider
the neural model, these drivers are common across many sn@hal libraries), and
includes operating-system-like system support, stamapcanfiguration routines es-
sential for the operation of the chip as a whole, but irred¥eom the point of view
of the model. Device-Level ISR’s must consider carefullyrasronous timing ef-
fects and the absence of network buffering: if the systeneetgpa high event rate it
needs to provide an event queue. As with any ISR, the obgiito defer as much
processing as possible and exit the interrupt exceptionemoddually the deferred
process is a System-Level function, so that the typical fléweanmtrol is that the
System Level passes control to the Device-Level ISR wherinikial event occurs,
which then does the minimal processing necessary to catiterevent and set/reset
devices, then passes control back to the System-Levelifumdiiow this works in
detall is easiest to see by considering actual model impiations on SpiNNaker.

5 Model Implementations

To test SpiNNaker functionality and performance, we havel@mented both an ab-
stract high-level model of the network and 3 different exexrulevel neural net-

work models: 2 spiking models and a classical MLP model. Tieract model is

designed to be a reasonably realistic approximation of ortwehaviour under typ-

ical operating conditions. We implemented the high levedeian INSEE, a fast,

flexible and mature simulation environment [40] for intatnection networks. The
execution-level models are sufficiently different in destg form an effective first

test of SpiNNaker universality while sufficiently repretaive to be reference exam-
ples for future model implementations. We first tested timesdels using ARM SoC

Designer simulator, with additional low-level Verilog tegy using Synopsys VCS,
then ran the models on the SpiNNaker test chip in various ortaonfigurations.

5.1 Network system models

The developed network model contains most of the featuréiseofouter, as well as
the topological arrangement. This study evaluates thestgpssible system config-
uration: 64K nodes arranged or2%s6 x 256 layout. The model of the router includes
the emergency routing and deadlock avoidance mechanishusenparameters we
set to the values suggested in [39]. To avoid coupling th&uatian to any particu-
lar biological network, table-based routing is not usedi¢htsignificantly reduces



12 A. D. Rast, J. Navaridas, et al.

A=2
0.4

0.3

Probability

A=64 A=128

T T
80 120 160
Distance

Fig. 5 Poisson distributions modelling traffic locality

the computing resources required to perform simulatiofsyactual routes between
chips in the real system will attempt to use a minimal pathhwitsingle inflection
point, the simulation sends packet through minimal rouegiDimension Order
Routing (DOR) [5]. In DOR, diagonal links are considered &abthird dimension
(2). Routes followed by packets are always XY, XZ or YZ (an X¥alte cannot be
a minimal path). The system models nodes as independeiit Bafirces that inject
packets following a Bernoulli temporal distribution, witinable packet injection rate
i, (packets/cycle/node). We provide them with the capabitityeact to receipt of a
packet by generating a new packet or a burst of packets. Treoqmers model such
reactive traffic, the probability to trigger a new packet (modelling causality) and the
number of packets that are triggered (simulating burstiness). The actuahpee
generation raté’ depends on both independent and reactive traffic:

o0
GziT—l—iT-Zn-pk
k=1

Models of the connection-level activity of brain-scale radunetworks have thus
far only described the general characteristics [15]. Toutite potentially realistic
networks, we therefore use Poisson distributions thatvatttodelling of different
degrees ofocality by varying the lambdaX) parameter. In general, the larger the
value of A the more distant the generated traffic. More specifically,use seven
different values from very localX = 2) to very far-flung & = 128). The traffic
generation process is as follows. A sending node randondygtsea distancei, fol-
lowing the given Poisson distribution, and then randomlgas a destination node,
n, locatedd hops away. The node then injects a packet addressedRor the sake
of simplicity, we restrict the study to a single distributiand use unicast rather than
multicast packets. Figure 5 shows the distance distrihatfor each value of.



Managing Scalability in Event-Driven Models on the SpiNKaBystem 13

5.2 Spiking neural network models

Two models implement spiking neural networks, using eitabikevich or Leaky-
Integrate-and-Fire (LIF) neurons and Spike-Timing DemamdPlasticity (STDP) or
«a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acddPA) synapses. The Izhike-
vich model [21] has been the reference spiking model dridesign choices during
hardware development because it is simple yet exhibitsuliednge of observed
neural behaviour. We describe many of the algorithmic detH#i these models in
the following papers: Izhikevich model [26], LIF model [S8]TDP implementa-
tion [46], [27]. Here we focus on the event processing.

There are 3 main processes in the model, corresponding t® ¢ent sources.
The first process operates upon receipt of the input paclesttesn interrupt from
the communications controller. The second process ofauptmn receipt of the DMA
completed event. The final process operates upon receipe dfitner event.

5.2.1 Packet Received

The Packet Received event is a high-priority FIQ interrirpkeeping with the use-it-

or-lose-it nature: new packets must receive immediateeprptive servicing or they

will be lost. The process operates at Device Level and sdegsthe neural processing
as a System Level function using the deferred-event modekn/dm input arrives,

the process performs an associative lookup on the packeessltb find a source
ID. It then signals the DMA controller to transfer the coperding row of synapses
in memory into the next-available of an array of synaptiddngf, incrementing the

available buffer number. It then exits and returns contsahe scheduler.

5.2.2 DMA Completed

The DMA Completed, and all other events, are normal IRQisstifiey may need to
account for the arrival of other packets. In the case of DMApketed, this means
that its processing may not have completed before anotheA Q@mpleted event
arrives, triggered by a packet arriving. The Device Levelise routine therefore ac-
knowledges the interrupt immediately, freeing the DMA cotiér for further trans-
fers. Next, it tests the values of the synaptic buffer heattaih to determine whether
servicing of a DMA was still in progress when the next sucleiintpt arrived. If the
difference is zero, i.e. no DMA service was in progress,ifigers a System Level
deferred service process operating in User mode; othefitves: simply return to
the interrupted process. In its deferred service, the pgees through the synaptic
buffers in sequence. For each buffer, it first performs stioapeight updates, then
computes the new contribution to the net input current atitHay value appropriate
to each active synapse. Once it finishes with any given huffepdates the buffer
gueue head position, and if there remain buffers to servioentinues on to the next
one, exiting otherwise.



14 A. D. Rast, J. Navaridas, et al.

5.2.3 Timer

The Timer event has a higher priority than DMA Completedcsiit operates on the
current time rather than on future (delayed) time. Unlike BiMA Completed event
no additional timer events can happen so it can operatentanisly in an exception
mode, however, to permit additional DMA interrupts it musitdrom IRQ mode
as soon as possible. Therefore, the Device Level servigalsistacks registers and
return addresses to the SVC (supervisor mode) stack, at&dges the interrupt, and
changes to supervisor mode. Operating at System Level iargispr mode, it can
avoid interfering with any potential deferred DMA operatsostill in progress while
freeing the interrupt for DMA use. The SVC-mode process @ernk an efficient
update of the neural states, computing and triggering asgiple output spike, and
with it update of postsynaptic information. The SVC-modegass must complete
before the next (1ms) Timer interrupt.

5.3 MLP model

The second network is a classical multilayer perceptron@Mhodel using delta-rule
backpropagation synapses with sigmoidal threshold neuidme MLP is a broadly-
used model ideal as a standard reference to test SpiNNaglafarmance with non-
spiking models. Some details of the model are in [48], howets work largely
discusses the topology and mapping. Here we consider thenags, or more accu-
rately, the transformation of the MLP to a dynamic eventehmimodel. Since signals
are continuous-valued “timeless” vectors, it is necestadefine an event represen-
tation for the dataflow. From this the process model willdull

Because the mapping of the MLP to SpiNNaker (fig. 6) distebuinit process-
ing among several processors (see [48] [25]) actual proggsaries depending on
whether the processor in concern implements the weight, suthreshold part of a
unit.

5.3.1 MLP event representation

Representing MLP dynamics as events has two parts, a parkeatf and an event
definition. SpiNNaker's AER packet format allows for a pagdioin addition to the

address. In the model, therefore, the packet retains thefuke address to indicate
source unit ID* and uses the payload to transmit that unit's activation. MeRBrons

propagate input vectors between units in a unidirectidiegidforward manner: for
each input presented one signal will pass over any givenexdium. Therefore one
event is the arrival of a single vector component at any givati Packet Received.
However, the dataflow and processing falls into 2 distinaggls: the forward pass,
and the backward pass. This suggests another event: raliegstion, that an indi-

vidual unit can readily detect by triggering a software (S\&gnt on Output Sent.

1 Technically, a “unit” instead of a neuron: in the MLP the Ui processing element not necessarily
associated with a single neuron.



Managing Scalability in Event-Driven Models on the SpiNKaBystem 15

Inputs
Weight Processors

Sum Processors

Threshold Processors

X(//71]]
XX////]/

XA
\V,
A

(X
AN

Fig. 6 SpiNNaker MLP mapping. Each dotted oval is one processocegsors of all 3 types map a group
of inputs i to outputs j. Each output j corresponds to a singleron (or unit), while the inputs i depend on
the stage. At each stage the unit sums the contributions femim previous stage. Note that one processor
may implement the input path for more than one final output newsbawn for the threshold stage here
but not for other stages). It is possible to cascade sum psocg to create a neuron with arbitrary fan-in.

These 2 events, importantly, preserve the characteristieinglocal: a unit does not
need to have a global view of system state in order to deteaant.

5.3.2 Packet Received

The Packet Received event drives most of the MLP processinlike the spiking
case, the payload is critical, so the Device-level ISR far ¢irent immediately places
it in a queue for further processing. The rest of the proogssccurs at System level.



16 A. D. Rast, J. Navaridas, et al.

Exact processing depends upon the stage; we denote theainigput variable ag
and the output variable ak The processing then goes as follows:

1. Dequeue a packet and payload.
2. Test the packet’s source ID (address) against a scogtbudicating which con-
nections remain to be updated. If the connection needs imgdat

(a) For weight processors,= w;;0;, wherew;; is the weight, and; the pay-
load. For all others] = O;.

(b) For weight processors in the backward pass only, comieteveight delta
for learning. (We have used standard momentum descent)

(c) Accumulate the output for neurgnJ = J + 1

3. If noconnections remain to be updated,

(a) For threshold processors only, use a look-up table topotena coarse sig-
moid: J = LUT(J) in the forward direction. Get the sigmoid derivative
LUT'(J')inthe backward directionJ{ is theforward J, J* thebackward)

(b) For threshold processors only, use a spline-basecdpitdion to improve
precision ofJ.

(c) Forthreshold processors in the backward pass onlyjphulhe derivative by
the new input.J = J*(LUT"(J7)).

(d) Output a new packet with payload

4. If the packet queue is not empty, return to the start ofdbe.|

The critical concern with this process, since time is notada is load balancing.
If the processing in a given unit is much faster than othetsutine packet traffic to
the subsequent unit may become very bursty. This causesarartongestion, and
in extremis may deadlock the model. Obviously the sum processors harreial
computation relative to weight and threshold, creatingpbiential for exactly such
a problem. We developed 2 solutions: reduce the number of suany given stage
(which for large fan-ins is the same as lengthening the @m%ing pipeline), and com-
bine the sum process with other processes, forcing it to eterffor CPU time.

5.3.3 Output Sent

Output Sent occurs when all inputs have arrived, and the aamations controller
transitions to empty. At this point the processor triggeslipDirection SWI pro-
cess that toggles the mode between forward and backwardn®kegeneral way to
detecting the condition “all inputs arrived” is by a scoralsh a bit-mapped repre-
sentation of the arrival of packet-received events for eachponent. The test itself
is then simple: XOR the scoreboard with a mask of expectegooents. While this
method accurately detects both the needed condition angauent errors, it has
an important limitation: all inputsnustarrive before the unit changes direction. This
could be a potential problem if neighbouring units had alyesent while the current
one still expected input. “Fire-and-forget” signallingopides no delivery guarantees,
S0 a receiving unit mighteverreceive an expected input. This would effectively stop
the simulation, because the network as a whole can proceadten than its slowest-
to-output unit.



Managing Scalability in Event-Driven Models on the SpiNKaBystem 17

=3 o
o @
.
\
Q

o
IS
Regular Operation

Packet droped ratio

o
)
,

0.0

1
1
1
1
1

Generation rate (xRO)

Fig. 7 Packet dropped ratio per configuration using Poissonafedific from independent sources. The
X-axis shows the traffic generation rate and the Y-axis thesomeal ratio of dropped/injected packets.

6 Experimental Results

We ran simulations with 3 major objectives: packet procesgierformance, chip
verification, and confirmation of accurate heterogeneousetgupport. Packet pro-
cessing tests used INSEE [40] to assess the adequacy ofehsoimnection network.
Simulations for chip verification used ARM SoC Designer Samar on a complete
SystemC model of the SpiNNaker chip. The heterogeneous Inests ran on the
physical SpiNNaker test chip, using PyNN [6] as a standamlkition front-end.

Our simulations used a 4-chip system with 2 processors ppr(carresponding to
the first test board).

6.1 Packet Performance Testing

The first set of experiments focuses on measuring the impactttaffic locality,
causality and burstiness have on the performance of thecorteection network.
We modeled the workloads so that the locality, causalitytandtiness of the traffic
can be tuned using a collection of parameters. By sweepiegthese parameters,
we were able to assess the viability of the network intereshin handling typical
workloads during “Regular Operation” (RO) - a figure of melétrived in a previous
work [39] from the maximum expected firing rate of neurons, tkmber of neurons
supported in each chip and the packet size.

The locality experiments plotted in Fig. 7 used independeiiic sources (non-
causal traffic) with various traffic generation rates frormx RO (0.001 pkt/cyc/node)
to 10xRO (0.1 pkt/cyc/node), and permit the observation of thatieh between the
degree of locality and the ratio of dropped packets. Mosiashbre equal to zero: no
packet is dropped, implying that the system behaves prppddst configurations



18 A. D. Rast, J. Navaridas, et al.

can fully handle traffic with loads over 10 times those expédh the real system.
Only those configurations where the traffic is sent to veradisareasX = 128 and
A = 64) show degradation, and even then it is limited3td and 7 times the maxi-
mum expected during regular operation of the system. Thia\deur reinforces the
impression of robustness encountered in previous expetatien [39]. At any rate,
the load that the system can handle increases inverselthdttistance. While lack
of locality severely affects performance, it occurs at baéll abovethose required
during regular operation of SpiNNaker. Because the systietmalises the network
topology, an astute choice of mapping will almost always enilpossible to keep
routes mostly local, and thus degradation of network peréorce for load conditions
in any event far outside the expected operating regime ismfimal concern.

Another interesting finding from the experiments is thathiose cases in which
the network reaches saturation, the distance distributmmputed at injection and
that measured at consumption (considering those packataréhactually consumed)
are noticeably different. Figure 8 shows the cumulativeagice distribution of the
system when being fed by the most distant traffic<( 128), at loads below and over
the saturation point. Three figures of merit are plotted:fitst one is the distance
distribution at injection D;), computed as the number of hops in the shortest path
between source and destination. The second is the distéstabution at consump-
tion (D.), also computed as the shortest path. Finally, the thirdeésdistribution of
the distance actually travelled by the packets, measurdteasctual number of hops
the packet traveledl¥,). Note that utilization of the emergency routing mechanism
only affectsD;.

1.0 ff-_—-u-v
0.8
$
&
<&
$
$
4

Di
oDc
oDt

80 100 120 140 160 180

=4 o =
@ @ o

I
=
oS
=

Cumulative probability
Cumulative probability

o
o
4
N

0.0

o
°

120 140 160 180
Distance Distance

(a) Network fed at RO level (non-saturated) (b) Saturated network at 3RO load

-
]

Fig. 8 Cumulative distance distribution functions measured attiga and consumption

These three distributions are almost identical when th&esyss handling ex-
pected loads (RO in Figure 8(a)) indicating that the netwierkot saturated. By
contrast, when the system handles excessively high loddRQ in Fig. 8(b)), it
reaches saturation and these distributions are very diffem he distribution at injec-
tion shows no noticeable change compared with the previcersassio. However the
distance distributions at consumption are noticeablediifit.D.. is shifted to the left
(shorter distances), meaning that those packets that bénavel longer distances are
more likely to be dropped. In contradd, is shifted to the right (longer distances).



Managing Scalability in Event-Driven Models on the SpiNKaBystem 19

This is because an increase in the number of hops actuallglied by the pack-
ets reflects frequent activation of the emergency routinghaeism. Taken together,
the locality and emergency routing tests suggest that geoadah mappings should
attempt to cluster routes towards local processor nodespétformance figures sug-
gest, however, that the neuron-to-node mapping, whilego@nportant, is not going
to become a critical issue when simulating actual neuraligctvith SpiNNaker.

1.0 1.0
n=0 p=0
o n=5 p=0.002
08~ et 0.8 ° n=5p=0.02 Seere—
° /E" ° -x-n=5 p=0.05 F e
5 b e ' +-n=5 p=0.1 % x
g - T f -
0.6 - i 0.6 o
H I H /
g } 3 /f
s [ e s o
3 o4~ { g o4 X
] 3 5] P
s I & 7f
% C
02- i 02 Jof
fi i
I§ /
/
0.0 H 0.0 ‘
31 32 33 3.4 35 36 37 3.8 39 4 4.1 3.1 32 33 34 35 36 37 38 39 4 41
Generation rate (xRO) Generation rate (xRO)
(a) Single Packets (b) 5-packet bursts
1.0 10
n=0 p=0 n=0 p=0
©-n=10 p=0.001 © n=20 p=0.0005
08 - 0.01 - 08 - =0
e %
° x n=10 p=0.025 o
kS n=10 p=0.05 2 x
3 06 7 06 -
a 2 [
g g ;
et - < / -~
8 o4 - 3 o4 o
8 ] -
a ; ’ o »
0.2 d 02 f
i ] : /
o [
J /
00 4 00 ;
3.1 32 33 3.4 35 36 37 3.8 39 4 4.1 31 32 33 34 35 36 37 38 39 4 41
Generation rate (xRO) Generation rate (xRO)
(c) 10-packet bursts (d) 20-packet bursts

Fig. 9 Packet dropped ratio - 256x256 SpiNNaker network. Poissdfid with causality. X and Y axes
are as in fig. 7. Generation rates are shown in a shorter rangéafity.

Of more potential concern is the presence of burst traffie. Sgtond set of exper-
iments aims to measure the impact of traffic causality andtimgs. Using the previ-
ously explained triggering mechanism we tested variousigorations that manage
the sameoverall amount of traffic but with different levels of causal genenatof
packets (i.e. is fixed andi,., p andn are selected accordingly). We fixed gener-
ation rates (<) around the point where independent-only traffic forced dhgtem
to drop packets=£0.037 packets/cycle/node). Fig. 9 shows the results forntbst
distant traffic f = 128) but results are similar for othex values when managing
loads close to their corresponding saturation points.u@@h = 64 and\ = 32
were checked, but not plotted for the sake of brevity.) Ircalies, the higher degree
of causality in the traffic, the lower the packet droppedoratice the system reaches
saturation. This is inherent to the causality of the traffiecause when packets are
dropped they do not reach their destination; therefore dloeyot trigger other pack-



20 A. D. Rast, J. Navaridas, et al.

ets. For this reason the actual generation rate is lowereRkpacted, which can be
seen as a form of self-throttling of the workload. Notabihe targer the burst length
and the probability to trigger a burst the lower the injectiate at which the network
starts dropping packets, since large bursts generate stimgeround the injecting
node. Source-side management of packet generation: adomftthe software ap-
pears to be the more important factor in mitigating agaiaskpt loss thahardware
limitations.

6.2 Simulation-Based Functionality Testing

Having established the traffic viability of the network, thext series of tests verify
basic functionality: does the SpiNNaker chip faithfullypreduce the neural model?
We performed tests both with the spiking model and the MLP ehod

(a) Far away from the target

iz

(c) Target reached

Fig. 10 Doughnut hunter test. Successive frames show the netwdr&dy” as it approaches the target.



Managing Scalability in Event-Driven Models on the SpiNKaBystem 21

6.2.1 Spiking Tests

We ran two different simulations using the spiking modethafirst we implemented
a randomly-connected network with 48 excitatory and 16hkitbry neurons having
40 connections per neuron with random 1-16 ms delay betwearons. We then
stimulated 6 excitatory neurons and 1 inhibitory neurorhefgiopulation with a con-
stant input in order to simulate external input. As we regaiin [27] this network
produced spiking patterns and synaptic learning congistit that expected. In the
second set of tests we created a synthetic environment: wgtohut hunter” appli-
cation. The network in this case had visual input and motigtput; the goal was to
get the position of the network’s (virtual) body to a targetoroid or “doughnut”.
Testing (figs. 10(a), 10(b), and 10(c)) verified that the mekacould successfully
track and then move its body towards the doughnut, ultimatdching the target.
Although basic, these tests verified the functionality: tleeiral model behaved as
expected both at the behavioural level and at the signdtgsfavel.

6.2.2 MLP Tests

To test the MLP network we created an application based oridigés” applica-
tion from LENS (http://tedlab.mit.edu/"dr/lens), a saofive-based MLP simulator.
Our network removed extraneous structural complicatioomfthe example to ar-
rive at a simple feedforward network with 20 input, 20 hiddemd 4 output neurons.
We trained the network using momentum learning with a momemf 0.875 and
a learning rate of 0.0078125, initialising the weights @mtly between [-0.5, 0.5]
We augmented the Lens-supplied data set with digits froma@éadded 2 sets of
distorted digits with values 0-9. We then ran the networbktigh 3 successive train-
ing epochs. Results are in fig. 11. Once again these resaltsoasistent with basic
functionality.

6.3 On-Chip Performance Testing

The final two tests used models running on the actual hardviratbis case on a PCB
equipped with 4 SpiNNaker test chips interconnected as shovig. 12(a). Each
chip connects to neighbouring chips over the correspongmgical link of the 6
available (the black lines in the figure). Test chips contain cores, one for system-
maintenance “monitor” functionality and the other one tmliate neurons: up to
1000 spiking units per core. The tests investigate the bebtaef a real multi-chip
SpiNNaker system modelling networks of spiking neuronsLidéd LIF neurons [50]
for these tests.

6.3.1 Synfire Chain

In order to test a scalable network and verify bursty netwaykamics, we imple-
mented a “synfire chain” model [1], [17]. A synfire chain is &dérward neural
network composed of groups of neurons or “pools”, whereyepenl connects to the



22 A. D. Rast, J. Navaridas, et al.

0.8000

MLP Digits Recognition, Weights Evolution

0.4000

0.2000

o ————
E 0.0000 ——
Gl
g e —
'g’ 2000 T— e ——
3 \—‘\

-0.8000
Update 4 Update 10 Update 16 Update 22 Update 28 Update 84 Update 40 Update 45 Update 52 Updata 58
Update | Update 7 Update 13 Update 19 Update 25 Update 31 Update 37 Update 43 Update 40 Update 55 Update 61

Example Number

Fig. 11 SpiNNaker MLP test, weight changes. To improve readability diagram shows onlgelected
weights; unshown weights are similar. The weight changew she expected evolution. Weight changes
reflect an overall downward trend, consistent with earlgassof momentum learning. The oscillations are
characteristic of the learning rule.

next one in the hierarchy. Such a model propagates chasditdrursts of activity
through the network. We simulated 4 pools composed of 25@onsufor each chip
in a 4-chip testing environment, for a total of 16 pools an@i@Geurons (fig. 12(a)).

We number neuron pools from 1 to 16, each neuron in a pool @bedéo the cor-
responding neuron of the subsequent pool. The last poohisamied back to the first,
providing inhibitory feedback. Weights are set so that guikesreceived will make
the neuron fire, hence propagating the activity through #teork. Presynaptic and
post-synaptic neurons may reside on different chips (egnections from pool #4
and pool #5) or locally (eg. connections from pool #1 to pad).#Red straight ar-
rows indicate such routes. We stimulated 35 random neurotiifirst population
by injecting them with a current strong enough to make themdtr~20 Hz. The
activity is then propagated with random delays in the ran@emsec through the
other pools. Fig. 13 shows the results of the simulationdsiding the raster plots
and mean activity firing rate by chip. The firing rate is avexhgver the number of
neurons in the chip (1000), giving a mean population firirtg.rBue to the nature of
the network structure and simulation the activity is buresgillating with peaks of 7
Hz (averaged over the whole population with a sliding wind@0 msec).

Table 12(b) shows spike activity and multicast (MC) packeitrds for each chip.
During the simulation every pool emits 756 spikes, for altofa3024 spikes per
chip. % of the connections are local, implying that the same prapoef produced
MC packets will be consumed locally (local to local packetgile i will be routed
off-chip. Every chip thus sends (local to external) and inex756 (external to local)
MC packets. Chip [0,0] also routes packets from pool #8 (¢Bif]) to pool #9
(chip[1,0]), giving 756 external to external (transit) gats in the table for chip [0,0].

The on-chip network implementations use the PyNN [6], [10]tiplatform neu-
ral description environment, permitting direct compamnisbthe performance on-chip



Managing Scalability in Event-Driven Models on the SpiNKaBystem

23

O Neuron Pool Physical Link
U Neural Connection =) Packet Route

Neurons per Pool: 250 Pools per Chip: 4
Neurons per Chip: 1000 Total Neurons: 4000
Spikes per Pool: 756 Total Spikes: 12096
CHIP ID
PACKET 0,0 0,1 1,0 1,1
localfo | 5y68 | 2268 | 2268 | 2268
local
external
to 756 0 0 0
external
external | ;56 756 756 756
to local
local fo | ;5 756 756 756
external
TOTAL | 4536 3780 3780 3780

(a) Configured Network Structure On Chip. Blue curgbyl Spiking (multicast) packet activity sum-

arrows depict neural connections between pools. Sucmary

connections areirtual, existing only at a model level;
at the device level they correspond to routes over phys-

ical links (black lines).

Fig. 12 Synfire network summary

Time (ms)

Fig. 13 Raster Plot

= o —
st ;
—
z
Y o
23 £
£ 2t o
o 1)
597 1S)
st :
@ Al —
B a
o3t z
£ 2 ©
€l
7
= o —
s S
o
g
I o
o 3 =
<2 ©
€3l
_ 7t °
250 °
g af 2
o3l -
2
€2t ©
£
i
200 200 600 800 0

Time

ms)

43800
43600 £
e
13400 3
z

43200

3000

42800
#*
12600 £
<
J 124003
3 =4
42200

2000

41800
*
41600 ¢
e
11400 3
=z
41200

1000

: {800
#*
1600 ¢
<
1400 3
2
{200



24 A. D. Rast, J. Navaridas, et al.

Neuron #

600 800 1000
Time (ms)

100

80

601

Firing rate (Hz)

40r

1 /\ /\\ A /\
0
400 600 800 1000

Time (ms)

Fig. 14 Capacity limit testing: raster plot and mean firing rate forpchj 0. The firing rate is averaged
over a time window of 10 ms.

with a standard software simulator - in this case NEST [1hkdBip simulations run
in real-time, thus the 1000 ms simulation time is the actinaé tto run. By compar-
ison, a NEST implementation of the same model took 4163 metaptete. While

we hasten to emphasise that such a result is preliminary aseldbon a single ob-
servation, SpiNNaker thus demonstrates approximately apeedup at this (small)
scale.

6.3.2 Capacity limits testing

In order to investigate the capacity of the inter-chip comination interface we pop-
ulated each chip with 1000 neurons, connecting each neortimetcorresponding
neuron in the next chip (one-to-one connection). The lagt fdeds excitatorially
back into the first. Every spike produced in a chip is thus semie next chip (i.e.
there are no locally processed spikes). We stimulated 50€one in the first chip
with a current sufficient to make them fire @20 Hz. Positive feedback makes the
activity build up up to~90 Hz producing~49,000 spikes in-500msec (fig. 14). The
chip can sustain this level of activity for 500 msec but tHes (software) communi-
cations buffer overflows, breaking the connection loop @adihg only the activity
due to the input (vertical stripes in the raster plot afte®rs8). This test demon-
strates the ability of the communications infrastructarsustain high activity rates
for short periods of time, as well as the current limitatiofithe implemented mech-
anism. Further tests (not shown) indicated that the systartdcsustain continuous
activity at lower frequencies, but exhibited rapid breakdat higher frequencies.



Managing Scalability in Event-Driven Models on the SpiNKaBystem 25

ARM968
SDRAM DMA Data-Processing ARM968
Transfers Instructions DTCM Subroutines
I

Polynomial

Interpolation
Evaluation P

Fig. 15 A general event-driven function pipeline for neural netk@rThe grey box is the SpiNNaker
realisation.

7 Discussion

From the models that have successfully run it is clear thé¥l![Saker can support
multiple, very different neural networks; how general tb@pability is remains an
important question. We can define a generalised functicglipipthat is adequate for
most neural models in existence (fig 15). The pipeline moarges from a consid-
eration of what hardware can usually implement efficientlgombination with ob-
servations about the nature of neural models. Broadly, nmsgtal models, at the level
of the atomic processing operation, fall into 2 major classsum-and-threshold”
types, that accumulate contributions from parallel infautd pass the result through
a nonlinearity, and “dynamic” types, that use differensi@te equations to update in-
ternal variables. The former have the general féim= T'(X;w;;S;) whereS; is the
output of the individual process, T is some nonlinear fuocti are the input indices,
w;,; the scaling factors (usually, synaptic weights) for eagiutnandsS; the inputs.
The latter are systems with the general fotfh = E(X) + F(Y) + G(P) whereE,
F, andG are arbitrary functionsX is a given process variabl¥, the other variables,
and P various (constant) parameters. Meanwhile, SpiNNakeodsgssors can easily
implement polynomial functions but other types, e.g. exgtials, are inefficient. In
such cases it is usually easier to implement a look-up taltlepolynomial interpo-
lation. Such a pipeline would already be sufficient for sumd-ghreshold networks,
which self-evidently are a (possibly non-polynomial) ftioo upon a polynomial.
It also adequately covers the right-hand-side of difféaedmtguations: thus, to solve
such equations, it remains to pass them into a solver. Fgrsigple cases it may
be possible to solve them analytically, but for the genessle¢ the Euler method
evaluation we have used appears to be adequate.

In principle, then, SpiNNaker can implement virtually arstwork. In practice,
as the packet experiments show, traffic density sets upmétslon model size and
speed. Burstiness in the generation of traffic may geneaatention around the node
that is injecting. This contention may lead to dropping pdslat loads at which the
network would operate flawlessly with non-causal traffid,diill significantly higher
than the load required during regular operation of the systa mitigation, causal
traffic tends to self-throttle, because dropping of paclesss to a reduction of the



26 A. D. Rast, J. Navaridas, et al.

packet generation rate. Another important discovery is titadfic burstiness affects
the injection rate at which the network is forced to drop gaskThe larger the burst
length and the probability to trigger a burst are, the lowergeneration rate at which
the network starts dropping packets. This is because langtdgenerate congestion
around the injecting node, which can eventually spreaddevfiole network, forcing
packets to be dropped at themurce We remark, however, that the simulated loads
are more than three and a half times those required duringaregperation of the
system and that the spatial distribution of the traffic iyt pessimistic. Careful
analysis of the flow of execution on the SystemC model detezththat the failure
mode was the speed of the ISR: by 3 packets per update packetsawiving faster
than the time to complete the Fast Interrupt (FIQ) ISR. Inftasdware simulations,
a similar analysis showed that network breakdown in theisgiknodels was hap-
pening due to receive buffer overflow. Some of this may bebati#ble to known
inefficiencies in the queue implementation. Clearly, veficient interrupt service
routines, together with aggressive source-side outputgement, are essential un-
der extreme loading conditions.

Careful management of memory variables is also an impodansideration.
Both models involve multiple associative memories and lgoiables. If speed is
critical, these must reside in DTCM or ITCM, and this placesesy high premium
on efficient table implementations. If it is possible to cangactual values from a
smaller fixed memory block this will often be a better implentaion than a LUT
per neuron.

Solving differential equations introduces a third consadien: time efficiency
and accuracy. Most nonlinear differential equations havamalytic solution, but nu-
merical methods are computationally complex. The Eulehorbtve used is usually
an acceptable tradeoff, but it does introduce a synchroatamsent into the model.
Furthermore the time step limits simulation accuracy. $bgblaces fixed, absolute
upper bounds on the computation time per neuron.

Both models break down catastrophically if the packet waffrerwhelms the
processors’ ability to keep up. In the spiking model, thisws when the neurons
become excessively bursty. In the MLP model, this occursrwdmgy one of the 3
component processes becomes disproportionately fasgessifinpler) than the oth-
ers. Large network sizes exacerbate the problem in botrscabés issue appears
to be fundamental in a truly concurrent processing systeeravindividual proces-
sors operate asynchronously and independently. Findiegtae ways to manage
the problem, which does not arise in synchronous systenamibe®f the predictable
input timing relationships, is a critical future researohit.

Notwithstanding these challenges, we have now demondtitateability of SpiN-
Naker, even in a reduced test chip configuration, to run nsodeteasonable size
(~4000 neurons). This represents only a start, with simpleetsodlVe are currently
working on implementing larger-scale, more biologicalalistic models that sim-
ulate major subsystems of the brain and are scalable acw&teaange of model
sizes. Such models will include heterogeneous neuron amapsig types operating
with the same simulation, and possibly at different levdlstouctural abstraction.
Part of this work includes the creation of more model typeexipand system-level
libraries, notably voltage-gated NMDA synapses with tidependent channel kinet-



Managing Scalability in Event-Driven Models on the SpiNKaBystem 27

ics. Work on refining the packet processing, particularlyhie host interface from

SpiNNaker to the user, is also a major activity. We are cotidg@ systematic re-

view and revision of the software model libraries, to striaenoperation and im-

prove “plug-in” development capability. This work provielémproved support for

full SpiNNaker chip, containing 18 cores and some enhaneatlifes such as native
support for atomic operations and debugging packets, whiahdelivered and be-
gan testing in May 2011. This chip will, obviously, suppaat farger models, and
possibly more. There is evidence that in addition to neuraflefs, SpiNNaker’s

parallel-processing architecture may find interesting usgside the neural field, and
thus we are investigating these where appropriate. Cértéiire emergence of such
non-neural applications is an indication that SpiNNakendestrates important and
possibly fundamental properties of parallel computing.

The pre-eminent feature of the software model, charatiten$ native parallel
computation, ismodularisation of dependenciesThis includes not onlyata de-
pendencies (arguably, the usual interpretation of the )teloit also temporal and
abstractional ones. In other words, the model does not péstections on execution
order between modules, or on functional support betwedrrdiit levels of soft-
ware and hardware abstraction. Architecturally, the 3ltewé software abstraction
distribute the design considerations between differem¢ses of service and allow
a service in one level to ignore the requirements of anottethat, for example, a
Model Level neuron can describe its behaviour without hgutm consider how or
even if a System Level service implements it. Structur@lijyeans that services op-
erate independently and ignore what may be happening im séneices, which from
their point of view happen “in another universe” and only coumicate via events
“dropping from the sky”, so to speak. Such a model accuraediects the true na-
ture of parallel computing and stands in contrast to conweat parallel systems that
require coherence checking or coordination between pseses

8 Conclusions

By implementing an event-driven model directly in hardw&peiNNaker comes con-
siderably closer to biological neural computation tharckal digital devices. At the
same time it brings into sharp relief the major differenagsnf synchronous com-
putation that place a much greater programming emphasiemt-elriven computing
on the unpredictability of the flow of control. This importgarogramming difference
underscores the urgency for event-driven developmens tediich at this point are
scarce to nonexistent. It is clear that most developmend today have an underly-
ing synchronous assumption, which in addition to compicatievelopment, tends
to influence programmers’ conceptual thinking - thus pergiiig the synchronous
model. For example, even at a most basic level, the idea @fr@naming in aan-

guageis fundamentally synchronous and sequential: it is confusind difficult to

express event dynamics in a language-like form. Possiblgvaldpment environ-
ment that moved away from a linguistic model towards gragdhieorientated devel-
opment, for example using Petri nets, might make it easidetelop for event-driven
systems. If asynchronous dynamics is by definition a necg$sature of true paral-



28 A. D. Rast, J. Navaridas, et al.

lel processing, perhaps the linguistic model is one readondeveloping effective
parallel programming tools has historically been difficult

In the same way that the entire software model needs revhevhyardware model
for the neuromimetic architecture remains a work in progir&piNNaker involves
various design compromises that future neuromimetic chqadd improve upon.
Most obvious is the use of (locally) synchronous ARM968 psswors. Eventually
it would be ideal to have each of the local programmable pemes be themselves
asynchronous. Meanwhile the interrupt mechanism in the ARB8/assumes a rela-
tively slow interrupt rate. More forceful hardware coulatiéy this limitation. For
example, if the vectored interrupt controller coultectly vector the processor to
the appropriate exception, bypassing the entry point giog, interrupt rate could
increase while narrowing critical time windows. Such a egstnight also have com-
pletely independent working memory (“register”) banks éach exception, as well
as a common area to pass data between exception modes withoutry moves.
These kinds of features would be asking for data corruptiamsynchronous model
but become logical in the event-driven model.

How far should neural network chips go in directly implenmegtthe model in
hardware? For years the mesmerising concept of “directamphtation” has been
popular, yet it is fundamentally a misconception: since'#twtual” model of comput-
ing in the brain is unknown, there can be no certainty a chifirectly implementing
anything The SpiNNaker neuromimetic architecture provides a meadistic and
useful answer: instead of trying to answer the questiondsyistems that can define
the problem.

Acknowledgements The SpiNNaker project is supported by the Engineering andiPal Sciences Re-
search Council, partly through the Advanced Processorni@obies Portfolio Partnership at the Univer-
sity of Manchester, and through Grants EP/D07908X/1 andS6R270/01; and also by ARM and Silistix.
When this research was performed Dr. Javier Navaridas wassepby a post-doctoral grant of the Uni-
versity of the Basque Country and is now a Newton Internafibellow with the University of Manchester.
Prof. Jose Miguel-Alonso is supported by the Spanish Mipist Education and Science, grant TIN2010-
14931, and by Basque Government grant IT-242-07. Dr. Mikgahtholds a Royal Society University
Research Fellowship. We appreciate the support of thesesepoand industrial partners.

References

1. Abeles, M.: Local cortical circuits : an electrophysigilcal study. Springer-Verlag (1982)

2. Ananthanarayanan, R., Modha, D.S.: Anatomy of a Cortigautator. In: Proc. 2007 ACM/IEEE
Int'l Conf. on Supercomputing (SC'07), pp. 1-12 (2007)

3. Boahen, K.A.: Point-to-Point Connectivity Between Nmuprphic Chips Using Address Events.
IEEE Trans. Circuits and Systems 2: Analog and Digital Sidiracessingl7(5), 416—434 (2000)

4. Cauwenberghs, G.: An Analog VLSI Recurrent Neural Nekwararning a Continuous-Time Trajec-
tory. IEEE Trans. Neural Network&?2), 346—-361 (1996)

5. Dally, W.J., Seitz, C.L.: Deadlock-Free Message RoutmdJultiprocessor Interconnection Net-
works. IEEE Trans. Compute-36(5), 547-553 (1987)

6. Davison, A.P., Biderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, Berrinet, L., Yger, P.:
PyNN: a common interface for neuronal network simulators. #eosin Neuroinformatic®(11)
(2009)

7. Delorme, A., Thorpe, S.J.: SpikeNET: an event-driven satioh package for modelling large net-
works of spiking neurons. Network: Computation in Neuralt8ys14(4), 613—-627 (2003)



Managing Scalability in Event-Driven Models on the SpiNKaBystem 29

8.

10.

11.
. Glackin, B., McGinnity, T.M., Maguire, L.P., Wu, Q.X.eatreche, A.: A Novel Approach for the
13.
14.
15.

16.

17.
18.

19.

20.

21.
22.
23.
24.

25.

26.

27.

28.

29.

30.
31.

32.

Fieres, J., Schemmel, J., Meier, K.: Realizing biologigakiag network models in a configurable
wafer-scale hardware system. In: Proc. 2008 Int'l Joint ConfNeural Networks (IJCNN2008), pp.
969-976. |IEEE Press (2008)

. Furman, B., White, J., Abidi, A.A.: CMOS Analog IC Implemegithe Back Propagation Algorithm.

Neural Networksl(Supplement 1), 381 (1988)

Galluppi, F., Rast, A., Davies, S., Furber, S.: A Genptapose Model Translation System for a
Universal Neural Chip. In: Proc. 2010 Int'l Conf. Neural dnation Processing (ICONIP 2010).
Springer-Verlag (2010)

Gewaltig, M.O., Diesmann, M.: NEST (NEural Simulation Tjo&cholarpedi&(4), 1430 (2007)

Implementation of Large Scale Spiking Neural Networks on FR@#dware. In: Proc. 8th Int'l
Work Conf. Artificial Neural Networks (IWANN 2005), pp. 55863. Springer-Verlag (2005)
Goodman, D., Brette, R.: Brian: a simulator for spiking nmaéumetworks in Python. Frontiers in
Neuroinformatic2(5) (2008)

Graf, H.P., Hubbard, W., Jackel, L.D., de Vegvar, P.GANCMOS Associative Memory Chip. In:
Proc. IEEE First Int'l Conf. on Neural Networks, pp. 461-46887)

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Hone}, @/edeen, V.J., Sporns, O.: Mapping
the Structural Core of Human Cerebral Cortex. PLoS Biol6@}), 1479-1493 (2008)

Harkin, J., Morgan, F., Hall, S., Dudek, P., Dowrick, M¢Daid, L.: Reconfigurable platforms and
the challenges for large-scale implementations of spikingaleetworks. In: Proc. 2008 Int’'| Conf.
Field Programmable Logic and Applications (FPL 2008), pp~4&®% (2008)

Hayon, G., Abeles, M., Lehmann, D.: A Model for Representhe Dynamics of a System of Synfire
Chains. J. Computational Sdig(1), 41-53 (2005)

Hines, M.L., Carnevale, N.T.: The NEURON simulation eomiment. Neural Computatio®(6),
1179-1209 (1997)

Holler, M., Tam, S., Castro, H., Benson, R.: An Electlicalrainable Artificial Neural Network
(ETANN) with 10240 “Floating Gate” Synapses. In: Proc. 1988 Joint Conf. Neural Networks
(IICNN1989), pp. 191-196 (1989)

Indiveri, G., Chicca, E., Douglas, R.: A VLSI Array of LeRower Spiking Neurons and Bistable
Synapses With Spike-Timing Dependent Plasticity. IEEE Trateural Networksl7(1), 211-221
(2006)

Izhikevich, E.: Simple Model of Spiking Neurons. IEEE isaon Neural Network&4, 1569-1572
(2003)

Izhikevich, E., Edelman, G.M.: Large-scale model of mammatfelamocortical systems. Proc.
National Academy of Sciences of the USA59), 3593-3598 (2008)

Izhikevich, E.M.: Which Model to Use for Cortical Spikiteurons. IEEE Trans. Neural Networks
15(5), 1063-1070 (2004)

James, M., Hoang, D.: Design of Low-Cost, Real-Time Sinaiabystems for Large Neural Net-
works. J. Parallel and Distributed Computibg(3), 221-235 (1992)

Jin, X., , Lugn, M., Khan, M.M., Plana, L.A., Rast, A.D., Welbourne, S.Rurber, S.B.: Efficient
Parallel Implementation of Multilayer Backpropagation Netkon Torus-Connected CMPs. In:
Proc. 2010 ACM Int'l Conf. on Computing Frontiers (CF'10),.[89-90 (2010)

Jin, X., Furber, S., Woods, J.: Efficient Modelling of I8pg Neural Networks on a Scalable Chip
Multiprocessor. In: Proc. 2008 Int'l Joint Conf. on Neuratorks (IJCNN2008) (2008)

Jin, X., Rast, A., Galluppi, F., Khan, M.M., Furber, Sandlementing learning on the SpiNNaker uni-
versal neural chip multiprocessor. In: Proc. 2009 Int'l Cowéural Information Processing (ICONIP
2009). Springer-Verlag (2009)

Johansson, C., Lansner, A.: Towards cortex sized @tifieural systems. Neural NetworR§(1),
48-61 (2007)

Khan, M., Lester, D., Plana, L., Rast, A., Jin, X., Pa@skiE., Furber, S.: SpiNNaker: Mapping Neural
Networks onto a Massively-Parallel Chip Multiprocessar. Proc. 2008 Int’l Joint Conf. on Neural
Networks (IJCNN2008) (2008)

Lazzaro, J., Wawrzynek, J., Mahowald, M., Silviotti,, Millespie, D.: Silicon Auditory Processors
as Computer Peripherals. IEEE Trans. Neural Netwd(R}, 523-528 (1993)

Lee, B.J., Sheu, B.W.: General-Purpose Neural Chigs Elictrically Programmable Synapses and
Gain-Adjustable Neurons. IEEE J. of Solid-State Circ@it€9), 1299-1302 (1992)

Lytton, W.H., Omurtag, A., Neymotin, S.A., Hines, M.L.:shin-Time Connectivity for Large Spik-
ing Networks. Neural Computatid®20(11), 2745-2756 (2008)



30

A. D. Rast, J. Navaridas, et al.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

53.

54.

Maguire, L., McGinnity, T.M., Glackin, B., Ghani, A., Bagreche, A., Harkin, J.: Challenges for
large-scale implementations of spiking neural networks oB8A&% Neurocomputing1(1-3), 13—-29
(2007)

Mattia, M., Guidice, P.D.: Efficient Event-Driven Simtiéan of Large Networks of Spiking Neurons
and Dynamical Synapses. Neural Computafi@l0), 2305-2329 (2000)

Mehrtash, N., Jung, D., Hellmich, H., Ssfauer, T., Lu, V.T., Klar, H.: Synaptic Plasticity in Spikj
Neural Networks (SPINN): a System Approach. IEEE Trans. Neural Netwofkg5), 980992
(2003)

Migliore, M., Cannia, C., Lytton, W.W., Markram, H., HisileM.L.: Parallel network simulations with
NEURON. J. Computational Neuroscier@®?2), 119-29 (2006)

Mouraud, A., Paugam-Moisy, H., Puzenat, D.: A distriduaed multithreaded neural event driven
simulation framework. In: Proc. IASTED Int'l Conf. Paralleh@ Distributed Computing and Net-
works, pp. 212-217 (2006)

Nageswaran, J.M., Dutt, N., Krichmar, J.L., Nicolau, A configurable simulation environment for
the efficient simulation of large-scale spiking neural netgmn graphics processors. Neural Net-
works22(5-6) (2007)

Navaridas, J., Lanh, M., Miguel-Alonso, J., Plana, L.A., Furber, S.B.: Urgtanding the Intercon-
nection Network of SpiNNaker. In: Proc. 23rd Int'l Conf. Spomputing (ICS’09), pp. 286-295
(2009)

Navaridas, J., Miguel-Alonso, J., Pascual, J.A., RighruF.J.: Simulating and evaluating interconnec-
tion networks with INSEE. Simulation Modelling Practice aftteory19(1), 494-515 (2011)
Navaridas, J., Plana, L.A., Miguel-Alonso, J., &mj M., Furber, S.B.: SpiNNaker: Impact of Traffic
Locality, Causality and Burstiness on the Performance ofittezconnection Network. In: Proc. 2010
ACM Conf. Computing Frontiers (CF'10), pp. 11-19 (2010)

Orellana, C.G., Caballero, R.G., Velasco, H.M.G., AdigF.J.L.: NeuSim: a modular neural networks
simulator for Beowulf clusters. In: Proc. 6th Int'l Work-Clemence on Artifical and Natural Neural
Networks (IWANN 2001), Part Il, pp. 72—79. Springer-Veri@p01)

Pelayo, F.J., Ros, E., Arreguit, X., Prieto, A.: VLSI Impientation of a Neural Model Using Spikes.
Analog Integrated Circuits and Signal Processig{l—-2), 111-121 (1997)

Plana, L., Furber, S., Temple, S., Khan, M., Shi, Y., WuYang, S.: A GALS Infrastructure for a
Massively Parallel Multiprocessor. |IEEE Design & Test oinauters24(5), 454—-463 (2007)
Porrmann, M., Witkowski, U., Kalte, H.,Rkert, U.: Implementation of artificial neural networks
on a reconfigurable hardware accelerator. In: Proc. 2008r&iaro Conf. Parallel, Distributed, and
Network-based processing, pp. 243-250 (2002)

Rast, A., Jin, X., Khan, M., Furber, S.: The Deferred Evdodel for Hardware-Oriented Spiking
Neural Networks. In: Proc. 2008 Int'| Conf. Neural Inform@atiProcessing (ICONIP 2008). Springer-
Verlag (2009)

Rast, A., Khan, M.M., Jin, X., Plana, L.A., Furber, S.: Ailkersal Abstract-Time Platform for Real-
Time Neural Networks. In: Proc. 2009 Int’l Joint Conf. on NaluXetworks (IJCNN2009), pp. 2611—
2618 (2009)

Rast, A., Welbourne, S., Jin, X., Furber, S.: Optimal Gatinity in Hardware-Targetted MLP Net-
works. In: Proc. 2009 Int'l Joint Conf. on Neural Network§@NN2009), pp. 2619-2626 (2009)
Rast, A., Yang, S., Khan, M., Furber, S.: Virtual Synaptiterconnect Using an Asynchronous
Network-on-Chip. In: Proc. 2008 Int’l Joint Conf. on NeuNétworks (IJCNN2008) (2008)

Rast, A.D., Galluppi, F., Jin, X., Furber, S.B.: The Le#ktegrate-and-Fire Neuron: A Platform for
Synaptic Model Exploration on the SpiNNaker Chip. In: Pi2@10 Int'l Joint Conf. Neural Networks
(IICNN2010), pp. 3959-3966 (2010)

Rast, A.D., Jin, X., Galluppi, F., Plana, L.A., Patters8., Furber, S.B.: Scalable Event-Driven Native
Parallel Processing: The SpiNNaker Neuromimetic System. rioc.R2010 ACM Conf. Computing
Frontiers (CF'10), pp. 20-29 (2010)

Rice, K.L., Vutsinas, C.N., Taha, T.M.: A Preliminary é&stigation of a Neocortex Model Implemen-
tation on the Cray XD1. In: Proc. 2007 ACM/IEEE Int'| Conf. @upercomputing (SC’07), pp. 1-8
(2007)

Ros, E., Carrillo, R., Ortigosa, E.M.: Event-Driven Slation Scheme for Spiking Neural Networks
Using Lookup Tables to Characterize Neuronal Activity. K#uwComputation18(12), 2959-2993
(2006)

Rickert, U.: ULSI Architectures for Atrtificial Neural Netwks. In: Proc. 9th Euromicro Wkshp. on
Parallel and Distributed Processing, pp. 436—442 (2001)



Managing Scalability in Event-Driven Models on the SpiNKaBystem 31

55.

56.

57.

58.

59.

60.

Steinkraus, D., Buck, I., Simard, P.Y.: Using GPUs for niaetearning algorithms. In: Proc. 8th
Int'l Conf. Document Analysis and Recognition, pp. 1115-0 {2005)

Upegui, A., PBa-Reyes, C.A., Sanchez, E.: An FPGA platform for on-lin@otogy exploration of
spiking neural networks. Microprocessors and Microsystee(s), 211-223 (2005)

Vogelstein, R.J., Mallik, U., Vogelstein, J.T., Caulverghs, G.: Dynamically Reconfigurable Silicon
Array of Spiking Neurons With Conductance-Based Synap4&SE[Trans. Neural Networkss(1),
253-265 (2007)

Watts, L.: Event-driven simulation of networks of spikineurons. In: Advances in Neural Informa-
tion Processing (NIPS) 6, pp. 927-934. Morgan Kaufmann Bhlbts (1994)

Yasunaga, M., Masuda, N., Yagyu, M., Asai, M., Yamada,Masaki, A.: Design, Fabrication and
Evaluation of a 5-inch Wafer Scale Neural Network LS| Compasiesi76 Digital Neurons. In: Proc.
1990 Int’l Joint Conf. Neural Networks (IJCNN1990), pp. 5835 (1990)

Yu, T., Cauwenberghs, G.: Analog VLSI Biophysical Neww@nd Synapses With Programmable
Membrane Channel Kinetics. IEEE Trans. Biomedical Circuiid 8ystemg(3), 139-148 (2010)



