
Population-Based Routing in the SpiNNaker

Neuromorphic Architecture

Sergio Davies, Javier Navaridas, Francesco Galluppi and Steve Furber

School of Computer Science

The University of Manchester

Manchester - UK

Email: daviess@cs.man.ac.uk, javier.navaridas@manchester.ac.uk, galluppf@cs.man.ac.uk, steve.furber@manchester.ac.uk

Abstract—SpiNNaker is a hardware-based massively-parallel
real-time universal neural network simulator designed to simu-
late large-scale spiking neural networks. Spikes are distributed
across the system using a multicast packet router. Each packet
represents an event (spike) generated by a neuron. On the basis
of the source of the spike (chip, core and neuron), the routers
distribute the network packet across the system towards the
destination neuron(s). This paper describes a novel approach
to the projection routing problem that shows advantages in both
the size of the routing tables generated and the computational
complexity for the generation of routing tables. To achieve this,
spikes are routed on the basis of the source population, leaving
to the destination core the duty to propagate the received spike
to the appropriate neuron(s).

I. INTRODUCTION

Biological neurons communicate in networks with spectac-

ular levels of connectivity using signals that are remarkably

simple. The signals used for this purpose are electrical pulses

known as action potentials or spikes. The information trans-

mitted from a neuron to subsequent ones in the network is

encoded in trains or sequences of spikes. Spikes are transmit-

ted from neuron to neuron more-or-less losslessly over axons

which distribute the action potential to many targets.

The structure of the input dendritic tree allows a neuron to

receive inputs from many thousands of other neurons through

synaptic connections. The nature of the network – simple

processing, complex connectivity – suggests that much of the

remarkable processing power of the brain must stem from the

connection topology.

The need to support efficient processing within the space

and wiring constraints of the brain naturally suggests some

internal structure: biological neural networks do not have ran-

dom topologies. While specific functional microcircuits within

biological neural networks have been identified only for certain

cases (e.g. [1]), the global connectivity of the brain is known to

feature bundles of long-range connections connecting specific

regions to other specific regions in tight clusters [2]. Likewise

the general structure of the cortex has been analysed and is

understood to have dense local connectivity with relatively

sparse, but strongly-directed, long-range connectivity [3]. The

overall pattern – heavily clustered populations of neurons com-

municating through narrow specific projections – is thought to

provide a generic modular architecture to the brain that permits

efficient processing of almost any function or behaviour within

a universal substrate.

Nonetheless it seems remarkable that attempts to create

neural networks in hardware have rarely emphasised or even

implemented this type of architecture. First-generation neural

processors, on the whole, tended to implement either cel-

lular connectivity or all-to-all patterns that promote reduced

locality [4]. A second generation, acknowledging the need for

reconfigurablity, adopted a rewirable architecture, but on the

whole tended towards the circuit-switched approach typical of

FPGAs that is unsuitable for biological-style topologies [5].

Imitating the spiking behaviour of biological neurons, a

third generation of computational artificial neural networks

has been proposed [6]. Simulators for third generation ar-

tificial neural networks have been developed using various

technologies and techniques [7] [8]. Software simulators re-

quire the implementation of a computer program that solves

the mathematical models on usually unsuitable, inefficient

sequential digital computers. Hardware simulators have thus

also emerged promising more efficient computation [9]. Such

chips may use an Address Event Representation protocol

(AER) to distribute the event across the system (in the case

of a digital communication system), or a matrix of analogue

components that emulate the required inter-neuron dynamics

(in the case of purely analogue hardware). Some examples

of neuron intercommunication paradigms, as implemented in

hardware spiking neural network simulators [8], are:

• Fully connected networks: neurons communicate with

all or a subset of the remaining neurons;

• Locally connected networks: neurons are arranged in a

matrix in which each neuron communicates only with a

subset of the neighbouring neurons;

• Layered architectures: neurons of a specific layer com-

municate only with neurons of the layers up-stream and

down-stream;

• Reconfigurable architectures: the connections of each

neuron are reconfigurable both in synaptic destination and

in synaptic weight.

A common feature of all these architectures is that only

neuron-to-neuron connections are taken into account, i.e. the

description of the connectivity always uses a single neuron

as source and a single neuron as destination. However, in

biology, it is known that neurons are functionally aggregated

into populations (called “cell assemblies” in [10]) where all the

neurons contribute to the same function, and then populations

are interconnected [11]. Indeed, in the biology the per-unit

computation seems to be very simple while the sophistication

is in the connectivity. It is surprising, therefore, that during

over 2 decades of hardware (and software) development, the

effort has focussed more on efficient computational methods

rather than on efficient connectivity architectures. This idea

seems always to have been latent in the field [12], but never

exploited.

In this paper we present an architecture based on a routable

AER network that permits a more biologically-similar con-

nectivity and a software approach to configure it, based on the

novel idea of connecting populations. Hence all the neurons in

a population share a common path to the destination popula-

tion(s). The precise description of the connection between each

single neuron happens only at the very last operation, when the

spike has to be distributed within the destination population

that resides in a specific simulation unit. The population-based

approach is then tested with various models of neural networks

and shown to be an efficient approach to the neuron inter-

communication problem.

II. INTRODUCTION TO SPINNAKER

SpiNNaker [13] is a hardware-based real-time universal

neural network simulator following an event-driven compu-

tational approach [14]. This project involves the design of a

chip and the development of dedicated software to simulate

neural networks [15]. This system tries to mimic the features

of biological neural networks in various ways:

• Native parallelism: each neuron is a primitive com-

putational element within a massively parallel system.

Likewise, SpiNNaker uses parallel computation;

• Spiking communications: in biology, neurons commu-

nicate through spikes. The SpiNNaker architecture uses

source-based AER packets to transmit the equivalent of

neural signals;

• Event-driven behaviour: neurons are very power effi-

cient, and consume much less power than modern hard-

ware. To reduce power consumption we put the hardware

in “sleep” state waiting for an event [15];

• Distributed memory: in biology, neurons use only local

information to process incoming stimuli. In the SpiN-

Naker architecture we use memory local to each of the

cores and an SDRAM local to each chip;

• Reconfigurability: in biology, synapses are plastic. This

means that the neural connectivity change in both shape

and strength. The SpiNNaker architecture allows on-the-

fly reconfiguration.

Here we introduce the main features of the SpiNNaker

system. Complete details of the system and of its performance

can be found in [13], [14], [16], [17], [18] and [19].

Fig. 1. SpiNNaker chip layout with labels for functional blocks and pictures
of the chip before and after packaging. Image taken from the GDS2 plot sent
to the manufacturer. The chip was fabricated at UMC using their 130e-llsp
low-power process. Die size is 10×10 mm.

A. Hardware

alghero airport The core of the SpiNNaker system is the

SpiNNaker node (fig.1): a multiprocessor chip including 18

ARM968 processors (see fig. 2), each running at 200 MHz.

Each core has a 96 KB TCM (Tightly Coupled Memory)

containing local instructions and data. In addition, a shared

128 MB SDRAM memory is available to all the cores of a

chip.

A network router [17] provides interconnection features to

the cores internal and external to the chip. While the ARM

IP blocks are off-the-shelf general purpose programmable

processors, the router is a completely custom component

optimized for spiking models (although its use is not limited

to spiking neural network simulation).

SpiNNaker chips integrate into a large-scale system nor-

mally consisting of a regular two-dimensional hexagonal array

of up to 256×256 chips. The whole network is then wrapped

to form a toroidal shape (fig. 3). Some of the nodes in this

network are connected to the external world by Ethernet links,

through which it is possible to send data, code, and commands

to the SpiNNaker system. It is worth noting in particular

the programmability of this system: although it has been

designed to perform with spiking neural network simulations,

the general purpose cores embedded in the SpiNNaker chip

make this hardware versatile and usable also in other contexts

and for different purposes.

B. Software

The software developed for this system has been designed

to maximise power efficiency. When idle, the processor is

kept in low-power sleep mode with interrupts enabled. When

an interrupt is received, the processor performs the required

actions to respond to the interrupt request and then returns to

sleep. Details of the software architecture have been described

in various publications: [15] [20] [21]. It is important to

note that the number of neurons that each core is able

to simulate within the real-time constraint varies with the

computational complexity of the neuron model itself and with

Data

Instr .

ca
c
he

Timer

VIC

DMA

Ctrl.

Core

ARM968S-E

Eth Sys.
Ctrl .

Boot

ROM

18

18
18

P0

P1

P5

P4

P3

P2

Comm. Ctrl .

Network on Chip

P0

P1

P5P4

P3

P2

SpiNNaker
Chip

Router

RAM
Ctrl .

Fig. 2. Schematic of the SpiNNaker chip with the view of the routing
directions.

Fig. 3. The SpiNNaker system: each dot is a SpiNNaker chip. The lines
between them are the links. The system is wrapped in a toroidal configuration.

the connectivity pattern required [22]. However, the maximum

number of neurons that each core is able to simulate is imposed

by the design specifications of the SpiNNaker system. All

the components, in particular those related to memory access

and communication, have been designed to support the traffic

generated by at most 1, 000 neurons per core.

C. Multicast communications in SpiNNaker

As described above, when a biological neuron emits an

action potential, it influences a large number of post-synaptic

neurons, typically in the order of thousands. This mecha-

nism has been reproduced in the SpiNNaker system using

a multicast packet router that allows on-chip and inter-chip

communications. Its main task is to propagate network packets

to destination cores on the basis of the identifier of the source

neuron.

When a neuron fires, a packet is generated and transmitted

through the network. The only information contained in the

packet is the identifier of the neuron that has fired (see

fig.4). The information necessary to deliver the packet to

the appropriate destinations is embedded in the routing table

present in each router [17]. When a router receives a packet, it

looks in the routing table for a match to determine the direction

of the following step. Each routing entry is formed by three

registers: key, mask and direction. The key field identifies the

routing key to match for the entry to be selected. The mask

Fig. 4. Description of the routing key structure.

field identifies the bits of the key that have to match with

the routing key of the packet received for the entry to be

selected. If a masked entry matches the received routing key,

then the corresponding direction register contains the direction

towards which the packet is propagated. If no entries match

the received routing key, a mechanism for “default routing” is

triggered and the packet is transmitted to the link opposite to

the one from which it has been received (e.g. a packet received

from link 3 is default-routed to link 0 in fig.2).

Given that the high fan-out of neural connectivity, gener-

ating the distribution trees and filling these routing tables is

a very important, non-trivial part of the neural computation:

in this paper we explore a new approach that simplifies this

task. Instead of generating neuron-to-neuron multicast trees we

greatly reduce computation time by generating population-to-

population routes.

In the following sections of the paper the term “hop” is

used to describe the passage of a projection (or, equivalently,

a packet) through one router of a SpiNNaker chip.

III. POPULATION-BASED ROUTING

In the SpiNNaker system, each action potential generated

by a neuron is sent to the destination core(s) using a multicast

packet on the basis of the source neuron identifier. The routing

key comprises 32 bits that uniquely identify the source neuron

that emitted it.

The 32 bits forming a routing key can be used arbitrar-

ily, since the routers and the cores are fully programmable.

However, for the sake of simplicity, we defined a convenient

structure with four fields described in fig.4. The first three

fields (21 bits) provide information about where the neuron

is placed. The fourth field is further split into two parts:

a population identifier and a neuron identifier. These two

sub-fields have varying sizes so that it is possible to adapt

them to the size of the populations simulated in each core. If

populations are big, there can be fewer populations inside a

core (few bits for the population identifier, many bits for the

neuron identifier). On the other hand, inside each core there

can be a greater number of smaller populations (many bits for

the population identifier, few bits for the neuron identifier). If

populations exceed the number of neurons that a core is able

to simulate, they have to be split in appropriately sized parts

which will be treated as individual populations, returning the

problem to the original population-based routing.

The masking capability implemented in the router allows us

to select the bits on the basis of which the packet has to be

routed. Therefore we took advantage of this feature using a

mask that selects the part of the routing key related to the first

four fields depicted in fig.4, which represents the complete

source population identifier.

For the purpose of the generation of the routing key, the

populations are sorted inside each core by their size. In

addition, the size of the population is rounded up to the nearest

power of two. This addressing scheme has the advantage of

subdividing the routing key so that all neurons belonging to

the same population have the same initial pattern, which is

the population key identifier code (population ID). However

there is the disadvantage that some of the routing keys are not

actually used for specific neurons, since they are used to align

the following routing keys so that each population has its own

identifier inside a core.

The greatest number of unused routing keys is generated

if a population contains 2n + 1 neurons: in fact the size of

the neuron identifier is then n+1 bits, (2n+1 possible routing

keys) of which 2n+1 are actually used and 2n−1 are unused,

with a ratio of ≈ 50%. Therefore, to include this worst case

scenario in the addressing scheme, we assign 11 bits of the

routing key to the population and neuron identifier. In total

this addressing space is able to identify 2, 048 neurons per

core in the SpiNNaker system, giving twice the addressing

space strictly required for the simulation.

However, the key point of the approach to the population-

based routing is the definition of the population key. In the

following two examples we do not focus on the first part of the

routing key which includes the X and Y coordinates of the chip

and the core identifier, but focus only on the section related to

the population ID and neuron ID, describing how these values

are computed. In a simple example, if a core contains a single

population of 60 neurons, the population will be assigned the

routing keys in the set 00000000000 to 00000111111, even

though the last four routing keys will not be used. Therefore

the population ID assigned to this population comprises 5 bits

00000, which is the immutable part of the set of the assigned

routing keys:

Population ID Neuron IDs
︷ ︸︸ ︷

00000
︷ ︸︸ ︷

xxxxxx

In a more complex example, if a core contains three

populations of (A) 60, (B) 20 and (C) 6 neurons, the routing

keys will be assigned consecutively:

Pop.

Name

Pop.

size

Routing key

start

Routing key

end
Pop. ID

Neuron

IDs

A 60 00000000000 00000111111 00000 xxxxxx

B 20 00001000000 00001011111 000010 xxxxx

C 6 00001100000 00001100111 00001100 xxx

For the purpose of routing the packets in the SpiNNaker

network, it is possible to use a single entry in the router per

population, defining the route on the basis of the population

ID. Since this has a variable size, the mask field of each

routing entry must be computed according to the population

Dimension order routing Right-turn only Longest path first

Fig. 5. Shape of the routes generated with each algorithm.

size (rounded up to the greater power of two). In this way,

even if populations are formed by a number of neurons which

is not exactly a power of two, we can still use a single entry

per population to route packets.

A. Multicast route generation

Given that the generation of the routes is outside of the

scope of this paper, we will consider only simple algorithms

for generating the multicast trees. All the algorithms dis-

cussed in this section are well-known in the literature [23]

and generate routes obliviously, i.e. they only require local

information. This is a prerequisite for any multicast generation

algorithm that has to be used in SpiNNaker, because for

large configurations of the machine each chip will be in

charge of generating the multicast trees for its hosted neurons

independently of the rest of the system. Furthermore, we

will consider only the shortest path from a source to each

destination, which, given the triangular topology, will require,

at most, advancing in two of the three possible directions (X,

Y, Diag). We will consider the following algorithms:

• Dimension Order Routing (DOR): This routes the packets

first advancing all the required hops in the X dimension,

then the Y dimension and finally along the diagonal.

• Right Turn Only (RTO): Packets are routed in a way such

that only right-turns are allowed. This require prioritizing

the use of directions clockwise cyclically.

• Longest Path First (LPF): Each packet advances first

through the direction having the largest number of hops

and then in the other one (if any).

Fig. 5 shows the shape of the routes generated by each

algorithm and the areas covered by each local output port. In

the figure it is apparent that LPF has a better partitioning of

the network and a more balanced use of network resources.

To corroborate this, we have performed a simple experiment.

We have created 1, 000 random collections of 256 destination

nodes located, on average, 32 hops from the source. Then,

using different algorithms, we have generated the multicast

trees and measured the network resources used by each

algorithm. The results of this experiment are plotted in fig.

6. It shows the average resources used by each algorithm as

well as the resource used per dimension. The latter provides

an insight into the balance of the use of network resources.

Note that an unbalanced use of network resources may lead the

network to suboptimal behaviour. The difference in terms of

entries in the routing tables used by the different algorithms is

Fig. 6. Network resources needed by each algorithm.

negligible (less than 0.1%) and therefore will not be considered

for deciding among them.

The results show that DOR has a very unbalanced use of

network resources. It requires a greater use of the diagonal

links (roughly 1.5× Y and 5× X) which are therefore likely to

become a bottleneck. RTO provides a much more balanced use

of the network, but at the cost of increasing the total network

resources employed. However, as its use per dimension is

noticeably lower than the most used dimension in DOR, it

does compensate for the higher use of resources in other

dimensions. Finally, LPF has the lowest requirements in terms

of network resources (roughly 2

3
of the other algorithms)

and also produces a very balanced multicast tree. For this

reason, we selected LPF to be implemented in SpiNNaker as

a first approach to generate multicast routes and we use this

algorithm throughout the rest of this paper.

B. Implementing LPF for the SpiNNaker system

The first step to compute the routing path is to evaluate

the difference between the coordinates of the source and the

destination chip. Doing so, we have a number of hops in the

four main directions (directions 0, 2, 3 and 5 as described in

fig.2).

The second step is to compute the number of hops in the

diagonal direction. The number of hops in this direction will be

different from 0 only if the number of hops in the X direction

and the Y direction have the same sign (both positive or both

negative). If diagonal hops are introduced, then the number of

hops in the X and Y directions are re-computed accordingly.

An example of the routing trees is described in fig.7. The

figure shows a 7 × 7 subnetwork with the beginning of the

branches generated by this algorithm. Squares represent nodes,

and lines between them represent the links. The links that

may be used by the multicast algorithm are darkened. The

domains reachable from each output port are delimited by the

red dashed line.

The routing paths for each of the source populations are

computed step by step: each routing key is stored in a

memory structure that reproduces the 256 × 256 structure of

the SpiNNaker system, and then the routing algorithm moves

the packet forward by one step, storing the routing key in the

appropriate memory structure. Finally all these (raw) entries

are further processed so that if multiple entries belonging to

Fig. 7. Links selectable by the “Longest Path First” algorithm.

the same routing keys are present in the memory structure

representing one router, they are compressed into a single

entry with multiple destinations. At the same time, the default

routing path is taken into account so that if an entry has to

be default-routed, the entry will not appear in the final list of

routing entries.

In addition, to avoid excessive memory consumption in

the host during the computation of the routes, a “tiling”

method has been applied: the whole 256 × 256 SpiNNaker

chip assembly is divided into 64 blocks of 32 × 32 chips

which are routed at once. The routing algorithm is applied

to the connections which are sourced in each of the blocks of

chips and then the resulting entries are compressed in the final

list, freeing the memory for the next iteration.

IV. ROUTING TESTS

The implementation of our novel population-to-population

routing algorithm has been tested in three different scenarios:

1) One population per core, local projections only;

2) One population per core, system-wide connectivity;

3) A simple biologically-inspired thalamocortical model.

Local projections are projections between populations of

neurons allocated to the same chip. Long-range projections

are projections between populations of neurons that do not

reside in the same chip.

In the first two tests, the generated neural network consists

of one population of 512 neurons for each of the cores in

the complete SpiNNaker system: 16 cores are used for neural

simulation in each of the 256 × 256 SpiNNaker chips of

the whole system, for a total of 1, 048, 576 populations and

536, 870, 912 neurons.

Results have been obtained running the routing algorithm

on an Intel Core 2 Duo T9600 (2.8 GHz) with 4 Gb of RAM

using a Python program.

A. One population per core, local projections only

The first test involved the generation of the routing tables for

a neural network where only projections within the same chip

(a) Results of the first test with local projections
only. The graph presents the relation between
the number of connections per source population
and the time required for the computation (in
seconds).

(b) Results of the second test with long-range
projections only. The graph presents the relation
between the number of connections per source
population and the time required for the compu-
tation (in seconds).

(c) Results of the second test with long-range
projections only. The graph presents the relation
between the number of connections per source
population and the number of entries in the rout-
ing tables. The blue solid line with circles rep-
resents the minimum number of routing entries.
The red dashed line with squares represents the
maximum number of routing entries.

Fig. 8. Results produced using the population-based routing principles.

were present. These projections involve, therefore, a single hop

through the local chip router to reach the destination core. In

fig.8(a) the time required for the computation is presented. On

the horizontal axis is the number of connections per source

population; on the vertical axis is the time required for the

computation (in seconds). It is important to note that the time

required is linear with the number of connections defined.

B. One population per core, system-wide connectivity

Our second test involved the generation of routes for a

complete SpiNNaker system. Every population selects ran-

domly a collection of p destination populations located all over

the system; note that self-connections and local connections

are possible. In this case we are interested both in the time

required for the computation and the number of routing entries

generated, therefore two graphs are presented: fig.8(b) shows

the computational time required to route the corresponding

number of projections. Fig.8(c) shows the maximum and the

minimum number of entries occupied in the routing tables.

In both graphs, the horizontal axis represents the number of

connections per source populations (p). In the case of 0.5 con-

nections per source populations, only half of the populations

in a chip have a projection towards another population in the

system.

In fig.8(b) we can see that the computational time is no

longer linear with the number of connections. Since we have

already shown that the single-hop routes requires linear time,

the additional time is required to route the packets over

multiple hops. Therefore the time required for the computation

depends both on the number of connections sourced by a

population and on the distance (or equivalently on the number

of hops) between the source population and the destination

population(s).

C. The thalamocortical model

In this last test we used a simplified biologically-inspired

thalamocortical model [24], as described in fig.9(a). The figure

shows the five-layer cortical columns we consider in this study.

Circles represent populations, and the number of neurons in

the population is denoted within. Black arrows represent the

short-range connections, the ones within a single cortical col-

umn. Dotted arrows represent long-range connections between

different cortical columns. A depiction of the structure of the

long-range projections can be seen in fig.9(b) in which the

circles represent cortical columns, and the arrows represent

the projections among them. All the cortical columns follow

the same structure of projections.

The system contains 512 × 512 total columns placed on

a two-dimensional grid for a total of 2, 097, 152 populations

of neurons (503, 316, 480 neurons in total) and 7, 327, 752

projections (long and short range). The size of the biggest pop-

ulation has been selected according to the number of neurons

that each core is able to simulate, given the interconnection

pattern designed. However, since this model has not been

simulated, this size is a speculation. However, two factors

makes this choice unimportant from the point of view of this

test: first, the routing algorithm is independent of the exact

size of the population, since the projection is represented by

a single routing entry per population per projection. Secondly

cortical columns have been chosen because they offer a good

demonstration for scalable systems, and provide a good model

to exercise the capabilities of the routing algorithm. We

planned the model so that four cores are required to simulate

a single column:

1) Excitatory population of layers 2/3 - Total 512 neurons;

2) Excitatory population of layer 4 - Total 512 neurons;

3) Excitatory populations of layer 5 (128 neurons) and

layer 6 (384 neurons) - Total 512 neurons;

4) Inhibitory populations of layers 2/3 (128 neurons), layer

4 (128 neurons), layer 5 (32 neurons) and layer 6 (96

neurons) - Total 384 neurons;

While short range connections are kept local to each chip

(each chip is able to accommodate 4 columns which are

(a) A collection of cortical columns. The
rightmost shows the populations within each
column.

(b) Depiction of the inter-
cortical-column projections.

(c) Histogram of the number of entries in the routing tables.

Fig. 9. Details of the thalamocortical model test.

allocated sequentially from the pool of columns to place), long

range connections do not take full advantage of the regularity

of the SpiNNaker architecture because the 512×512 columns

grid does not match the 256×256 structure of the SpiNNaker

system. However some sort of repeating pattern will be present

for long range connections.

The routing algorithm generated the routing tables for the

65, 536 routers in the system using between 92 and 44 entries

for each router. The histrogram of the number of entries per

router is described in fig.9(c): the horizontal axis represents

the number of entries in the routers. The vertical axis is

the number of occurrences of the specific number of routing

entries in the whole SpiNNaker system. The tables for this

experiment have been generated in slightly more than 7 hours

using the population-based routing principles.

V. DISCUSSION AND FUTURE WORKS

The three experiments described here provided the basis for

an evaluation of population-based routing, with the particular

goal of demonstrating that the time required to route all the

projections, and the number of entries required in each routing

table, allow the problem to be solved in a reasonable time.

In particular the thalamocortical model experiment shows the

result of routing using the principle that populations close to-

gether in the model reside in cores that are close to each other.

Using a similar approach also for long-range connections may

further reduce the number of entries in each router. In addition,

in the case that the number of entries required is greater than

the size of the routing table, it is possible to compress the

entries further using a minimization tool.

Previous results about routing neuron-to-neuron have always

been run for very small test systems (2×2 chips). An example

of this has been published in [18] and took about two hours

to generate the model for a networks of 4, 000 neurons and

225, 000 synapses. The problem with this approach is in

the time required in the computation for bigger systems. In

the neuron-to-neuron approach, the routing algorithm must

be performed for each single projection. Therefore doubling

the number of neurons results in a quadratic increase of the

possible number of connections.

With this new approach the problem is moved up by one

level of abstraction: the number of projections does not in-

crease with the number of neurons in each population, but with

the number of populations in the model. As a minor drawback,

this algorithm requires an addressing space which is larger

compared with the standard neuron-to-neuron communication

channel definition (in the worst case the addressing space

required is double the space strictly needed for the number

of neurons simulated). However the SpiNNaker system has

been designed to simulate a 1 billion neuron neural network,

which is only ≈ 25% of the addressing space offered by a

32 bit system, giving some additional space for a rational

organization of the routing keys.

The algorithm described here is the first step towards a

greater goal: a self-reconfiguring neuromorphic architecture.

This algorithm has been designed to allow an implementation

directly on the SpiNNaker system. In this way, during the

setup phase, the SpiNNaker system will self-configure after

a high-level description of the neural network. The routing

algorithm described is only the first step of the complete

process. Further steps include the generation of each synaptic

connection required by the high-level description.

However, this is a first step in the direction of synaptic

rewiring (also known as structural plasticity): during the neural

simulation, when required from the biological model, it will

be possible to connect two populations that initially were

not supposed to be connected. This is a biological process

that happens naturally at the beginning of life and with the

acquisition of experience, but that has not yet been completely

understood.

The SpiNNaker system has been designed to provide a

tool for biologists to perform experiments and test hypothesis

that emerge from the study of biological neural networks.

The tool presented here is a step towards the implementation

of such models in the SpiNNaker system with the objective

of providing a tool to simulate such biological processes

abstracting the description of the neural network up by one

level to the population scale.

VI. CONCLUSIONS

This paper has described the multicast packet router in the

SpiNNaker system and how the routing tables are computed

off-line. This process, in fact, is now hosted on a PC that

computes the routing tables starting from a high-level de-

scription of the neural network. In this context the “longest

path first” algorithm has been chosen because it requires only

local information to route packets to the destination chip

(this algorithm requires only the source chip coordinates and

the destination chip coordinates). The routing path may be

computed hop by hop by each of the routers through which

the packet has to pass, until the destination router is reached.

The outcome of this routing algorithm, however, shows that

for both random networks and biologically-inspired networks,

the number of entries used in the routing tables is rather low, as

compared to the number of entries available. Therefore, even

if the models used are designed only for testing purposes, the

routing entries that are still available for each router enable the

users to design networks that are more biologically detailed.

The new approach moves the problem of the distribution

of the spikes in the system up of one level of abstraction: the

number of projections does not depend any more on the size of

each single population, but on the number of the populations

simulated in the system. The computational improvements in

this approach have allowed the routing of projections across

a very large neural network, such as those for which the

SpiNNaker system has been designed, in a reasonable time.

ACKNOWLEDGMENT

The SpiNNaker project is supported by the Engineer-

ing and Physical Science Research Council (EPSRC), grant

EP/4015740/1, and also by ARM and Silistix. Dr. Navaridas

holds a Newton International Fellowship from the Royal

Society. We appreciate the support of these sponsors and

industrial partners.

REFERENCES

[1] S. Lefort, C. Tomm, J.-C. Floyd Sarria, and C. C. H. Petersen, “The
Excitatory Neuronal Network of the C2 Barrel Column in Mouse
Primary Somatosensory Cortex,” Neuron, vol. 61, no. 2, pp. 301–316,
Jan. 2009.

[2] P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, V. J.
Wedeen, and O. Sporns, “Mapping the Structural Core of Human
Cerebral Cortex,” PLoS Biol, vol. 6, no. 7, 2008. [Online]. Available:
http://dx.doi.org/10.1371/journal.pbio.0060159

[3] T. Binzegger, R. J. Douglas, and K. A. Martin, “Topology and dynamics
of the canonical circuit of cat V1,” Neural Networks, vol. 22, no. 8, pp.
1071–1078, Oct. 2009.

[4] C. S. Lindsey and T. Lindblad, “Survey of neural network hardware,”
in Proc. SPIE, Applications and Science of Artificial Neural Networks,
vol. 2492, 1995, pp. 1194–1205.

[5] L. Maguire, T. M. McGinnity, B. Glackin, A. Ghani, A. Belatreche, and
J. Harkin, “Challenges for large-scale implementations of spiking neural
networks on FPGAs,” Neurocomputing, vol. 71, no. 1-3, pp. 13–29, Dec.
2007.

[6] W. Maass, “Networks of spiking neurons: The third generation of neural
network models,” Neural Networks, vol. 10, no. 9, pp. 1659–1671, Dec.
1997.

[7] R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J. Bower,
M. Diesmann, A. Morrison, P. Goodman, F. Harris, M. Zirpe,
T. Natschläger, D. Pecevski, B. Ermentrout, M. Djurfeldt, A. Lansner,
O. Rochel, T. Vieville, E. Muller, A. Davison, S. E. Boustani, and
A. Destexhe, “Simulation of networks of spiking neurons: a review of
tools and strategies.” Journal of computational neuroscience, vol. 23,
no. 3, pp. 349–398, Dec. 2007.

[8] S. Draghici, “Neural networks in analog hardware–design and imple-
mentation issues.” International journal of neural systems, vol. 10, no. 1,
pp. 19–42, Feb. 2000.

[9] J. Misra and I. Saha, “Artificial neural networks in hardware: A survey
of two decades of progress,” Neurocomputing, vol. 74, no. 1-3, pp. 239–
255, Dec. 2010.

[10] D. O. Hebb, The Organization of Behavior: A Neuropsychological

Theory, 1949.
[11] A. A. Fingelkurts, A. A. Fingelkurts, and S. Kähkönen, “Functional

connectivity in the brain–is it an elusive concept?” Neuroscience and

biobehavioral reviews, vol. 28, no. 8, pp. 827–836, Jan. 2005. [Online].
Available: http://dx.doi.org/10.1016/j.neubiorev.2004.10.009

[12] M. James and D. Hoang, “Design of Low-Cost, Real-Time Simulation
Systems for Large Neural Networks,” J. Parallel and Distributed Com-

puting, vol. 14, no. 3, pp. 221–235, Mar. 1992.
[13] S. B. Furber, S. Temple, and A. D. Brown, “High-Performance Com-

puting for Systems of Spiking Neurons,” in Proc. AISB’06 workshop on

GC5: Architecture of Brain and Mind, Apr. 2006.
[14] A. D. Rast, X. Jin, F. Galluppi, L. A. Plana, C. Patterson, and S. Furber,

“Scalable event-driven native parallel processing: the SpiNNaker neu-
romimetic system,” in Proceedings of the 7th ACM international con-

ference on Computing frontiers, ser. CF ’10. New York, NY, USA:
ACM, 2010, pp. 21–30.

[15] X. Jin, S. B. Furber, and J. V. Woods, “Efficient modelling of spiking
neural networks on a scalable chip multiprocessor,” Neural Networks,

2008. IJCNN 2008. (IEEE World Congress on Computational Intelli-

gence). IEEE International Joint Conference on, pp. 2812–2819, Sep.
2008.

[16] A. Rast, J. Navaridas, X. Jin, F. Galluppi, L. Plana, J. Miguel-Alonso,
C. Patterson, M. Luján, and S. Furber, “Managing Burstiness and
Scalability in Event-Driven Models on the SpiNNaker Neuromimetic
System,” International Journal of Parallel Programming, pp. 1–30, Jul.
2011.

[17] L. A. Plana, S. B. Furber, S. Temple, M. Khan, Y. Shi, J. Wu, and
S. Yang, “A GALS infrastructure for a massively parallel multiproces-
sor,” Design & Test of Computers, IEEE, vol. 24, no. 5, pp. 454–463,
Oct. 2007.

[18] A. Rast, F. Galluppi, S. Davies, L. Plana, C. Patterson, T. Sharp,
D. Lester, and S. Furber, “Concurrent heterogeneous neural model
simulation on real-time neuromimetic hardware,” Neural Networks,
vol. 24, pp. 961–978, 2011.

[19] J. Navaridas, M. Luján, J. M. Alonso, L. A. Plana, and S. Furber, “Un-
derstanding the interconnection network of SpiNNaker,” in Proceedings

of the 23rd international conference on Supercomputing, ser. ICS ’09.
New York, NY, USA: ACM, 2009, pp. 286–295.

[20] X. Jin, M. Lujan, L. A. Plana, S. Davies, S. Temple, and S. Furber,
“Modelling of spiking neural networks on SpiNNaker,” Computing in

Science and Engineering, September/October 2010.
[21] X. Jin, F. Galluppi, C. Patterson, A. Rast, S. Davies, S. Temple, and

S. Furber, “Algorithm and software for simulation of spiking neural
networks on the multi-chip SpiNNaker system,” Neural Networks, 2010.

IJCNN 2010. (IEEE World Congress on Computational Intelligence).

IEEE International Joint Conference on, 2010.
[22] A. D. Rast, F. Galluppi, X. Jin, and S. Furber, “The Leaky Integrate-

and-Fire Neuron: A platform for synaptic model exploration on the
SpiNNaker chip,” Neural Networks, 2010. IJCNN 2010. (IEEE World

Congress on Computational Intelligence). IEEE International Joint

Conference on, 2010.
[23] W. J. Dally and B. Towles, Principles and Practices of Interconnection

Networks. Morgan Kaufmann, 2004.
[24] A. M. Thomson and C. Lamy, “Functional maps of neocortical local

circuitry.” Frontiers in neuroscience, vol. 1, no. 1, pp. 19–42, Nov. 2007.
[Online]. Available: http://dx.doi.org/10.3389/neuro.01.1.1.002.2007

