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a b s t r a c t

The design of a new high-performance computing platform to model biological neural networks requires
scalable, layered communications in both hardware and software. SpiNNaker’s hardware is based
upon Multi-Processor System-on-Chips (MPSoCs) with flexible, power-efficient, custom communication
between processors and chips. The architecture scales from a single 18-processor chip to over 1 million
processors and to simulations of billion-neuron, trillion-synapse models, with tens of trillions of neural
spike-event packets conveyed each second. The communication networks and overlying protocols are key
to the successful operation of the SpiNNaker architecture, designed together to maximise performance
and minimise the power demands of the platform. SpiNNaker is a work in progress, having recently
reached a major milestone with the delivery of the first MPSoCs. This paper presents the architectural
justification, which is now supported by preliminary measured results of silicon performance, indicating
that it is indeed scalable to a million-plus processor system.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

SpiNNaker (Fig. 1) is a novel application-specific architec-
ture designed for simulation of massively-parallel Spiking Neural
Networks in real-time. Whilst it may be adapted to other com-
putational purposes, the requirements of a neural computer
have dominated its design. Biological neurons are slow, highly-
interconnected units; electronic components are fast but have
much lower fanout. The design therefore trades-off these proper-
ties using processors to simulate neuron and synaptic behaviour,
and a fast network to deliver communications over packet-
switched links.

Modelling ‘brain-sized’ networks in real-time requires a huge
number of processors, with the network capacity to match.
SpiNNaker is designed to be expandable to biologically-significant
sizes [27] at reasonable cost, incorporating fault-tolerance and
energy-efficiency as key aspects of the system design.

1.1. Network requirement

As far as is understood, biological neurons communicate
primarily using ‘spikes’; each spike is a ‘digital’ signal in that it
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is either present or not. Output variations are represented by the
temporal spacing of spikes as discussed by Izhikevich [29]. Other
connectivity information is in the synaptic weight, which indicates
how strongly a spike affects each efferent neuron.

SpiNNaker represents a spike as a single, short communications
packet, whose timing is represented by real time. A spike is
multicast into the communications network where it may be
replicated to a preprogrammed – and possibly large – set of
destinations. (Typically in a biological neural network the input
and output connection ‘fan’ of a neuron may be of the order
1000–10,000 and sometimes up to 250,000 [41].) This electronic
transmission is nearly ‘instantaneous’ on biological timescales [11]
and the ‘real’ biological delays are modelled by the receiving
processors in software [49,32].

Depending on the neuronmodel used [32,48,47], a million-plus
processor SpiNNaker system supports around 1 billion neurons
in real-time, thus connectivity may exceed 1 trillion synapses. At
an expected biological firing rate of 10 Hz [16] there could be
10 billion-plus neuron firings per second which amplify in the
output fans to trillions of communication events/s. The network
fabric has been scaled assuming significant locality of spike traffic
(destination neurons are statistically proximate to the transmitting
neuron), as is typically seen in the brain [8]. With these factors it is
anticipated that the inter-chip links will not be a limiting factor in
machine scalability. Thus, the connectivity problem is to distribute
huge numbers of short packets verywidely amongst up to amillion
processors efficiently, and in a timely fashion.
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Fig. 1. Typical SpiNNaker system inter-chip connectivity, with Ethernet connec-
tions to the Host system.

1.2. System architecture

The SpiNNaker architecture is constructed using custom
MPSoCs. Each chip (Fig. 2b) contains a bespoke router with
full-duplex ports for six external connections and its eighteen
ARM9 processor cores. SpiNNaker chips may be interconnected
using a 2D triangular mesh wrapped into a torus (Fig. 1).
While not biologically realistic, this was chosen as an extensible
configuration with a wide choice of node-to-node routing paths,
providing high aggregate bisectional bandwidth.

Each ARM core has a connection to the Communications
Network-on-Chip (Fig. 2c: Comms NoC), as do the external
inter-chip links, with the on- and off-chip networks forming a
seamless routedwhole. This is facilitated by an asynchronous inter-
connectionmediumso thewhole is aGALS (Globally Asynchronous,
Locally Synchronous) system [14]. The asynchronous interconnect
not only simplifies timing closure, independent of path length, but
promises better power economy than a synchronously-clocked al-
ternative with the anticipated network loading patterns.

A second GALS NoC (Fig. 2c: System NoC) gives all cores access
to shared peripherals and a separate (in-package) 1 Gb SDRAM
(Fig. 2a). This network has quite different requirements: it has to
supply sizeable data blocks to the processor cores, usually under
DMA control. A shared on-chip 32 KB SRAM – which is used for
inter-core message passing communications – is also addressed
using this path.

Input/Output is provided primarily by 100 Mb/s Ethernet
(Figs. 1 and 2c) provisioned on a subset of nodes. There are also

some General Purpose I/O (GPIO) lines which may interface with
external devices at a somewhat lower speed. In the future it is
further envisaged to use Field-Programmable Gata Arrays (FPGA)
chips to interpose non-disruptively into the communication
mesh, facilitating high-bandwidth, low-latency sensor/actuator
I/O. Further details on the overall SpiNNaker system architecture
and its design philosophy to tackle spiking neural computation
problems are published elsewhere [19–21,46,45].

1.3. Operation

Neural-network simulation is a highly parallel task; each
core is loaded with neural processing software and its neurons’
local synaptic weights. After initialisation of all nodes, cores run
asynchronously and handle events occurring in real time within
the system. Spike packets are routed and replicated in hardware
through the machine’s communication fabric into multicast trees.

One of the 18 cores on each chip is elected to the rôle of
‘Monitor Processor’ which coordinates chip-level functions such
as non-spike communications, control and management. In order
to remain fault-tolerant, this assignment is made dynamically
after power-on testing from the set of known-good processors.
The remaining cores are assigned as ‘Application Processors’,
and perform neural simulation work. Whilst again this is not a
faithful biological replication of the brain, it takes advantage of
the electronic medium being used to create the neural network
simulations, whilst maintaining the spirit of the redundancy and
renewal inherent to biological systems.

SpiNNaker has been developed primarily as a flexible comput-
ing platform to contribute to the scientific Grand Challenge of
achieving an understanding of the principles of operation of infor-
mation processing in the brain. As such it is intended that it be able
to support awide range of differentmodels of biological neural net-
works, of scales up to a billion spiking neurons, operating in real
time at biological firing rates. This target application domain has
led to an architecture with unusual properties, most notable the
ability to handle very large numbers of very small, independent,
multicast packets (up to 10 billion such packets may be sourced
and duplicated per second) and this naturally raises the question

(a) A SpiNNaker chip and
stacked SDRAM (Photo:
Unisem Europe).

(b) Packaged Production
SpiNNaker chip.

(c) Simplified schematic of the SpiNNaker chip highlighting its communications
architecture.

Fig. 2. The SpiNNaker multi-processor system-on-chip (MPSoC).



C. Patterson et al. / J. Parallel Distrib. Comput. ( ) – 3

as to whether there may be applications outside neuroscience that
can also benefit from this unusual architectural capability.

It is anticipated that typical customers for SpiNNaker are
psychologists, neuroscientists and multi-disciplinary teams using
principles from biology to create simulations, as well as others
bringing their highly parallelisable tasks to the platform. These
users will wish to gain visibility of application software and
hardware performance data ‘in-flight’, thus the communications
fabric must also support monitoring and debugging traffic. Rather
than provide a separate network for thismanagement information,
it is multiplexed onto the same communications fabric as the
multicast spike traffic, minimising power requirements and
simplifying MPSoC design. The requirements of management
services are different from those of spike traffic, but to ensure
neural traffic is not disrupted, the alternative packet types retain
the same short message length principle. Longer messages and
reliable delivery are handled by higher-level software protocols.

The focus of this paper is the layered hardware and software
forming the heterogeneous communications networks of SpiN-
Naker, facilitating its expansion into a very large high-performance
computing platform.

2. Similar work

Many different system architectures have been used for neu-
ral modelling, particularly High-Performance Computing (HPC)
systems and bespoke accelerators. Custom accelerators [26,43],
graphic processors [25] and general-purpose accelerators [7] are
outside the scope of this paper due to their inability to scale to
very large simulations. This section therefore reviews historical
and state-of-the-art extensible systems.

In the early nineties a team at U.C. Berkeley worked on the
Connectionist Network Supercomputer [5]. This project aimed to
build a supercomputer specifically tailored for neural computation.
The system was designed to be a 2D mesh, with a target size of
128 nodes (scalable to 512), each incorporating a general-purpose
RISC processor plus a vector coprocessor, 16 MB of RAM and a
router. This systemwas very similar to that of SpiNNaker in that its
interconnection network was expected to support application, I/O
and management traffic. Its architecture included a host machine,
directly attached to the mesh interconnect, therefore it did not
have the flexibility of being connected remotely. Apart from
system scale, an important difference is that it did not support
multicast communication; the system was expected to rely
entirely on spatial locality to scale to the required performance.
A prototype of the node was built under the codename T0, but it
is not believed the system operated as a large network. The results
of experiments using up to five nodes in a bus configuration were
also published [44].

The Blue Brain project [36] and the early stages of SyNAPSE [2]
have somewhat similar applications to SpiNNaker. However they
do not employ a custom architecture, but use a general-purpose
massively parallel system: the IBM BlueGene [23]. This family of
supercomputers is composed of tens of thousands of compute
nodes, each having several PowerPC processors. In contrast to
SpiNNaker, Blue Gene supercomputers have multiple separate,
specific purpose networks. The main interconnection network is a
3D torus, which is used only for transmitting application point-to-
point traffic. Multicast and broadcastmessages are carried through
another network and a distinct, Ethernet-based network is used
to handle control and I/O traffic. BlueGene/P machines are cited
as delivering a peak 379 Mflops/W [39,17] whilst the promised
BlueGene/Q in prototype has attained over 2000 Mflops/W [17].

Although there is currently little information publically avail-
able about its architecture or operation, Fujitsu’s K Computer
(heading the November 2011 Top500 list [39] with over half a

million cores, and 830 Mflops/W [17]) also appears to follow this
philosophy. Preliminary information indicates the existence of a
main interconnection network for application traffic [1] and a sec-
ondary Infiniband interconnect for I/O and system management.
By contrast, the Cray XT family of supercomputers has a simi-
lar philosophy to SpiNNaker’s of using the main interconnection
network for multiplexing application, management and I/O traffic
[52,10]. Themost power efficient XT5-HE instance achieves around
300 Mflops/W [17].

The ongoing SyNAPSE [51] project is also interesting as it
takes a broad multi-pronged approach to neural modelling. Their
stated aim to is to ‘develop electronic neuromorphic machine
technology that scales to biological levels’. This has involved
creation of custom hardware [38], using HPC platform modelling
techniques (mentioned earlier), and research into exotic areas such
as memristor technology.

Finally, the FACETS project [18] is creating a faster-than-real-
time custom hardware system for the simulation of large- (but
unspecified) sized networks of biologically-inspired neurons. Its
distinctive characteristic is that it employs analogue circuits
to implement neural dynamics. The interconnect however uses
digital logic, circuit-switched synchronous communications, for
transmitting spikes and supporting system I/O. It is believed
that the system management traffic will be served by the same
interconnect as for the spike paths—the same philosophy as
SpiNNaker.

3. Hardware communication layers

SpiNNaker features interconnection networks at many scales
and sizes, from on-chip to inter-chip, to ex-machine I/O connec-
tivity. It is a marriage of various communication protocols: ARM’s
AMBA [3], asynchronous on-chip 3-of-6 RTZ, chip-to-chip 2-of-7
NRZ and Ethernet. There is a layered approach to connectivity, with
standard and bespoke protocols enabling high-performance neural
messaging and systemmanagement functions to be efficiently sup-
ported over all physical transport paths on a large-scale machine.

3.1. Router

The router, embedded within the Comms NoC (Fig. 2c), is a
synchronous unit although its clock is independent of others on the
chip [53]. It has twenty-four asynchronous full-duplex ports: six
for the external connections and eighteen for on-chip processing
cores. As the packets are short they are de-serialised and passed
through a pipeline (one packet per clock) where they are checked
for integrity, processed according to their type and finally passed
to an output stage. The last stage attempts to dispatch the packet
to its determined destination(s) and will stall if it cannot be output
on that cycle. To prevent deadlock, including caseswhere an output
channel may have failed, a programmable time-out applies to this
stall so that a packet which gets stuck will eventually be dropped.
A dropped packet is retained in a buffer for software examination
so it may be reinstated, perhaps with some modification, by the
localMonitor Processor. Tominimise problems due to serialization
delays, there are FIFOs on all outgoing links.

As a further safeguard against both faults and channel
congestion on the direct route, the router can attempt ‘emergency’
routing before dropping a packet. This is a hardware mechanism
which sends a packet on a diversion through an adjacent node
(Fig. 3). The packet header is modified as it travels so that, if it
diverts successfully, it can continue as if nothing has happened
when it returns to the original path.

Router inputs need to be sequenced. This is done using an
arbitration tree (Fig. 4) which allocates resource on demand,
alternating if requests are continuous. The router is capable of
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Fig. 3. Emergency routing, an example of the process used when a diversion occurs.

Fig. 4. The asynchronous CommsNoC forms an input arbitration tree for the router.

accepting one packet per clock cycle unless it has backlogged. In
normal operation if the router is run at 100 MHz – around half its
maximum design speed – a packet will arrive from some source on
average every 10 cycles. The asynchronous Comms NoC is efficient
during periods where there is no traffic for the router as there is no
continuous synchronous clock burning power.

3.2. Packet formats

To cater for the different communication demands, the router
supports four types of packets (Fig. 5). Packets are either 5 or
9 bytes in length, comprising an 8-bit header and a 32-bit field
typically used for routing, which may be augmented with an

optional 32-bit payload field. Packet transmission is essentially
serial so omitting the payload saves time and increases available
packet rate. Example distribution trees can be seen in Fig. 6 for each
of the four packet types:

• Multicast (MC): intended for neural spike events. (1:many)
• Point-to-Point (P2P): for code distribution and system control.

(1:1)
• Nearest Neighbour (NN): principally for boot and fault recovery.

(local node:node)
• Fixed Route (FR): for monitoring and management traffic.

(typically many:1).

The control byte (header) for all packet types is similar (Fig. 5).
Two bits identify the packet type, one bit indicates the presence of
an optional payload and one bit records the entire packet’s parity,
including any payload. Most packets have a two-bit timestamp
which allows routers to drop packets of a certain age, a means
to filter ‘rogue’ traffic caused by faults. The MC and FR packets
also have 2 bits of ‘emergency routing’ information to control
routing around a failed or congested link [41] (Fig. 3). The sequence
code field for the P2P packets facilitates the structuring of longer
messages by higher-layer software protocols.

3.2.1. Multicast packets
Multicast spike packets are distributed to a subset of the neural

processors using Address Event Representation (AER) [40,12,11].
For this purpose each node contains an associative routing table
consisting of a 1024-entry key, mask and target triplet. Where no
match is made from this table the packet ‘default routes’ to egress
opposite its ingress, meaning a table entry is only needed where
a packet is steered to destination processing cores, or where it

Fig. 5. SpiNNaker packet formats.



C. Patterson et al. / J. Parallel Distrib. Comput. ( ) – 5

(a) Multicast (MC). (b) Point-to-point (P2P).

(c) Nearest neighbour (NN). (d) Fixed-route (FR).

Fig. 6. Example distribution trees of each of the four SpiNNaker packet types. Incoming packets are handled by the router, and only interrupt relevant Monitor (M) or
Application (A) Processors as necessary.

needs to turn or bifurcate in transmission (e.g. Fig. 6a). This is a key
scalability feature of SpiNNaker communications as the aggregate
number of system routing table entries scales linearly with the
number of nodes, as does the number of required routing table
entries. MC packets may be routed from and to every core in the
system. In general they are intended purely as neural spike events
and will not carry a payload. They are expected to dominate the
network traffic.

3.2.2. Point-to-point packets
P2P packets target a single destination chip, not an individual

core, and are delivered to the designated Monitor Processor on
the chip. There is a 16-bit destination field which allows system
expansion to 216 SpiNNaker chips. At each routing node, the
corresponding entry in the 216 P2P entry routing table holds a 3-bit
code specifying the direction of the next hop, which is either ‘here’
or one of the six external links (Fig. 6b). P2P packets are typically
used for tasks such as code and data distribution, usually carrying
a payload of higher software protocol layers and data.

3.2.3. Nearest neighbour packets
NN packets are used mainly as part of the boot process

and for debug access to the neighbouring chips. As the name
implies, they are short range, permitting read/write access to a
neighbouring chip’s shared resources (Fig. 6c). Their distribution
tree is addressed by local link ID and not a routing table.

3.2.4. Fixed-route packets
FR packets are similar to MC packets. The difference is that

they are routed regardless of source by a single route-word at each
node so that only fixed, unidirectional merging tree structures can

be implemented (Fig. 6d). This packet type typically allows the
extraction by Ethernet of monitoring information at low cost both
in routing hardware and bandwidth overhead (the ‘key’ field is
available for payload too).

3.3. System NoC

The System NoC provides a path for cores to share chip-level
resources (Fig. 2c). It is another GALS NoC but is optimised for
different criteria. Its primary goal is conveying large quantities of
data amongst its clients, including access to the shared SDRAM,
System RAM and peripherals. Typically DMA is used to service
high-bandwidth block data transfers, but ad-hoc single-cycle,
processor-originated accesses are also permitted—such as for
message passing across shared System RAM.

3.4. Ex-system, Ethernet

External I/O connectivity is provided by commodity 100 Mb/s
‘Ethernet’ links attached to a subset of the SpiNNaker nodes. Chips
which detect the presence of a PHY (PHYsical layer transceiver) at
power-on enable their Ethernet Controllers, otherwise they remain
dormant to save power. The Ethernet is used to transfer spike
information in and out of the system, and for system control and
management traffic.

4. Software communications layers

The physical, system-wide SpiNNaker network is optimised
for the expected traffic; primarily it presents a uniform ‘flat’
source-based routed medium for neural spikes to traverse to their
destinations. The secondary load ismachine-control traffic, usually
from chip-to-chip, handled by the local Monitor Processors.
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Fig. 7. Ethernet framing format. Data is encapsulated by IP, UDP and SpiNNaker headers.

A need is anticipated for other communication paths, an ex-
ample of which is providing a path from the host to a core per-
forming neural computations to allow the probing of an individual
neuron. This is achieved by overlaying a software protocol on top
of the physical hardware and providing a hierarchical communica-
tion environment. There are four distinct identified interoperating
communication layers:

1. Intra-chip — by the asynchronous Comms NoC and router
in hardware. There are four flavours of packets as discussed
in Section 3.2. At this layer message passing across the
System NoC using the System SRAM for core-to-core non-spike
communications is also supported.

2. Inter-chip — the same packet formats, traversing between
nodes over the chip-to-chip external asynchronous links
(Fig. 1).

3. Ex-system — a connectionless frame format (Fig. 7) provides
for connectivity in and out of the machine via the Ethernet
connections. In the near future FPGAs are expected to be
interposed in the connectivity mesh to be used as an additional
interface for the ex-system paths.

4. Internet — beyond the local link, a low-cost connectionless
protocol defined in software is used to extend SpiNNaker
communications to routed internetworks.

4.1. Ex-system and Internet encapsulation

Internet Protocol (IP) encapsulation of SpiNNaker ex-system
data is used to ensure standard networking hardware can
handle SpiNNaker-type packets. Using IP facilitates remote access
to the machine environment and enables standard ‘sockets’
programming libraries to be used to interface with the SpiNNaker
communications stack.

Transitioning between external and internal machine packets
is inefficient as a neural spike datum is small (4 or 8 bytes).
To convey this event to a host device it is encapsulated in an
Ethernet frame which has a minimum frame size of 64 bytes
(Fig. 7). Headers/Trailers for Ethernet framing (18 bytes), Internet
Protocol (20 bytes) and User Datagram Protocol (UDP) transport
(8 bytes) leave 18 bytes available for the carriage of this payload.
Therefore padding must be added, or data aggregated to make full
use of resources. UDP was selected as a good match for spikes
which are time-sensitive and connectionless, with no facilities for
retransmissions. UDP also has a lower overhead cost than TCP,
and it requires relatively little implementation effort for minimal
functionality. To enable extensibility of the simple SpiNNaker
packet format a 2-byte protocol version number and a 4-byte
message type/opcode is added (Fig. 7), so that different types of
message/instruction can be multiplexed per host/SpiNNaker chip.

4.2. SpiNNaker Datagram Protocol (SDP)

All the layers as described above are connectionless, that is they
do not store state or make any attempt to detect and retransmit

data lost in the transmission process. A protocol called SDP has
been created which operates across all of the layers of physical
communication, from external host to internal processor (Fig. 8),
and provides facilities to transmit datagrams of up to 64 KB in
length.

4.2.1. SDP internally within SpiNNaker
SDP allows messages to be sent using sequences of (short) P2P

packets inside the SpiNNaker machine (Fig. 9). The traffic flows on
the Comms NoC between processors on a chip, and beyond this
to processors on another chip via inter-chip links. Each sequence
is checksummed and acknowledged, with erroneous and dropped
packets identified. This is notified to the application so that it may
decide whether a retransmission is to be made. The SDP datagram
includes an address and port which can be on any core, so SDP
can be used to pass messages anywhere; this is achieved by a
node’s Monitor Processor relaying data via the on-chip shared
SRAM across the System NOC (Fig. 8).

4.2.2. SDP outside SpiNNaker
A comparable mechanism is used for external communications

where a Monitor Processor on an Ethernet-attached node bridges
P2P SDP packets into Ethernet SDP frames (albeit with fewer
fragments due to the larger available payload). A transfer from
an external host device to an internal processor target is depicted
in Fig. 8, where the Ethernet attached SpiNNaker chip acts as
a seamless bridge between the internal P2P and the external
Ethernet/IP domains for the SDP transport protocol.

5. Power consumption

Power consumption is clearly an issue in any high-performance
computing system and is receiving significant attention in the HPC
community. SpiNNaker, a specialised HPC architecture, is designed
to minimise power consumption while providing considerable
processing capability. This was a significant consideration in the
selection of processors: ARMs are a typical choice for embedded
equipment where low power is desirable, the price typically
being individual poorer single-thread performance. In amassively-
parallel system the power/performance balance is currently tilted
in favour of usingmany, simple processors [21], especially as those
processorsmay be in a very low-power ‘sleep’ statewhilst inactive.

Power consumption may also be reduced by high integration
levels, thus each node in a SpiNNaker machine is based on an
MPSoC with few off-chip connections. Around half the off-chip
signals are to the SDRAMwhich shares the same package to reduce
capacitance (Fig. 2a). The other off-chip signals are largely the
inter-chip communication links and, as the majority of the power
dissipation in a CMOS circuit is dynamic, these use asynchronous
Non-Return-to-Zero (NRZ) signalling to minimise the number of
voltage transitions.

Each unidirectional link comprises eight wires: seven carry a
data symbol and the eighth is a handshake return. To send a symbol
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Fig. 8. Communication layering diagram. Data flows from the Host Application (top left) across all 4 distinct communication layers to the destination SpiNNaker Application
Processor (bottom left).

Fig. 9. An SDP data flow over P2P from transmitting chip to receiving chip.

the transmitter makes transitions on two of its seven outputs then
waits for a single handshake return. There is no return-to-zero
phase; the next symbol can be sent immediately. There are 21
possible 2-of-7 codes of which 17 are valid here: thus four bits of
data or a packet end marker are sent in one symbol [6].

The cost of sending a bit between chips depends on whether or
not a payload is appended, but is around 0.8 transitions. This is sim-
ilar to an ‘asynchronous’ serial line (average 0.75 transitions/bit),
another technique used for short message transmissions. Transi-
tion cost/bit can be lower in bulk (e.g. Non-Return-to-Zero Inverted
(NRZI) gives 0.5 + transitions/bit) but carries a synchronization
overhead which makes it expensive for short packets.

Keeping power consumption low eases the deployment of a
large system, simplifying supply and cooling requirements. It also
reduces running costs which, for a high-performance computer,
form a significant proportion of the total cost of ownership.

6. Software and data distribution

Software to cover the boot sequence from power-on through to
application execution is already in service. At present valuable ex-
perience is already accruing with practical (hardware) experience
of small (∼100 core) networks. It has been noted some of the exist-
ing neural network to SpiNNaker mapping software will not scale to
the largest systems, andwill require development as the hardware
implementations gain in scale.

Significant challenges are associated with the time taken
to distribute software – and, particularly, configuration data –
throughout the network prior to application execution. To keep
the load-time start latency within bounds, both commonality and
parallelism will need to be fully exploited.

A further issue for the mapping software is that it must be
capable of dealing with various component failures as these are
highly probable in large systems. Indeed, for economic purposes,
it is intended that in the SpiNNaker architecture most faulty chips
will be pressed into service as the majority of faults are likely to
affect only a single core. The faulty core is isolated during power-
on self-tests, leaving the remaining 17 processors in operation for
Monitor and Application rôles.

6.1. System boot

Following a power-on reset, all processors independently
initialise and test their hardware using an on-board ROM image.
They then enter a quiescent state, except for theMonitor Processor
which listens on the inter-chip links and the Ethernet interface
if it is enabled. The host system then injects a software image
via Ethernet which is assembled and executed on one or more
connected nodes.

This software image then propagates itself through the network
as a flood-fill (Fig. 10) using Nearest Neighbour communication—
the only available mechanism until nodes are numbered and
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Fig. 10. ‘Waves’ of system boot flood-filling a tessellated SpiNNaker torus. The two
dark nodes represent the two Ethernet attached chips seeded by the host, the star
represents the origin of coordinates node.

routing tables populated. The use of self-propagating flood-fill
greatly reduces the time taken for system boot as this is performed
in parallel rather than sequentially. In a rectangularM×N network
(M being the smaller dimension) the diameter (D) or hop-count
from any one node to its most distant is:

D =


N
2

+ max

0,

2M − N
6


. (1)

The use of well-placed multiple software seeding points reduces
this distance. In the example of Fig. 10, the one seed diameter is 8
hops, but using two seed nodes reduces the distance to 5 flood-fill
hops.

Experiments on SpiNNaker hardware using this self-propaga-
ting technique yielded results shown in Fig. 11a, further detailed
in [50]. The times, as expected, proved linear to the number of hops,
and the duration of the system boot phase for any regular topology
can be anticipated (Fig. 11b).

The topology of SpiNNaker machines is expected typically to be
‘square’. A maximal 216 node system therefore (using Eq. (1)) has a
distance of:D = 170 hops from a single code injection point which
suggests amaximum (32 KB image) system boot time of 5.3 s (from

Fig. 11b). Usually the time taken will be smaller, e.g. around 4 s for
a 24 KB system boot image.

If the topology and relative positions of the various injection
points are known, this phase can also number the nodes. Once
the nodes are numbered, point-to-point routing is possible and
the host can communicate with any node directly. At this stage
the host will additionally collate any fault-reports from nodes to
ascertain the health of the system for use in the mapping stage
before distribution of code and data.

6.2. Application loading

Following system boot, an application can be loaded serially
onto each core using SDP. This method, as used by the current
small systems, lacks parallelism and the time taken scales linearly
with the number of nodes. Thus a flood-fill mechanism will also
be used for application distribution, exploiting the fact that most
cores will be running identical software. Monitor Processors will
have a different image from Application Processors, but that too
can be replicated across the machine using flood-fill.

With a booted and mapped system the neural application can
be ‘place-and-routed’. This involves placing populations, groups or
individual neurons on specific chips and cores for simulation. At
the small scale this task is performed on the host. In the longer
term this will become infeasible because, although code may be
identical, the synaptic data-set for each node is unique and the
data is much larger than the code. Serial loading of ∼8 MB to 106

application cores is clearly not practical: with a single 100 Mb/s
Ethernet link the load time would be measurable in days. More
links can be added to reduce the transmission time, but a larger
problem is faced by the host, as the neuron place-and-route of
a very large neural network is a compute-intensive NP-complete
problem [13,24].

However, users do not specify each neuron and connections
individually: these are generated statistically from the user’s rules.
It is feasible that these aggregated smaller data sets can be
initially distributed coarsely, with SpiNNaker itself performing the
detailed place-and-route. There are still many unsolved problems
in this space, including derivation of the neural MC routing tables
based on the desire for tightly connected neurons to be located
proximately. Work on these challenges is ongoing.

(a) Small 6-hop test system. (b) Extrapolated large system.

Fig. 11. Flood-filling the system boot image. In a 256 × 256 system, the maximum distance is 170 hops.
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6.3. Run time

When an application is running the network activity can be
divided roughly into two. It is expected that application traffic will
dominate and the majority will be neuron spike events. It is likely
that, in the longer term, some spikes will be routed directly to and
from I/O deviceswhichwill chiefly traverse the Ethernet, and FPGA
interfaces in the mesh. Current (small system) I/O is Ethernet SDP
traffic to and from the host.

The other class of run-time traffic is for machine monitoring
and control. Statistics such as core and network utilisation,
packet error count and chip temperature may be requested from
each node and made available to the host. These requests are
optional, and typically would be used more comprehensively
during researching new network configurations. Primarily these
‘management’ requests will be handled by Monitor Processors
although SDP allows the probing of every core directly.

Other control traffic will occur without user intervention
using Nearest Neighbour communications. This permits system
status – such as fault reports – to disseminate through the
machine. Eventually it is planned to attempt some self-repair by
altering routing around faulty devices dynamically. With a million
processors available, the policy will be to leave some spare cores
available to cover for those with faults.

7. Results

Full-scale SpiNNaker silicon has been available since May
2011. Naturally, initial hardware tests concentrated on proving
its functionality but some measurements to quantify network
bandwidth, latency and power consumption have also been made.

7.1. Communications bandwidth

Without a large network the router must be stress-tested by
generating packets from local cores. Here it is possible to achieve
5.3 Gb/s at entry to the router, shared amongst the cores by the
input processor merge tree (Fig. 4). In operation the local demand
will be much less than this. A single (overclocked) core in a tight
loop can individually achieve 5.0 Gb/s.

Each off-chip link is capable of sustaining around 250 Mb/s
(1.5 Gb/s in aggregate), a figure limited by the on- and off-chip
delays. This is disappointing as it represents only ∼6 million
spikes per second per link. This would be too slow to support
109 uniformly distributed neurons firing at 10 Hz across a section
of the system but, as in biology, spatial locality will limit transit
traffic drastically. (Local neurons connect with high density to
neighbours, and much more sparsely afar) [42]. In practice the
available bandwidth is still several times the expected system
requirement; now closer to 40% than the originally anticipated
10% [41].

Communications bandwidth is more important to the on-chip
System NoC for fetching (synaptic weight) data from the SDRAM.
This achieves 5.6 Gb/s when employing burst traffic via DMA—the
expected method of access. It is anticipated that this will meet
the requirements of the neural applications (16 M synapses ×

10 Hz× 4 bytes). The on-chip SRAM has an independent narrower
connection and achieves 3.2 Gb/s in bursts, or around 200 Mb/s
one-word-at-a-time. Both methods may be used at run time
as appropriate (e.g. message passing, block transfers), but the
demands will not be high.

7.2. SDP

In the current small machines, SDP is used to load application
data and executable code. A measured test, transmitting data
from a host machine to an Ethernet attached SpiNNaker chip

and then to an Application Processor on that node via shared
memory, achieved speeds in excess of 22 Mb/s. With the target
Application Processor on a different chip the scenario now appears
as per Fig. 8. Here the payload transmission speed is 5.3 Mb/s
(around 4.5 µs per packet), due to the fragmentation, bridging
and acknowledgements of the internal SDP using P2P packets
(Fig. 9).

The SDP datagram sizes used in the tests were 256 bytes. The
total Ethernet frame length of an encapsulated 256 byte SDPpacket
is 328 bytes: 18 bytes of Ethernet Headers/Trailers, 20 of IP, 8
of UDP and 26 of SDP giving an overhead of 72 bytes. This is an
efficiency of 78%. For 100 Mb/s Ethernet therefore, the maximum
potential data rate using SDP is 78 Mb/s.

SDP is experimental and yet to be optimised; for example the
host will not send a new Ethernet frame until the previous SDP
packet has been acknowledged. This current limitation means the
round trip delay time of perhaps 0.1 ms needs to be taken into
account. As there are ∼10, 000 frames per second where the rate
currently peaks at 22 Mb/s, this could go some way to explaining
the current sub-optimal performance.

Internally to SpiNNaker, P2P packets are used to convey SDP
data. Each 72-bit SDP P2P packet carries a 24-bit payload. After
including the headers this gives an efficiency of 31%. Given the
250 Mb/s chip–chip link rate this suggests a peak data rate
∼80 Mb/s is possible, matching that of the Ethernet.

A latency estimate for the internal links is ∼400 ns per hop,
comprising around 300 ns for serial transmission plus 100 ns from
the router pipeline, assuming no congestion. A similar latency
applies to the datagram (not packet) acknowledgement. This
represents ∼1 µs per hop for each 256-byte datagram on top of
the ∼48 µs transmission time; small for a few hops but becoming
significant over long distances.

7.3. Assessment of network latency constraints

Maintaining network latency below the resolution of the
real-time biological application (typically 1 ms) is an important
aspect of SpiNNaker. If it is larger than this it will be added to
the application-imposed latency, adversely affecting application
semantics.

The simulation framework described byNavaridas et al. [41] has
shown how latency scales with system size by simulating a range
of system configurations from 16 × 16 (256 nodes) to 256 × 256
(65,536 nodes). In all cases the systems are dealing with the ex-
pectedmaximum load generated by the biological application [41].
Two spatial traffic patterns are used. A local distribution emulates
the way neurons communicate: most traffic destinations are in
close proximity. Traffic following a uniform distribution represents
a very pessimistic scenario in which locality is not exploited.

The average andmaximum latencies obtained after a simulation
of 100 kcycles are plotted in Fig. 12. The experimentally measured
silicon link speeds and latencies have been used as parameters
in this simulation. End-to-end latency scales linearly with the
number of nodes per dimension, i.e. O(

√
N) with the number of

nodes. The maximum latencies for the two traffic patterns are
very similar because it is the latency needed to reach the most
distant nodes, the differences being attributable to greater network
contention. However, when traffic is largely local the average delay
is barely affected by network size whereas with uniform traffic,
latency is noticeably higher. Network latency is around an order
of magnitude smaller than application resolution and therefore
should not interfere with application semantics. Network latency,
therefore, is not expected to be a limiting factor of SpiNNaker’s
real-time scalability.
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Fig. 12. Latency scalability under uniform and local traffic distributions.

7.4. Power

Each SpiNNaker chip, while Application Processors are quies-
cent, draws 360 mW. Each processor running at 150 MHz adds
18 mW, therefore with all 18 processors running a SpiNNaker chip
consumes 680 mW, or close to 900 mW at 200 MHz. In a 216 node
system this is ∼60 kW of core power. This is a peak figure; in neu-
ral applications it is anticipated that processors will be ‘asleep’ for
a significant proportion of the time.

• ARM9 delivers 1.1 Dhrystone MIPS/MHz [4] thus achieving
18 × 200 × 1.1

0.9 = 4400 MIPS/W.
• The theoretical peak processing performance of a SpiNNaker is:

216
× 18 × 200 × 1.1 = ∼250 TIPS.

At full speed the cost of running an inter-chip link is 6.3 mW.
Therefore the consumption per bit, is 2.5 × 10−11 J, or possibly
more clearly:∼40 Gb/J. With six outputs per chip and an assumed
40% utilization this adds 15 mW to each chip’s consumption, or
around 1 kW to the total for a 216 node system. When the SDRAM
is continuously exercised (at 130 MHz clock) the node power
requirement increases by 170 mW representing a further 11 kW
in a fully expanded system, proportionally less if the SDRAM duty
cycle is<100%. The only other components of the system are a few
active Ethernet ports (∼40 mW each), LEDs etc, which consume a
low amount of power relative to the rest of the system.

The overall peak system power should be in the range
30–75 kW, depending on activity for a maximally configured
216 node SpiNNaker system, with a system efficiency bettering
3500 MIPS/W.

8. Conclusions and further work

SpiNNaker is an unconventional, massively-parallel, high-
performance architecture. It is biologically inspired and exploits
the properties of electronic computers to build a simulator for
biological networks.

The current state is that small-scale demonstrators now exist
and both the hardware and software for larger systems is under
construction; large system models for traffic estimation and
analysis have existed for some time.

The chip appears fully functional. There are some minor
disappointments: primarily the chip-to-chip bandwidth is less
than intended due to large off-chip delays. This pad delay was
apparent in simulation and the logic was optimised accordingly,
but this was the best the process could achieve. The delays
are compounded by the asynchronous nature of the inter-chip
links, where 2-way handshaking is required for each symbol

transmission. However, the current link speed is still expected to
be adequate at all scales as a considerable margin was built in.
The ‘quiescent’ chip power, although acceptable, is also slightly
higher thanwas expected. It is proposed tomanage the situation by
employing lower clock rates for idle chips/cores, proportionately
reducing their dissipation.

An active chip dissipates ∼1 W — less if, as expected, the
processors can ‘sleep’ for significant periods. This suggests that a
large-scale system is feasible without resorting to ‘exotic’ cooling.
The communications traffic at its peak will consume on average
less than 3% of the peak power per chip. The indications also show
that the communications architecturewill scale to its nominal limit
of a million-plus processors — although there is significant scope
for other limitations to become apparent as the research into real-
time massive neural network simulation progresses.

Employing GALS interconnectivity has made interconnection
straightforward, both on- and inter-chip. Test PCBs have been
interconnected by cables to build systems of 16 and more chips
without problem. The 2-of-7 coding is efficient with power and
has reasonably good bandwidth, although one disadvantage is the
need for high pin-count connectors. There is a case for faster, more
conventional serial connections although the technology for this
on the MPSoC was not readily available.

The SDP layer which was developed to overlay the heteroge-
neous networks in the machine is successfully in use to distribute
code and data in small SpiNNaker systems. Now that this function-
ality has beenproven, it requires optimisation towards the physical
limits of the SpiNNaker communications fabric.

It has been demonstrated that it is possible to simulate a
thousand neurons per core [32], and create a 4-chip, 64-core
(16 Application Processors per node) real-time neural network
simulations on the new silicon.

In comparison with rival systems, SpiNNaker lies between
the generalised, supercomputer solutions and hardware solutions
such as FACETS. It provides more flexibility than FACETS in that
the neural models are software programmable but, for the same
reason, it cannot approach the same simulation speed. Its capital
cost should be less than machines such as BlueGene, and while
it does not provide facilities such as floating-point hardware, it
is believed that fixed-point calculations are adequate for neural
simulation, a task at which ARM processors excel with high energy
efficiency. Finally it is away to connect amassively-scalable system
from 18 to a million processors which can easily be expanded as
required by the user.

8.1. Further work

It is planned to scale SpiNNaker systems to 103 processors by
early 2012, 104 processors by mid-2012, and to the million-plus
processormachine by the end of 2012. Design and fabricationwork
has begun on hardware to support large numbers of SpiNNaker
chips and create the desired topologies. For the interconnections
this includes concentrating a number of GALS links for inter-PCB
fast serial connection using FPGAs, which also permits low-latency
I/O access directly into the mesh.

The biggest current obstacle is the distribution of neural data
in large networks. Placing-and-routing on a host and subsequently
downloading the data is adequate for small networks, but as the
network grows this leads to unacceptable host compute and data
transmission times. It is therefore essential to distribute this load
into the SpiNNaker machine itself.

The purpose of the simulator is not just to ‘build a brain’ but
also to monitor and understand how it works. The network has
considerable (optional) provision for probing operation both in real
time and post-mortem, and thiswill be explored in future research.
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The scalable SpiNNaker architecture is also garnering interest
for use in applications beyond the purely spiking neural space.
In addition to Izhikevich [32] and LIF [48] spiking models, Multi-
Layer Perceptron (MLP) networks [33] have been built. One
institution is already taking advantage of SpiNNaker machines to
run distributed ray-tracing applications, and others are actively
collaborating in applications where a massively-parallel system
would be beneficial.

Finally, although the hardware specification for this generation
of silicon is fixed, there is work required on the software
communications layer, in order to take full advantage of the
hardware’s native speed for data and code distribution. The
number of Ethernet connections to be deployed to support the real-
time I/O andmonitoring requirements of a system also needs to be
determined.

SpiNNaker is a scalable massively-parallel architecture with a
vast, many-layered, heterogeneous communications architecture
whose performance is fundamental to the operation of the system.
The results from the initial silicon presented in this paper give us
considerable optimism that the systemwill scale to itsmillion-plus
processor target.
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Appendix. Neural computation

The biological brain is a massively-parallel computational
organ. A brain out-performs any electronic computational platform
by several orders of magnitude in energy efficiency, and has the
remarkable ability to continue to operate effectively even whilst
impaired.

However, neuroscience still has a key obstacle in understanding
the brain—its work is typically invasive and destructive. Research
into simulating large, biologically-plausible neural networks
(brain-like systems) has remained a highly active area over many
decades. Goals of this work include creation of realistic simulation
platforms to use for experimentation, and to unlock the intrinsic
parallelism and efficiency of the brain in order to exploit nature’s
design in the creation of faster and more efficient computing
platforms.

A.1. Neural network modelling

The field of Artificial Neural Networks (ANNs) spawned from
the 1943 work of McCulloch and Pitts [37] in proposing the
Threshold Logic Unit (TLU) to model artificial neurons. In a TLU
neuron inputs are weighted and summed then compared to a
simple threshold value to determine whether their output is a
binary 0 or 1. However this approach turns out to be limiting, and
not particularly biologically faithful. The problemswith this model
led in part to the creation of a more flexible second generation
of ANNs [9], which are also capable of ‘learning’. The output
from a second generation artificial neuron is no longer binary,
but a position on a continuous (typically sigmoid) activation
function. Here, the output position represents the frequency of
output spikes emitted by the neuron. These rate-coded ANNs
are today commonplace, but there are classes of problem that
prove intractable using this technique [34]. This, in turn, has
led to the development of a third generation of ANNs—Spiking
Neural Networks (SNNs) [34]. SNNs are not based on the rate of

a spike train, but on the temporal information encoded by spike
arrival times, and thus are more biologically accurate. Crucially,
Maass [35] has proven that for sigmoidal activation functions, SNN
networks can act equivalently to rate-coded ANNs, which can also
model TLUs.

Similarly to neurons, there are multiple synaptic models avail-
able for use in simulation [16]. Synapse models are an important
part of neural network modelling, learning and plasticity, trans-
forming spikes from afferent neurons into electrical stimuli deliv-
ered to the input dendrites of downstream neurons.

A.1.1. Model fideblity
In some neuron models, such as those developed by Izhike-

vich [30], there is almost complete abstraction from the biology
to the computational model, covering only the most fundamental
neural dynamics. Conversely, other models types such as Hodgins
& Huxley [28] (used in Blue Brain [36]), are computationally com-
plex, but are much more biologically accurate. Adding biological
fidelity typically involves reducing the size of network that may be
created, or the speed at which it may be simulated on a given plat-
form. Different projects and protagonists have differing priorities
and approaches to this problem [31], trading off different charac-
teristics as required.

A.1.2. Neural network simulation on SpiNNaker
SpiNNaker is a general-purpose programmable architecture

targeting spiking neural network modelling. This architecture
provides users flexibility to select their neuron and synaptic
models, and network interconnection strategy. SpiNNaker’s typical
approach is to deliver SNNs of a real-time flavour, and its
interconnection networks are sized accordingly [42]. If the models
used aremore complex, there is opportunity to reduce the number
of neurons per processor. If greater timing resolution is required
then this may be configured, up to and including the flexibility
to drop out of real-time mode. Further details on neural models
and principles are beyond the scope of this paper and readers are
directed to the included references, and to review papers from
authors such as Bishop [9].

A.2. Results from a SpiNNaker neural simulation

Test boards with 4 SpiNNaker chips (72 cores) have been
available since May 2011 and continue to undergo hardware and
software testing. The example presented here is of a set of 16
self-connected populations, each producing a self-perpetuating
cascade of ‘looped’ spike trains, the spike rate being a function
of the applied bias current. PyNN [15] was used as the high-level
specification language for the network populations and connection
strategy, which is mapped and optimised by the SpiNNaker
compilation tool-chain [22] into binaries for core and chip-level
memories. There are 16 populations of 256 Leaky Integrate and
Fire (LIF) [48] neurons, each assigned to a separate application core.
The output is plotted in real-time to a user’s screen for monitoring
(Fig. A.13).

In the left panel of Fig. A.13, differing colours/tones represent
the average firing rates of the neurons in each population. It is
possible to interactively influence the population spiking rates in
real-time fromoutside the network by increasing or decreasing the
bias current applied to all neurons within that population (in the
example core/population (3, 1) is selected).

In the right panel of Fig. A.13 the user has initiated another
real-time plot window from the GUI where they have ‘zoomed’
into an individual population and can examine the firing pattern
of all its constituent neurons. This plot scrolls in real-time, and as
changes are made over the 10 s period, the user sees the results
of a reduction in the bias current (7m8 → 7m10), followed by a
gradual increase (from 7m10 onwards).
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Fig. A.13. Interactive real-time neural network plots on SpiNNaker. Left: population rates (average spikes/neuron/second), users can adjust bias currents for their chosen
population e.g. (3, 1), and may open a second raster plot window (right) to view its individual neuron firing events over time.

Table A.1
Measured spike and packet rates across the SpiNNaker communications network for the experiment in Fig. A.13. Transmit (TX) spikes are measured by the originating
population core, and receive (RX) rates by the Ethernet attached host system running the real-time visualisation software.

Simulation time 7m8 7m10 7m12 7m14 7m16 7m18 Sim Max

Bias applied (mA) 0.75 ≤ 0.60 1.01 3.12 4.41 5.26 ≥ 28.26
TX spikes/population/s 1602 0 3057 11,575 15,973 18,727 64,000
RX SDP Ethernet frames/s 843 0 999 978 1035 1060 1775
RX av. spikes/neuron/s 6.3 0.0 11.9 44.9 62.2 72.6 250.0

The communications path used to provide real-time visibility
of the spikes begins with SDP packets traversing from the (3, 1)
application core to the Monitor Processor. The data is then bridged
towards the host visualiser via the Ethernet attached chip. This
path is similar to Fig. 8, without the intermediate nodes. The rates
of real-time spike data are seen in Table A.1, at various stages of
the transmission process.

The host receives up to the maximum 64 K spikes per second
corresponding to all 256 neurons of the population spiking at their
maximum rate of 250 Hz (there is a 4 ms refractory period). Each
Ethernet SDP packetmay contain up to 64 spikes/256 bytes of data,
therefore the frame count only begins to rise significantly once
they fill and more are required. In this simple neural connectivity
experiment, it is verified that it is possible to transmit the
necessary 64 K spikes each second in real-time from a SpiNNaker
core to an external host device across the layered heterogeneous
communications path.

A.2.1. Other SpiNNaker simulations
Several software models are actively being worked on, includ-

ing various SNN models (and also perceptron and non-neural ap-
plications). Earlier SpiNNaker experiments operated with 2-core
test silicon,whose results remain valid for the full 18-core chip, and
can be scaled onto the new larger systems [32,48,49,47]. Amodular
48-chip board is scheduled for introduction in early 2012, together
with correspondingly larger simulations.
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