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Abstract—Architectural simulation is an essential tool when
it comes to evaluating the design of future many-core chips.
However, reproducing all the components of such complex sys-
tems precisely would require unreasonable amounts of computing
power. Hence, a trade off between accuracy and compute time
is needed. For this reason most state-of-the-art tools do not have
accurate models for the networks-on-chip, and rely on timing
models that permit fast-simulation. Generally, these models are
very simplistic and disregard contention for the use of network
resources. As the number of nodes in the network-on-chip
grows, fluctuations with contention and other parameters can
considerably affect the accuracy of such models. In this paper
we present and evaluate a collection of timing models based on a
reservation scheme which consider the contention for the use of
network resources. These models provide results quickly while
being more accurate than simple no-contention approaches.

I. INTRODUCTION

The relentless improvement of electronic miniaturization
has provided the possibility of integrating several processing
cores into a single chip. Most modern general purpose pro-
cessors have several processing cores and, indeed, we can find
processors with over 10 cores offered by several companies,
such as the 10-core Intel Xeon processors [34], the 12-core
AMD Opteron processors [15] or the 16-core Sparc processors
[36], [38]. Even more processing cores are provided by the
48-core Larrabee processor from Intel [35] or the 64-core
TILE64 processor offered by Tilera [9]. In fact, the design and
development of new processor architectures able to integrate
over one thousand cores in a single chip is a current hot topic
[13]. Indeed, some authors speculate that such technologies
may become a reality within this decade [21].

Several international projects are pursuing this objective,
although with different perspectives and objectives. The ATAC
system, for instance, explores the viability of using a broadcast
optical medium as the communication infrastructure within a
1000-core chip [21]. In contrast, Rigel [20] has been devised
as a programmable accelerator comparable to current GPUs
because of its single-process multiple-data (SPMD) execution
model. The main reason that such architectures have become
so attractive for the scientific community is improved power
and thermal characteristics by means of per-core frequency and
voltage regulation (or even shutting off idle cores). They are
also more resilient to failures due to their greater redundancy.

When designing new chip architectures it is essential to
select appropriate evaluation methodologies. For example in

the first phases of the design it is preferable to explore as
much of the design space as possible. Thus, fast evaluation
methodologies such as functional simulation or analytical
modelling are favoured in these phases even when they offer
limited accuracy. As the final design approaches, we need
to assess chip functionality and performance through more
detailed simulations–a practice that can be seen as virtual
prototyping. The high complexity of these models demands
large amounts of computing power to carry out simulation.

Our research group is currently working in the first design
phases of a future 1000-core architecture: TERAFLUX [31],
[37]. Given that simulation speed is a valuable characteristic
for us now, we have selected the COTSon simulator [3] as it
provides adequate accuracy while being lightweight enough.
To speed-up execution COTSon processes a block of events at
a time and offers other facilities such as statistical sampling.
When modelling a large chip we need to provide timing
models that do not slow-down the simulation while still being
representative of the execution. How to strike such a balance
is the key insight provided by this paper. Our focus is on how
we can produce timing models for NoCs that we can use when
considering the architectural design of large many-core chips
without slowing down the simulation.

In this paper we propose a collection of models which
improve accuracy, comply with COTSon restrictions and are
lightweight enough to perform fast simulation. These models
rely on the idea of reserving resources for the period of time
that they are in use, allowing contention to be modelled. We
perform an exhaustive evaluation using workloads of different
nature: synthetic traffic from independent sources, traces from
cache coherence, transactional memory and message pass-
ing applications and cache-coherency like synthetic traffic to
simulate a 1024-core NoC. The wide variety of evaluation
scenarios provide insights into the strengths and weaknesses
of the different models.

II. SIMULATION OF FUTURE MANY-CORE SYSTEM

As device scaling continues to track Moore’s law and with
the end of corresponding performance improvements in out-
of-order processors, multicore systems have become the norm.
If current trends continue, a chip with over 1000 cores may
be available as early as 2016. Given manycores’ inherent
complexity, simulation is essential for exploring the design
space of a future architecture. Moreover, while simulators
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have focused on microarchitecture in the past, high level ar-
chitecture (modelling the on chip network, memory hierarchy
and coherence, etc.) is becoming increasingly more important.
Simulating a processor involves making decisions on trade-offs
between simulation speed and accuracy. At one end of the
spectrum, purely functional simulation provides little insight
into system performance, but allows for fast simulation. At
the other end, a cycle-accurate full-system simulation gives
reliable estimates of performance, but at the cost of very long
running simulations. There exists a range of options between
these extremes, some of which are explored in this paper.

A number of simulation tools can be used to model proces-
sor and system architectures. Simplescalar [4] has been popu-
lar amongst the processor architecture community. It provides
detailed processor and memory models, but is not a full-system
simulator. Simics [23] performs full-system simulation and has
extensions such as Gems [24] and Simflex [17] which add
considerable sophistication to the timing models. Graphite [26]
is a Pin-based simulator that concentrates on running speed
by parallelising execution and by using probabilistic models
instead of cycle-accurate models. COTSon [3] is a full-system
simulator that leverages AMD’s SimNow [8] and scales up
to simulating 1000 cores [22]. To improve simulation speed
it does not allow callbacks. Therefore, we can not simulate
the NoC and stall an event execution until the corresponding
packets are delivered. Instead, we must calculate the latency
for an event as soon as it is encountered. This allows for
simplicity and speed in the simulation infrastructure, but
means that care must be taken in implementing timing modules
that accurately reflect device behaviour.

Network on Chip simulation is also supported by a number
of tools. Hornet [19] is a cycle accurate NoC simulator that
can be driven by traces, by a built-in MIPS simulator or by
native applications instrumented by Pin [5]. Garnet [2] also
provides a cycle accurate model, and can interface with Gems
to model a full system, and with ORION [39] to provide power
estimates. Noxim [29] is a more limited tool that models
only 2D mesh interconnects and is driven through synthetic
patterns rather than application-based traffic. SICOSYS [32]
has very detailed models of several router architectures, which
allows obtaining very accurate performance measurements,
close to those obtained with a hardware-level simulator, but
at a fraction of the required computing resources. It can
interface with RSIM [28] and SimOS [33] to perform full-
system simulation. Topaz [1] is a recently released extension
of SICOSYS capable of interfacing with Gems to perform
full-system simulation of CMPs. The Gem5 simulator [12],
which merges the well-known M5 [11] and Gems simulators,
has support for most state-of-the-art processor technologies
while providing flexible models for the memory subsystem.
Regarding the NoC, it allows two simulation models: a fast
no-contention model and a detailed packet-level simulation. It
does not provide an intermediate solution as those discussed
in this paper.

To our knowledge, the only alternative implementation of
fast timing modules akin to those proposed here is FIST [30].

Instead of modelling contention, FIST uses load-latency curves
obtained from training simulations to estimate packet latency.
It has, however, several limitations: the load-latency curves
need to be obtained specifically for each traffic pattern, so if
an application has a mixture of traffic patterns, or a patternless
traffic it cannot be modelled properly. Also it requires tracking
the load handled by the NoC. As instantaneous load tracking
would be prohibitive in terms of synchronisation, a sweet-spot
would need to be found for how often we calculate/estimate
network load. Again this means reaching a trade-off between
accuracy and speed. At any rate using FIST would involve
executing a stand-alone network simulator to train the FIST
estimator, which has a definite impact on the overall time
required to perform simulation.

III. FAST TIMING MODULES

This Section is devoted to discussing the different timing
models considered in this paper. We will start with some
simplistic models that have been used by the community, but
that in our opinion will not be appropriate once the number of
on-chip cores goes over a few tens. Then we will present the
reservation-based models we are proposing. Finally, we will
consider some illustrative statistical models. In all cases we
will discuss the strengths and limitations of the models.

A. Simple No Contention Models

The simplest models and, as discussed before, the most
prominent in the literature, do not consider network con-
tention. For instance, there are some models which provide
a constant latency for all network accesses regardless of the
packet size, the number of hops and so on (e.g. vanilla Simics
[23]). It is clear that disregarding any knowledge about the
network makes this model very inaccurate; it can be used
to test functionality, but should not be used to evaluate the
performance of a large system. In our experiments this model
has been denoted as ‘fixed’ and considers all communications
to require 16 cycles to complete.

An improvement of this model would consider the distance
and the packet size to model the latency, but again without
considering any contention in the NoC. This model is still
very poor as the NoC is a common resource that has to be
shared by all the cores and, hence, it is not likely that network
packets travel through the NoC without encountering any
contention. In the discussions below we will denote this model
‘no contention’. As we are considering cut-trough switching
this module will return a latency of 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒+#𝑓𝑙𝑖𝑡𝑠− 1.

B. Reservation-based Models

We propose several models that consider contention for the
use of network resources. The basic element in these models
is a ‘resource’, which in general represents a communication
channel. To use one of these resources it is necessary to
reserve it for a given period of time, forcing other accesses
to the same resource to wait until it is freed. Given the no-
callback limitation of COTSon, when a packet wants to reserve
a resource which is in use, it then will reserve the first available
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Fig. 1. Example of the reservation data structure. The resource starts
with three reservations (top). A new reservation which requires adding a
new element–in grey (middle). A new reservation which requires modifying
an existing element–in grey–and permits removing an old element–in dark
(bottom).

Fig. 2. Example of two packets which do not compete in a NoC but do in
the ‘direction con’ model.

period. Note that as COTSon has to provide the time for
executing a complete operation, more than one packet may
be needed to transmit trough the NoC, and therefore, we may
need to make reservations for the future.

We have implemented a sorted linked list in which every
element in the list represents a period in which the resource
is reserved (Fig 1). The only required operation allowed is
to reserve the resource for a given period of time; given
the timestamp the reservation should begin and the duration
(in cycles). This operation searchs for a free period of time
that can accommodate the required reservation and will return
the timestamp when it ends. Therefore when a resource is
reserved, the delay can be calculated instantaneously after
reserving, just by subtracting the end of the granted period and
the current timestamp. As a secondary effect, every time this
operation is invoked, it will remove all outdated reservations
from the list (those which have already finished). This helps
to keep the list in a manageable size independently of the
simulation length. To further reduce the number of elements
in the list, a new element will be added to the list only if
extending an existing one (i.e. increasing the timestamp it ends
at) is not possible.

Based on this data structure we have implemented four
different timing modules. The first two models are aware of
the network topology – for the purpose of this paper we will
consider a mesh – the other two are topology agnostic.

The first model has been denoted ‘direction con’. It consid-
ers each row and each column of the NoC as a shared resource
in each direction. A core trying to inject a packet will reserve
the row and the column as dictated by XY routing. First it
will reserve the row for the number of hops required in the

X dimension starting in the current moment, the reservation
of the column will start after the end of the previous one and
will last for the number of hops in the Y dimension. To the
final latency obtained by reserving the column we will add the
packet length. The main limitation of this model is that it only
allows one packet travelling in each row/column and direction
of the NoC, while an actual NoC may allow several packets
travelling in the same row, provided they are not competing
for resources. For example the two packets in Fig. 2 do not
compete in a real NoC, but require one waiting for the other
in this model as both of them are using the same row. As we
will see later, this will be the reason for this model reaching
congestion before the modelled NoC.

The second model, ‘path con’, considers each link of the
topology as a resource. A core has to reserve all the links
towards the destination for a period equal to the packet length.
Resembling the way that packets travel through a network,
the end of a reservation will affect the starting timestamp
of all subsequent reservations. As we are modelling a virtual
cut-through network, a link can be reserved once the header
has arrived to a router, in other words we can start reserving
#𝑓𝑙𝑖𝑡𝑠 − 1 cycles before the end of the reservation of the
previous link. For simplicity we have considered that the
packet always follow a XY path, but any routing algorithm
could be easily implemented. In principle this is the model
whose behaviour most closely mimics the actual network as it
emulates packets movement. However as router arbitration is
not modelled its behaviour can differ from the actual network.
Also it is the most complex of the models as it requires
modelling lots of the components of a network (all the links).

The topology-agnostic models consider the network as a
collection of channels or pipes without any particular arrange-
ment. When a core wants to send a packet it randomly selects
one of the pipes and reserves it for the time required to perform
the communication (#𝑓𝑙𝑖𝑡𝑠 + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 1). This simplifies
simulation while still considering contention for the use of
resources. We have implemented two different versions of this
model. In the first one, ‘pipes’, all the cores share all the pipes,
so the contention in any part of the network will affect all the
cores equally. The second one, ‘pipes dist’ is a distributed
implementation in which the system is divided in groups of
cores which share a collection of pipes. This way contention
in an area of the network does not affect other areas. This
model simplifies distributed simulation as there is no need for
a shared data structure.

C. Statistical Models

We will close our study with two timing modules that do
not consider contention directly but assume that travelling
packets will suffer some extra delay due to other in-transit
packets. The first model, ‘load estimation’, estimates the cur-
rent network load and approximates the latency either as non-
congested in which latency is barely affected, or as congested
in which latency is greatly increased. The approximation uses
a exponential distribution to select the latency, based on the
estimated load and the distance the packet has to travel. In this
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Fig. 3. Extract of the temporal evolution of ferret.

Fig. 4. Average latency. Random uniform traffic. a) 64 cores. b) 1024 cores.

paper, our estimator for the load is calculated as the number
of injected packets divided by the elapsed time. Note that this
model follows the same idea as FIST [30] but in a simplified
way.

Finally there exists the possibility to estimating latencies
from a real simulation of the network. Although very compli-
cated models can be extracted we think that estimations from
the average latency in simulation does suffice for the purpose
of this paper. We will use an exponential distribution in which
the 𝜆 parameter depends on the average delay measured during
an actual simulation and the distance to be traversed, so that it
provides the same average latency as simulation. We denoted
this model ‘exponential’.

IV. EXPERIMENTAL WORK

In this section we show how the different timing models for
the NoC behave under different operating conditions and com-
pare them with INSEE, a lightweight time-accurate network
simulator [27]. For the purpose of this paper we considered
minimal NoCs: simple mesh topologies using XY routing and
a single virtual channel. First we will use synthetic traffic from

independent traffic sources which allows us to easily vary the
pressure exerted on the communication infrastructure. Next
we will test them using traces from applications. This will
allow us to assess their accuracy for a range of applications of
interest. The use of traces of applications simplifies comparing
the timing modules because network utilization will remain the
same for each workload. If full-system simulation would have
been used, each timing module could have had a different set
of messages, as the performance of the NoC may affect the
overall traffic; e.g. in the case of two memory accesses to
the same memory address, one for reading and the other for
writing, the order in which they arrive to the cache will affect
the subsequent communications: if the read arrives first it may
require an extra invalidation packet once the write is executed.

For the sake of completeness we use traces from appli-
cations of a diverse nature: directory-based shared memory,
transactional memory and message passing. The former two
are of interest in our research as they are the ‘hot’ application
models to be run in the manycore systems we investigate.
The latter, used in parallel and distributed systems, has a
two-fold purpose. On one hand, it provides specific traffic
characteristics that are not covered by the previous two models.
On the other hand, it allows us to assess whether the proposed
models may be used in other design domains such as, for
instance, by the cluster computing community. Finally we will
use synthetically generated coherency-like traffic to evaluate
systems composed of 1024 cores. This will provide some
insights on the scalability of the evaluated timing models.

The employed methodology is as follows: the results ob-
tained by the different modules are contrasted with those from
the time-accurate network simulator. We will consider the
following three figures of merit:

1) Simulated execution time of the application. This pro-
vides a first approximation to the accuracy of the differ-
ent models.

2) Similarity score metric. A more profound assessment of
accuracy. We measured the simulated time to execute
every 100 trace events and compute the average differ-
ence with the actual simulator. A lower value means that
the evolution of the application is closer to simulation,
i.e. more accurate.

3) Actual running time. This figure gives an insight into
simulation speed. To provide fair speed estimates we
developed the timing models as stand-alone tools.

Fig. 3 illustrates the similarity score metric. It shows the
evolution of ferret with the simulator, the ‘path con’ model
and the ‘no contention’ model. The average of the differences
between the simulator and a model in each of these points is
its similarity score. For instance, we can see how the evolution
of the ‘path con’ model is always closer to the evolution of
the simulator than the ‘no contention’ model. Therefore it will
have a lower similarity score, meaning that it is more accurate.

A. Random Uniform Traffic

The use of independent traffic sources is a typical evaluation
tool which allows to extract some raw characteristics of
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a network [16]. In this study we use it with a different
perspective, though. Since independent traffic sources allow
to adjust network load at will, we can use them to show the
behaviour of each model with a wide range of communication
needs. We model the traffic sources as independent entities
injecting packets randomly along time following an exponen-
tial distribution. Spatially, packets are distributed uniformly
through the network.

The average latencies reported by each model are shown in
Fig. 4. In the plot we can see that when the network load
is low all the models offer latency figures very similar to
those of the real simulation. As network load increases all
the models follow a trend similar to the real simulation. The
only exceptions are the two simple models: ‘fixed’ and ‘no
contention’ as they are unaware of the network load. The
main difference, though, is when the different models start
to behave as saturated, i.e. having very high latency figures.
For example the ‘direction con’ model reaches saturation very
early when compared with the real simulation. This is because
modelling each row/column as a single shared resource is an
extremely restrictive model (see again Fig. 2). Anyhow the
network of a many-core system is not likely to suffer from
persisting states of saturation when running shared memory
or transactional memory applications as the threads requesting
the use of the network will commonly stall until the reception
of an ack packet indicating that the operation has succeeded.
In general we can state that the contention-aware timing
modules produce latency figures that resemble the shape of
those of a NoC. Notice that the ‘exponential’ model practically
overlaps with the simulator in this experiment. This is because
this model uses the simulation average latency to generate a
latency distribution with the same value. However, we will
see later that with the real applications it can not capture
application dynamics properly, throwing worse results than the
reservation-based models.

B. Directory-based Cache Coherency

Undoubtedly, the directory-based cache-coherent shared
memory application model is the most important one to bear
in mind for studying many-core architectures. To generate
the traces we used the COTSon framework [3], extended to
implement directory based cache coherence protocol. Table I
presents the main parameters of the simulated architecture. The
network simulation is driven through a trace generated from
COTSon. This trace logs all coherence and data messages that
enter the network. We utilized the Parsec benchmarks [10]
with ‘simsmall’ input data run with 32 cores (arranged in a
8 × 4 mesh), the maximum available in our configuration.
As discussed in [7] the spatial patterns of the application
composing this benchmark suite do not present any noticeable
‘hot spot’. We will see later that this may happen with the
transactional memory applications.

Fig. 5 shows the results obtained by each of the timing
modules. We can see how the four reservation-based models
offer noticeably more accurate results, both in terms of exe-
cution time and similarity score than the other models. Also

Feature Description
L1 Cache 32-KB, 64 byte cache line, 4-way associative,

write-through, 1 cycle latency
L2 Cache 512-KB, 64-byte cache line, 8-way associative,

write-back, 16 cycle latency
Network 2D mesh topology, 16 cycles link latency

Main Memory 150 cycles latency
Directory Full-bit vector sharer list; directory cache 10

cycle latency

TABLE I
MEMORY SYSTEM CONFIGURATION

Benchmark Parameters
Vacation -n2 -q90 -u98 -r8192 -t4096 -c32
Kmeans -m40 -n40 -t0.05 -i random2048-d16-c16.txt -p32
Genome -g128 -s32 -n8192 -t32
Intruder -a10 -l4 -n2038 -s1 -p32

TABLE II
STAMP BENCHMARK SUITE PARAMETERS

looking at the time to execute the different modules we can
see that we can achieve noticeable acceleration with respect
to the simulation, in par with the simpler models.

C. Transactional Memory

Transactional memory is a novel memory model devised to
simplify the development of shared memory applications and,
especially, thread synchronisation [18]. This scheme provides
support for transparent atomic execution of instructions in a
shared memory system. Since this application model is gaining
interest in the many-core community and it is an essential
characteristic of our design, our study includes some examples
of transactional memory applications. We generated 32-core
traces of some of the STAMP benchmarks [14] following a
procedure similar to the one used for Parsec. The parameters
for these benchmarks are listed in Table II.

The traffic generated by this kind of applications has similar
nature to cache-coherency’s. However there is a noticeable
difference: if the region of the memory which has to be
accessed transactionally is small it will be likely located in
a single core’s cache. This core will then become a ‘hot stop’
as all the transactions will require traffic to and from this node.
For this reason, the spatial patterns of these applications are
more likely to have an unbalanced use of the network.

The results for the transactional memory experiments are
plotted in Fig. 6. In the plot we can appreciate that in general,
for this kind of applications, the differences in simulation
time are minute. This is because these applications generate
very low traffic into the network and therefore there is not
much contention. However the similarity score shows that the
reservation-based models are more accurate than the other
ones. Again, the computation times required by all the timing
modules remain similar and noticeably faster than simulation.

D. Message Passing

To conclude with the trace-based experimentation, we com-
pare the different models using the message passing version
of the NAS Benchmarks [6]. The main difference of this
application model when compared with the previous two
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simulation
fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist

Fig. 5. PARSEC benchmarks. 32 cores. a) Normalized simulated execution time. b) Similarity score. c) Required computation time.

simulation
fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist

Fig. 6. STAMP benchmarks. 32 cores. a) Normalized simulated execution time. b) Similarity score. c) Required computation time.

is that communications are determined explicitly within the
applications. This does not prevent tasks from injecting as
much traffic as they want into the network. For this reason,
network can suffer long-lasting periods of saturation. The
traces were obtained from a real cluster of PCs interconnected
by means of a Myrinet interconnect. The class A of BT, CG,
IS, LU, MG and SP benchmarks were run using a customised
version of MPI logging to capture the traces [25]. We use
the largest trace we were able to generate with our set-up, 64
tasks. Hence, a 8× 8 mesh was used in this experiment.

The results for the different benchmarks are plotted in Fig.
7. We can see how, with this kind of applications, differences
between models are more significant than with the previous
two. This is because, as discussed, network saturation does
appear and persist. In fact most of NAS benchmarks are
composed of different phases in which computation and com-
munication are alternated. This means that during computation
phases, network is barely used but, in turn, during communi-
cation phases the network suffers from severe saturation.

We can see how, in general, all the models are very
inaccurate as the simulation times differ greatly from the
simulator. This is because, modelling the behaviour of a
saturated network is nearly impossible without modelling the
whole network. Some of the reservation-based models do a
relatively good work with some of the benchmarks but fail
with the others. For example, as stated before, ‘direction con’
is severely affected by restriction of only one packet per
direction. In the case of BT and SP benchmarks, they use
a near neighbour communication pattern which essentially
allows 7 packets in each row or column whereas ‘direction
con’ has to deliver the packets sequentially (Fig. 2).

If we look at the actual computation time, we can see that
the high pressure exerted over the network by this kind of

applications makes the reservation-based models slower than
the other models. This is because the large amount of packets
in the network is translated into lots of reservations in the
data structures containing our resources. As the resources
are implemented as sorted lists, each time a reservation is
called, the whole structure has to be browsed which lowers
performance. At any rate the reservation-based modules are
still noticeably faster than the simulator in this context.

To close this subsection we want to remind the reader
that this kind of application is not actually of interest in our
research but were included to show the inadequacy of such
models for saturated networks. For the rest of the paper, we
do not consider the conclusions of this subsection, since this
workload forces the network to operate in a state that is not
likely to occur in our set-up with our target applications.

E. Directory-like traffic in a 1024-core chip

As stated before, our experimental set-up restricts the size of
the applications we can use to evaluate our models. However,
the ultimate aim of our research is to evaluate chips with
up to 1024-cores. For this reason, following a methodology
akin to the one presented in [21], we have generated synthetic
directory-like traffic for a 1024-core system (32× 32 mesh).

We present the results for these synthetic communications
in Fig. 8. In general, all the reservation-based models but
‘direction con’ consistently provide better accuracy than the
other ones. The reason for the low accuracy of ‘direction
con’ is clear: allowing only one packet per each 32-core
row (or column) is extremely restrictive, and results in overly
pessimistic performance. Regarding the computation time, we
can see how all models except ‘path con’ execute more than
two orders of magnitude faster than the simulator, which
means good scalability levels. In the case of ‘path con’, it
requires using roughly 4,000 ‘resource’ structures and use, on
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simulation
fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist

Fig. 7. NAS benchmarks. 64 cores. a) Normalized simulated execution time. b) Similarity score. c) Required computation time.

simulation
fixed
no contention
load estimation
exponential
direction con
path con
pipes
pipes dist

Fig. 8. Synthetic directory-like traffic. 1024 cores. a) Normalized simulated execution time. b) Similarity score. c) Required computation time.

average around 20 of them for each packet. This render this
timing module noticeably slower than the others (but still one
order of magnitude faster than actual simulations). This may
not be acceptable for the simulation of large chips, as it may
become an important simulation bottleneck.

F. Discussion

Looking at the results, we can see how ‘path con’ is
consistently the most accurate. This is because it is the one
having highest resemblance with the actual behaviour of the
network. It models the topology and the way physical links
are employed during normal operation, but avoids modelling
all the complex logic within the router (requesting, VC man-
agement, arbitration, QoS, congestion control). However, we
found that this model cannot scale well to our target of 1024
cores as it may slowdown simulation considerably.

In the case of ‘direction con’ we find out that the restriction
of having a single packet per row or column is exceedingly
restrictive, specially with high loads or large systems. For this
reason we should discard this model. However, taking into
account that it produces reasonably good results with the 32-
node systems we may consider an intermediate solution which
splits a large network into smaller ‘direction con’ networks
which should provide better results for large systems while
still being lightweight enough.

Another model which is worth mentioning is the ‘pipes dist’.
It has shown good accuracy and reasonable speed and scala-
bility, but the more interesting property is that it can be used in
distributed simulations without the need for a shared resource
for simulating the network, which would simplify parallelising
simulation as no synchronization would be needed among
different parallel instances. These two characteristics make it
a good candidate to scale up our simulator up to the 1000-core
systems subject of our research.

In general, it is reasonable to state that the proposed mod-
els provide more accurate results than simpler no-contention
models simply by considering packet interaction in a very
simplified way. Moreover, these models do not only provide
more accuracy when simulating the same amount of traffic but
may help to detect when the network becomes a bottleneck.
For instance, consider two alternate architectural designs with
different communication needs, one of them being communi-
cation biased. If we evaluate these two designs using a no-
contention model the communication-biased design would be
in clear advantage as network contention and saturation do not
affect its performance. The same evaluation with a contention-
aware model would provide a more sensible evaluation.

Finally, although energy estimation is outside of the scope
of this paper, it is fair to say that the proposed models should
be more accurate than no-contention models because both are
aware of the distance travelled by the packets but, in addition,
the contention-aware models also provides an estimation of the
buffering time employed by the packets, which has a definite
impact on NoC consumption.

V. CONCLUSIONS

In this paper we have proposed and evaluated a collection
of timing models for the NoC in the context of fast simulation
of many-core systems. The main novelty of these models
is that they implement a reservation scheme that allows
modelling network contention without the need for tracking
instantaneous network load, or implementing a complex and
slow simulation requiring callbacks. Our study has found that
the proposed models consistently show more accuracy than
the no-contention model that we had previously implemented
in our set-up and that is widely used by the community.

The next logic step is to implement the most promising
of those modules in the COTSon simulator we use in our
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daily research. We have found that a reservation model which
resembles network topology seems to be the most accurate
model but it may be excessively demanding to provide very
fast simulation. A good alternative is a reservation-based
model which provides a number of ‘pipes’ which have to
be reserved to submit packets. This also has the advantage
of supporting distributed simulation seamlessly, which will
simplify simulating the 1000-core chip we are designing.

It is worth noticing that in this paper we have considered
a simple NoC design (mesh topology, cut-through switching
and deterministic XY routing). However, modelling other
NoC designs based on the proposed ‘reservation’ structure
is straightforward. It only requires to organize the pool of
resources following the topology of choice, to reserve them as
directed by the routing and to chain them as dictated by the
switching technology. A proof of concept for different flavours
of NoCs remains as future work.

To close the paper, authors want to emphasise that these
models are intended to accelerate the simulation of many-
core processors but should not replace a proper evaluation
of the communication infrastructure when it comes to design
such systems. Our experiments showed that, under scenarios
of saturation, none of the models were able to emulate network
behaviour in an appropriate way.
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