
Steal-on-abort: Improving Transactional

Memory Performance through Dynamic

Transaction Reordering

Mohammad Ansari, Mikel Luján, Christos Kotselidis, Kim Jarvis,
Chris Kirkham, and Ian Watson

The University of Manchester
{ansari,mikel,kotselidis,jarvis,chris,watson}@cs.manchester.ac.uk

Abstract. In transactional memory, aborted transactions reduce per-
formance, and waste computing resources. Ideally, concurrent execution
of transactions should be optimally ordered to minimise aborts, but such
an ordering is often either complex, or unfeasible, to obtain.
This paper introduces a new technique called steal-on-abort, which aims
to improve transaction ordering at runtime. Suppose transactions A and
B conflict, and B is aborted. In general it is difficult to predict this first
conflict, but once observed, it is logical not to execute the two transac-
tions concurrently again. In steal-on-abort, the aborted transaction B is
stolen by its opponent transaction A, and queued behind A to prevent
concurrent execution of A and B. Without steal-on-abort, transaction
B would typically have been restarted immediately, and possibly had a
repeat conflict with transaction A.
Steal-on-abort requires no application-specific information, modification,
or offline pre-processing. In this paper, it is evaluated using a sorted
linked list, red-black tree, STAMP-vacation, and Lee-TM. The evalua-
tion reveals steal-on-abort is highly effective at eliminating repeat con-
flicts, which reduces the amount of computing resources wasted, and
significantly improves performance.

1 Introduction

In the future, software will need to be parallelised to take advantage of the
increasing number of cores in multi-core processors. Concurrent programming,
using explicit locking to ensure safe access to shared data, has been the domain
of experts, and is well-known for being challenging to build robust and cor-
rect software. Typical problems include data races, deadlock, livelock, priority
inversion, and convoying. The move to multi-cores requires adoption of concur-
rent programming by the majority of programmers, not just experts, and thus
simplifying it has become an important challenge.

Transactional Memory (TM) is a new concurrent programming model that
seeks to reduce programming effort, while maintaining or improving execution
performance, compared to explicit locking. TM research has surged due to the
need to simplify concurrent programming. In TM, programmers mark those

2

blocks of code that access shared data as transactions, and safe access to shared
data by concurrently executing transactions is ensured implicitly (i.e. invisible
to the programmer) by the TM implementation.

The TM implementation compares each transaction’s data accesses against
all other transactions’ data accesses for conflicts. Conflicts occur when a transac-
tion has a) read a data element and another transaction attempts to write to it,
or b) written to a data element and another transaction attempts to read or write
to it. If conflicting data accesses are detected between any two transactions, one
of them is aborted, and usually restarted immediately. Selecting the transaction
to abort, or conflict resolution, is based upon a policy, sometimes referred to as
a contention management policy. If a transaction completes execution without
aborting, then it commits, which makes its changes to shared data visible to the
whole program.

Achieving scalability on multi-core architectures requires, amongst other
things, the number of aborted transactions to be kept to a minimum. Aborted
transactions reduce performance, reduce scalability, and waste computing re-
sources. Furthermore, in certain (update-in-place) TM implementations aborted
transactions require extra computing resources to roll back the program to a
consistent state.

The order in which transactions concurrently execute can affect the number
of aborts that occur, and thus affect performance. Although it may be possible
to determine an optimal order (or schedule) that minimises the number of aborts
given complete information a priori, in practice this is difficult to achieve. Often
complete information is impractical to obtain, simply not available for some
programs, e.g. due to dynamic transaction creation, or even if it is available, the
search space for computing the optimal order may be unfeasibly large.

This paper presents a new technique called steal-on-abort, which aims to
improve transaction ordering at runtime. When a transaction is aborted, it is
typically restarted immediately. However, due to close temporal locality, the im-
mediately restarted transaction may repeat its conflict with the original trans-
action, leading to another aborted transaction. Steal-on-abort targets such a
scenario: the transaction that is aborted is not restarted immediately, but in-
stead ‘stolen’ by the opponent transaction, and queued behind it. This prevents
the two transactions from conflicting again.

Crucially, steal-on-abort requires no application-specific information or con-
figuration, and requires no offline pre-processing. Steal-on-abort is implemented
in DSTM2 [1], a Software TM (STM) implementation, and evaluated using a
sorted linked list [2], red-black tree [2], STAMP-vacation [3], and Lee-TM [4,
5]. The evaluation shows steal-on-abort to be highly effective at reducing repeat
conflicts, which lead to performance improvements ranging from 1.2 fold to 290.4
fold.

The paper is organised as follows: Section 2 introduces steal-on-abort, its im-
plementation in DSTM2, the different steal-on-abort strategies developed, and
related work. Section 3 evaluates steal-on-abort, presenting results for transac-

3

tion throughput, repeat conflicts, and briefly examining steal-on-abort overhead.
Finally, Section 4 presents the conclusions.

2 Steal-on-abort

In most TM implementations, aborted transactions are immediately restarted.
However, we observed that the restarted transaction may conflict with the same
opponent transaction again, leading to another abort, which we refer to as a
repeat conflict. In general it is difficult to predict the first conflict between any
two transactions, but once a conflict between two transactions is observed, it
is logical not to execute them concurrently again (or, at least, not to execute
them concurrently unless the repeat conflict can be avoided). Using steal-on-
abort the aborter steals the abortee, and only releases its stolen transactions
after committing. This prevents them from being executed concurrently, which
reduces wasted work. However, steal-on-abort also aims to improve performance.
When a transaction is abort-stolen, the thread that was executing it acquires a
new transaction and begins executing it.

An advantage of steal-on-abort is that it complements existing contention
management policies. Since steal-on-abort is only engaged upon abort, exist-
ing contention management policies can continued to be used to decide which
transaction to abort upon conflict.

The remainder of this section explains the implementation of steal-on-abort
in DSTM2, and then explores the steal-on-abort design space by suggesting
several execution strategies. The implementation needs to support three key
components of steal-on-abort. First, each thread needs to be able to store the
transactions stolen by its currently executing transaction. Second, each thread
needs to be able to acquire a new transaction if its current transaction is stolen.
Finally, a safe mechanism for stealing active transactions is required.

2.1 Multiple Work Queue Thread Pool with Randomized Work

Stealing

DSTM2, like other STMs [6–8], creates a number of threads that concurrently
execute transactions. This is extended into a thread pool model, and application
threads submit transactional jobs to a transactional thread pool. As shown in
Figure 1, a work queue is added to each worker thread in the transactional thread
pool (java.util.concurrent.LinkedBlockingDeque, a thread-safe deque) to
store transactional jobs. A transactional job is simply an object that holds the
information needed to execute a transaction (e.g., pointer to a function, and
parameters). Multiple work queues are used as a single work queue would lead
to high serialisation overhead, and submitted jobs are round robin distributed
to work queues. Worker threads acquire transactions from the head of their own
queue when their current transaction commits, or is abort-stolen.

In order to keep worker threads busy, randomised work stealing [9] is imple-
mented as well. The terms work-steal and abort-steal are used to differentiate

4

Fig. 1. Worker threads have per-thread deques that store transactional jobs. Worker
threads take jobs from the head of their own deque.

between transactions being stolen due to work stealing, and due to steal-on-
abort, respectively. As shown in Figure 2, if a worker thread’s own work queue
is empty, it randomly selects another worker thread, and attempts to work-
steal a single transactional job from the tail of that thread’s work queue. If all
work queues are empty, the thread will attempt to work-steal from other worker
threads’ steal queues (described next).

2.2 Steal-on-abort Operation

A private steal queue (also a java.util.concurrent.LinkedBlockingDeque)
is added to each worker thread to hold transactional jobs that are abort-stolen,
as shown in Figure 3, which illustrates steal-on-abort in action. Each worker
thread has an additional thread-safe flag, called stolen.

A stealing worker thread attempts to abort its victim worker thread’s trans-
action. If this attempt is successful, the stealing thread takes the job stored in
the victim thread’s currentJob variable, and stores it in its own steal queue.
After the job is taken, the victim thread’s stolen flag is set. If a victim thread
detects its transaction has been aborted, it waits for its stolen flag to be set.
Once the flag is set, the victim thread obtains a new job, stores it in currentJob,
and then clears the stolen flag. The victim thread must wait on the stolen flag,
otherwise access to the variable currentJob could be unsafe.

2.3 Programming Model Considerations

There are two important programming model changes to consider when using
a transactional thread pool. First, in our implementation, application threads

5

Fig. 2. If a worker thread’s deque is empty, it work-steals a job from the tail of another
randomly selected worker thread’s deque.

Fig. 3. Steal-on-abort in action. Worker thread A is executing a transaction based on
Job 2, and worker thread B is executing a transaction based on Job 6. In step 1, thread
A’s transaction conflicts with, and aborts, Thread B’s transaction. In step 2, thread A
abort-steals thread B’s job, and places it in its own steal queue. In step 3, after thread
A finishes stealing, thread B gets a new job, and starts executing it.

6

submit transactional jobs to the thread pool to be executed asynchronously,
rather than executing transactions directly. This requires a trivial change to the
application code.

Secondly, application threads that previously executed a transactional code
block, and then executed code that depended on the transactional code block
(e.g. code that uses a return value obtained from executing the transactional
code block), are not easily supported using asynchronous job execution. This
dependency can be accommodated by using synchronous job execution; for ex-
ample, the application thread could wait on a condition variable, and be notified
when the submitted transactional job has committed. Additionally, the transac-
tional job object could be used to store any return values from the committed
transaction that may be required by the application thread’s dependent code.
This requires a simple modification to the implementation described already.
The use of asynchronous job execution, where possible, is preferred as it permits
greater parallelism: application and worker threads execute simultaneously.

2.4 Steal-on-abort Strategies

Four different steal-on-abort strategies constitute the design space investigated
in this paper. Each strategy differs in the way stolen transactions are released.
The properties of each one are explained below.

Steal-Tail inserts abort-stolen jobs at the tail of the mainDeque once the current
transaction completes. This means the abort-stolen jobs will be executed last
since jobs are normally taken from the head of the deque, unless other threads
work-steal the jobs and execute them earlier. As mentioned earlier, jobs are cre-
ated and distributed in a round-robin manner to threads’ mainDeques. Therefore,
jobs created close in time will likely be executed close in time. Steal-Tail may
benefit performance in a benchmark, for example, where a job’s creation time
has strong affinity with its data accesses, i.e. jobs created close in time have
similar data accesses, which means they are likely to conflict if executed concur-
rently. Executing an abort-stolen job immediately after the current job may lead
it to conflict with other concurrently executing transactions since they are likely
to be those created close in time as well. Placing abort-stolen jobs at the tail
of the deque may reduce conflicts by increasing the temporal execution distance
between jobs created close in time.

Steal-Head inserts abort-stolen jobs at the head of the mainDeque once the
current transaction completes. This means the abort-stolen jobs will be executed
first. For benchmarks that do not show the affinity described above, placing jobs
at the head of the deque may take advantage of cache locality and improve
performance. For example, transaction A aborts and abort-steals transaction B.
Upon completion of transaction A, transaction B is started. At least one data
element is common to both transactions; the data element that caused a conflict
between them, and is likely to be in the local cache of the processor (or core).
The larger the data access overlap, the more likely performance is to improve.

7

Steal-Keep does not move abort-stolen jobs from a thread’s stealDeque to its
mainDeque once the current transaction completes. The thread continues to ex-
ecute jobs from its mainDeque until it is empty, and then executes jobs from
its stealDeque (when both are empty, work stealing is invoked as usual). The
motivation of Steal-Keep is to increase the average time to an abort-stolen job’s
re-execution, as it will be executed last by the current thread, and only work-
stolen by other threads if all other threads’ mainDeques are empty. Steal-Keep
may reduce steal-on-abort overhead as it does not require jobs to be moved from
the stealDeque to the mainDeque after every transaction finishes, however, it
may increase the overhead of work stealing when the mainDeque of all threads
is empty.

Steal-Block causes an abort-stolen job’s second-order abort-stolen jobs to be
taken as well (thus a block of transactions is stolen). The hypothesis is that in
some benchmarks there is a strong data access affinity between aborted transac-
tions that extends further down the directed graph of aborted transactions. In
such benchmarks, Steal-Block aims to give greater performance improvements
by reordering transactions faster. However, it also increases steal-on-abort over-
head, as on every steal-on-abort operation the stealDeque must be traversed to
take the second-order abort-stolen transactions.

2.5 Limitations

There are two important limitations to steal-on-abort. First, steal-on-abort is
only useful when repeat conflicts occur, as queueing transactions eliminates the
chance of repeat conflicts. If an application has significant numbers of conflicts,
but they are mostly unique conflicts, then the benefit of steal-on-abort may be
reduced.

Second, in order to detect repeat conflicts, the TM implementation must sup-
port visible accesses, either read, write, or both. Using invisible reads and writes
only allow conflicts to be detected between an active transaction and a commit-
ted transaction. Repeat conflicts require the detection of conflicts between two
active transactions, as then one may abort, restart, and again conflict with the
same opponent, if the opponent is still active.

2.6 Related Work

Research in transaction reordering for improving TM performance has been lim-
ited. Bai et al. [10] introduced a key-based approach to co-locate transactions
based on their calculated keys. Transactions that have similar keys are predicted
to have a high likelihood of conflicting, and queued in the same queue to be exe-
cuted serially. Their implementation also uses a thread pool model with multiple
work queues, but they do not support work-stealing or abort-stealing.

Although their approach improves performance, its main limitation is the
requirement of an application-specific formula to calculate the keys. This makes

8

their technique of limited use without application-specific knowledge, and per-
formance is dependent on the effectiveness of the formula. For some applications
it may be difficult to create effective formulae, and in the extreme case ineffective
formula may degrade performance. In contrast, steal-on-abort does not require
any application-specific information.

Our recent work [11] attempts to reduce aborts by monitoring the percentage
of transactions that commit over a period of time. If the percentage is found to
deviate from a specified threshold then worker threads are added or removed
from a transactional thread pool to increase or decrease the number of transac-
tions executed concurrently. Although this work does not target repeat conflicts,
it effectively schedules transactions to improve resource usage and execution per-
formance.

Recent work by Dolev et al. [12], called CAR-STM, has similarly attempted
to schedule transactions into queues based on repeat conflicts. CAR-STM also
supports the approach by Bai et al. to allow an application to submit a function
used to co-located transactions predicted to have a high likelihood of conflicting.
Unlike steal-on-abort, CAR-STM does not support the use of existing contention
management policies, does not implement work stealing to improve load balance
and parallel performance, and does not investigate strategies such as those in
Section 2.4.

Harris et al. [13] describe the retry mechanism, which allows an aborted
transaction to block, and wait for the condition that caused it to abort to change,
rather than restart immediately. However, retry must by explicitly called by the
programmer, whereas steal-on-abort operates transparently.

3 Evaluation

The evaluation aims to investigate the performance benefits of the steal-on-abort
strategies by executing several benchmarks using high contention configurations.
In this section, the term Normal refers to execution without steal-on-abort.
Steal-Tail, Steal-Head, Steal-Keep, and Steal-Block are abbreviated to Steal-T,
Steal-H, Steal-K, and Steal-Blk, respectively. All execution schemes (including
Normal) utilise the thread pool, and work stealing.

3.1 Platform

The platform used to execute benchmarks is a 4 x dual-core (8-core) Opteron
880 2.4GHz system with 16GB RAM, running openSUSE 10.1, and using Sun
Hotspot Java VM 1.6 64-bit with the flags -Xms4096m -Xmx14000m. Benchmarks
are executed using DSTM2 set to using the shadow factory, and visible reads.
DSTM2 always uses visible writes. Although read and write visibility affect the
amount of conflicts that occur, visible reads and writes are generally considered
to give higher performance than invisible reads and writes when a large number
of conflicts occur, and the benchmarks in this evaluation have large numbers
of conflicts (see next). Experiments are executed with 1, 2, 4, and 8 threads,

9

each run is repeated 9 times, and mean results are reported with ±1 standard
deviation error bars.

The published best contention manager (CM), called Polka [14], is used in
the evaluation. Upon conflict, Polka waits exponentially increasing amounts of
time for a dynamic number of iterations (equal to the difference in the number
of read accesses between the two transactions) for the opponent transaction to
commit, before aborting it. Polka’s default parameters are used for controlling
the exponentially increasing wait times [14].

3.2 Benchmarks

The benchmarks used to evaluate steal-on-abort are a sorted linked list, red-
black tree, STAMP-vacation, and Lee-TM. Hereafter, they are referred to as List,
RBTree, Vacation, and Lee-TM, respectively. Evaluating steal-on-abort requires
the benchmarks to generate large amounts of transactional conflicts. Below, the
benchmarks are briefly described, along with the execution parameters used to
produce high contention.

List and RBTree transactionally insert or remove random numbers into a
sorted linked list or tree, respectively. List and RBTree are configured to perform
20,000 randomly selected insert and delete transactions with equal probability.
Additionally, after executing its code block, each transaction waits for a short
delay, which is randomly selected using a Gaussian distribution with a mean
duration of 3.2ms, and a standard deviation of 1.0. The delays are used to
simulate transactions that perform extra computation while accessing the data
structures. This also increases the number of repeat conflicts.

Vacation is a benchmark from the STAMP suite (version 0.9.5) ported to
DSTM2. It simulates a travel booking database with three tables to hold book-
ings for flights, hotels, and cars. Each transaction simulates a customer making
several bookings, and thus several modifications to the database. High contention
is achieved by configuring Vacation to build a database of 128 relations per ta-
ble, and execute 256,000 transactions, each of which performs 50 modifications
to the database.

Lee-TM is a transactional circuit routing application. Pairs of coordinates for
each route are loaded from a file and sorted by ascending length. Each transaction
attempts to lay a route from its start coordinate to its end coordinate in a three-
dimensional array that represents a layered circuit board. Routing consists of
two phases: expansion performs a breadth-first search from the start coordinate
looking for the end coordinate, and backtracking writes the route by tracing back
a path from the end coordinate to the start coordinate. For high contention, the
Lee-TM-t configuration [5] is used (i.e., no early release) with the mainboard.txt
input file, which has 1506 routes. This input file has relatively long transactions,
and a only minority of them cause contention so repeat conflicts should be limited
in comparison to the other benchmarks. Furthermore, later transactions are more
likely to conflict with each other because of large amounts of data accesses, and
Steal-Blk may offer better performance in such conditions.

10

3.3 Transaction Throughput

Normal
Steal−T
Steal−K
Steal−H
Steal−Blk

 0

 50

 100

 150

 200

 250

1 2 4 6 8

T
ra

ns
ac

tio
ns

/s
ec

on
d

Threads

List − Polka

Normal
Steal−T
Steal−K
Steal−H
Steal−Blk

 0
 20
 40
 60
 80

 100
 120
 140
 160

1 2 4 6 8

T
ra

ns
ac

tio
ns

/s
ec

on
d

Threads

RBTree − Polka

Normal
Steal−T
Steal−K
Steal−H
Steal−Blk

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

 14,000

1 2 4 6 8

T
ra

ns
ac

tio
ns

/s
ec

on
d

Threads

Vacation − Polka

Normal
Steal−T
Steal−K
Steal−H
Steal−Blk

 0

 1

 2

 3

 4

 5

 6

 7

1 2 4 6 8

T
ra

ns
ac

tio
ns

/s
ec

on
d

Threads

Lee−TM − Polka

Fig. 4. Throughput results.

Figure 4 illustrates the throughput results. Cursory observation shows that
steal-on-abort always improves throughput over Normal execution, sometimes
by significant margins. Performance variance is generally minimal between the
steal-on-abort strategies compared to the difference with Normal, but Steal-Blk
is less effective in Vacation, and slightly more effective in Lee-TM, while Steal-
H is less effective in Lee-TM. Furthermore, Steal-K and Steal-T are the most
consistent performers, and thus for brevity the discussion will mainly focus on
the performance benefits of Steal-T.

In List, Steal-T improves average throughput over Normal by 46.7 fold with
2 threads, 14.6 fold with 4 threads, 2.4 fold with 6 threads, and 1.9 fold with 8
threads. Similarly, in RBTree the improvements are 40.0 fold, 6.1 fold, 2.0 fold,
and 1.6 fold respectively. In Vacation the improvements are 290.4 fold, 92.9 fold,
37.9 fold, and 6.1 fold, respectively.

Examining Lee-TM, Steal-T improves average throughput over Normal by
1.2 fold with 2 threads, 1.4 fold with 4 threads, and 1.3 fold with 8 threads.
However, Lee-TM results have high standard deviations, which increase with
the number of threads. This is caused by Lee-TM performance being sensitive
to the order in which transactions commit. As there are only 1506 routes, and
most of the contention due to the long transactions executed near the end, even
aborting a few long transactions in favour of other long transactions that have
performed less computation can significantly impact performance. As predicted,
Steal-Blk generally improves performance the most for Lee-TM.

11

3.4 Repeat Conflicts

1
2
3
4
5
6−10
11−100
101−1000 0

 50,000
 100,000
 150,000
 200,000
 250,000
 300,000
 350,000
 400,000
 450,000

N
or

m
al

S
te

al
−

T

S
te

al
−

K

S
te

al
−

H

S
te

al
−

B
lkW

as
te

d
w

or
k

(m
s) List − Polka

1
2
3
4
5
6−10
11−100
101−1000 0

 100,000
 200,000
 300,000
 400,000
 500,000
 600,000
 700,000
 800,000

N
or

m
al

S
te

al
−

T

S
te

al
−

K

S
te

al
−

H

S
te

al
−

B
lkW

as
te

d
w

or
k

(m
s) RBTree − Polka

1
2
3
4
5
6−10
11−100
101−1000 0

 100,000
 200,000
 300,000
 400,000
 500,000
 600,000

N
or

m
al

S
te

al
−

T

S
te

al
−

K

S
te

al
−

H

S
te

al
−

B
lkW

as
te

d
w

or
k

(m
s) Vacation − Polka

1
2
3
4
5
6−10
11−100
101−1000 0

 500,000
 1,000,000
 1,500,000
 2,000,000
 2,500,000

N
or

m
al

S
te

al
−

T

S
te

al
−

K

S
te

al
−

H

S
te

al
−

B
lkW

as
te

d
w

or
k

(m
s) Lee−TM − Polka

Fig. 5. Wasted work distribution by number of repeat conflicts.

Next, we examine the amount of time spent in repeat conflicts, and the
effectiveness of the steal-on-abort strategies at reducing repeat conflicts. Figure
5 shows histograms of the distribution of wasted work [15] (i.e. the amount of
time spent executing transactions that eventually aborted) for a given number
of conflicts with the same transaction. As an example, consider a transaction
A that is aborted seven times before it finally commits. Such a transaction has
seven lots of wasted work. Four aborts occur through conflict with a transaction
B, two with a transaction C, and one with a transaction D (seven in total).
The four lots of wasted work caused by conflicting with, and being aborted
by, transaction B are added to column ’4’, the two lots associated with C are
added to column ’2’, and the one lot associated with D is added to column ’1’.
For brevity, only results from execution with eight thread results are discussed,
although better performance improvements were observed previously with fewer
threads (Figure 4).

Since steal-on-abort should targets repeat conflicts it should reduce the amount
of time in all but the first column. This is confirmed by the results in Figure 5:
Steal-T reduces time in the remaining columns (repeat conflicts) by 99% in List,
95% in RBTree, 99% in Vacation, and 58% in Lee-TM. Furthermore, the results
show that repeat conflicts represent a significant proportion of the total wasted
work for the high contention configurations used: 65% in List, 54% in RBTree,
96% in Vacation, and 17% in Lee-TM. The net reduction in wasted work using
Steal-T with 8 threads is 53% in List, 18% in RBTree, 93% in Vacation, and
13% in Lee-TM.

12

However, steal-on-abort increases single conflict (non-repeat) wasted work for
List, RBTree, and Vacation. This is because repeat conflicts are being reduced
to single conflicts so their wasted work is allocated to the single conflict column.
However, the increase in single conflict wasted work is far less than the decrease
in repeat conflict wasted work. As a result, Lee-TM, which has far fewer repeat
conflicts than the other benchmarks, actually sees a fall in single conflict wasted
work. Thus, a side effect of steal-on-abort is to reduce the number of single (i.e.,
unique) conflicts that occur.

3.5 Committed Transaction Durations

Polka causes transactions to wait for their opponents, which increases the average
time it takes to execute a transaction that eventually commits. Since steal-on-
abort reduced the amount of time spent in repeat conflicts, it should also have
reduced the total number of conflicts, which in turn should have reduced the
average committed transaction’s duration.

Normal
Steal−T
Steal−K
Steal−H
Steal−Blk

 0
 2,000
 4,000
 6,000
 8,000

 10,000
 12,000
 14,000
 16,000

1 2 4 6 8T
ra

ns
ac

tio
n

du
ra

tio
n

(u
s)

Threads

List − Polka
Normal
Steal−T
Steal−K
Steal−H
Steal−Blk

 0

 5,000

 10,000

 15,000

 20,000

 25,000

1 2 4 6 8T
ra

ns
ac

tio
n

du
ra

tio
n

(u
s)

Threads

RBTree − Polka

Normal
Steal−T
Steal−K
Steal−H
Steal−Blk

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

1 2 4 6 8T
ra

ns
ac

tio
n

du
ra

tio
n

(u
s)

Threads

Vacation − Polka
Normal
Steal−T
Steal−K
Steal−H
Steal−Blk

 0
 100,000
 200,000
 300,000
 400,000
 500,000
 600,000
 700,000
 800,000
 900,000

1 2 4 6 8T
ra

ns
ac

tio
n

du
ra

tio
n

(u
s)

Threads

Lee−TM − Polka

Fig. 6. Average Committed Transaction Duration (microseconds).

Figure 6 shows the results for the average committed transaction’s dura-
tion, which includes the overhead of steal-on-abort operations, and confirms the
hypothesis. Three of the four benchmarks reduce the average duration with 8
threads, except for List using Steal-H, which marginally increases the average
duration. Only for Vacation do all the steal-on-abort strategies increase the av-
erage duration, although this is still largely within the standard deviations.

13

3.6 Steal-on-abort Overhead

We have not precisely measured the overhead of steal-on-abort as it consists of
small code blocks, some of which execute within transactions, and some outside
of transactions. However, as shown in Figure 6, Vacation’s transactions have
much shorter average durations than the other benchmarks, and consequently
Vacation’s increase in average duration in Figure 6 may be due to abort-stealing
overhead, which would indicate that the overhead is in the tens of microseconds
per transaction.

However, this overhead does not include the cost of moving transactions
between deques, as that happens after a transaction completes. To measure that
cost the in-transaction metric (InTx), which is the proportion of execution time
spent in executing transactions, is presented in Figure 7. For the benchmarks
used in this evaluation there are two sources of out-of-transaction execution: work
stealing, and moving jobs from a thread’s stolenDeque to its mainDeque after
every transaction completes. Since Normal execution utilises work stealing, the
difference between Normal and steal-on-abort execution should approximately
represent the cost of moving jobs between the deques.

Normal
Steal−T
Steal−K
Steal−H
Steal−Blk

 0.0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1.0

1 2 4 6 8

P
ro

po
rt

io
n

sp
en

t i
n

tr
an

sa
ct

io
ns

Threads

List − Polka
Normal
Steal−T
Steal−K
Steal−H
Steal−Blk

 0.0
 0.2
 0.4
 0.6
 0.8
 1.0
 1.2

1 2 4 6 8

P
ro

po
rt

io
n

sp
en

t i
n

tr
an

sa
ct

io
ns

Threads

RBTree − Polka

Normal
Steal−T
Steal−K
Steal−H
Steal−Blk

 0.0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1.0

1 2 4 6 8

P
ro

po
rt

io
n

sp
en

t i
n

tr
an

sa
ct

io
ns

Threads

Vacation − Polka
Normal
Steal−T
Steal−K
Steal−H
Steal−Blk

 0.0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1.0

1 2 4 6 8

P
ro

po
rt

io
n

sp
en

t i
n

tr
an

sa
ct

io
ns

Threads

Lee−TM − Polka

Fig. 7. Proportion of total time spent executing transactions.

Figure 7 identifies that there is negligible overhead in moving jobs between
deques and work stealing in List, RBTree, and Lee-TM. However, in Vacation

14

the overhead becomes visible, with most strategies observing an overhead of
3%. The average execution time of Vacation at 8 threads with Steal-T is 24.0
seconds, and given that 256,000 transactions are executed, the average overhead
of moving jobs is 2.8 microseconds per transaction. However, this cost is related
to the number of jobs moved between deques, and with Steal-T this averages to
2.2 jobs per completed transaction. Section 2.4 mention that Steal-Blk may have
higher overhead, and Vacation’s results identify Steal-Blk observing an overhead
of 5-10%.

4 Conclusions and Future Work

In well-engineered, scalable, concurrently programmed applications it is expected
that high contention conditions will occur only rarely. Nevertheless, when high
contention does occur it is important that performance degrades as little as
possible. It is also probable that some applications will not be as well-engineered
as expected, and thus may suffer from high contention more frequently.

This paper presented steal-on-abort, a new runtime approach that dynami-
cally reorders transactions with the aim of improving performance by reducing
the number of repeat conflicts. Steal-on-abort is a low overhead technique that
requires no application specific information or offline pre-processing.

Steal-on-abort was evaluated using the well-known Polka contention manager
with two widely used benchmarks in TM: sorted linked list and red-black tree,
and two non-trivial benchmarks: STAMP-vacation and Lee-TM. The bench-
marks were configured to generate high contention, which led to significant
amounts of repeat conflicts. Steal-on-abort was effective at reducing repeat con-
flicts: Steal-Tail reducing by almost 60% even when repeat conflicts only ac-
counted for 17% of the total wasted work, and reducing by over 95% when repeat
conflicts accounted for 55% or more of the wasted work. This led to performance
improvements ranging from 1.2 fold to 290.4 fold.

We are encouraged by the results from the steal-on-abort evaluation, and we
plan to continue our investigation of the design space. In particular, we wish to
investigate the design of steal-on-abort when invisible reads and writes are used,
and the implementation of steal-on-abort for HTMs.

References

1. Maurice Herlihy, Victor Luchangco, and Mark Moir. A flexible framework for
implementing software transactional memory. In OOPSLA ’06: Proceedings of the

21st Annual Conference on Object-Oriented Programming Systems, Languages, and

Applications, pages 253–262. ACM Press, October 2006.

2. Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer III. Soft-
ware transactional memory for dynamic-sized data structures. In PODC ’03: Pro-

ceedings of the 22nd Annual Symposium on Principles of Distributed Computing,
pages 92–101. ACM Press, July 2003.

15

3. Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen McDonald, Nathan
Bronson, Jared Casper, Christos Kozyrakis, and Kunle Olukotun. An effective
hybrid transactional memory system with strong isolation guarantees. In ISCA

’07: Proceedings of the 34th Annual International Symposium on Computer Archi-

tecture, pages 69–80. ACM Press, June 2007.
4. Ian Watson, Chris Kirkham, and Mikel Luján. A study of a transactional parallel

routing algorithm. In PACT ’07: Proceedings of the 16th International Confer-

ence on Parallel Architectures and Compilation Techniques, pages 388–400. IEEE
Computer Society Press, September 2007.

5. Mohammad Ansari, Christos Kotselidis, Kim Jarvis, Mikel Luján, Chris Kirkham,
and Ian Watson. Lee-TM: A non-trivial benchmark for transactional memory. In
ICA3PP ’08: Proceedings of the 7th International Conference on Algorithms and

Architectures for Parallel Processing. LNCS, Springer, June 2008.
6. Virendra Marathe, Michael Spear, Christopher Herio, Athul Acharya, David Eisen-

stat, William Scherer III, and Michael L. Scott. Lowering the overhead of software
transactional memory. In TRANSACT ’06: First ACM SIGPLAN Workshop on

Transactional Computing, June 2006.
7. Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In DISC ’06:

Proceedings of the 20th International Symposium on Distributed Computing. LNCS,
Springer, September 2006.

8. Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic performance tuning of
word-based software transactional memory. In PPoPP ’08: Proceedings of the 13th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pages 237–246. ACM Press, February 2008.

9. Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-
erson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime
system. Journal of Parallel and Distributed Computing, 37(1):55–69, 1996.

10. T. Bai, X. Shen, C. Zhang, W.N. Scherer, C. Ding, and M.L. Scott. A key-based
adaptive transactional memory executor. In IPDPS ’07: Proceedings of the 21st

International Parallel and Distributed Processing Symposium. IEEE Computer So-
ciety Press, March 2007.

11. Mohammad Ansari, Christos Kotselidis, Kim Jarvis, Mikel Luján, Chris Kirkham,
and Ian Watson. Advanced concurrency control for transactional memory using
transaction commit rate. In EUROPAR ’08: Fourteenth European Conference on

Parallel Processing, August 2008.
12. Shlomi Dolev, Danny Hendler, and Adi Suissa. Car-stm: Scheduling-based colli-

sion avoidance and resolution for software transactional memory. In PODC ’07:

Proceedings of the 26th annual ACM symposium on Principles of distributed com-

puting, August 2008.
13. Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Compos-

able memory transactions. In PPoPP ’05: Proceedings of the tenth ACM SIGPLAN

symposium on Principles and practice of parallel programming, pages 48–60, New
York, NY, USA, 2005. ACM.

14. William Scherer III and Michael L. Scott. Advanced contention management for
dynamic software transactional memory. In PODC ’05: Proceedings of the 24th

Annual Symposium on Principles of Distributed Computing, pages 240–248. ACM
Press, July 2005.

15. Cristian Perfumo, Nehir Sonmez, Adrian Cristal, Osman Unsal, Mateo Valero, and
Tim Harris. Dissecting transactional executions in Haskell. In TRANSACT ’07:

Second ACM SIGPLAN Workshop on Transactional Computing, August 2007.

