
Profiling Transactional Memory Applications
Mohammad Ansari, Kim Jarvis, Christos Kotselidis, Mikel Luján, Chris Kirkham and Ian Watson

School of Computer Science, University of Manchester
Email:{ansari, kotselidis, jarvis, mikel, chris, watson}@cs.manchester.ac.uk

Abstract—Transactional Memory (TM) has become an active
research area as it promises to simplify the development of
highly scalable parallel programs. Scalability is quickly becom-
ing an essential software requirement as successive commodity
processors integrate ever larger numbers of cores. Non-trivial
TM applications to test TM implementations have only recently
begun to emerge, but have been written in different programming
languages, using different TM implementations, making analysis
difficult.

We ported the popular non-trivial TM applications from the
STAMP suite (Genome, KMeans, and Vacation), and Lee-TM
to DSTM2, a software TM implementation, and built into it
a framework to profile their execution. This paper investigates
which profiling information is most relevant to understanding
the performance of these non-trivial TM applications usingup to
8 processors. We report commonly used transactional execution
metrics and introduce two new metrics that can be used to profile
TM applications.

I. I NTRODUCTION

Transactional Memory (TM) [1], [2] is a promising con-
current programming abstraction that makes it easier to write
scalable parallel programs. It aims to provide the scalability of
fine-grain locking, but with the programming ease of coarse-
grain locking. TM has seen a rise in research activity as
the demand for scalable software increases in order to take
advantage of future chip multiprocessors [3].

TM requires a programmer to mark code blocks that access
shared data astransactions. Whenever a transaction executes,
a runtime system records the transaction’s data accesses into
a readset and awriteset. These sets are compared with the
sets of other concurrently executing transactions for access
conflicts (write/write or read/write). If conflicting accesses are
detected then one of the conflicting transactions isaborted and
restarted. Acontention manager [4], decides which transaction
to abort. A transaction that completes execution of its code
block without being aborted cancommit its writeset. TM im-
plementations exist in a variety of flavors, including software-
based (STM), hardware-based (HTM), and hardware/software
hybrids (HyTM), and readers can refer to Larus and Rajwar
[5] for details.

Several non-trivial programs specifically designed for paral-
lelization with TM have appeared recently [6], [7], [8], [9], but
have been written in different programming languages, using
different TM implementations, which has made it difficult to
profile them.

This paper puts under the same umbrella, our TM profiling
framework, the STAMP [6] applications Genome, Vacation
and KMeans, and Lee-TM [7], [10]. These applications have
become popular amongst researchers, as evidenced in recent

publications [11], [12], [13], [14], [15], [16]. The applications
have been ported to a single TM implementation, the Java-
based Software TM (STM) called DSTM2 [17], which has
been extended with a TM execution profiling framework.
Executing the non-trivial TM applications in a single TM
implementation allows an investigation of the relation between
the profiling information gathered, and the performance of the
applications.

This paper also reports two new transactional metrics that
have not been used in previous related work [18], [19]:
running percentage commit rate, and transaction execution
time histogram (defined in Section III).

This paper is organized as follows: Section II introduces
the applications profiled in this paper. Section III explains
and motivates the metrics used to investigate the transactional
behavior of the applications. Section IV walks through the
different performance figures and execution characteristics.
Section V introduces related work, and Section VI concludes
the paper with observations of the recorded TM behavior.

II. N ON-TRIVIAL TM A PPLICATIONS

Recently, several research groups have been working to-
wards building non-trivial TM applications for thorough TM
implementation analysis [6], [7], [8], [9]. Non-trivial TM
applications are important for TM research as they allow
performance analysis of TM implementations in realistic sce-
narios.

A. Analyzed Applications

This paper analyzes STAMP version 0.9.5 applications
Genome, KMeans, and Vacation [6], and Lee-TM [7], [10].
STAMP applications have been ported from C to Java, and
converted from using TL2 [20], another STM, to DSTM2
[17]. STAMP applications also required the implementation
of additional utility classes in DSTM2: transactional imple-
mentations of a linked list, hash table, and hash map. Lee’s
routing algorithm, originally in Java and single-threaded, has
been implemented using transactions in DSTM2, with the
transactional version named Lee-TM. The remainder of this
section briefly describes each application.

Genome is a gene sequencer that rebuilds a gene se-
quence from a large number of equal-length overlapping gene
segments. Each gene segment is an object consisting of a
character string, a link to the start segment, next segment,
and end segment, and overlap length. The application executes
in three phases. The first phase removes duplicate segments
by transactionally inserting them into a hash set. The second

phase attempts to link segments by matching overlapping
string subsegments. If two segments are found to overlap then
linking the two segments (by modifying the links in each gene
segment object, and setting the overlap length) and removing
them from the hash set is done transactionally, as multiple
gene segments may match and result in conflict. The matching
is done in a for-loop that starts by searching for the largest
overlap (length-1 characters, since duplicates were removed
in the first phase), down to the smallest overlap (1 character).
Thus, conflict is likely to rise as execution progresses since
smaller overlaps will lead to more matches. In the third phase,
a single thread passes over the linked chain of segments to
output the rebuilt gene sequence. The execution of Genome is
completely parallel except for the third phase.

KMeans clusters objects into a specified number of clusters.
The application loads objects from an input file, and then
works in two alternating phases. One phase allocates objects
to their nearest cluster (initially cluster centers are assigned
randomly). The other phase re-calculates cluster centers based
on the mean of the objects in each cluster. Execution repeat-
edly alternates between the two phases until two consecutive
iterations generate, within a specified threshold, similarcluster
assignments. Assignment of an object to a cluster is done
transactionally, thus parallelism is controlled by the number
of clusters. Execution consists of the parallel phase assigning
objects to clusters, and the serial phase checking the variation
between the current assignment and the previous.

Vacation simulates a travel booking database in which
multiple threads transactionally book or cancel cars, hotels,
and flights on behalf of customers. Threads can also exe-
cute changes in the availability of cars, hotels, and flights
transactionally. Each customer has a linked list holding his
reservations. The execution of Vacation is completely parallel,
but available parallelism is limited by the number of relations
in the database and the number of customers.

Lee-TM is a circuit router that makes connections automat-
ically between points. Routing is performed on a 3D grid that
is implemented as a multidimensional array, and each array
element is called a grid cell. The application loads connections
(as pairs of spatial coordinates) from an input file, sorts them
into ascending length order (to reduce ‘spaghetti’ routing),
and then loads them into thread-local queues in a round-robin
manner. Each thread then attempts to find a route from the first
point to the second point of each connection by performing
a breadth-first search, avoiding any grid cells occupied by
previous routings. If a route is found, backtracking lays the
route by occupying grid cells. Concurrent routing requires
writes to the grid to be performed transactionally. Lee-TM
is fully parallel, with conflicts at concurrent read/write or
write/write accesses to a grid cell. A second version of Lee-
TM has been implemented that uses early release [4]. This
version removes grid cells from the readset during the breadth-
first search. Two transactions may be routable in parallel,
i.e. the set of grid cells occupied by their routes does not
overlap, but because of their spatial locality, the breadth-first
search of one transaction reads grid cells to which the second

transaction writes its route, thus causing a read/write conflict.
Removing grid cells from the readset during the breadth-first
search eliminates such false-positive conflicts.

III. A NALYZED METRICS

We instrumented the DSTM2 STM to collect execution
data from the execution of the applications. We present those
metrics commonly used to characterize applications in the TM
literature, and introduce two new metrics not seen in the TM
literature; the transaction execution time histograms andthe
Instantaneous Commit Rate (ICR).

Speedup is presented to show how well the applications
scale with increasing number of threads, and is a measure
of the effectiveness of the transactional execution of the ap-
plications. The speedup depends on characteristics of boththe
application and the TM implementation. In this paper we keep
the TM implementation constant, and the metrics presented in
this paper are intended to characterize the application andhelp
us understand why linear speedup is not achieved. Note that
single thread execution times include transactional overheads
in the results reported.

In transactions (InTX) is the percentage of total time the
applications spent executing transactions. For the applications
studied, the remaining percentage of time is spent executing
serial code. A high InTX means an application spent most of
its time executing transactions, thus possibly stressing the TM
implementation more than an application with low InTX.

Wasted work shows the percentage of transaction execution
time spent executing transactions that subsequently aborted.
It is calculated by dividing the total time spent in aborted
transactions by the time spent in all (committed and aborted)
transactions. High amounts of wasted work can be an indi-
cator for poor contention management decision-making, low
amounts of parallelism in the application.

Aborts per Commit (ApC) shows the mean aborted
transactions per committed transaction. ApC is not directly
related to wasted work, but is an indicator for the same issues
mentioned for wasted work. For example, high wasted work
in combination with a low ApC (aborting a few long/large
transactions, and favoring many short/small transactions) may
indicate poor contention management decision-making, and
studying the application may lead to better contention man-
agement policies.

Abort histograms detail how the ApC is spread amongst
the transactions; e.g. is the ApC due to a minority of transac-
tions aborting many times before committing, or vice versa?

Contention Management Time (CMT) measures the per-
centage of time the mean committed transaction spends in per-
forming contention management when conflicts are detected.
In combination with wasted work and abort histogram data, it
is possible to understand which contention manager may be
most effective for the profiled application.

Transaction execution time histogramsshow the spread
of execution times of committed transactions. This metric
describes how homogeneous or heterogeneous is the amount
of work contained in transactions for a given application.

Configuration Name Application Configuration
Gen Genome gene length:16384, segment length:64,

number of segments:4194304
KMeansL KMeans low contention minclusters:40, maxclusters:40,

threshold:0.00001, inputfile:random1000012
KMeansH KMeans high contention minclusters:20, maxclusters:20,

threshold:0.00001, inputfile:random1000012
VacL Vacation low contention relations:65536, %of relations queried:90,

queriesper transaction:4, numberof transactions:1024768
VacH Vacation high contention as above, but %of relations queried:10,

queriesper transactions:8
Lee-TM-t Lee w/o early release earlyrelease:false, inputfile:mainboard.txt
Lee-TM-ter Lee with early release earlyrelease:true, inputfile:mainboard.txt

TABLE I
APPLICATION PARAMETERS USED TO GATHER EXECUTION CHARACTERISTICS.

Instantaneous Commit Rate (ICR)graphs show the pro-
portion of committed transactions at sample points during the
execution of the application. ICR includes only completed,i.e.
committed or aborted, transactions, and does not include active
transactions. Low ICR is indicative of wasted work.

Readset & writeset sizes are a measure of the memory-
boundedness of committed transactions in an application. They
can be used for selecting buffer or cache sizes for Hardware
TM (HTM) implementations [5]. Data from non-trivial TM
applications gives higher confidence that the hardware will
not overflow for a large proportion of transactions. In this
work a writeset is always a subset of its corresponding readset
because all applications first read data before writing. Forother
applications, these sets may only overlap, or be distinct.

Readset-to-writeset ratio (RStoWS)shows the mean num-
ber of reads that lead to a write in a committed transaction.
Execution usually involves reading a number of data elements,
performing computation, and writing a result to a data element.

Writes-to-writeset ratio captures the mean number of
writes to a transactional data element in a committed trans-
action. Multiple writes indicate further refinement in the
application, when using a STM, is possible since only the
last write is valid, and all other writes add runtime system
monitoring overhead. The data for this metric is omitted for
the applications studied as they do not exhibit multiple writes
to a transactional data element.

Reads-to-readset ratiocaptures the mean number of reads
to a transactional data element in a committed transaction.
Reading transactionally shared data incurs extra costs, and a
high RtoRS ratio, when using a STM, indicates the need to
study the implementation and remove multiple reads to the
same transactional data element. For compilers, it describes
an upper limit of how many read operations can be optimized
away by not recording them again and again. For brevity this
data is omitted as only Lee-TM was found to have a high ratio,
and this information is also visible in the RStoWS ratio data
because none of the applications performed multiple writesto
a transactional data element.

IV. PROFILING RESULTS

All experiments are performed on a 4 x dual-core 2.2GHz
Opteron-based (i.e. an 8-core NUMA shared memory) ma-
chine with openSUSE 10.1, 16GB RAM, and using Sun Java
1.6.0 64-bit. The default configuration of DSTM2 is used:
shadow atomic factory, visible readers, and eager conflict
detection [17].

Table I shows the configurations executed for each applica-
tion. STAMP applications are executed using the parameters
suggested in the guidance notes supplied with the suite. Lee-
TM is executed using the default dataset (a real circuit) with
and without early release [4]. Each experiment is repeated
twenty times and the mean results presented.

All popular contention managers [21], [22], [23] have been
used, but only results with thepriority manager are presented
as it generally gives some of the best execution times in these
benchmarks. The priority manager aborts younger transactions
(those with a later start time). Execution time is measured from
the point where multiple threads start executing transactions
to the point where they stop executing transactions, thus
excluding any setup time (e.g. of application data structures)
and any shutdown time (e.g. of validating results, reporting
metrics). We begin by presenting the speedup results, and
to aid readability the discussion of each metric has been
demarcated.

Fig. 1a illustrates the speedup of each of the target applica-
tions in the DSTM2 STM. Each application is executed with
1, 2, 4, and 8 threads. Speedup for STAMP applications Gen
and Vac are similar to published results [6], but speedup for
KMeans is significantly lower. Note that we are using ported
versions of these applications (to Java/DSTM2), and using a
different hardware platform than used in the published results.
To allow direct comparison on our hardware platform, Fig.
1b illustrates the speedup of the original (i.e. C/TL2) Gen,
Vac, and KMeans applications, and also shows that KMeans
speedup is significantly lower than published results.

Fig. 2a shows InTX results. Readers are reminded transac-

1 thread
2 thread
4 thread
8 thread

 0.00

 0.50

 1.00

 1.50

 2.00

 2.50

 3.00

 3.50

 4.00

G
en

K
M

ea
ns

H

K
M

ea
ns

L

Le
e−

T
M

−
t

Le
e−

T
M

−
te

r

V
ac

H

V
ac

L

S
pe

ed
up

(a) Speedup of the applications with DSTM2.

1 thread
2 thread
4 thread
8 thread

 0.00

 0.50

 1.00

 1.50

 2.00

 2.50

 3.00

 3.50

 4.00

G
en

K
m

ea
ns

H

K
m

ea
ns

L

V
ac

H

V
ac

L

S
pe

ed
up

(b) Speedup of unmodified C code with TL2.

Fig. 1. Speedup of ported code in DSTM2, and original code in TL2.

1 thread
2 thread
4 thread
8 thread

 0

 20

 40

 60

 80

 100

G
en

K
M

ea
ns

H

K
M

ea
ns

L

Le
e−

T
M

−
t

Le
e−

T
M

−
te

r

V
ac

H

V
ac

L

P
er

ce
nt

ag
e

of
 T

ot
al

 T
im

e

(a) Execution time spent in transactions (InTX).

1 thread
2 thread
4 thread
8 thread

 0

 20

 40

 60

 80

 100

G
en

K
M

ea
ns

H

K
M

ea
ns

L

Le
e−

T
M

−
t

Le
e−

T
M

−
te

r

V
ac

H

V
ac

L

P
er

ce
nt

ag
e

of
 T

ot
al

 T
im

e

(b) Wasted work (time in aborted transactions).

1 thread
2 thread
4 thread
8 thread

 0.00

 0.50

 1.00

 1.50

 2.00

 2.50

 3.00

 3.50

 4.00

 4.50

G
en

K
M

ea
ns

H

K
M

ea
ns

L

Le
e−

T
M

−
t

Le
e−

T
M

−
te

r

V
ac

H

V
ac

L

A
bo

rt
s

pe
r

co
m

m
it

(c) Mean Aborts per Commit (ApC).

1 thread
2 thread
4 thread
8 thread

 0.00

 20.00

 40.00

 60.00

 80.00

 100.00

G
en

K
M

ea
ns

H

K
M

ea
ns

L

Le
e−

T
M

−
t

Le
e−

T
M

−
te

r

V
ac

H

V
ac

L

P
er

ce
nt

ag
e

of
 T

ot
al

 T
im

e

(d) Proportion of time spent in contention management (CMT).

Fig. 2. InTX, wasted work, ApC, and CMT results.

tional execution in these applications is parallel execution, and
non-transactional execution is serial execution. Gen, Lee-TM-
ter, and Vac have an InTX of over 95%, and Lee-TM-t has an
InTx of 85% at 8 threads. KMeans spends much less time in
transactions as its serial phase occupies 55% to 75% of total
execution time. Gen, KMeans, and Lee-TM-t show decreasing
amounts of InTX as the number of threads increase.

KMeans’ alternating serial phase accounts for its serial
execution time, which limits its speedup. The increasing
proportion of serial execution as the number of threads rises,
seen in some applications, is due to the parallel execution time

falling, and thus representing a smaller proportion of the total
execution time.

Fig. 2b shows wasted work results. Gen and Vac have
little wasted work (less than 10%). KMeans and Lee-TM-
t have large amounts of wasted work, e.g. on 8 threads
the wasted work is between 35% to 70%. Applications with
large amounts of wasted work may be suitable candidates for
studying contention management.

KMeans speedup is limited by the significant sequential

phase seen in Fig. 2a, and large amounts of wasted work. Lee-
TM-t has more wasted work than Vac, but scales similarly.
Lee-TM-ter has more wasted work than Vac and Gen, but
scales higher than both. This shows that poor scalability can
have its root in wasted work (KMeans), but significant wasted
work may not prevent scalability (Lee-TM).

Fig. 2c shows ApC results. KMeans has the highest ApC,
followed by Lee-TM, Gen, and finally Vac. KMeansH has an
ApC four times higher than Lee-TM-t, but 30% less wasted
work. This suggests Lee-TM-t aborts large/long transactions
as it has fewer aborts, yet large amounts of time spent in the
aborted transactions. Gen and Vac exhibit a similar trend to
KMeans and Lee-TM, respectively.

Fig. 2d shows CMT results. CMT is negligible for Gen,
Lee-TM, and Vac. At 8 threads KMeansH has 20% CMT,
KMeansL has 10% CMT, but Lee-TM-t has almost none.
This is surprising since Lee-TM-t has half as much ApC as
KMeansL, and thus should have half as much CMT. From Fig.
4, Lee-TM-t’s mean transaction execution time is far greater
than KMeans’. Since the priority contention manager executes
deterministically, i.e. always in a very similar amount of time,
the CMT represents a smaller proportion of the transaction
time in Lee-TM-t.

Fig. 3 presents abort histograms. Single thread execution
results (i.e., no possible aborts) show that Gen and Vac execute
approximately 1 million transactions, KMeans approximately
250,000 transactions, and Lee-TM more than 1500 transac-
tions. In all cases the abort distribution rises with the number
of threads, although the least impact of this is seen in Vac.
Gen shows a unique trend amongst the TM applications; a few
transactions take 100+ or 1000+ aborts, even with 2 threads
(i.e. when the probability of conflict is naturally low), before
committing. This leads to Gen’s abort histograms forming a u-
shape when using 2 or 4 threads, which is levelled at 8 threads.
KMeans shows a more even spread of aborts in the range 1-49
compared to the other applications. Lee-TM-ter significantly
reduces the number of aborts compared to Lee-TM-t. VacH
and VacL show little difference in abort distributions.

The large number of transactions executed suggests there is
ample parallelism available, and the poor scalability observed
in some experiments is not due to a lack of parallel work.
The abort distribution rising with the number of threads is
a characteristic of the applications: conflicts are increasing
as more transactions are executed in parallel. We speculate
Gen’s u-shape is due to conflict in inserting elements into
hash maps because Gen’s result in Fig. 5 has a short phase
where aborts become significant, which we believe is related
to the u-shape, and that phase occurs during the insertion of
gene segments in to hash maps in preparation for iterative
substring matching. Although the same scenario occurs at
8 threads, the u-shape is masked by a natural rise in other

conflicts. KMeans’ even spread of aborts in the range 1-49
suggests that the large amounts of wasted work is not due to
a few transactions aborting a large number of times, but rather
a large number of transactions aborting a similar number of
times. Lee-TM-ter reduces the number of aborts compared to
Lee-TM-t, showing that early release is effective in reducing
false conflicts. VacH and VacL’s similar abort distributions
suggesting that the low and high contention configurations (i.e.
the recommended parameters) are not different enough to have
an impact up to 8 threads.

Fig. 4 illustrates the transaction execution time histogram
metric for each of the target applications. KMeans transactions
are predominantly of short duration with 97% completing
within 0.1ms. The number of KMeans transactions completing
within a given interval decreases exponentially. Gen and
Vac transactions have similar profiles with the majority of
transactions completing within 1ms. Lee-TM transactions are
of longer duration with a minimum execution time of 5ms.
The number of Lee-TM transactions completing within a given
interval decreases logarithmically.

We classify KMeans as having the least variance in execu-
tion time and Lee-TM as having the most variance in execution
time. The profile of each application appears independent of
the number of processors, and independent of low contention
and high contention configuration parameters. The source of
variance in transaction execution times can be deduced from
the applications’ descriptions in Section II-A. KMeans’ lack
of variance is due to all transactions executing the same
code block with different input data. Gen and Vac have more
variance since they execute a selection of code blocks as
transactions, The logarithmic distribution of execution times
for Lee-TM corresponds to the distribution of circuit lengths
within the input file. Thus, we can conclude that the execution
time metric represents a characteristic of the applicationrather
than the execution environment.

Fig. 5 illustrates the ICR for each of the target applications.
The graph for Gen shows a pronounced dip in the commit rate
representing a point in the execution of the application when a
large proportion of the wasted work occurs. The commit rate of
Gen is insensitive to the number of threads. KMeans exhibitsa
constant commit rate, i.e. a fixed proportion of work is wasted
throughout the execution of the application. The commit rate
of KMeans is lower when more threads are used, and up to
60% of work is wasted when 8 threads are used. Lee-TM
exhibits a continual reduction in the commit rate over time,
and the commit rate is lower when more threads are used.
Vac exhibits a high commit rate that continues to rise during
the execution of the application. The commit rate of Vac is
insensitive to the number of threads.

The graph for Lee-TM is less smooth than the others
as the sample rate is low relative to the execution time of
each transaction. The commit rate of Lee-TM decreases as

0
1
2
3
4−9
10−19
20−49
50−99
100−999
1000+ 0

 1
 10

 100
 1000

 10000
 100000

 1000000
 10000000

1 2 4 8N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g)

Number of threads
(a) Gen

0
1
2
3
4−9
10−19
20−49
50−99
100−999
1000+ 0

 1

 10

 100

 1000

 10000

 100000

 1000000

1 2 4 8N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g)

Number of threads
(b) KMeansH

0
1
2
3
4−9
10−19
20−49
50−99
100−999
1000+ 0

 1

 10

 100

 1000

 10000

 100000

 1000000

1 2 4 8N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g

)

Number of threads
(c) KMeansL

0
1
2
3
4−9
10−19
20−49
50−99
100−999
1000+ 0

 1

 10

 100

 1000

 10000

1 2 4 8N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g)

Number of threads
(d) Lee-TM-t

0
1
2
3
4−9
10−19
20−49
50−99
100−999
1000+ 0

 1

 10

 100

 1000

 10000

1 2 4 8N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g)

Number of threads
(e) Lee-TM-ter

0
1
2
3
4−9
10−19
20−49
50−99
100−999
1000+ 0

 1
 10

 100
 1000

 10000
 100000

 1000000
 10000000

1 2 4 8N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g)

Number of threads
(f) VacH

0
1
2
3
4−9
10−19
20−49
50−99
100−999
1000+ 0

 1
 10

 100
 1000

 10000
 100000

 1000000
 10000000

1 2 4 8N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g)

Number of threads
(g) VacL

Fig. 3. Abort histograms for each non-trivial TM application. Each bar represents the number of transactions that aborted a given number of times before
actually committing. Note y-axis is log scale.

0.0−0.01
0.01−0.1
0.1−1.0
1.0−5.0
5.0−10.0
10.0−20.0
20.0−50.0
50.0−100.0
100.0−1000.0
1000.0−10000.0
10000.0+

 0

 1

 10

 100

 1000

 10000

 100000

 1000000

1 2 4 8N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g)

Number of threads

(a) Gen

0.0−0.01
0.01−0.1
0.1−1.0
1.0−5.0
5.0−10.0
10.0−20.0
20.0−50.0
50.0−100.0
100.0−1000.0
1000.0−10000.0
10000.0+

 0

 1

 10

 100

 1000

 10000

 100000

 1000000

1 2 4 8N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g)

Number of threads

(b) KMeansH

0.0−0.01
0.01−0.1
0.1−1.0
1.0−5.0
5.0−10.0
10.0−20.0
20.0−50.0
50.0−100.0
100.0−1000.0
1000.0−10000.0
10000.0+

 0

 1

 10

 100

 1000

 10000

 100000

 1000000

1 2 4 8N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g)

Number of threads

(c) KMeansL

0.0−0.01
0.01−0.1
0.1−1.0
1.0−5.0
5.0−10.0
10.0−20.0
20.0−50.0
50.0−100.0
100.0−1000.0
1000.0−10000.0
10000.0+

 0

 1

 10

 100

 1000

1 2 4 8N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g)

Number of threads

(d) Lee-TM-t

0.0−0.01
0.01−0.1
0.1−1.0
1.0−5.0
5.0−10.0
10.0−20.0
20.0−50.0
50.0−100.0
100.0−1000.0
1000.0−10000.0
10000.0+

 0

 1

 10

 100

 1000

1 2 4 8N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g)

Number of threads

(e) Lee-TM-ter

0.0−0.01
0.01−0.1
0.1−1.0
1.0−5.0
5.0−10.0
10.0−20.0
20.0−50.0
50.0−100.0
100.0−1000.0
1000.0−10000.0
10000.0+

 0

 1

 10

 100

 1000

 10000

 100000

 1000000

1 2 4 8N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g)

Number of threads

(f) VacH

0.0−0.01
0.01−0.1
0.1−1.0
1.0−5.0
5.0−10.0
10.0−20.0
20.0−50.0
50.0−100.0
100.0−1000.0
1000.0−10000.0
10000.0+

 0

 1

 10

 100

 1000

 10000

 100000

 1000000

1 2 4 8N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g)

Number of threads

(g) VacL

Fig. 4. Transaction execution time histograms for each non-trivial TM application. The color of each bar represents a range of elapsed execution times in
milliseconds. The vertical axis represents the number of transactions completing within the time range.

 0

 20

 40

 60

 80

 100

C
om

m
it

R
at

e
(%

)

Time

2 thread
4 thread
8 thread

(a) Gen

 0

 20

 40

 60

 80

 100

C
om

m
it

R
at

e
(%

)

Time

2 thread
4 thread
8 thread

(b) KMeansH

 0

 20

 40

 60

 80

 100

C
om

m
it

R
at

e
(%

)

Time

2 thread
4 thread
8 thread

(c) KMeansL

 0

 20

 40

 60

 80

 100

C
om

m
it

R
at

e
(%

)

Time

2 thread
4 thread
8 thread

(d) Lee-TM-t

 0

 20

 40

 60

 80

 100

C
om

m
it

R
at

e
(%

)

Time

2 thread
4 thread
8 thread

(e) Lee-TM-ter

 0

 20

 40

 60

 80

 100

C
om

m
it

R
at

e
(%

)

Time

2 thread
4 thread
8 thread

(f) VacH

 0

 20

 40

 60

 80

 100
C

om
m

it
R

at
e

(%
)

Time

2 thread
4 thread
8 thread

(g) VacL

Fig. 5. Instantaneous commit rate (ICR) graphs. In our experiments we sampled at 5 second intervals. The commit rate for 2,4 and 8 threads are plotted.
When one thread is used the commit rate is always 100% as thereare no conflicts and thus no aborted transactions.

execution progresses since the circuit becomes more crowded,
leaving less space for routing new connections, and thus the
number of conflicts increases. Both Vac and Gen have a high
commit rate which is insensitive to the number of concurrent
threads.

We observe that there is great variation in the ICR metric
for each target application. The profile of some applications
changes in time and altering the number of threads impacts
each application differently. The ICR metric is an important
characteristic of the application and its sensitivity to the
concurrent execution environment.

Table II illustrates the mean readset and writeset size of
committing transactions for each of the target applications.
There is great variation in the readset and writeset sizes
of the target applications. The readset and writeset size is
independent of the number of threads, except in the case of the

readset size for Lee-TM-t. The readset and writeset size is an
indicator of the cost of validating concurrent transactions as
the sets must be compared. The execution costs associated with
validation are a characteristic of the execution environment.

We can see in Fig. 1a that Gen exhibits a larger speedup
with additional threads than Vac, despite Fig. 2b showing that
the amount of wasted work in both Gen and Vac is low and
independent of the number of threads, and Fig. 4 showing that
their transaction execution times are similar. The execution
cost associated with the validation of transactions in Vac is
greater than that of validating a transaction in Gen as the
readset and writesets are larger. The differing scalability of
Gen and Vac can be accounted for by their differing readset
and writeset sizes. The effect of early release on Lee-TM is
to make the readset size of Lee-TM-ter independent of the
number of threads. The smaller readset and writeset size of
Lee-TM-ter has a significant effect on its scalability when

Application Readset Writeset
1 thread 2 threads 4 threads 8 threads 1 thread 2 threads 4 threads 8 threads

Gen 8 8 8 8 7 7 7 7
KMeansH 152 152 152 152 152 152 152 152
KMeansL 157 156 156 156 157 156 156 156
Lee-TM-t 243231 196590 162015 130081 423 421 422 421
Lee-TM-ter 427 425 426 427 423 421 422 423
VacH 168 166 165 165 30 30 30 30
VacL 77 75 74 72 20 20 21 20

TABLE II
MEAN READSET AND WRITESET SIZE OF COMMITTED TRANSACTIONS, IN BYTES.

1 thread
2 thread
4 thread
8 thread

 0

 1

 10

 100

 1000

G
en

K
M

ea
ns

H

K
M

ea
ns

L

Le
e−

T
M

−
t

Le
e−

T
M

−
te

r

V
ac

H

V
ac

L

R
at

io
 R

ea
ds

et
/W

rit
es

et
 (

lo
g

sc
al

e)

Fig. 6. Ratio of readset to writeset (RStoWS).

compared to Lee-TM-t.

Finally, Fig. 6 presents RStoWS ratios. Gen and KMeans
have a 1-to-1 ratio. Lee-TM-t has a very high ratio, but Lee-
TM-ter has a 1-to-1 ratio. Lee-TM-ter’s lower ratio compared
to Lee-TM-t highlights the benefit of early-release, and shows
the expansion phase was increasing the ratio by a ratio of
hundreds. VacH has a slightly higher ratio than VacL as
expected from the configuration parameters.

V. RELATED WORK

Chung et al. [19] presented the most comprehensive
study looking at 35 different TM benchmarks ranging from
mainly scientific computing (JavaGrande, SPLASH-2, NAS,
and SPEComp), to commercial workloads (DaCAPO, and
SPECjbb). These TM benchmarks were generated following
a direct translation from the original parallel benchmarks.
The performance evaluation provided a wealth of data with
respect to size of transactions, readset and writeset sizes,
nested transaction depth, and so on. However, they have not
evaluated the non-trivial TM applications studied in this paper,
nor have they generated the execution characteristics reported
here.

Perfumoet al. [18] perform execution characterizations of
Haskell TM benchmarks, but does not present the same range
of metrics shown in this work, nor study any of the non-trivial
TM applications considered in this paper.

The non-trivial TM applications used in this work have been
investigated in their respective publications. Gen, KMeansH,
KMeansL, VacH and VacL [6] were used to show the scalabil-
ity of a new hybrid (hardware/software) TM implementation,
and the metrics presented included the mean number of
instructions, read and write barriers per transaction, andthe
percentage of time spent executing transactions. Our work has
analyzed further characteristics of these TM applications.

Lee’s routing algorithm [7] was described as a suitable
non-trivial TM application, and its study of aborts led to
the use of early release. Early release showed dramatically
improved scalability. However the evaluation was performed
in an abstracted TM environment. This paper has presented a
range of execution characteristics for Lee-TM-t and Lee-TM-
ter, as well as performance figures from executing on DSTM2.

Scottet al. [9] developed another non-trivial TM application
based on Delaunay triangulation. We were not able to build a
fair port of the application for DSTM2 as their implementation
uses features specific to the Solaris operating system.

Finally, Guerraouiet al. [8] developed another non-trivial
TM application called STMBench7. Dragojevicet al. [24]
performed an investigation and found DSTM2 (and other
STM implementations) unable to execute STMBench7: due
to significant memory overheads in the case of DSTM2.

VI. CONCLUSIONS

This paper has investigated profiling, and its relation to the
performance, of several popular non-trivial TM applications:
STAMP applications Genome, KMeans, and Vacation, and
Lee-TM. To achieve this, we have developed a new TM
profiling framework and ported the applications to a common
STM system. Two new metrics that have not been presented in
the TM literature were introduced: transaction execution time
histograms and instantaneous commit rate (ICR). A summary
of the most relevant findings follows.

• Poor scalability can have its root in wasted work (as
shown by KMeans), but significant wasted work may not
prevent scalability (as shown by Lee-TM).

• Readset and writeset size can be a good indicator of
application scalability in the absence of wasted work.

• Transaction execution time histogram analysis led to
the discovery that KMeans has the most homogeneous
transaction execution times, Genome and Vacation have

medium variance in transaction execution times, and Lee-
TM has the most heterogeneous transaction execution
times.

• KMeans executes hundreds of thousands of transactions,
but its scalability is limited due to a large amount of time
spent executing serial code, and a large amount of wasted
work.

• Lee-TM shows the potential all-round benefits of early
release, by increasing scalability, and reducing wasted
work, contention time, ApC, and readset size.

• Lee-TM has the highest probability of overflowing HTM
resources, and accordingly stress HyTM systems due to
its large readset and writeset.

• Vacation has little wasted work, low ApC, negligible
CMT, and a high ICR, but its scalability up to 8 threads
is at best around 1.5, and data on readset and writeset
sizes revealed this may be due to the application’s cost
of transaction validation.

• Instantaneous commit rate (ICR) graphs revealed that
Genome has a phase of execution where available paral-
lelism drops dramatically, Lee-TM has a decaying ICR,
and KMeans distributes its wasted work evenly over its
total execution.

• ICR graphs also showed that Genome and Vacation’s
commit rates are independent of the number of threads
up to 8 threads, whereas KMeans and Lee-TM’s commit
rate drops as the number of threads increases.

• From a contention management point of view the ICR
graphs revealed KMeans and Lee-TM exhibit the most
complex behavior.

REFERENCES

[1] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Archi-
tectural support for lock-free data structures. InISCA ’93: Proceedings
of the 20th Annual International Symposium on Computer Architecture,
pages 289–300, May 1993.

[2] Nir Shavit and Dan Touitou. Software transactional memory. In PODC
’95: Proceedings of the 14th Annual ACM Symposium on Principles of
Distributed Computing, pages 204–213. ACM Press, August 1995.

[3] Richard McDougall. Extreme software scaling.ACM Queue, 3(7):36–
46, 2005.

[4] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer
III. Software transactional memory for dynamic-sized datastructures. In
PODC ’03: Proceedings of the 22nd Annual Symposium on Principles
of Distributed Computing, pages 92–101. ACM Press, July 2003.

[5] James R. Larus and Ravi Rajwar.Transactional Memory. Morgan and
Claypool, 2006.

[6] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen McDonald,
Nathan Bronson, Jared Casper, Christos Kozyrakis, and Kunle Olukotun.
An effective hybrid transactional memory system with strong isolation
guarantees. InISCA ’07: Proceedings of the 34th Annual International
Symposium on Computer Architecture, pages 69–80. ACM Press, June
2007.

[7] Ian Watson, Chris Kirkham, and Mikel Luján. A study of a transactional
parallel routing algorithm. InPACT ’07: Proceedings of the 16th
International Conference on Parallel Architectures and Compilation
Techniques, pages 388–400. IEEE Computer Society Press, September
2007.

[8] Rachid Guerraoui, Michał Kapałka, and Jan Vitek. STMBench7:
A benchmark for software transactional memory. InEuroSys ’07:
Proceedings of the 2nd European Systems Conference, pages 315–324.
ACM Press, March 2007.

[9] Michael L. Scott, Michael F. Spear, Luke Dalessandro, and Virendra J.
Marathe. Delaunay triangulation with transactions and barriers. In
IISWC ’07: Proceedings of the 2007 IEEE International Symposium
on Workload Characterization, pages 107–113. IEEE Computer Society
Press, September 2007.

[10] Mohammad Ansari, Christos Kotselidis, Kim Jarvis, Mikel Luján, Chris
Kirkham, and Ian Watson. Lee-TM: A non-trivial benchmark for trans-
actional memory. InICA3PP ’08: Proceedings of the 7th International
Conference on Algorithms and Architectures for Parallel Processing.
LNCS, Springer, June 2008.

[11] Christos Kotselidis, Mohammad Ansari, Kim Jarvis, Mikel Luján, Chris
Kirkham, and Ian Watson. Investigating software transactional memory
on clusters. InIWJPDC ’08: 10th International Workshop on Java
and Components for Parallelism, Distribution and Concurrency. IEEE
Computer Society Press, April 2008.

[12] Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic perfor-
mance tuning of word-based software transactional memory.In PPoPP
’08: Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 237–246. ACM Press,
February 2008.

[13] Maurice Herlihy and Eric Koskinen. Transactional boosting: a method-
ology for highly-concurrent transactional objects. InPPoPP ’08:
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 207–216. ACM Press, February
2008.

[14] Christoph von Praun, Rajesh Bordawekar, and Calin Cascaval. Modeling
optimistic concurrency using quantitative dependence analysis. In
PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 185–196. ACM
Press, February 2008.

[15] Torvald Riegel and Diogo Becker de Brum. Making object-based STM
practical in unmanaged environments. InTRANSACT ’08: Third ACM
SIGPLAN Workshop on Transactional Computing, February 2008.

[16] Maurice Herlihy and Eric Koskinen. Checkpoints and continuations
instead of nested transactions. InTRANSACT ’08: Third ACM SIGPLAN
Workshop on Transactional Computing, February 2008.

[17] Maurice Herlihy, Victor Luchangco, and Mark Moir. A flexible frame-
work for implementing software transactional memory. InOOPSLA
’06: Proceedings of the 21st Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 253–262.
ACM Press, October 2006.

[18] Cristian Perfumo, Nehir Sonmez, Adrian Cristal, OsmanUnsal, Mateo
Valero, and Tim Harris. Dissecting transactional executions in Haskell.
In TRANSACT ’07: Second ACM SIGPLAN Workshop on Transactional
Computing, August 2007.

[19] JaeWoong Chung, Hassan Chafi, Chi Cao Minh, Austen McDonald,
Brian D. Carlstrom, Christos Kozyrakis, and Kunle Olukotun. The
common case transactional behavior of multithreaded programs. In
HPCA ’06: Proceedings of the 12th International Symposium on High
Performance Computer Architecture, pages 266–277, February 2006.

[20] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In DISC
’06: Proceedings of the 20th International Symposium on Distributed
Computing. LNCS, Springer, September 2006.

[21] William Scherer III and Michael L. Scott. Contention management in
dynamic software transactional memory. InCSJP ’04: Workshop on
Concurrency and Synchronization in Java Programs, July 2004.

[22] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. Toward a
theory of transactional contention managers. InPODC ’05: Proceedings
of the 24th Annual Symposium on Principles of Distributed Computing,
pages 258–264. ACM Press, July 2005.

[23] William Scherer III and Michael L. Scott. Advanced contention
management for dynamic software transactional memory. InPODC ’05:
Proceedings of the 24th Annual Symposium on Principles of Distributed
Computing, pages 240–248. ACM Press, July 2005.

[24] Aleksandar Dragojevic, Rachid Guerraoui, and Michal Kapalka. Divid-
ing transactional memories by zero. InTRANSACT ’08: Third ACM
SIGPLAN Workshop on Transactional Computing, February 2008.

