
Robust Adaptation to Available Parallelism in

Transactional Memory Applications

Mohammad Ansari, Mikel Luján, Christos Kotselidis, Kim Jarvis,
Chris Kirkham, and Ian Watson

The University of Manchester
{ansari,kotselidis,jarvis,mikel,chris,watson}@cs.manchester.ac.uk

Abstract. Applications using transactional memory may exhibit fluc-
tuating (dynamic) available parallelism, i.e. the maximum number of
transactions that can be committed concurrently may change over time.
Executing large numbers of transactions concurrently in phases with low
available parallelism will waste processor resources in aborted transac-
tions, while executing few transactions concurrently in phases with high
available parallelism will degrade execution time by not fully exploit-
ing the available parallelism. Three questions come to mind: (1) Are
there such transactional applications? (2) How can such behaviour be
exploited? and (3) How can available parallelism be measured or calcu-
lated efficiently? The contributions of this paper constitute the answers
to these questions.

This paper presents a system, called transactional concurrency tuning,
that adapts the number of transactions executing concurrently in re-
sponse to dynamic available parallelism, in order to improve processor
resource usage and execution time performance. Four algorithms, called
controller models, that vary in response strength were presented in pre-
vious work and shown to maintain execution time similar to the best
case non-tuned execution time, but improve resource usage significantly
in benchmarks that exhibit dynamic available parallelism.

This paper presents an analysis of the four controller models’ response
characteristics to changes in dynamic available parallelism, and identi-
fies weaknesses that reduce their general applicability. These limitations
lead to the design of a fifth controller model, called P-only transactional
concurrency tuning (PoCC). Evaluation of PoCC shows it improves upon
performance and response characteristics of the first four controller mod-
els, making it a robust controller model suitable for general use.

1 Introduction

The future of processor architectures has been confirmed as multi-core [1–3],
and mainstream processor manufacturers have all changed their product line-
up. Multi-core processors set a new precedent for software developers: software
will need to be multi-threaded to take advantage of future processor technology
[4]. Furthermore, given that the number of cores is only likely to increase, the

2

parallelism in the software should be abundant to ensure it continues to improve
performance on successive generations of multi-core processors.

Transactional Memory (TM) [5–7] is a programming abstraction that promises
to simplify parallel programming by offering implicit synchronisation. Program-
mers using TM label as transactions those portions of code that access shared
data, and the underlying TM ensures safe access. The TM implementation mon-
itors the execution of transactions, and for any two transactions that have access
conflicts the TM implementation will abort one, and let the other continue exe-
cuting. A transaction commits if it does not have access conflicts, thus making
its updates to shared data available to the rest of the application.

P
er

ce
nt

ag
e

of
 C

om
m

its

Time

P
er

ce
nt

ag
e

of
 C

om
m

its

Time

Constant Exponential

P
er

ce
nt

ag
e

of
 C

om
m

its

Time

P
er

ce
nt

ag
e

of
 C

om
m

its

Time

Decay Periodic

Fig. 1. Example patterns of available parallelism, expressed as a percentage of concur-
rently attempted transactions that commit.

Figure 1 shows examples of fluctuating available parallelism patterns that
transactional applications may exhibit during execution. We define available
parallelism as the maximum number of transactions that can be committed con-

currently, i.e. none aborting. Executing applications that have dynamic available
parallelism with a fixed number of concurrent transactions can hurt performance
and be resource inefficient. Executing large numbers of transactions concurrently
in phases with low available parallelism a) wastes resources in the execution of
aborted transactions, b) hurts performance by increasing the number of access
conflicts that have to be resolved, and c) hurts performance and wastes resources
when aborted transactions need to be rolled back. Similarly, executing too few

3

transactions concurrently in phases with high available parallelism hurts execu-
tion time performance.

This paper studies a technique to take advantage of dynamic available par-
allelism. Transactional concurrency tuning dynamically adjusts the number of
transactions executing concurrently with respect to the available parallelism, in
order to improve execution time performance and resource usage efficiency. We
identify Transaction Commit Rate (TCR), which is the percentage of committed
transactions out of all executed transactions in a sample period, as a suitable
lightweight, application-independent measure of available parallelism.

Four controller models that vary in their response strength to changes in
available parallelism are implemented, and evaluated. Following an investigation
of their response characteristics, a fifth controller model was implemented that
combines the strengths of the four models and improves their response charac-
teristics. Evaluations are performed using a synthetic benchmark, Lee-TM [8,
9], and STAMP [10] applications Genome, KMeans, and Vacation, which have
become popular [11–16] non-trivial benchmarks in TM research. Evaluation is
carried out using DSTM2 [17], a software TM (STM) implementation.

The paper is organised as follows: Section 2 introduces transactional con-
currency tuning and the controller models. Section 3 evaluates the controller
models. Section 4 discusses the applicability and effectiveness of transactional
concurrency tuning. Section 5 concludes the paper.

2 Transactional Concurrency Tuning

Transactional concurrency tuning has its origins in control theory, which is
widely used in industrial processes to maintain system parameters at user-defined
optima. Defining transactional concurrency tuning for TM using control theory
terminology, the control objective is to maintain the process variable TCR at
a setPoint desirable value, in spite of unmeasured disturbance from fluctuating
available parallelism. TCR and setPoint are percentage values in the range 0–
100%. The setPoint determines how conservative a controller model is towards
resource usage efficiency. A high setPoint, e.g. 90%, causes a controller model to
be quick to reduce threads when TCR decreases, but slow to adapt to a sudden
large increase in TCR, and vice versa. Transactional concurrency tuning also
has a parameter called samplePeriod over which the TCR is sampled in order
to make a transactional concurrency tuning decision. The controller models set
this parameter in different ways.

The controller model output is to modify the number of threads executing
transactions in response to changes in TCR. In order to do this, a thread pool
framework is implemented to execute transactions, and the controller model out-
put changes the number of threads active in the thread pool. Each worker thread
has its own work queue, as the traditional single work queue architecture can
quickly become a bottleneck. The worker threads also implement work steal-
ing [18] to reduce load imbalance. Application threads submit jobs to the thread
pool, and submission can be either synchronous, i.e. the application thread waits

4

until the transaction commits, or asynchronous, i.e. the application thread sub-
mits the job, but does not wait for the transaction to commit. Using only syn-
chronous submission emulates the existing TM programming model, but asyn-
chronous submission may improve exploitation of high available parallelism; if
the number of worker threads is increased such that it is greater than the number
of application threads, synchronous submission will not deliver enough jobs for
all worker threads. Figure 2 illustrates how the transaction concurrency tuning
system permits modular controller models, i.e. the policy for determining the
controller model output.

1. if currentTime − lastSampleTime < samplePeriod, goto Step 1;
2. TCR ← numCommits / numTransactions × 100;
3. ∆threads ← controller model output

4. newThreads ← numCurrentThreads + ∆threads;
5. Adjust newThreads such that minThreads ≤ newThreads ≤ maxThreads;
6. numCurrentThreads ← newThreads;
7. Set lastSampleTime ← currentTime, go to Step 1;

Fig. 2. Transactional concurrency tuning pseudocode, with modular controller model.

2.1 Four Controller Models

This section introduces four controller models from the authors’ previous work
[19] that vary in their response strength to the difference in the measured value of
the process variable and the setPoint. Preliminary experimental analysis found
the controller models described below to have unstable controller model output
using a single value for the setPoint (e.g. 70%) so a setPointRange (e.g. 50–80%)
is selected.

SimpleAdjust is the simplest controller model, and increments the number of
worker threads by one if the sampled TCR is above the upper setPointRange

value, or vice versa. When the TCR is within setPointRange, no change is made.

ExponentialInterval extends SimpleAdjust aiming to improve response time to
TCR changes. If a change to the number of worker threads is made then sam-

plePeriod is halved, i.e. the next change, if necessary, will be made sooner. Con-
versely, samplePeriod is doubled if the number of worker threads is left un-
changed. As before, the number of worker threads is only increased or decreased
by one. A samplePeriodRange that restricts the samplePeriod must be defined.

ExponentialAdjust also extends SimpleAdjust aiming to improve response time
to TCR changes. It calculates the adjustment to the number of worker threads
based on the difference in sampled TCR and the setPointRange. The further the

5

sampled TCR from the setPointRange, the greater the adjustment. The formula
initially chooses to add or subtract one worker thread, and then doubles this
value for every 10% the TCR is outside the setPointRange. For example, using
a setPointRange of 50–60% and a sampled TCR of 82%, ExponentialAdjust
calculates a TCR difference of 22%, and thus doubles the number of threads
twice (1 → 2 → 4) to add four worker threads.

ExponentialCombined is a combination of ExponentialInterval and Exponential-
Adjust. ExponentialCombined has the sample interval adjustment of Exponen-
tialInterval, and the variable worker thread adjustment of ExponentialAdjust,
resulting in the most responsive controller model.

2.2 P-only Controller Model

This section begins by describing the fifth controller model, called P-only trans-
actional concurrency tuning (PoCC), then goes on to discuss the features in-
troduced to make it more general purpose than the four controller models de-
scribed previously. Specifically, PoCC adds two enhancements: a proportional
gain formula, and minimum transaction count filter. PoCC is based on a P-only
controller model [20] and is presented as pseudocode in Figure 3.

1. If numTransactions < minTransactions, goto Step 1;
2. ∆TCR ← TCR − setPoint ;
3. If (numCurrentThreads= 1) & (TCR > setPoint);

(a) then ∆threads ← 1;
(b) else ∆threads ← ∆TCR × numCurrentThreads / 100

(rounded to the closest integer);

Fig. 3. PoCC controller model pseudocode.

In step 1, a new parameter minTransactions is added that acts as a filter
against noisy TCR profiles such as in Figure 12. Such noisy samples may occur
due to the average transaction’s duration being longer than the samplePeriod.
The four previous controller models, lacking PoCC’s filter, absorbed noise by us-
ing a large samplePeriod, which was a trade-off of responsiveness for robustness.
PoCC’s filter allows it to be highly responsive, by using a short samplePeriod,
but still be robust to noisy samples. Thus, in PoCC, samplePeriod is determined
based on the overhead of executing the control system loop, and does not have
to filter noisy samples.

The first four controller models used an absolute gain formula to calculate
∆threads, which led to a change in numCurrentThreads even if small ∆TCR

values occurred. Such a response was disproportionate at low worker thread
counts, e.g. an increase from 1 thread to 2 threads for a TCR only 1% higher than
the setPoint. This unstable behaviour was controlled by using a setPointRange.

6

However, over large worker thread counts, a setPointRange range results in poor
responsiveness as it produces coarse-grain control. In step 3(b) PoCC uses a
proportional gain formula (i.e., proportional to the number of current worker
threads) that allows, in response to small ∆TCR, ∆threads to be zero at low
worker thread counts, and fine-grain control at large worker thread counts. Thus,
PoCC improves responsiveness, because its proportional gain formula allows it to
use a setPoint rather than a setPointRange, and still result in stable behaviour
at low worker thread counts.

3 Evaluation of the Controller Models

The evaluation is split into several sections: execution time, resource usage, trans-
action execution metrics, and finally an investigation of controller model response
characteristics. The controller models are abbreviated to SA, EI, EA, EC, and
PoCC, respectively.

Hereafter, static execution refers to execution with a fixed number of threads,
and dynamic execution refers to execution under any controller model. All exper-
iments use the thread pool to execute transactions. All benchmarks are executed
using 1, 2, 4, and 8 initial threads. We use the term initial threads as dynamic
execution may change the number of threads (between 1 and 8) at runtime. Ex-
periments are executed five times, and the mean results reported. This paper
restricts the number of worker threads in the thread pool to a maximum of 8,
which is equal to the number of cores in the hardware platform used in the eval-
uations, and a minimum of 1. Unless specified, references to changing numbers
of threads imply thread pool worker threads, and not application threads.

3.1 Controller Model Parameters

Through preliminary experimentation with LeeH (explained later in Section 3.3)
the parameters of the first four controller models were set to: samplePeriod of
10 seconds, setPointRange of 50–80%, and samplePeriodRange of 4–60 seconds.
PoCC’s parameters are: setPoint of 70%, minTransactions of 100. Experimental
evaluation found execution of the complete control loop took on average 2ms
with PoCC, thus samplePeriod is set to 1 second for PoCC to make its overhead
negligible.

3.2 Hardware & Software Platform

The platform used for the evaluation is a 4x dual core (8 core) AMD Opteron
2.4GHz system with 16GB RAM, openSUSE 10.1, and Java 1.6 64-bit using the
parameters -Xms1024m -Xmx14000m.

DSTM2 is used with its default configuration of eager validation, visible
readers, and shadow atomic factory. DSTM2 has been modified to maintain
a thread pool as described earlier. DSTM2 supports a number of contention
managers (CMs). In DSTM2, a CM is invoked by a transaction when it finds

7

itself in conflict with another transaction. The CM decides which transaction
should be aborted based on its policy. The CMs used in this paper are described
briefly below, and for further details refer to [21–23].

Aggressive always aborts a conflicting enemy transaction.

Backoff gives the enemy transaction exponentially increasing amounts of time
to commit, for a fixed number of iterations, before aborting it.

Karma assigns dynamic priorities to transactions based on the number of ob-
jects they have opened for reading, and aborts enemy transactions with lower
priorities.

Eruption is similar to Karma, and assigns dynamic priorities to transactions
based on the number of transactional objects they have opened for reading.
Conflicting transactions with lower priorities add their priority to their opponent
to increase the opponent’s priority, and allow the opponent to abort its enemies,
and ‘erupt’ through to commit stage.

Greedy aborts the younger of the conflicting transactions, unless the older one
is suspended or waiting, in which case the older one is aborted.

Kindergarten makes transactions abort themselves when they meet a conflicting
transaction for the first time, but then aborting the enemy transaction if it is
encountered in a conflict a second time.

Polka combines Karma and Backoff by giving the enemy transaction exponen-
tially increasing amounts of time to commit, for a number of iterations equal to
the difference in the transactions’ priorities, before aborting the enemy transac-
tion.

Priority is a static priority-based manager, where the priority of a transaction
is its start time, that immediately aborts lower priority transactions during con-
flicts.

3.3 Benchmarks

One synthetic and seven real, non-trivial benchmark configurations are used in
this paper. The synthetic benchmark, StepChange, oscillates the TCR from 80%
to 20% in steps of 20% every 20 seconds, and executes for a fixed 300 seconds.
StepChange needs to be executed with the maximum 8 threads to allow its TCR
oscillation to have impact, as it operates by controlling the number of threads
executing committed or aborted transactions.

The non-trivial benchmarks used are Lee’s routing algorithm [8], and the
STAMP [10] benchmarks Genome, KMeans, and Vacation, from STAMP version
0.9.5, all ported to execute under DSTM2. All benchmarks, with the exception

8

Configuration Name Application Configuration

StepChange StepChange max tcr:80, min tcr:20, time:300,
step size:20, step period:20,

Genome Genome gene length:16384,
segment length:64,
num segments:4194304

KMeansL KMeans low contention clusters:40, threshold:0.00001,
input file:random10000 12

KMeansH KMeans high contention clusters:20, threshold:0.00001,
input file:random10000 12

VacL Vacation low contention relations:65536,
percent of relations queried:90,
queries per transaction:4,
number of transactions:4194304

VacH Vacation high contention relations:65536,
percent of relations queried:10,
queries per transaction:8,
number of transactions:4194304

LeeL Lee-TM low contention early release:true, file:mainboard
LeeH Lee-TM high contention early release:false, file:mainboard

Table 1. Benchmark configuration parameters used in the evaluation.

of Genome, are executed with high and low data contention configurations, as
shown in Table 1. Lee’s routing algorithm uses early release [24] for its low data
contention configuration, which releases unnecessary data from a transaction’s
read set to reduce false conflicts. This requires application-specific knowledge
to determine which data is unnecessary, and manual annotation of the code. In
some other publications, e.g. [8], LeeH is referred to as Lee-TM-t, and LeeL is
referred to as Lee-TM-ter. The input parameters for the benchmarks are those
recommended by their respective providers. The average benchmark execution
times are shown in Table 2, and dynamic available parallelism in Figure 4, both
using the Priority contention manager.

The benchmarks have been modified to use the thread pool to execute trans-
actions. Only KMeans partially uses synchronous job submission as part of each
thread’s code executes two transactions, the second of which needs a return
value from the first. The remaining benchmarks use asynchronous job submis-
sion. Lee-TM and Vacation create all jobs during benchmark initialisation, which
is excluded from the recorded execution time. Genome and KMeans create jobs
dynamically, and thus include job creation time in the recorded execution time.
Jobs are submitted in a round-robin manner to the multiple work queues.

3.4 Execution Time

Execution time results are presented in two parts. First, LeeH is investigated
using all CMs, but only with the first four controller models. The motivation

9

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

T
C

R
 (

%
)

Time

StepChange - Static

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

T
C

R
 (

%
)

Time

Genome - Static

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

T
C

R
 (

%
)

Time

KMeansH - Static

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9

T
C

R
 (

%
)

Time

KMeansL - Static

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

T
C

R
 (

%
)

Time

LeeH - Static

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

T
C

R
 (

%
)

Time

LeeL - Static

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

T
C

R
 (

%
)

Time

VacH - Static

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

T
C

R
 (

%
)

Time

VacL - Static

Fig. 4. TCR profiles of the benchmarks used, executing with 8 threads.

10

Genome KMeansH KMeansL LeeH LeeL VacH VacL

1 thread 179±1.9 23.6±6.1 22.2±3.5 418±6.4 394± 4.0 524±9.4 475±3.7
2 threads 117±4.8 23.0±7.0 20.4±6.7 250±3.5 326±20.4 362±3.5 390±9.9
4 threads 88±2.9 21.3±3.4 17.7±3.3 162±2.1 280± 8.2 294±3.1 360±3.1
8 threads 83±9.1 27.6±7.8 16.4±4.5 115±4.1 285±14.2 291±3.0 381±9.7

Table 2. Average benchmark execution times in seconds, including one standard de-
viation, using the Priority contention manager.

is to see if the effect on performance varies with the CM used. Second, the
remaining benchmarks are reported with all controller models, but only the
Priority contention manager, as it is generally one of the better performing
contentions managers. Using one of the better performing CMs will generally
show the minimum benefit of using transactional concurrency tuning.

For each benchmark, dynamic execution should: (a) reduce execution time,
over static execution with an initial number of threads that under-exploits the
available parallelism, (b) reduce execution time, over static execution with an
initial number of threads that over-exploits the available parallelism, and (c)
reduce variance in execution time over different numbers of initial threads, com-
pared to static execution time variance.

Figure 5 shows normalised execution time results for LeeH with all CMs. For
static execution Aggressive, Kindergarten, and Priority CMs provide the best
execution times, with a maximum difference of 3.2% between their respective
best cases, and are the only CMs to show improving execution times up to 8
threads. The remaining CMs’ performance degrades from 4 to 8 threads, indi-
cating that either the proportion of time spent executing aborted transactions,
or the time spent in resolving access conflicts, or both, has increased.

Intuitively, the 8 thread execution time improvements with dynamic execu-
tion for some CMs suggest that, at this number of threads, there are phases of
execution where the available parallelism is low. With fewer threads, although
such phases of low available parallelism may have occurred, they were not sig-
nificant enough to cause a noticeable difference in execution time performance
between static and dynamic execution.

Dynamic execution satisfies goal (a) above: execution time is always reduced
when compared to static execution with 1 thread. Goal (b) is satisfied: dynamic
execution improves execution time with 8 threads for five CMs. Goal (c) is also
met: dynamic execution reduces variance in execution time compared to static
execution, although execution time variance is not negligible for any controller
model.

Additionally, for each CM (excluding Backoff), dynamic execution time for
all numbers of initial threads is within 10% of the best static execution time.
For Backoff this rises to 21% with EC. This shows that dynamic execution per-
formance varies insignificantly with the CM used, including the best performing
CMs (Aggressive, Kindergarten, and Priority). The results also show there is

11

Static
SA
EI
EA
EC

 0.8
 1.0
 1.2
 1.4
 1.6
 1.8
 2.0
 2.2
 2.4

1 2 4 8

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of initial threads

Aggressive

Static
SA
EI
EA
EC

 0.8
 1.0
 1.2
 1.4
 1.6
 1.8
 2.0
 2.2
 2.4

1 2 4 8

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of initial threads

Backoff

Static
SA
EI
EA
EC

 0.8
 1.0
 1.2
 1.4
 1.6
 1.8
 2.0
 2.2
 2.4

1 2 4 8

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of initial threads

Eruption

Static
SA
EI
EA
EC

 0.8
 1.0
 1.2
 1.4
 1.6
 1.8
 2.0
 2.2
 2.4

1 2 4 8

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of initial threads

Greedy

Static
SA
EI
EA
EC

 0.8
 1.0
 1.2
 1.4
 1.6
 1.8
 2.0
 2.2
 2.4

1 2 4 8

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of initial threads

Karma

Static
SA
EI
EA
EC

 0.8
 1.0
 1.2
 1.4
 1.6
 1.8
 2.0
 2.2
 2.4

1 2 4 8

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of initial threads

Kindergarten

Static
SA
EI
EA
EC

 0.8
 1.0
 1.2
 1.4
 1.6
 1.8
 2.0
 2.2
 2.4

1 2 4 8

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of initial threads

Polka

Static
SA
EI
EA
EC

 0.8
 1.0
 1.2
 1.4
 1.6
 1.8
 2.0
 2.2
 2.4

1 2 4 8

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of initial threads

Priority

Fig. 5. Execution time for LeeH for each CM, normalised to overall best case static
execution time (Aggressive with 8 threads). Less is better.

12

no clear winner amongst the controller models for any CM, but the variance
amongst them is far smaller than amongst the CMs.

Static
PoCC
SA
EI
EA
EC

 0.8

 1.0

 1.2

 1.4

 1.6

 1.8

 2.0

 2.2

1 2 4 8

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of initial threads

Genome

Static
PoCC
SA
EI
EA
EC

 0.8
 0.9
 1.0
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7

1 2 4 8

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of initial threads

KMeansH

Static
PoCC
SA
EI
EA
EC

 0.8
 0.9
 1.0
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8

1 2 4 8

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of initial threads

KMeansL

Static
PoCC
SA
EI
EA
EC

 0.8

 0.9

 1.0

 1.1

 1.2

 1.3

 1.4

1 2 4 8

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of initial threads

LeeH

Static
PoCC
SA
EI
EA
EC

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

 4.0

1 2 4 8

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of initial threads

LeeL

Static
PoCC
SA
EI
EA
EC

 0.8

 1.0

 1.2

 1.4

 1.6

 1.8

1 2 4 8

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of initial threads

VacH

Static
PoCC
SA
EI
EA
EC

 0.8

 0.9

 1.0

 1.1

 1.2

 1.3

 1.4

1 2 4 8

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of initial threads

VacL

Fig. 6. Execution times for non-trivial benchmarks using the Priority CM, normalised
to the best case static execution time for each benchmark configuration. StepChange
benchmark omitted as it executes for a fixed duration. Less is better.

Figure 6 shows normalised execution time results for the benchmarks with
only the Priority CM. Amongst these benchmarks only KMeansH and VacL do
not improve execution time all the way up to 8 threads. KMeans experiments
run for less than 20 seconds on average, thus the graphs have noise due to small
execution time differences resulting in large variation in normalised execution
time.

13

PoCC
SA
EI
EA
EC

 0

 5

 10

 15

 20

 25

 30

G
en

om
e

K
M

ea
ns

H

K
M

ea
ns

L

L
ee

H

L
ee

L

V
ac

H

V
ac

L

A
ve

ra
ge

St
an

da
rd

 D
ev

ia
tio

n
Fig. 7. Execution time std deviation over all initial threads. Less is better.

Looking at the 1 thread results, dynamic execution improves execution time
results when static execution under-exploits available parallelism. In Genome
and LeeL, EI and EC improve execution time better than SA and EA. Although
EC does not fare well in KMeansH, the difference is not significant once execution
time is taken into account.

Looking at results across all threads and all benchmarks, dynamic execution
reduces variance in execution time results, with EI and EC showing less variance
than SA and EA. Looking at the 8 thread results, dynamic execution only im-
proves execution time when static execution over-exploits available parallelism
in KMeans, because the falling execution times up to 8 threads show most of the
benchmarks don’t suffer from over-exploitation. Furthermore, the significance of
the KMeans results is devalued by its short execution time.

Although the performance of the controller models with respect to best case
static execution time is more variable in these experiments, the best case con-
troller model for each benchmark degrades performance by 6% or less. Finally,
again there is no clear winner amongst SA, EI, EA, and EC.

Generally, there is little difference in performance between PoCC and the
first four controller models, but only PoCC consistently performs well across all
benchmarks, whereas SA, EI, EA, and EC all show poor execution times in some
benchmark configurations. Furthermore, averaging speedup of each controller
model over static execution for each benchmark configuration, PoCC is second-
best with an average speedup of 1.26, and EC is best with a marginally better
speedup of 1.27. Averaging speedup of each controller model over best-case static
execution for each benchmark, PoCC is joint-best with EC with an average
slowdown of 5%, while EI, EA, and SA suffer an average slowdown of 6%, 7%,
and 10%, respectively.

Figure 7 presents the execution time standard deviation for each benchmark
to compare the effectiveness of the controller models at reducing execution time
variance. The results show PoCC is the best on average, reducing standard de-
viation by 31% over the next best, EC.

14

SA
EI
EA
EC

 0

 10

 20

 30

 40

 50

 60

 70

 80

A
gg

/s
iv

e

B
ac

ko
ff

E
ru

pt
io

n

G
re

ed
y

K
ar

m
a

K
/te

n

Po
lk

a

Pr
io

ri
ty

Im
pr

ov
em

en
t (

%
)

Fig. 8. Resource efficiency vs. static ex-
ecution: 8 threads, LeeH.

PoCC
SA
EI
EA
EC

 0
 10
 20
 30
 40
 50
 60
 70
 80

G
en

om
e

K
m

ea
ns

H

K
m

ea
ns

L

L
ee

H

L
ee

L

V
ac

H

V
ac

L

St
ep

C
ha

ng
e

A
ve

ra
ge

Im
pr

ov
em

en
t (

%
)

Fig. 9. Resource efficiency vs. static exe-
cution at 8 initial threads. More is better.

3.5 Resource Utilisation

Resource usage is calculated by summing, for all TCR samples, the sample dura-
tion multiplied by the number of threads executing during the sample. For each
benchmark, dynamic execution should improve resource usage over static execu-
tion with an initial number of threads that over-exploits the available parallelism.
Resource usage is compared for 8 initial threads, the system maximum, as appli-
cations that scale past 8 threads should show little resource usage improvement,
and applications that do not scale past 8 threads should get maximum resource
usage saving at 8 threads with dynamic execution, and thus allow comparison
between the controller models. Again, the analysis is in two parts: LeeH with all
CMs first, then all benchmarks with the Priority CM.

Figure 8 shows resource savings for all CMs with LeeH. Dynamic execution
shows significant resource usage savings with many results in the 40-50% range.
In particular, even the best performing CMs (Aggressive, Kindergarten, and
Priority) have substantial resource savings, and, as presented earlier, dynamic
execution still results in execution times that are similar to the best case static
execution. The results also show that the relative savings between controller
models is not affected by the CM used: EA always has the best savings, and EI
the worst, for LeeH.

Figure 9 shows resource savings for all benchmarks, all controller models, with
the Priority CM. Genome, Vac, and LeeL have little resource savings because
they do not have low available parallelism at 8 threads. Relative savings are
the same for LeeH and StepChange, but inverted for KMeans: EI offers larger
resource savings amongst the first four controller models. However, PoCC is the
best in every benchmark except KMeansH where EI is 3.7% better. On average,
PoCC improves resource savings by 24% over the next best, EI.

3.6 Transaction Execution Metrics

Two transaction execution metrics are presented: wasted work and aborts per

commit (APC), first presented in TM literature by Perfumo et al. [25]. Wasted
work is the proportion of execution time spent in executing transactions that

15

eventually aborted, and APC is the ratio of aborted transactions to committed
transactions. Both metrics are a measure of wasted execution, and are thus of
interest since transactional concurrency tuning attempts to reduce variance in
TCR, which should result in reduced variance in these metrics.

PoCC
SA
EI
EA
EC

 0

 5

 10

 15

 20

 25

 30

G
en

om
e

K
M

ea
ns

H

K
M

ea
ns

L

L
ee

H

L
ee

L

V
ac

H

V
ac

L

St
an

da
rd

 D
ev

ia
tio

n

Wasted Work Standard Deviations

Fig. 10. Wasted work standard devia-
tions for the benchmarks. Less is better.

PoCC
SA
EI
EA
EC

 0.0
 0.2
 0.4
 0.6
 0.8
 1.0
 1.2
 1.4
 1.6
 1.8

G
en

om
e

K
M

ea
ns

H

K
M

ea
ns

L

L
ee

H

L
ee

L

V
ac

H

V
ac

L

St
an

da
rd

 D
ev

ia
tio

n

APC Standard Deviations

Fig. 11. APC standard deviations for the
benchmarks. Less is better.

Figure 10 presents wasted work standard deviations. PoCC significantly re-
duces variability in wasted work: on average its standard deviation is 88% lower
than the next best controller model, which is EC. Figure 11 presents APC, and
again PoCC reduces variability: on average its APC standard deviation is 26%
lower than the next best controller model, which is EC. Furthermore, PoCC
reduces average wasted work by 16% over the next best controller model, which
is EC, and reduces average APC by 11% over the next best controller model,
which is also EC.

3.7 Response Characteristics

This section examines how the controller models respond to changes in TCR.
Specifically, this section investigates how fast, how much, and how robustly, con-
troller models respond. The responsiveness analysis is restricted to StepChange
and LeeL. Both exhibit TCR profiles that stress the controller models as shown
sampled at 1 second intervals in Figure 12. StepChange changes TCR by large
amounts at fixed intervals, and LeeL has a wildly oscillating TCR due to the
fast sample rate used to capture the data, but earlier sections have shown it has
high available parallelism up to 8 threads.

Figure 13 shows the how the controller models respond to the changes in
TCR. The first four controller models are robust to the noise in LeeL as the
sample rate of the controller models is 10 seconds, not 1 second, which acts as a
noise filter. The 50–80% setPointRange reduces the chance of unstable behaviour
further.

However, these advantages turn into disadvantages for StepChange, where
the first four controller models respond poorly. The samplePeriod gives the con-

16

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

T
C

R
 (

%
)

Time

LeeL - Static

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

T
C

R
 (

%
)

Time

StepChange - Static

Fig. 12. TCR profiles of LeeL and StepChange, executing with 8 threads.

troller models response gradients that are not as steep as StepChange’s changes
in TCR. The setPointRange prevents the controller models from responding to
smaller changes in TCR, despite all steps altering TCR by 15% or more. Finally,
the samplePeriodRange used by EI, and EA, have an upper bound that is too
high (60 seconds), resulting in EC failing to respond to the second trough in
StepChange’s TCR.

PoCC shows good response to both benchmarks: it is robust to noise in LeeL
due to the minTransactions filter, and it responds to StepChange quickly due
to the 1 second samplePeriod. The first four controller models trade robust-
ness to noise for responsiveness by using a larger samplePeriod. PoCC removes
the trade-off with its minTransactions filter, giving high responsiveness without
compromising robustness.

4 Limitations

Transactional concurrency tuning has been shown to improve performance and
reduce resource usage for a number of non-trivial benchmarks; in particular,
PoCC has shown good response characteristics. Transactional concurrency tun-
ing has also been implemented to support existing TM applications with only
trivial changes. This section discusses two issues in relation to its widespread use:
the practicalities of using transactional concurrency tuning, and the implications
of using a thread pool to execute transactions.

The key to effective transactional concurrency tuning, as the earlier evalua-
tion has shown, is the ability to quickly and adequately respond to changes in
TCR. The system can only respond as fast as the selected samplingPeriod, and
care needs to be taken to set this short enough to respond to the application’s
fluctuating TCR. However, if the TCR fluctuates at a rate near to, or faster
than, the time it takes to execute the transactional concurrency tuning loop,
then it is unlikely the system will be able to offer meaningful improvements
in resource usage and performance. Hardware support for the control loop, for
example maintaining the statistics needed to calculate TCR in hardware regis-

17

 0

 2

 4

 6

 8

 10

 12

 20 40 60 80 100 120 140 160 180

N
um

be
r

of
 th

re
ad

s

Time

LeeL - SA

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300

N
um

be
r

of
 th

re
ad

s

Time

StepChange - SA

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 th

re
ad

s

Time

LeeL - EI

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300
N

um
be

r
of

 th
re

ad
s

Time

StepChange - EI

 0

 2

 4

 6

 8

 10

 12

 20 40 60 80 100 120 140 160

N
um

be
r

of
 th

re
ad

s

Time

LeeL - EA

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300

N
um

be
r

of
 th

re
ad

s

Time

StepChange - EA

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80

N
um

be
r

of
 th

re
ad

s

Time

LeeL - EC

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300

N
um

be
r

of
 th

re
ad

s

Time

StepChange - EC

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120

N
um

be
r

of
 th

re
ad

s

Time

LeeL - PoCC

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300 350

N
um

be
r

of
 th

re
ad

s

Time

StepChange - PoCC

Fig. 13. Number of threads dynamically changing in response to changes in TCR using
the Priority CM. All experiments start with 1 initial thread.

18

ters, may improve the loop’s execution time, and improve the system’s ability
to support rapid TCR fluctuations.

A short samplingPeriod also adds overhead; the thread that executes the
transactional concurrency loop code uses processor resources. However, with the
increasing number of cores in multi-core processors, we do not foresee this to
be an issue. Indeed, it may even be recommended to have the thread running
continuously on its own core.

The thread pool is a different programming model from that seen in TM
research, although it is not unfamiliar to the world of database transactions, on
which TM is based. The thread pool has been refined to improve its scalability
by implementing multiple work queues, and work stealing, and it is likely that
further research in thread pools will continue to reduce their overhead as existing
thread pool based applications move to multi-cores.

One issue is the increase in the total number of threads: application threads
plus worker threads. Increasing the number of threads adds context switching
overhead. However, it is likely that this overhead will be significantly reduced in
multi-core architectures for two reasons. First, the increasing numbers of cores
makes it natural to increase the total number of threads. Second, many multi-
cores have added support for hardware context switching, which can switch
thread contexts per processor clock cycle.

Other overheads that have not been investigated in this work include cre-
ation of data structures representing transactional jobs, job submission, and
synchronisation when using synchronous job submission. Such overheads may
be significant when executing very small transactions.

5 Conclusion

This paper has presented the first application of transactional concurrency tun-
ing to TM with the aim of improving resource utilisation and execution time
performance by adapting the number transactions executing concurrently to the
available parallelism. A new metric, transaction commit rate (TCR), was in-
troduced as a measure of available parallelism. Four transactional concurrency
tuning algorithms (controller models) that varied in response strength were ini-
tially evaluated against a number of benchmarks and contention managers. The
results showed transactional concurrency tuning led to execution time within
10% of the best non-transactional concurrency tuned execution time, whilst sig-
nificantly reducing processor resource usage (over 40% in many cases) for those
applications that exhibited phases of low available parallelism. The saved re-
sources could be used by other applications, or powered down to save energy.

However, analysis of the controller models’ response characteristics showed
that they traded off robustness to noise in sampled TCR data, with responsive-
ness. This meant that the controller models’ potentially needed their transac-
tional concurrency tuning parameters re-tuning for every application they used,
limiting their general applicability. A fifth transactional concurrency tuning al-
gorithm, called PoCC, was created to address this problem, and incorporated

19

a relative gain formula and a minimum transaction count filter. Evaluation of
PoCC showed it maintains average execution time similar to the best controller
model, has the least performance deficit vs. best-case fixed-thread execution, and
improves over the other four controller models by at least 24% average resource
usage, 16% average wasted work, and 11% average APC. PoCC improves over
the other four controller models standard deviation by at least 31% in execution
time, 24% in resource usage, 88% in wasted work, and 26% in APC. Thus PoCC
matches or improves in all benchmark performance metrics analysed. Finally, an
analysis of all the controller models’ response characteristics shows PoCC to be
more responsive to, and more robust to noise in, changes in TCR. This is due to
the new features in PoCC allowing fine-grain response to changes in TCR, and
allowing the sample period to be application-independent.

References

1. Kunle Olukotun and Lance Hammond. The future of microprocessors. ACM

Queue, 3(7):26–29, September 2005.
2. Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung

Chang. The case for a single-chip multiprocessor. In ASPLOS ’96: Proceedings of

the 7th International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, pages 2–11. ACM Press, 1996.
3. Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Niagara: A

32-way multithreaded sparc processor. IEEE Micro, 25(2):21–29, April 2005.
4. Richard McDougall. Extreme software scaling. ACM Queue, 3(7):36–46, 2005.
5. Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural sup-

port for lock-free data structures. In ISCA ’93: Proceedings of the 20th Annual

International Symposium on Computer Architecture, pages 289–300, May 1993.
6. Nir Shavit and Dan Touitou. Software transactional memory. In PODC ’95: Pro-

ceedings of the 14th Annual ACM Symposium on Principles of Distributed Com-

puting, pages 204–213. ACM Press, August 1995.
7. James R. Larus and Ravi Rajwar. Transactional Memory. Morgan and Claypool,

2006.
8. Ian Watson, Chris Kirkham, and Mikel Luján. A study of a transactional parallel

routing algorithm. In PACT ’07: Proceedings of the 16th International Confer-

ence on Parallel Architectures and Compilation Techniques, pages 388–400. IEEE
Computer Society Press, September 2007.

9. Mohammad Ansari, Christos Kotselidis, Kim Jarvis, Mikel Luján, Chris Kirkham,
and Ian Watson. Lee-TM: A non-trivial benchmark for transactional memory. In
ICA3PP ’08: Proceedings of the 7th International Conference on Algorithms and

Architectures for Parallel Processing. LNCS, Springer, June 2008.
10. Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen McDonald, Nathan

Bronson, Jared Casper, Christos Kozyrakis, and Kunle Olukotun. An effective
hybrid transactional memory system with strong isolation guarantees. In ISCA

’07: Proceedings of the 34th Annual International Symposium on Computer Archi-

tecture, pages 69–80. ACM Press, June 2007.
11. Maurice Herlihy and Eric Koskinen. Checkpoints and continuations instead of

nested transactions. In TRANSACT ’08: Third ACM SIGPLAN Workshop on

Transactional Computing, February 2008.

20

12. Torvald Riegel and Diogo Becker de Brum. Making object-based STM practical in
unmanaged environments. In TRANSACT ’08: Third ACM SIGPLAN Workshop

on Transactional Computing, February 2008.
13. Christoph von Praun, Rajesh Bordawekar, and Calin Cascaval. Modeling optimistic

concurrency using quantitative dependence analysis. In PPoPP ’08: Proceedings

of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pages 185–196. ACM Press, February 2008.
14. Maurice Herlihy and Eric Koskinen. Transactional boosting: a methodology for

highly-concurrent transactional objects. In PPoPP ’08: Proceedings of the 13th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pages 207–216. ACM Press, February 2008.

15. Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic performance tuning of
word-based software transactional memory. In PPoPP ’08: Proceedings of the 13th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pages 237–246. ACM Press, February 2008.

16. Christos Kotselidis, Mohammad Ansari, Kim Jarvis, Mikel Luján, Chris Kirkham,
and Ian Watson. Investigating software transactional memory on clusters. In
IWJPDC ’08: 10th International Workshop on Java and Components for Paral-

lelism, Distribution and Concurrency. IEEE Computer Society Press, April 2008.
17. Maurice Herlihy, Victor Luchangco, and Mark Moir. A flexible framework for

implementing software transactional memory. In OOPSLA ’06: Proceedings of the

21st Annual Conference on Object-Oriented Programming Systems, Languages, and

Applications, pages 253–262. ACM Press, October 2006.
18. Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-

erson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime
system. Journal of Parallel and Distributed Computing, 37(1):55–69, 1996.

19. Mohammad Ansari, Christos Kotselidis, Kim Jarvis, Mikel Luján, Chris Kirkham,
and Ian Watson. Adaptive concurrency control for transactional memory. In MUL-

TIPROG ’08: First Workshop on Programmability Issues for Multi-Core Comput-

ers, January 2008.
20. Karl Astrom and Tore Hagglund. PID Controllers: Theory, Design, and Tuning.

Instrument Society of America, 1995.
21. William Scherer III and Michael L. Scott. Contention management in dynamic

software transactional memory. In CSJP ’04: Workshop on Concurrency and Syn-

chronization in Java Programs, July 2004.
22. William Scherer III and Michael L. Scott. Advanced contention management for

dynamic software transactional memory. In PODC ’05: Proceedings of the 24th

Annual Symposium on Principles of Distributed Computing, pages 240–248. ACM
Press, July 2005.

23. Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. Toward a theory of
transactional contention managers. In PODC ’05: Proceedings of the 24th Annual

Symposium on Principles of Distributed Computing, pages 258–264. ACM Press,
July 2005.

24. Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer III. Soft-
ware transactional memory for dynamic-sized data structures. In PODC ’03: Pro-

ceedings of the 22nd Annual Symposium on Principles of Distributed Computing,
pages 92–101. ACM Press, July 2003.

25. Cristian Perfumo, Nehir Sonmez, Adrian Cristal, Osman Unsal, Mateo Valero, and
Tim Harris. Dissecting transactional executions in Haskell. In TRANSACT ’07:

Second ACM SIGPLAN Workshop on Transactional Computing, August 2007.

