
Computer Conservation Society

Aims and objectives

The Computer Conservation Society (CCS) is a co-operative venture
between the British Computer Society and the Science Museum of London.

The CCS was constituted in September 1989 as a Specialist Group
of the British Computer Society (BCS). It thus is covered by the Royal
Charter and charitable status of the BCS.

The aims of the CCS are to

� Promote the conservation of historic computers

� Develop awareness of the importance of historic computers

� Encourage research on historic computers

Membership is open to anyone interested in computer conservation and
the history of computing.

The CCS is funded and supported by a grant from the BCS, fees from
corporate membership, donations, and by the free use of Science Museum
facilities. Membership is free but some charges may be made for publica-
tions and attendance at seminars and conferences.

There are a number of active Working Parties on specific computer
restorations and early computer technologies and software. Younger peo-
ple are especially encouraged to take part in order to achieve skills trans-
fer.



Resurrection
The Bulletin of the Computer Conservation Society

ISSN 0958 - 7403

Number 6

Summer 1993

Contents

Editorial
Nicholas Enticknap, Editor 2

Guest Editorial
Graham Morris, Chairman 3

The Society’s Archives
Harold Gearing, Archivist 4

40 Years of the Elliott 401 6

The Enigma of Bletchley Park
Tony Sale 7

Recollections of the Elliott 400 series
Laurence Clarke 15

Thirty Years of Databases
Peter King 22

A Pioneer Initiative in School Computing
Peter Excell 29

Letters to the Editor 34

Forthcoming events 36



Editorial

Nicholas Enticknap, Editor

Welcome to issue 6 of Resurrection. As it is a relatively short time since
the last issue there is less news to report, but the issue is still a large one
- only four pages less than last time’s record size. We hope that there is
something to grab the attention of most members somewhere in the 36
pages.

As last time, we have included four feature articles, three of which are
based on talks given to the Society at the Science Museum.

One, covering Laurence Clarke’s recollections of his experiences with the
Elliott 400 series, is especially appropriate, as April saw the 40th anniver-
sary of the first public running of the 401, the machine currently under
restoration. The anniversary was marked by a commemorative function
at the Science Museum.

Over 30 guests attended, including many of those who were involved
with the computer (which was the only one of its type made) during its de-
velopment and operational life. Laurence Clarke himself was there, along
with Harry Carpenter, John Coales, William Elliott, John Gower, Peter
Holland, John Mullett, Gavin Ross, Andrew St Johnston and Maurice
Wilkes. A report on the occasion is on page 6.

Tony Sale’s article on Bletchley Park is also timely, as negotiations
continue for the acquisition of the Park with a view to establishing a new
museum of computing and cryptology on the site. Our Secretary’s article
describes the activities at the Park during World War II.

Of our two other articles, one, by Peter King,is for software buffs, cover-
ing the evolution of the database management system over three decades,
while the other is contributed by Society member Peter Excell, and de-
scribes his schoolboy experiences of one of the first educational computer
systems.

As we promised last time, we have included a report on the archiving
work being carried out under the leadership of Harold Gearing, work which
complements the physical restoration projects described in earlier issues
and which is of no less importance.

Our Guest Editorial is supplied this time by Society Chairman Graham
Morris, and reflects on the progress of the CCS so far. It also outlines the
areas where help from members is most needed.

2 Resurrection Summer 1993



Guest Editorial

Graham Morris, Chairman

In the last issue of Resurrection Maurice Wilkes emphasised in his Guest
Opinion the responsibilities of all of us to ensure that important documents
and records and physical items were properly archived and preserved. He
also urged us to involve younger people in CCS activities.

I am very conscious of the Computer Conservation Society’s responsi-
bilities and opportunities in these matters. In a thoroughly paradoxical
way we, of all the specialist groups of the BCS, have the most assured
future. Current technologies will inevitably fade and be replaced by even
more exciting developments. So, too, will many of the specialist groups,
even if only in name.

But in our case, these very changes will provide the vital raw material
for our work and ensure our future, provided we remain enthusiastic and
responsive. And for the CCS, unlike the other specialist groups, every
member of the BCS is a potential recruit, because our field is the whole
story and history of computing.

In our relatively short existence— we have yet to celebrate our fourth
birthday—our Society has achieved a remarkable amount. Those of you
who have attended our In Steam days will have seen the physical achieve-
ments in conserving early machines, achievements which we hope will soon
find a permanent place in the Science Museum’s galleries rather than the
“engine shed” round the back. Our latest endeavour, on which substantial
progress has already been made under the leadership of Chris Burton, is
the restoration of the Elliott 401.

Our lectures and seminars too have provided fascinating insights—and
hindsights — of a whole variety of early developments, and without the
intrusion of competitive selling! My only disappointment has been in the
attendance levels at our events. They haven’t been bad, but the material
and speakers have merited much larger audiences.

A recent talk by Vic Maller, for example, dealt with the origins of
ICL’s Content Addressable File Store (CAFS) and traced its development.
CAFS? you may say—surely that’s still with us and hardly history? It
was that fact that made it such a fascinating occasion. In our field 10
years old is already historic! In May we look forward to a seminar on NPL
and ACE. Perhaps next year we might have a seminar on the 360 or the
1900, or even the 2900: “promise and achievement”.

Resurrection Summer 1993 3



None of this will happen without your positive support and involvement,
and I urge all our members to play a more active part in our affairs, and
to spread the word to others.

There is one particular area where we urgently need help. We already
have a large amount of archive material and Harold Gearing, our archivist,
working with Susan Julian-Ottie of the Science Museum, faces a daunting
task. Recognising that there must be mountain ranges of documentary
material building up in our field, we urgently need help in dealing with
what we already have.

It would be of special value to have volunteers who were active in the
seventies and can thus complement Harold’s experience. He describes his
work in this issue in the article that follows. Please consider volunteering
to help with this important work and get in touch with Tony Sale.

Finally, your hard-working committee welcomes suggestions for future
events, especially when they include offers of practical help. Why not turn
up at our next meeting and talk things over with us?

The Society’s Archives

Harold Gearing, Archivist

As a founder member of the BCS and first joint editor of the Computer
Journal, who had retired from active ‘computing’ some years ago, I was
honoured in May 1991 to be invited by the CCS Committee to become its
Archivist. This article is a preliminary report on our work which is now
making good progress. In a later article, I plan to describe in more detail
how the material has been indexed, where it is filed, and how access may
be obtained to it by researchers once the Index is available.

By the end of 1992 the Society had received over 2000 documents,
mostly relating to the period up to 1975. This includes original papers
as well as published manuals on the early machines. It relates to all ma-
chines in use since the end of the Second World War, and includes surveys,
research papers, and accounts of the personal experiences of those who
developed both the hardware and particularly the operating systems and
other early software. Material continues to arrive and will be added to the
Index as soon as possible.

In October 1992 the Science Museum Registrar recruited an additional
assistant on a temporary contract, initially to index archive material relat-

4 Resurrection Summer 1993



ing to the machines restored by the Society and intended for future display
in the gallery under Curator control. To assist her the PC terminal in the
CCS project office was linked to the Prime computer system dedicated to
Science Museum records, under control of a manager covering those wider
responsibilities. This has made available to the Society a fuller system
than we had first contemplated when working with the PC in isolation.

Indexing of all material relating to the two systems already restored,
the Pegasus and the Elliott 803, and also of the limited material so far
received on the Elliott 401 which is currently being restored, was well
advanced by the end of February. The material is being stored in boxes of
Public Record Office standard. Eventually the Museum will take control
of the storage, as the Curators have a public duty to preserve records
relating to historical scientific objects and machines that are on display.

The importance of our Archives will be appreciated by all who want to
preserve the record of how we progressed from the mechanical systems of
1939 to the integrated computer systems available just 50 years later. This
historical detail can be preserved for reference by future research students
only if we are able to complete, with the help of Museum staff, the indexing
of all the material donated to the Society by members and others.

As a user myself, one who witnessed the progression of business data
handling from pen-and-ink loose-leaf ledgers to the comprehensive com-
puter systems of today, I hope very much that we shall be able, in our
next report to Resurrection readers, to recount that the objectives of our
exercise are being achieved.

Meanwhile, may we appeal to anyone closing down an office, or mov-
ing house, and wishing to discard documents that are no longer required,
please to pass on to us anything of historic interest covering the develop-
ment of computers over the past 50 years. Anyone who can help should
contact the Secretary, Tony Sale, on 071-938 8196.

I would like to take this opportunity to thank personally all those who
have donated material to us to date.

Editor’s Note: voluntary assistance for Harold and the Museum staff
with their ever-growing workload would be greatly appreciated. In partic-
ular, they would welcome help with documents relating to the post-1975
period. Any member interested in helping out should contact the Secretary
on the number given in the text.

Resurrection Summer 1993 5



40 Years of the Elliott 401

The Society held an evening reception in the Fellows Room of the Science
Museum on 22 April. It marked the 40th anniversary of the first public
running of the Elliott 401 at the Physical Society Exhibition in 1953.

Various parts of the machine, now restored to pristine condition, were
on display. They included parts of the processor cabinet and one of the
plug-in boards (an and-gate), but it was the drum, installed in around
1955 to replace the original disc, that attracted the most attention.

A cursory glance immediately showed how different things were in the
fifties. The drum surface is exposed to the open air, which would be un-
thinkable today. A Heath Robinson-ish touch was the clinical thermometer
located in a holder beside the drum: this was needed because variations
in temperature had a significant effect on head clearances.

The formal proceedings were opened by the Director of the Science
Museum, Neil Cossons. He thanked the Society’s Working Party for their
efforts in restoring the machine, noting “It would be quite impossible for
us to do what we are doing without the sort of help you can provide”. Dr
Cossons also paid tribute to Douglas Rees, the manager of the machine
throughout its time at Rothamsted, who was unable to be present at the
reception.

William Elliott ran over the history of the 401, from the design process
via its appearance at the Physical Society Exhibition “where it worked
reliably for a week” to its operational life at first Cambridge and then
Rothamsted and finally its retirement to the Science Museum in 1965,
after “playing its own funeral march at the retirement ceremony”.

Gavin Ross represented Rothamsted, where the 401 spent most of its
working life. Rothamsted, he revealed, is the oldest agricultural research
station in the world, being well into its second century by the time the
401 arrived, and distinguished as “the birthplace of modern mathematical
statistics”.

Tony Sale, whose many responsibilities include the role of the Science
Museum’s Project Manager for the 401 restoration project, observed that
the work was “an exercise in information gathering and collecting as much
as on the hardware side”. He paid tribute to Working Party chairman
Chris Burton and also to the Science Museum staff responsible for the
conservation work, Micky Box and Helen Kingsley. Roger Johnson con-
cluded the formalities on behalf of the British Computer Society.

6 Resurrection Summer 1993



The Enigma of Bletchley Park

Tony Sale

Bletchley Park is situated in what is now Milton Keynes by the town of
Bletchley. Its major claim to fame is the role it played in cracking the
Enigma code.

Enigma was a machine designed and built in the early 1920s. It was
first developed for bank communications, but was rapidly seized on as a
potential source of enciphered communication by the German military.

With fast moving tank blitzkrieg operations you need communications:
because it’s moving it has to be radio communications, and since radio
communications can be intercepted the communications had to be enci-
phered. So Enigma was adopted as a method of passing information in a
secure manner by radio.

How Enigma worked

The Enigma machine had a typewriter keyboard for entering messages.
When you press one of the keys it makes a contact, and an electrical
circuit is formed through a rotor system—a set of numbered rotor wheels.
Each rotor wheel is wired from front to back. There’s a set of contacts on
the front of the rotor, and there’s a spring-loaded set of small plates on
the back. The wiring between the front and back is scrambled.

Each rotor is cross-wired differently. But every rotor with a given num-
ber on it has to be the same, otherwise you can’t use them in different
machines. So the Germans included three rotors (later increased to five).

The battery-powered electrical current goes in at the entry plate, through
the cross-connections in each rotor and then to a reflector plate. It comes
out of another contact on that plate, back through the rotors and then
lights a lamp.

So when you press a key, a lamp lights. If you press the same key again,
then a different lamp lights. This is because pressing the key also activates
a mechanical connection which turns the first wheel round one position.
After every 26 positions the next rotor is turned round one, and after 26
turns of that wheel the final rotor is turned round once. So every time
you press a key the actual electrical circuitry is changing.

The number of combinations you can get by just that method with the
rotors is quite high, but not astronomically high. The Germans felt inse-

Resurrection Summer 1993 7



cure with only that number of combinations, so they introduced another
variant called the Steckerboard.

This device consists of a series of jack plugs with two pins on each end:
they make connections in the base which transpose a key. If you stecker R
to A, for example, then every time you press R it is as if you had pressed
A; and when the current emerges that would have lit the R light it lights
the A light. So the Steckerboard transposes both the keyboard and the
lamp.

Initially there were 10, later 16 stecker wires which you could plug in.
That raised the number of combinations for any one key depression to
1020.

A further complication was that the Germans used a double encipher-
ment of the key for a message.

They started off with the sheet of the day, which was labelled by day
and month down the side, and told the operator which of the numbered
wheels to put into the machine on the day in question.

He picked one out of a box of wheels and placed it into position. Before
he did that he had to do the “ring setting” within the actual wheel.

It was possible to turn the central barrel which contained all the cross
wiring in relation to the output wheel on which the letters were marked,
and also more importantly, where the carry was set. The outer wheel had
an indent on it which was picked up by the mechanism and transferred to
the next one. So by altering the position (which you did by pushing out a
little finger on a catch) you altered the position at which it is transferred
the carry to the next wheel. That you had to set on a numbered basis.

So you set your wheels to the sequence of numbers, you put the wheel
in the machine, and then you started doing the Steckerboards according
to a table which gave you the connections for each particular day. You
had to chose one of two steckers depending on the time of day, before 1500
or before 2300. Having done all that you then had to know which radio
net you were on, and that gave you the starting wheel positions.

So if the radio net list gave the positions for the day as K-I-M, the op-
erator used a finger or pencil to rotate the wheels until the letters showing
in the window at the top of the machine read K-I-M. Everybody on that
net would put their machines to the same starting position.

But now the operator selected a three letter key of his own for the
particular message he was going to send. Supposing he chose A-S-D, he
would type the letters A, S and D in turn, and his oppo would note down

8 Resurrection Summer 1993



which lamps lit as he did so. (A German command post housed a pair
of operators, one of them pressing the keys and the other one calling out
and noting the lamps. There was also a radio operator ready to send the
morse out when the message has been completed.)

So our operator typed A-S-D, and then, because there might be inter-
ference problems in the transmission, he did it again. The oppo once more
noted which lamps were lit. Having sent the second sequence the operator
reset the wheels to A-S-D and then typed out his message.

First attempts at codebreaking

The double encipherment of the message key actually proved to be the
Achilles Heel of the German system.

The Poles started working at intercepting German traffic and break-
ing their ciphers earlier than anyone else, in the mid-1920s. They were
very successful until they started receiving Enigma transmissions —that
is, ciphered transmissions in morse which were obviously coming from a
machine. They were considerably helped by information on key settings
supplied by an agent to the French and passed on to them.

They quickly realised that there was a pattern of three letters repeated.
This drastically prunes the number of possible combinations. They were
able to work out a method which enabled them, after intercepting about
80 messages on the same net, to extract the starting position and thence
the message key. By 1935 the Poles were breaking into a large number of
German transmissions and were way ahead of anybody else.

When war became imminent in 1939 the Poles realised they had to give
the secret away. By then they had built replicas of Enigma. This was a
really phenomenal feat of intellect; they had actually deduced the internal
wiring of the wheels from the breaking of the messages.

They built three or four models in all, and before they were invaded
they gave one to Britain, one to France and took one with them into
France. One was brought back to Bletchley Park, and it suddenly spurred
everything into top gear there.

The Poles also used a device which they called a bombe. The reason it
was so called is obscure: one theory is that they had the idea while eating
ice-cream. The bombe was a semi-mechanical device for working through
the combinations of the wheels in the Enigma machine.

Resurrection Summer 1993 9



Bombes

When news of the Polish work reached the UK, Alan Turing, Willy Knox
and others at Bletchley Park started to devise new ways of breaking the
codes. One of these was the British bombe. This performed a straightfor-
ward exhaustive search, but of course it was not possible to do a complete
search of 1020 combinations; with a mechanical machine the war would
have been long over before it even got through the first part of it.

The Germans, though, being human, did a lot of silly things. For
example, when they selected their individual message key they used com-
binations like A-S-D or Q-A-Z or W-S-X which are next to each other on
the keyboard, or they used the first letters of their girlfriends’ names.

The codebreakers in the Park were able to pick up this sort of repetition,
and that enabled them to reduce the search effort considerably. The other
way they got into breaking the code was through cribs.

The Germans used very stultified forms of communication. They had
to have their full rank, name, number at the top, and they had to sign off
in standard way at the bottom.

The codebreakers’ favourite German was a poor officer out in the sticks
in the middle of Germany who was running a base stores. He had to make
a return every week on a certain net and a certain frequency, and most of
the time he made a nil return— nothing to report.

So they had, coming through regularly on the same frequency, a mes-
sage of the same length, and were able to deduce that it was their friend
transmitting his usual message. Now having got a crib you can reduce the
search tree, because you know that the ciphered text is probably going to
transcribe into that crib. By selecting a number of cribs you can create
what they called a menu, and that is what went into the bombe.

By putting in what they thought was the starting position, they could
then go through a cyclic process to see whether there was a combination
in that menu that produced the expected German text. If that came out
the machine stopped, and when it stopped the girls got a drop.

They would then pass the possible key settings (it still wasn’t proven at
this stage that they were the actual key settings) into the machine rooms
in the huts, and there they would use a type X machine. Its operator
would set up the key settings and start keying in the ciphered text and
see if plain German came out. More often than not it didn’t, but she was
then able to try a few settings either side, and very often that would result

10 Resurrection Summer 1993



in a break.

The bombes were dispersed all over the country. Wrens were brought
in and trained on the machines in the Park and then sent out to places
like Eastcote and Stanmore. They were able to use parallel processing;
they could put the same menu out to a large number of different bombe
sites if they were particularly keen to break it, and so work in parallel.

The volume of traffic intercepted was quite phenomenal. Early in the
war they were breaking something like 900 messages a week, and by 1943
it was 84,000 Enigma messages a month.

One of the most impenetrable German ciphers was the naval cipher.
This Enigma machine started off with three wheels, rapidly went to four
and eventually five wheels because they were worried about interception.
These machines were carried on the U-boats, which used them to send
their position back to base, and to receive information in enciphered text
on the positions of the refuelling ships.

So it was important to get into this and although eventually there was
a breakthrough it wasn’t particularly deep, but it did begin to stop the
losses in the Atlantic. Then the U-boats changed over to the five wheel
machine — the Park called that the Triton code —and that was the one
which Turing broke.

Overall operation

Here is an overview of how the whole operation fitted together. The Ger-
man messages were intercepted in a Y station in morse code. The mes-
sage was then sent to Bletchley Park either by teleprinter or by motorbike.
There were 30 bikes an hour coming into the Park from all over the country.
Also there was an enormous teleprinter installation, with 1200 teleprint-
ers. In one room known as the Hell Hole there were 326 teleprinters and
they had to get BBC sound engineers to soundproof the room to make it
possible for the girls to work there.

When the message reached Bletchley Park it went to the registry. The
booking in had to be meticulous, because often the smallest clue could
cause the break into a key. Then the message went to one of two pairs of
huts, numbered 3 and 6, and 4 and 8. The former were for Army and Air
Force messages, while 4 and 8 were the Naval ones.

The huts worked in pairs. For example, the initial finding of the keys
would be done in hut 6, and then the message would be passed to hut

Resurrection Summer 1993 11



3, where it would be unscrambled from the enciphered text into German.
Then the German would be translated, and it was the job of hut 3 to
garnish the information and if necessary to use the index to find out any
supporting facts, or other ways of finding out what the message meant.

At that stage the message was ready to be acted upon. Welchman and
Winterbottom set up a system to control the dissemination of the deci-
phered information: they were aware that if the Germans suspected that
the Enigma key had been broken, they would have changed the system.
So they went to great lengths to protect Ultra—the word used for the
intelligence coming from Bletchley.

One of the ways they did this was to use the SLUs (security liaison
units). The SLUs worked alongside the field commanders, and had direct
access to them, much to disgust of some of the junior ranks who couldn’t
understand why this very lowly captain could go and see Montgomery at
dinner and take him away and give him a message.

They had to make certain that the information went only to the com-
mander, and that he destroyed it after reading it. Also, the SLUs had to
paraphrase the information so that it could not be attributed to Ultra.

Some of the lengths they went to conceal the source of Ultra were quite
remarkable. In the Mediterranean campaign particularly they had great
success in reading the signals which said which convoys were leaving to
supply Rommel, at what time, and what was on each ship. To protect
the source, there was an absolute rule that a convoy could not be attacked
until a spotter aircraft had flown over it which could have seen it.

In one case where there was a very thick fog, so that it could not be seen,
they were still allowed to attack— they sent a message to a fictitious agent
in an Italian port, thanking him for his information about the convoy. This
was sent in a code they knew the Germans could break.

Those were the sort of lengths taken to protect the source of Ultra,
and it worked. The Germans had their suspicions— they had three au-
dits during the war but each time they concluded it was unbroken and
unbreakable. They believed that because it was a machine it couldn’t be
broken, and they were right; if it had been used correctly it was unbreak-
able.

12 Resurrection Summer 1993



Heath Robinsons

That is the story of Enigma, but Bletchley Park was about a lot more
than just Enigma. Another German machine used an automatic method
of sending cipher signals based on Baudot code and the 5-hole code on
tape. It was automatic in that the operator pressed the keyboard and an
enciphered punched paper tape came out, which was then put into a high
speed morse transmitter. It was called the Geheimschreiber.

This traffic was mainly on landlines, and there wasn’t much chance of
intercepting them. An exception was in Norway where one landline went
through a place where the Norwegian intelligence managed to get a tap
onto it, and they got an enormous amount of text out of that.

That was useful for Bletchley Park to start working on. Initially they
like the Norwegians used manual deciphering methods, but soon people
like Max Newman started devising electromechanical methods.

Newman first designed a method of producing a key tape which simu-
lated the action of the wheels in the original machine. Then he produced
what were called the Heath Robinsons— machines with about 80-85 valves
which compared the key tape and the tape with the encipherment on. It
was a hit and miss affair, because you had to get the tapes exactly in
synchronism and keep them there. It wasn’t very successful, but it did
demonstrate that this was a possible line of progress.

Colossus

There was a group of Turing, Max Newman, Donald Michie and Good
who set about producing the designs for Colossus.

The great advance with Colossus was that it used a single tape. Whereas
the Heath Robinsons had to have two tapes synchronised, Colossus just
ran the intercepted ciphered text in 5-hole code continuously round, and
the sprocket readings from that synchronised the whole machine.

The tape was read at 2500 characters a second. It’s a great pity that
this wasn’t known about because it took ordinary computers a long time
to get back up to that speed again. It was done with continuous reading;
there was great difficulty in making it into a loop - there were all sorts of
problems with sticky tape. If anything went wrong you got tape all over
the room, rather like a mag tape in an uncovered computer system.

Colossus Mark I had 1500 valves. It was a logical computing engine,
not a computer as we know it today— it had no stored program and no

Resurrection Summer 1993 13



memory. But it was the first large valve device in the world, and it was
working in 1943. It was a pity that it was kept secret for so long because
the circuitry could have been divulged with the algorithms being kept
secure. There’s nothing magic about the circuitry— it’s very good but it’s
not magic.

Colossus Mark 2 was much more sophisticated, and contained 2500
valves. It had conditional expressions in it, and was fully interactive.
We’re not allowed to say too much about exactly how it worked yet, but
it worked interactively with the output between the person at the console
and girls; he was changing various settings on the machine interactively in
order to converge on a solution.

I do not know the exact figures of the number of Geheimschreiber breaks
but it was very significant. What was even more important was that it
was high level traffic. The Germans, considering the Geheimschreiber
to be absolutely unbreakable, used it for high level information directly
between Hitler and his generals (whereas Enigma mostly was fairly rapid
day-to-day battle line information).

The Geheimschreiber strategic information was invaluable, particularly
after D-day. That was why there was a tremendous rush to get the Mark
2 Colossus installed and running in the Park by D-day in 1944.

That’s the story of the Bletchley Park code breakers. It was a tremen-
dous operation. It is almost unbelievable that there were 12,000 people
there towards the end of the war. About 8,500 were genuine code breakers,
the rest being support and ancillary staff. What is so incredible is that
despite that large number its secret was kept until 1975.

This article is an edited and abridged version of the talk given by the
author to the Society at the Science Museum on 29 October 1992.

14 Resurrection Summer 1993



Recollections of the Elliott 400 series

Laurence Clarke

The Elliott 400 series played a pivotal role in the evolution of
the computer in the UK from an academic research project to a
commercial product. The author was deeply involved concerned
throughout, starting with the one-off experimental 401 and going
right through to the relatively mass production 405. Here he
describes his memories of those pioneering days.

In 1951 I became one of the first raft of new graduates ever taken into
the computer industry in this country. It was a very exciting environment,
and I don’t apologise for being a bit boastful — not on my own behalf but
on Elliott’s —about the many firsts we introduced.

I was part of the Elliott 401 design team formed by Andrew
St Johnston. Others included Chris Philips, our mechanical genius who
incidentally had made fire control equipment for the Navy from about
1914; and Derek Stallworthy, who worked on circuits which had first been
developed by Peter Atkinson.

John Halsey developed the nickel delay line memories for us, after An-
drew did the design in his famous red book. Hugh Devonald, who later
went to Pegasus, did software, and I was looking after logic.

In 1951-52 there were three new technologies which allowed Andrew
to design the 401, and do it as a potentially low priced viable commer-
cial computer. They were magnetic disc (later turned into a drum), the
miniature twin triodes and the nickel delay lines.

My first task was to take the existing Owen circuits and re-engineer
them using the new and much cheaper 12AT7 valves. These were twin
triodes, although they may have been a little bit less reliable than the
previous valves.

The Owen circuits were based on a delay circuit which was very
determined. The input was clocked: this caused a valve to make an induc-
tance, which then charged up a condenser. At the end of the next clock
period a reset pulse sucked the charge out very rapidly, and that left you
with a totally determined pulse.

What this enabled us to do was to put it together in very standard
forms with a number of other devices—AND-gate, OR-gate, digit delay,
coincidence gated converter. These were combined to produce a gated

Resurrection Summer 1993 15



delay—the standard circuit which you could then turn into what in other
computers of the day was a flipflop.

I think this activity was the beginning of the end of suck-it-and-see
electronics. When I first joined Elliotts, there was an awful lot of “Oh
that resistor doesn’t work, it isn’t quite right, we’ll put in a bigger one.”
The quick prototyping of software today is perhaps a little like that. You
don’t actually analyse the thing completely and then build the circuit.

At Elliotts we started to work in a more methodical fashion. We anal-
ysed worst-worst cases for the logic loading rules. The inverter had a
resistor chain down and that was analysed very carefully. I know that
because I did it myself.

A little time later there was a paper by Dummer of RRE describing
this work, but we had done it earlier. It led incidentally to rubber stamps;
these blocks were so reliable you didn’t have to worry about the circuitry.
Just as today people use integrated circuits or whole computers as blocks
on a diagram, we used these packages as blocks, as did the Pegasus team
later.

When NRDC made a big visitation we had to have something to show
them. I had made something which was called the snarc —the short nickel
line accumulator calculator. This was I think the first time most of the
NRDC people had actually seen something that perhaps they could believe
would turn into a computer in the long run.

We can boast another first here. Elliotts were heavily involved in radar,
and had a radar research lab. I think possibly the first digital instrument
may have been the use of a snarc in calibrating the quartz fibres in torque
vane wattmeters. They needed a very accurate timing of the swing of a
pendulum on a quartz fibre, and with a photocell we did that exceedingly
accurately, probably even more accurately than with the snarc.

On the question of tolerancing and quality, before we made the 401 at
all we built one cabinet of equipment which we called the interference test
set of use. This was able to do some very elementary test cycles.

We were then able to go around with Tesla coils hammers and so on
to try and introduce interference. This worked pretty well and in fact we
had the thing working for a three week period at one stage with no errors
at all. I don’t think it worked that well thereafter. When the arithmetic
unit eventually got put together with the control, everything was going
very fast.

Incidentally, Andrew St Johnston said in April 1952 that the pilot model

16 Resurrection Summer 1993



was supposed to be running by September. I think that was quite remark-
able. It wasn’t running by September, but was first demonstrated in April
1953 at the Physical Society. We were working it very fast and we got the
arithmetic logic together before the disc was available.

So we then used the interference test set to check out that logic and
it was one of those times, working very late into the night with Hugh
Devonald, that we both learnt that to blame the machine is not the right
thing.

We were testing the multiplier. We only had binary switches to set up
numbers, so looked for an easy number to set up. We chose one-third,
which was 101010101. If you square that you get 1

9 , 111000111000111000.
We pressed the button and there was the answer. Then we looked again:
in the middle there were four zeroes, not three.

We checked everything. At midnight we had got nowhere and went
home, but when we arrived in the morning we both said “Got it!”. If you
have 101010101 curtailed to 32 bits and you multiply it, you shift the left
side half of your result by one place to the right.

Andrew has said the 401 was the first computer to be exhibited, and I
believe that to be true. After that exhibition when we were all exceedingly
tired, we were entertained by the directors of Elliott Bros. I only realised
much later how prophetic those directors were.

I remember well Harry Carpenter and myself being addressed by Dr
Ross, the technical director, who was a Hungarian and not easy to under-
stand. I, as a young chap, was tired and half cut on gin, but this man
was babbling on at me about “Zee cat crackers” and how computers were
going to control catalytic crackers in oil refineries and the like. Remember
we’re talking about the early 1950s when we weren’t doing anything like
that.

Later on in the early sixties Elliott Automation was to be the first and
I suspect the only UK firm to export computers to the USA for on-line
process control, very much through his efforts.

Leon Bagrit, the managing director at that time, foresaw nearly all the
impact of computers brought about by microelectronics today in his Reith
lecture series in 1964. In fact he expected some of them even earlier than
they happened. The old man had a vision that could have served the UK
well if only they’d had the commercial and financial stamina to carry it
through.

Back to the 401. The machine only had 1000 words: 4K bytes of store in

Resurrection Summer 1993 17



all, with 128 words on each track. You had 13 millisecond maximum access,
and therefore as Andrew said you had to have optimum programming.
This was considered difficult by some and would be totally unacceptable
today, but it did cause real interesting challenges for the kind of people
who were programmers then.

The initial 401 didn’t have signed multiplication. Just as we were get-
ting it to what we thought was completion, NRDC produced Christopher
Strachey who was a real inspiration to us. He very rapidly said “We can
do that”, and redesigned the multiplier area so we had a signed multiplier.
Better still, he gave us a way of doing order multiplication.

These were the two real changes made to the 401 before it went to
Cambridge for a short time and then to its final home at Rothamstead
Agricultural Experimental Station. Under the devoted care of Doug Rees
it worked valiantly until its retirement on July 30th 1965. So it had good
long life of very useful work.

In parallel with the development of the 401, Norman Hill, Ed Hursom
and Bruce Banbrough in Theory Lab were developing what I think was
the first machine —Nicholas — to be made specifically for a computing
service. As I remember they’d received a computation contract from the
Ministry and they decided that the best way to implement that contract
would be by making a computer.

They used the Owen circuits, and found that if they got bits of paxolin
and components and took them home, they could wire them up there and
bring them back in the morning.

This machine had 1024 words of store, like the 401 but in the form of
16-word nickel delay lines. So they had a minimum access time problem
as well, but they believed that by having a single address instruction and
taking the next instruction when it became available, they could get two
orders per word and thus get more useful programs on the store that they’d
got.

The machine did the computations that it was required to do. In fact
it ran for many years and was used for lots of other tasks as well as the
original contract.

The actual prototype 153 boards were taken away after they started to
build the real ones and used by us to make the prototype 402 computer.
This all happened at the height of popularity of the Goon Show. So this
machine was called Eccles, for Elliott Computer Costing Less.

The only new technologies that we used here, under the guidance of

18 Resurrection Summer 1993



Hunter Mitchell, was that by being able to use a single package with the
line running round the handle, two receive coils and one transmit coil, we
could save a lot of space in the machine. We were able to have 16 imme-
diate access registers which enabled us to increase the speed enormously
and also to increase the number of B-lines. We went over from disc to a
drum, allowing us to have up to 5000 words of store.

I think it’s sad that the first 402 delivered wasn’t an electronic computer
at all; it was a ‘calculatrice electronique’ installed in the Centre Nationale
de Recherche Scientifique in Paris. I rather think it was the first scientific
computer ever in France.

The only major enhancement that we made to the hardware was the
floating point unit, and that was made for a German firm, Hans Leitz.

In July 1957 we implemented one of the first real-time uses of a pro-
prietary computer. This was used for recovery of fighter aircraft, and was
demonstrated to the Central Fighter Establishment. This guided a lot of
Elliott philosophy, which was to use general purpose computers in a whole
range of process control and military applications. This spirit still exists
in many parts of GEC today.

Nine 402 machines were made, which is not a lot. Almost all were still
in service in 1969. During that period there were two other much larger
machines made. The first was the 403 which was made for the Long Range
Weapon Establishment in Australia. It was for the analysis of missile range
status. This machine had pipelining in 1955!

It worked this way. We had four word nickel delay lines as the main store
so we were getting somewhere near a good size immediate access store —
512 words —but it wasn’t fast enough for what we needed. So orders were
extracted in the single word lines (assuming no conditional transfer) and
started to be decoded while the previous operation was being carried out.

It had of course a much larger magnetic disc, like the 153, and also
magnetic tape units. These were manufactured by Pye to a Cambridge
University design developed by Donald Wilkes.

The output was offline because there was a tremendous amount of it.
The magnetic tape was taken away and fed to Bull line printer, and also
to a series of plotters.

I suspect that these were the first plotters to be used for output from a
digital computer. They were very crude. They used Mufax weather report
receivers, where there was a rotating helix which moved across the paper.
An electrical signal was pulsed, and chemically sensitised paper made a

Resurrection Summer 1993 19



mark where there was a pulse and didn’t where there wasn’t. With a
binary disc we knew the position of the helix so we were able to get fairly
accurate plotting.

The 403 machine dissipated about 15 Kw. My first task on arriving
in Australia to finish the recommissioning was to switch it off, and tell
the superintendent that it was staying off until the air conditioning was
in proper working order. It seemed likely that the machine would be
irrevocably damaged if it carried on in the Australian temperatures that
were prevalent at that time.

Colin Reeves of ICI (and later Leeds University) came across a fault in
their 402 multiplier. Just occasionally, he said, it was giving the wrong
answer.

That had to wait till I got back from Australia seven weeks later before
I could do anything about it. We didn’t have faxes and phoning was
practically impossible. Letters took a long time, and anyway I don’t think
I could have done it by post.

The problem was purely and simply that he was a very good program-
mer and he had a shift optimally programmed at the end of an optimally
programmed multiplication. He was shifting up to a significant place a
digit that should have fallen off the very bottom of the double length ac-
cumulator. So when it was a one he came up and looked at it and when
it wasn’t he didn’t, so he got a totally unpredictable result.

Following close on the heels of the 403, the 405 was designed to meet
the requirements of the commercial market, which had been explored ex-
perimentally using the 402. Andrew and I had the temerity to present a
paper in 1954, before the first production of the 402, talking about how
we had studied the use of the 402 for the payroll of Mars Co. We did have
the grace to say at the end that this was not really a feasible proposition
until there was satisfactory magnetic file storage.

The 405 had another first—autonomous data transfer from peripherals
(although the term hadn’t been coined then). The disc, the film, and the
line printer each had assigned blocks of store with dual inputs, and the
access from the computer to that store was free unless a transfer had been
initiated and was not yet completed at the specific address that was being
accessed. Then each device had a completely separate and independent
controller.

The film caused all sorts of controversy. People wondered why on earth
Elliotts used film rather than magnetic tape. Well, we had quarter inch

20 Resurrection Summer 1993



magnetic tape and it was very unreliable. The reason, we believed, was
that the base material in those days was toffee paper. It wasn’t an optical
medium at all; if we used film, then the coating would go down better and
it would be more reliable. So we used magnetic film.

I was asked this question at a Cambridge colloquium at which I talked
about the 405 (incidentally, these colloquia should be given credit for
bringing together what really was the whole computer community out-
side Manchester). I was floored by the question “Why do you use film?”.
Fairthorn of RAE, who was one of the earliest pioneers, adjusted his hear-
ing aid and said in a loud voice, “Because it has the non-trivial advantage
of existence.” I have since used this phrase often.

Elliotts of course started in the commercial field. Andrew wasn’t really
steeped in commercial know-how, and neither was I. Yet we and a few of
us by then were doing the selling.

So we recruited some people from the commercial world. Later, at a
user association meeting, one of the users got up and said to Andrew,
“Mr St Johnston, we find that we have to test every film before we use
it.” Andrew was floored by that observation, but his commercial oppo
Ronnie Michaelson (who’d come from Hollerith) immediately got up and
said, “Well how many failures have you had?”. “Oh, I haven’t had any
failures yet.” So questions can be answered in several different ways.

The first 405 was sold to Norwich City Council for dealing with the
rates, a brave step by the City Treasurer, Mr Barnes. There were 30 sold
in all, including one to the National Gas Turbine Establishment for trials
recording and analysis. This was the first of many Elliott online process
systems.

However it soon became apparent that Elliotts (by then Elliott Au-
tomation) did not have the financial or manpower stamina to market the
product. An agreement was made with the National Cash Register Com-
pany that they sold the 405 worldwide outside North America.

It was a very exciting time. The team involved in detail, of only six
to 10 people, had developed three very different machines in a 12 month
period. This was made possible by the ease of use of the Owen circuits,
rubber stamps and all.

This article is based on a talk given by the author as part of the
Elliott/Pegasus all-day seminar at the Science Museum on 21 May 1992.

Resurrection Summer 1993 21



Thirty Years of Databases

Peter King

I shall break the period down into three decades, which fits nicely. 1962
to 1972 I’ll call the 1960s, 1972 to 1982 the seventies, and 1982 to 1992
the eighties.

We have to remember the rapidly evolving hardware scene. Processors
have ever rising mips ratings: we have raw hardware power tripling every
three years roughly. Discs have gone from one or two megabytes to one or
two gigabytes and more.

We’ve seen a change in the way hardware is used. In 1962 we had
printed reports, cards going in, files going in and coming out, and data
on disc which was referred to and modified. Now we have an enormous
number of different ways of using hardware, we’ve got the person at the
workstation with the mouse, and we’ve got networks.

Some things remain constant. For example, the vision is always ahead
of the technology of the time. It’s easy to have ideas; you can lie in your
bath and think how things are going to run and say you’ll have software
that does this. Then you try it, it goes like swimming through porridge,
and then you get bogged down in matters of optimisation.

We used to think “If only I had some more memory, 512 words instead
of 256, everything would be solved”. Now with all the windows it’s “If
only I could have a 24 inch screen instead of a 19 inch one, and two mice.”
So you’re always bumping up against the technology.

The other thing that’s always true is that, even when the technology
catches up, it’s about 10 to 20 years from prophets to profits— from when
you start doing the work till you actually have a product that is used and
makes money.

This was true of paging systems: it took from 1957 to about 1979. It was
true of high level, third generation programming languages. People started
trying to write compilers in 1959-60, but I can remember conferences in
the early seventies where IBM people would say “Should you use Cobol or
Assembler to really get productivity?”.

The sixties

I’ll start the story with Charles Bachman and Susan Brewer, who pro-
duced IDS (Integrated Data Store). They did that because they wanted

22 Resurrection Summer 1993



interrelated files held on disc, for manufacturing applications.

Then there was APL—Associative Programming Language —which
was based on PL/I but produced independently by Dodd. That did the
same kind of thing as IDS. I suppose it was that that led to the formation
of the Codasyl List Processing Task Force.

Memory is essentially a collection of cells linked together with pointers.
You can have pointer chains, and follow them around. The argument
in the sixties was: wouldn’t it be useful in data processing to have the
same kind of linking techniques, not between cells in memory but between
records held on disc. So let’s have a task force to look at it and see whether
this can be done usefully. It was called the List Processing Task Force,
properly the Codasyl List Processing Task Force - Codasyl was the body
at that time responsible for developing Cobol.

In 1967 it turned itself into the Data Base Task Group, but essentially
continued with the same work and produced its famous Codasyl Data Base
Task Group report, which came out in July 1971.

That was one of the early themes. There was another which I call ‘from
GUAM and RATS to IMS’. GUAM was Generalised Update and Access
Method. The thinking was: Cobol records only allow you a repeating
group at the end of the record, and that’s pretty limiting. Why can’t
we have very large Cobol records with unrestricted repeating groups —
repeating groups within repeating groups—and hold them on disc? Then
let’s be able to look at subsets of them. That was a requirement in relation
to managing the data connected with the Apollo moon landing project.

RATS— Remote Access Terminal System— addressed what is now an
everyday occurrence, getting access to data by a terminal. GUAM and
RATS were combined around 1967-8. In 1968 they were frozen with the
launch of the moon rocket— even then it was realised you couldn’t have
people changing the software while you were in the middle of launching a
moon rocket.

Then in 1969 IBM released it as a product. This is the one exception to
the rule that it’s 10-20 years from prophets to profits (although whether
IBM made any profit out of the early versions of IMS I know not). It has
been improved ever since and is still in existence today.

Another theme of the sixties I call ‘Total and Adabas’. Total came
first and in my view is the more interesting of the two. It was produced
by Cincom, with first release around 1968. The interesting thing is not
only the rise of the independent software vendors. Total in particular

Resurrection Summer 1993 23



emphasised data independence.

Then we have a relational model of data for large shared data banks
which was an IBM internal research report in 1969, and was published as
a Comm. ACM paper in 1970 with a few revisions.

During 1970-72 we had the great debate. The Codasyl Data Base Task
Group report put forward the case for a certain type of product for linking
records, based on the so-called network model.

IBM had IMS which they didn’t understand. This was because there
was a confusion between hierarchies which are the result of access. If you
were describing IMS now you’d say it enables you to store complex objects
with a hierarchical structure, but we didn’t see things that way then. So
it was a mystery that IMS was marvellously successful in some contexts,
and a disastrous failure in others.

It was during this period that Codd’s relational model emerged, which
claimed to do all sorts of things. It threw the baby out with the bath
water, in that it produced such a simple data structure that there were
large numbers of things you couldn’t thereafter do except by acres of pro-
gramming. Nonetheless, it was enthusiastically taken up by academics.

So much for the facts: what about the underlying motivations?

The motivation of the people who did APL was that they wanted better
data structuring facilities, simple serial files and repeating groups within
records. They wanted data structures which would assist analysts and
designers to structure files in a more useful way.

You could go in and retrieve a record for a particular customer from
the customer file; then automatically pick it up from the order file all
the orders from that customer. That was one motivation, which led to
programming language features that enabled you to handle them.

There was also the wish for data to be shared, although that to some
extent came later. In my view, though, the driving motivation was the
idea of logical data independence.

It was characteristic of large organisations in the late 1960s that had
been early into computing to have data processing systems with large
numbers of programs, say 120 different Cobol programs. All of these were
variously accessing 15-20 or more different files.

If you wanted to modify a program, and as a result needed to modify
the record structure of a file, you first made the change to the file. You
then modified the program, and recompiled it. You then had to recompile
all the other programs that accessed the file. That was a tremendous

24 Resurrection Summer 1993



maintenance effort—and then the whole system would crash six months
later because you’d forgotten some obscure thing.

I think that was the real driving force for database management soft-
ware. The object was to interpose the DBMS between the data as it was
stored and the data as the program wished to view it. Once you did that
you could produce what was essentially a virtual file of some kind, which
could remain stable providing you modified the tables which caused it to
be materialised from the data that was actually stored.

There were also a number of sub-themes that I call ‘dream’ sub-themes,
for example that data should be accessible to the casual user at termi-
nals— someone, say, who asks “How many red headed under 35 policy
holders do we have that haven’t had a claim in the last 5 years?”.

The seventies

We then move into the 1970s. The Codasyl systems of 1972-75 gradually
came into use as did IMS, Total and Adabas. These systems were steadily
improved throughout the 1970s and well into the 1980s. They did go some
way to solving, or at least addressing, the two main problems of logical
data independence and structuring. But they did not solve the problem
of schema modification to a running system.

I know of IMS systems in the City that are still running, where every-
body knows they’ve got the wrong schema: if only they could change the
schema things would be much better. But they can’t actually take them
down or reorganise the data.

As a result IBM devoted significant resources to trying to make the
relational model actually work.

What the relational model had actually done was throw away data
structuring in the belief that thereby you could actually raise the level of
programming. There’s no doubt that the relational model was good at
generating research into locking the problem of sharing data, the problem
of recovery, because you have a simple model actually to work with. SQL
was developed and is now with us for better or worse; I had a modest little
hand in that, how to make the first order predicate calculus understandable
to Cobol programmers.

The other fascinating event in the seventies was the charge of the unem-
ployed mathematicians. Relational database theory became a fashionable
topic of research: we had normalisations from third normal form, fourth

Resurrection Summer 1993 25



normal form, universal relation, fifth normal form, Armstrong’s axioms,
lossy joins, lossless joins, tableaus, and so on.

Normalisation theory followed the 80-20 rule: 80% of the benefit came
from the first 20% of the ideas. The first 20% of the ideas were essentially
second normal form and third normal form, which had become standard
and readily understood.

By the middle of the 1970s we had three schema architectures, and
models for the conceptual schema. This is interesting because the pro-
fessional database community was trying to extend its sphere of influ-
ence into what previously had been the province of systems analysis and
design.

When I designed my first Cobol files back in 1959-60, and my machine
code files before that, I never had any doubt that each record represented
a real world entity, and that the fields in the record were storing the
extensions of functions from that real world entity. It seemed to me such
an obvious way to store data that you took that as read.

I thought of it that way probably because by origin I’m a mathematician
but other systems analysts do that intuitively. That was the province of
systems analysis and design and what we were doing in the 1960s was
providing programming tools which would in some way be useful to the
systems analysts and designers.

But once the normalisation people got going they extended the province
of database into semantic data modelling, the idea of modelling the real
world. This systems analysts had been doing for a long time, albeit intu-
itively.

The eighties

That’s where we were through the seventies. Then we come on to the
1980s. The products of the seventies continue: we’ve still got IMS systems
and IDMS systems running. Total systems are dying, while Adabas has
developed its own peculiar flavour with its language Natural. We’ve got
Cobol itself now at last in decline.

At the same time we’ve seen the arrival of the relational systems,
principally Oracle, DB2, SQL/DS, Ingres and others. These are devel-
oping 4GLs and front ends. In my view they’re trying to develop with
their 4GLs more than their substructure can bear, because the underlying
model is inadequate.

26 Resurrection Summer 1993



What some of us are doing now is to try to make happen ideas which
first emerged a long time ago.

In 1972 there was a paper by Brackey from Milan saying you don’t want
entity relations. Binary relations are adequate if you represent abstract
objects explicitly internally but not externally. Cher Nyson was saying
the same thing.

Indeed in 1976 I and Cher Nyson were the two invited speakers at
the annual conference of the Italian Computer Conference in Milan. We
had dinner with Brackey, and at that time we were talking about having
DBMSs based on binary relational models.

A slide I used at a lecture in 1984 says: if we use a binary relational
model we can integrate data and metadata. We can have a schema that
doesn’t distinguish between instances and types, but simply regards them
both as objects of the same kind. If we want more elaborate data models
we can map them to binary relational graphs, and we can create even more
elaborate fourth generation constructs.

All these ideas are very old. Binary relational graphs to represent data
were being talked about in 1972 by Brackey, in 1974 by Abrialle, and in
1976 by Cher Nyson and myself.

Mapping them to triple stores was being talked about by Norman Win-
terbottom in 1978, and Peter Tipman and others earlier, in the 1960s. So
there is nothing new in current research; what it is about is taking lots of
good ideas that we didn’t have the hardware power for 20 years ago, and
making them actually happen now. But they haven’t happened yet.

There is another theme which is currently confusing matters. About 10
years ago Xerox PARC had a research project which produced the notion of
object-oriented programming. I remember vividly John Florentine rushing
into my room in 1981, explaining to me that object-oriented programming
was the greatest thing since sliced bread.

But if you look back at the database literature of the seventies describ-
ing conceptual modelling you’ll find the words ‘object’ and ‘entity’ are
used more or less synonymously. Some of the papers that you think are
about entity modelling actually use the word ‘object’. The Smith papers
on aggregation use the word ‘object’ throughout.

So ‘object’ and ‘entity’ have been used synonymously in many areas,
but not in programming. Programming language theorists like talking
about objects; they mean bit streams, binary trees, and double length
representations of real numbers. So the word ‘object’ has been used in

Resurrection Summer 1993 27



programming theory as a generic term for a long time, and when it came
into object-oriented programming, naturally what they were talking about
was a programming construct.

An object in Smalltalk is a piece of store with a number of slots. It’s
like a Cobol record— you can have pointers and you can have variables.
In other words it’s a very elaborate type of programming language. What
object-oriented programming is about is defining these elaborate data
types and defining chunks of code that work on them.

The term ‘complex object’ is also used now in the database research
literature. It’s important to understand what people don’t understand in
the database area. For example you read a lot of papers at the moment
arguing that the relational model is very good for business and commercial
applications but is no good for engineering applications.

What they need is complex objects like IMS records. They never know
that when you try and use the relational model in the commercial con-
text, modelling is really quite difficult. We’ve got the other source of
confusion: ‘oriented’ and ‘orientation ’are ordinary English words with a
commonly understood meaning, whereas in object-oriented programming
‘object-oriented’ is a technical term which means what the object- oriented
programming message defines it to mean.

We now have ‘object-oriented databases’. What can this mean?

During the 1980s there was one important idea which came into the
database area, the idea of persistence (as in persistent programming). The
importance of the idea is that you’re effectively operating as though your
database were entirely in memory. It isn’t, of course; your database sits
out there on disc and is paged in as needed, but that is entirely hidden
from you.

So an object-oriented database is something like Gemstone which pro-
vides you with persistent Smalltalk. Any of you who have used Smalltalk
will know it’s a fine programming language, but use it on your PC and im-
mediately you run out of memory it goes bang, because it’s an in-memory
system. There’s no way of storing any data. So you’ve got database
management software now, so called, things like Gemstone which provides
persistent Smalltalk and like Ontos which provides persistent C++.

This article is an edited version of the talk given by the author to the
Society at the Science Museum on 16 December 1992.

28 Resurrection Summer 1993



A Pioneer Initiative in School Computing

Peter Excell

Hatfield School was one of the UK pioneers in introducing com-
puting to the curriculum. The author was one of the first pupils
there to benefit from the innovation, and this article documents
his experiences.

Hatfield School in Hertfordshire was set up in the late 1950s as a state
school with a deliberate bias towards science and technology. The school
shared the same campus as Hatfield Technical College, which allowed some
sharing of facilities.

An innovative example of this arose when the college installed its first
computer, an Elliott 803, in 1963. The head of the school mathematics
department, Bill Tagg, negotiated an arrangement whereby pupils had
some access to the computer, around two hours per week.

Elliott Autocode

The only programming language available to start with was Elliott
Autocode. This had a reasonable instruction set but was hampered by
its restriction to one operation per line. All code was entered on five-hole
paper tapes using either Westrex teleprinters or ‘blind punches’, which had
a keyboard but no printout. The pupils rapidly became adept at reading
the five-hole tape directly.

A major hazard with five-hole tape was the use of ‘figure shift’ and ‘let-
ter shift’ characters which modified the meaning of subsequent characters.
If these shift characters became corrupted, the meaning of the following
characters would be changed into nonsense.

For my first program, I attempted a rather ambitious task: ‘cubing the
sphere’, a three-dimensional equivalent of ‘squaring the circle’, in which
the input is the radius of a sphere and the output is the side length of a
cube having the same volume. With beginner’s luck my program worked
first time and I immediately became a computing enthusiast.

After about a year, the school acquired its own blind punch, a huge
boost to morale. These punches had a heavyweight electromechanical
action in which the whole tape output device moved up and down with
a solid clunk as each character was punched. Later the school devised a

Resurrection Summer 1993 29



scheme to purchase a teleprinter with money raised by parents.

Pupils were permitted to enter the computer room to attempt a run only
after the tape had been punched and the printout checked by a teacher.
Assuming the system was running properly, we would be invited in to
witness the Autocode compiler being loaded via a solidly-built optical
tape reader. One could not fail to be impressed with the speed at which
the tape was streamed through, especially since errors rarely seemed to
occur in this reader.

Then we might be invited to place our program tape in the reader.
A button was pressed on the console and the tape was read, pausing at
the end of each line to the accompaniment of impressive noises from the
loudspeaker on the console.

There was an indefinite delay when an error was detected. It would be
marked on the tape with a pencil, and then another button was pressed
to continue the check.

Successful input was followed by a ‘thinking’ phase, after which the
program was ready to accept input data tapes. Output tapes would spew
out of a tape punch housed in a partially soundproofed box.

The loudspeaker in the console was one of the most memorable
features. The basic sound was a pulse sent to the loudspeaker every time
a ‘jump’ instruction was obeyed. We rapidly became acquainted with
normal and abnormal sounds.

In particular, a genuinely repetitive sound indicated a program stuck
in a loop. However, an iterative routine might involve a loop with data
that varied only slightly.

The observant rapidly became intrigued by the row of buttons on the
console. These were to remain an enigma until the opportunity arose to
delve into the secrets of machine code programming.

Algol

Eventually the memory was upgraded, from 4K to 8K 39-bit words. This
allowed the introduction of Algol.

The Algol compiler was on two large reels of paper tape which frequently
became rather untidy on their spools. (Tearing one of these reels was
one of the gravest sins a user could commit.) Not surprisingly, it took a
relatively long time to load, and thus any corruption of the loaded version
was a cause of deep frustration.

30 Resurrection Summer 1993



Algol was a satisfying language to use, having a rational structure and
very little machine-dependent dialect. We spent many happy hours study-
ing McCracken’s text book1 and many of us produced Algol programs.
The largest (not one of mine) was a collaboratively-written fortune-telling
program which took a very long time to compile and run.

Machine Code

Another intriguing mystery was the meaning of the compiler tapes. As
we had developed a facility for reading source code tapes by eye, we could
immediately see that compiler tapes defied all the rules of correct tape
punching we had been taught. Not only were the characters in an appar-
ently random sequence but, more noticeably, they were manifestly lacking
any regular punctuation with ‘shift’ and ‘carriage-return-line-feed’ charac-
ters that were the norm in source code.

Most intriguing of all, the tapes always started with a string of single
holes down one side. I and a fellow pupil determined to work out what
this meant.

By talking to a friendly computer officer we found out about the boot-
strap routine wired into the bottom four words of memory, and we were
also shown a machine code instruction set. From this it was possible to
deduce that the bootstrap routine acted as a very basic input program, but
that the norm on compiler tapes was to use this to load a more advanced
input routine some 30 words long, located at the top of the memory.

Armed with this knowledge and with a copy of the machine code in-
struction set, we proceeded to devise our own machine code program, to
be loaded into the top 30 words of store in the belief that this space was
unused between tape loading operations. We then created some programs
to operate on this principle.

Since we were not offered use of the official machine code assembler
(which would in any case have overwritten the high-level language compiler
needed by other users) we wrote the programs in binary, then converted
them into a list of characters to be typed on the blind punch to produce
the ultimate binary tape that was required.

The largest program written in this way was a simple machine code
translator capable of reading in sequences of teleprinter-readable decimal
numbers, corresponding to the separate parts of an instruction word, and

1McCracken, DD: ‘A Guide to Algol Programming’, New York, Wiley, 1962.

Resurrection Summer 1993 31



converting them to binary form for output by the tape punch.

The input data thus consisted of a string of 13 decimal digits which
were interpreted in five separate groups, as follows:

1. Two digits for the first instruction (00 to 77, in octal)

2. Four digits for the address of the data for the first instruction (0000
to 8191)

3. One digit for the B-digit (0 or 1)

4. Two digits for the second instruction (00 to 77, in octal)

5. Four digits for the address (subject to modification by the B- digit)
of the data for the second instruction (0000 to 8191).

This program worked. It could be loaded in the same way as a compiler,
by transferring control to word number 0 at the start of the bootstrap
routine through appropriate use of the buttons on the console. It produced
the expected output from test inputs.

However, it had to be used within a queue of other pupils’ jobs, mostly
Algol programs. A problem rapidly arose in that the Algol compiler tended
to fail after the ‘home made’ assembler had been used.

Evidently the assumption that the top 30 words contained an input
routine that would not be needed during compilation was incorrect. In
retrospect, with only 8K words available it is not surprising that the Algol
compiler authors re-used this space for essential compiler functions after
the bulk of the inputting had been completed.

The B-digit (a name derived from early work at Manchester University)
was a neat artifice which added the contents of the address of the first in-
struction to the absolute address specified for the second instruction in the
word, thus enabling relative addressing to be used. The first instruction
would normally be null (00) in this case.

In this investigation of machine code programming we had become
‘hackers’ of an early type, in that we were attempting to get to the heart
of the system by an unorthodox route. There was, naturally, no nefar-
ious objective: we took pains to avoid overwriting areas of code needed
by other users. We were merely intrigued by the possibility of finding out
how the machine worked at its deepest level and how to drive it at this
level.

32 Resurrection Summer 1993



Our teachers, however, were a little alarmed at our activities, and were
unsure of the desirability of what we were doing. A Computer Officer from
the college was brought in to give a lecture on the principles of machine
code programming, but we were not offered use of the Elliott assembler.

Benefits

With hindsight, it appears likely that many of the decisions taken were
coloured by the prevalent view that computing was a part of mathemat-
ics. Thus machine code programming was not seen as an important activ-
ity because (arguably) it was a distraction from the more mathematical
activities of high-level language programming. Similarly, I did not give
any serious thought to a career in computing because maths was not my
strongest subject.

Nonetheless to this day I regard it as one of my most pleasurable
and beneficial experiences of computing. Particularly in getting down
to the lowest machine code level, I obtained a very clear view of the von
Neumann architectural philosophy and of the non-standard design deci-
sions made with this particular computer: the B-digit; the two-instructions-
per-word format; and the hardwired bootstrap routine.

I saw the key features of the architectural philosophy as being the use
of a single memory for instructions and data, and the use of a single
accumulator for interim operand storage. The machine code instruction
set introduced me to bit-wise operations, such as left shift, right shift and
collate. The timings in the machine code manual clearly illustrated the
time penalties with some operations, notably multiply and divide.

I feel the learning of Algol gave me an excellent training in the
approach to construction of sound, readable algorithms, and that the ex-
perience of machine code gave me a very sound introduction to the basics
of computer technology, which has been useful in my limited encounters
with microprocessors.

Dr Excell wishes to express his gratitude to Dr Bill Tagg, who made this experience possible and

who provided information to supplement the author’s own recollections. Dr Excell also acknowledges

the collaboration of Richard Driscoll, the pupil who shared the investigation of machine code.

The author is Reader in Applied Electromagnetics, Department of Elec-
tronic and Electrical Engineering at the University of Bradford.

Resurrection Summer 1993 33



Letters to the Editor

Dear Mr Enticknap,

Towards the end of the article on Andrew Booth’s APE(X) and MAC
1 machines in issue 5 of Resurrection, Andrew Collin wonders what was
achieved in terms of practical computing.

If I remember correctly, an engineered version of the APE(X) design be-
came the HEC 4 (Hollerith Electronic Computer) produced by the British
Tabulating Machine Co Ltd, one of the predecessor companies of today’s
ICL. This was one of the earliest machines to tackle office tasks, typically
payroll, with the first being installed at Morgan Crucibles early in 1957
and the first Government system in the Ministry of Supply at Chessing-
ton in August of that year. The designation HEC4 was soon changed to
1201, the first in the 1200 range which were successful “data processing”
machines of their day.

The choice for DP work, between say Pegasus/Elliott on the one hand
and English Electric Deuce/Hollerith on the other, was not then solely a
question of internal specifications.

Early office applications were usually developed from punch card instal-
lations with pre-computer machines of some sophistication, so that it was
a natural progression to go for computers which had card input/output
rather than paper tape.

Moreover in those days many subsidiary operations which involved large
volumes of data had to be done “outside” the computer, eg sorting, merg-
ing, interpreting and printing (and machinery for such operations was well
established, whereas for tape it was non-existent).

Also, although this was never openly admitted— indeed strictly forbid-
den— it was easy to rectify an error made when punching up a program
in reverse binary by carefully replacing the tiny rectangle in its hole in the
card with the aid of some saliva and the back of the thumb-nail!

Yours sincerely,

Cecil Marks
Banstead, Surrey
2 March 1993

34 Resurrection Summer 1993



Dear Mr Enticknap,

I have just read with interest my first copy of Resurrection (issue 5). It
was a thrill to see my name and address published in your bulletin.

I would like to add some points about the CP/M+ ProGroup, which
stands for CP/M Plus Programmers Group. It publishes a 60-page monthly
called Journal of CP/M Plus Research. Eight issues have been released so
far.

Issue 0 tried to collect all the older texts I have about CP/M. Issue 1
was devoted to Universal Turing Machines, and included the original 1936
Turing paper.

Issue 2 contained the ‘First Draft of a report on the EDVAC’ by John
von Neumann (1945), the classical IBM 360 text “Linkers and Loaders”,
and an article on programming language translation techniques. Issue 3
contains 15 miscellaneous short articles about every aspect of program-
ming, and is the most popular so far (after issue 0).

Issue 4 contains the first comprehensive article about CP/M Plus, an
article about a dozen small useful BASIC subroutines, an article on two
areas of CP/M Plus called ‘Page zero’ and ‘System Control Block’ and
one the best articles I have seen so far about RS-232C.

Issue 5 is devoted to a listing of the CCP (Console Command Processor)
of CP/M Plus, with a very interesting article about a little known subject
- computer failure and corrosion due to salt water. It is four pages long,
and would maybe interest you, as you live on an island...

Issue 6 is devoted to a listing of the 111 volumes of the CP/M Software
Library collected by the CP/M User Group (UK). More than 550 discs of
240Kb are available (over 120Mb) from its Diskcopying Service. Issue 7 is
devoted to a little-known programming language called Mouse, detailing
its implementation using Pascal.

As you can see, only the first three issues were concerned with the
historical aspects of microcomputers. The Journal deals mainly with the
software aspect of programming CP/M Plus, and the next issues will be
more and more filled with assembly language listings.

I can provide copies of the journal for £5 sterling.

Yours sincerely,

Emmanuel Roche
Troyes, France
27 March 1993

Resurrection Summer 1993 35



Forthcoming events

20 May 1993 Seminar on Early NPL and English Electric Computers,
from Turing to DEUCE

Free to members, but tickets must be obtained in advance from the Sec-
retary. Starts at 11.00 am.

2 June 1993 In steam day

17 June 1993 Evening meeting

24 June 1993 Seminar on conservation and restoration of historic
computers

Intended for other curators and Museum staff: price of admission around
£40; members welcome.

23 September 1993 Evening meeting

28 October 1993 Evening meeting

18 November 1993 Society Open Day

In Steam Days start at 10 am and finish at 5 pm. Members are re-
quested to let the secretary know before coming, particularly if bringing
visitors. Contact him on 071-938 8196. All evening meetings take place in
the Science Museum Lecture Theatre and start at 5.30 pm.

Resurrection is the bulletin of the Computer Conservation Society and is dis-
tributed free to members. Additional copies are £3.00 each, or £10.00 for a sub-
scription covering four issues.

Editor – Nicholas Enticknap Typesetting – Nicholas Enticknap
Typesetting design – Adrian Johnstone Cover design – Tony Sale
Printed by the British Computer Society

c©Computer Conservation Society

36 Resurrection Summer 1993



Committee of the Society

Chairman Graham Morris FBCS, 43 Pewley Hill, Guildford, Surrey GU1 3SW. Tel
0483 66933

Secretary Tony Sale FBCS Manager, Historic Machines Programme, The Science
Museum, Exhibition Road, London SW7 2DD. Tel: 071-938 8196

Treasurer Dan Hayton, 31 High Street, Farnborough Village, Orpington, Kent BR6
7BQ. Tel: 0689 852186

Science Museum representative Doron Swade, Curator of Computing, The Science
Museum, Exhibition Road, London SW7 2DD. Tel: 071-938 8106

Chairman, Pegasus Working Party John Cooper MBCS, 4 Tower Road, Belvedere
Road, Kent DA17 6HX. Tel: 03224 30742

Chairman, Elliott 803 Working Party John Sinclair, 9 Plummers Lane, Haynes,
Bedford MK45 3PL. Tel: 02306 6403

Chairman, Elliott 401 Working Party Chris Burton FBCS, Wern Ddu Fach, Llansilin,
Oswestry, Shropshire SY10 9BN. Tel: 0691 70274

Chairman, DEC Working Party Dr Adrian Johnstone CEng, MIEE, MBCS, Dept
of Computer Science, Royal Holloway and Bedford New College, Egham, Surrey TW20
0EX. Tel: 0784 443425

Chairman, S100 bus Working Party Robin Shirley, 41 Guildford Park Avenue, Guild-
ford, Surrey GU2 5NL. Tel: 0483 65220

Editor, Resurrection Nicholas Enticknap, 4 Thornton Court, Grand Drive, Raynes
Park SW20 9HJ. Tel: 081-540 5952

Archivist Harold Gearing FBCS, 14 Craft Way, Steeple Morden, Royston, Herts SG8
0PF. Tel 0763 852567

Dr Martin Campbell-Kelly, Department of Computer Science, University of Warwick,
Coventry CV4 7AL. Tel: 0203 523196

George Davis CEng FBCS, 25 Manor Way, Purley, Surrey CR8 3BL. Tel: 081- 660
5581

Professor Sandy Douglas CBE FBCS, 9 Woodside Avenue, Walton-on-Thames,
Surrey KT12 5LQ. Tel: 0932 224923

Chris Hipwell, Bretts, The Green, Newick, East Sussex BN8 4LA. Tel: 082572 2567

Dr Roger Johnson FBCS 9 Stanhope Way, Riverhead, Sevenoaks, Kent TN13 2DZ.
Tel: 071-631 6388

Ewart Willey FBCS 4 Sebastian Avenue, Shenfield, Brentwood, Essex CM15 8PN.
Tel: 0277 210127

Pat Woodroffe, 9A Guildown Road, Guildford, Surrey, GU2 5EW. Tel: 0483 63299


