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Editorial

Nicholas Enticknap, Editor

Progress in establishing a new working relationship with the Science Mu-
seum remains slow, though we hope to report positive developments in
our next issue. In the meantime, the London-based working party activity
remains in a state of suspended animation, so there is no Working Party
report section in this issue.

The Pegasus Working Party has put in two sessions during the summer.
One lasted a whole day and was devoted to locating and eliminating faults,
while subsequently a further few hours were spent working on the package
tester.

But though one of our mainstream activities is severely constrained at
present, the other is flourishing. Events in London and Manchester in the
first half of the year provided members with first hand information about
the Leo and Deuce computers, and we hope to bring you edited version of
these talks in future issues.

The meetings programme for the rest of the year offers something for
everyone in both London and Manchester. Two events are planned in each
location for the autumn session, while the North West Group has already
arranged its first two 1996 events— details of all these can be found in the
Forthcoming Events section on page 28. The London meetings committee
is also working on two events for 1996, one on Atlas and the other on the
ICT/ICL 1900 series. Planning for both is still in the early stages.

Our feature articles this time include a provocative piece by Gordon
Scarrott on the nature of information engineering, which calls into question
many commonly held attitudes and beliefs. It provides the philosophical
framework for the author’s research activity in Ferranti, ICT and ICL
described in the last issue.

The other articles are both taken from the thriving North West Group
meetings programme, and describe two of the most seminal developments
in the history of computing. Dick Grimsdale talks about his experiences
developing the first transistor-based computer at Manchester University,
while David Howarth recalls the thinking involved in the development of
the world’s first operating system for the Ferranti Atlas.
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News Round-Up

Chris Burton reports that the SSEM (Small Scale Experimental Machine)
project is progressing well. This project, which is being run as a collabo-
rative effort between the North West Group of the Society and Manchester
University and is managed by Chris, has the objective of
creating a replica of the Manchester University testbed computer of 1948.
This was the world’s first computer to run a stored program, and led to
the development of the Manchester Mark I and later the Ferranti Mark
I. The intention is to complete the build in time to run it on the golden
jubilee of that first run, on 21 June 1998.

- 101010101 -

The revival of the meetings programme in London has proved very
successful. The attendance at Gordon Scarrott’s talk in March numbered
35, while the Leo seminar in May attracted no less than 52 people.

- 101010101 -

We hope that Resurrection will soon be available electronically.
Progress is being made on arranging an FTP site to act as a repository
for Society material such as simulators and the text of this publication.
Watch this space.

- 101010101 -

We lost an important link with the dawn of the computer age in June
when Presper Eckert died at the age of 76. Eckert was the co-inventor,
with John Mauchly, of Eniac, a computer which executed its first program
in 1945. Eniac is believed by many to have been the first digital electronic
computer, though others argue that the Bletchley Park Colossus machines
have a prior claim.

- 101010101 -

Doron Swade asks us to point out that his article in issue 12 should
have been titled “The Phillips Economics Computer” and not as printed.
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The Transition From Valves To Transistors

RL Grimsdale

This article covers the author’s recollections of the exciting pe-
riod when the arrival of the transistor was opening up new pos-
sibilities in computing, and particularly the developments at
Manchester University. The author has employed the terminol-
ogy used at the time throughout.

In 1950 when I graduated in Electrical Engineering at Manchester, FC
Williams and Tom Kilburn had already demonstrated a working prototype
of an electronic digital computer. I became a research student and was
sent to Cambridge to attend the first Summer School in programming the
EDSAC I. That was my first experience of computers.

On my return Tom asked me to write test programs (spelled programmes
in those days) for the Mark I computer which was then being installed by
Ferranti in its own new building on the university campus. At first the test
programs frequently reported faults, but after a time it seemed that the
machine had learnt “to do” them. In reality inherent errors in the machine,
mainly caused by incorrect wiring, were being corrected as I went along
by the commissioning engineers.

There were virtually no circuit diagrams then, so the test programs
proved to be useful for locating the various parts of the machine — you
just unplugged a valve and observed where the program reported an error.
The Mark I had 4000 valves, used cathode ray tube storage and consumed
27 kilowatts.

About one year later I was about to build a small valve-based computer
when transistors started to become available in the UK. This presented an
excellent opportunity to investigate the possibility of building a transistor-
based computer.

The point contact transistor had been announced by Bardeen and Brat-
tain in 1948, but there had been reports of attempts to control the current
flow in a crystal and cat’s whisker before the war. There was some limited
success, but the polycrystalline materials used, like galena, were not very
suitable.

I obtained my first samples of point contact transistors early in 1953.
These were the LS737 crystal triodes manufactured in Somerset by STC.
I was fortunate in obtaining a good supply of them— perhaps 80% of the
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total output. They were supplied in boxes of 10, and I can remember
being very pleased when I received 70 in one day!

There were other sources: the GET2 from GEC and the OC511 from
Mullards. It was necessary to test the transistors on arrival: in the earlier
batches, up to half did not work at all, while many of those that did work
had very varied characteristics.

The point contact transistor has a special property. In those days we
referred to the alpha current gain, which was the ratio of IC (collector cur-
rent) to IE (emitter current). The emitter was used as the input electrode
and the collector as the output. The third electrode was the base, which
was connected to +2 volts through a resistance.

Raising the emitter above the base turned on the transistor: assuming
a typical alpha value2 of 3, with 1 mA injected into the emitter, the re-
sulting current into the base was 2mA. This current flowing in the base
resistance caused the base to fall with respect to the emitter, and the
cumulative positive feedback effect turned the transistor on hard. The
collector accordingly rose from its negative off value nearly to ground. A
single transistor could thus operate as a two-state device.

Unfortunately transistors could be rather reluctant to turn off, as they
exhibited charge storage, and it was necessary to clear the charge to make
them turn off. The turn on could be accelerated by increasing the emitter
current, but this had an adverse effect on the turn off time, so a compro-
mise was necessary. Typically a transistor would turn on in just under one
microsecond and turn off in two microseconds. The clock frequency was
accordingly chosen as 125 kilocycles per second.

Little was known about how the transistor actually worked, but it was
thought that there was a multiple junction. The LS737 transistor was
constructed from a small piece of single crystal n-type germanium mounted
on a metal contact forming the base and two wire electrodes (emitter and
collector) touching the surface.

To make this work as a transistor it was necessary to “form” it, by
charging a 0.1 microfarad condenser to about 20 volts, and discharging it
between the collector and base. Germanium was obtained from flue dust
and there was some concern at the time that, should these new-fangled
devices catch on, there would be a scarcity.

1The code numbering of transistors followed that used for thermionic valves, with O denoting no
filament and C denoting three electrodes.

2Junction transistors have an alpha of just less than unity.
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An important consideration in the design of the transistor computer
was the choice of memory. The Mark I used cathode ray tube memory,
but this did not seem suitable for a transistor computer, because the high
voltages involved would be hazardous to transistors and also because of
its large physical size.

I managed to acquire a magnetic drum which had been manufactured
by Ferranti. This took the form of a bronze wheel 11.5” in diameter
rotating on a vertical axis at just under 2500 rpm. The wheel was 4” high,
and it had a nickel plated recording surface. It was a precision device
with an eccentricity of about a thousandth of an inch, which resulted in a
two-to-one amplitude variation in the read-out signal.

The head was positioned with a screw adjustment. The head was wound
in until a “ping” was heard and then withdrawn slightly. The major timing
waveforms were derived from tracks on the drum. The clock was produced
by a track with 3072 pulses around the circumference. This corresponded
to 64 words of 48 bits.

Creating the clock track in the first instance was quite tricky. A single
pulse was recorded by discharging a capacitor through the head when the
drum was stationary. Then, with the drum rotating, an oscillator was
tuned to produce a signal corresponding to 64 pulses per revolution.

This waveform was then divided by 64, and the resulting waveform was
locked to the output from the track with the single pulse per revolution. It
was then possible to record a track with 64 pulses per revolution, and the
process was repeated until the clock track with 3072 pulses was obtained.

Like the Mark I computer, the transistor computer used serial arith-
metic for reasons of economy. Several working registers were required, and
whereas transistor shift registers could have been used, the cost would have
been prohibitive. So it was decided that regenerative tracks would be used
for the registers.

A read head was mounted a short distance from a write head, in the
direction of motion. The output from the read head was fed to the write
head through appropriate gating circuits to form the regenerative track.
For a single register the spacing was only about half an inch, but negligible
head-to-head feedback was experienced.

The problem with the magnetic drum store was access time which was,
on average, half the time of revolution. A one-plus-one address code was
used, with each instruction containing an operand address and the address
of the next instruction. By careful placement of operands and instructions
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around the circumference, it was possible to reduce the average access
time.

The first operational computer had 92 transistors, and executed its
first program in November 1953. It has since been recognised as the first
transistor computer3. About six point-contact diodes were used with each
transistor.

Shortly afterwards the machine was extended with a multiplier and
eight B-registers (or index registers). This machine had 250 transistors
and 1357 point contact diodes, and consumed 150 watts. The operation
time for the division subroutine was about a second, and that for square
root 1.3 seconds. The mean time between failures was about 90 minutes:
these were almost always due to memory problems. The transistor machine
was comparatively small, and was constructed with tag strips mounted on
a Post Office rack, in contrast to the Mark I computer which occupied a
large room.

In constructing the transistor computer I was ably supported by Doug
Webb, a Canadian and a Bugatti enthusiast, whom I was very pleased to
meet again in 1992. Ben Delaney, a technician, did much of the construc-
tion.

Two young engineers, John Bailey and Peter Cloot, came to work with
me from Metropolitan-Vickers Electrical Company. This proved to be
a very effective form of academic-industrial collaboration as John Bailey
later returned to Metrovick to construct the MV950, a commercial version
of the transistor computer.

The company produced six of these machines for its internal use, and
they were employed extensively in engineering and research departments
for everyday design calculations. The machine was a close replica of the
university machine and also used a drum store. It is believed the MV950
was the first transistor computer to become commercially available.

Metrovick merged with BTH (British Thomson-Houston) and other
companies to form Associated Electrical Industries (AEI). I was retained
as a consultant and helped with the design of the 1010 computer. John
Gladman was the Chief Engineer of the Computer Department and was
supported by John Bailey and Ron Foulkes.

The 1010 was quite an impressive machine for its time and was one of
the first to be used for what was called Data Processing. The company

3By Simon Lavington in his book “Early British Computers”, published by the Manchester University
Press.
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secured an order for a twin 1010 installation for stores management at
RAF Hendon, a major system for its time.

I joined AEI in 1960, in the first instance to develop transistor versions
of electromechanical instrumentation, but after one year I became one of
the founder members of AEI Automation Ltd. This company was set up to
sell computer systems for industrial monitoring and control applications,
considered to be a growth industry. We based our systems on the 1040,
an industrial version of the 1010 with the incorporation of an interrupt.
Ferranti was also very active and successful in this field with the Argus
computer.

One of the most interesting and successful installations we supplied was
the Alarm Analysis System for Oldbury nuclear power station near Bristol.
It had two reactors each with about 1500 alarm annunciators— little lights
on the wall. When a fault occurred, 100 or more of these would light and
a bell would ring. The operator had to react quickly to determine what
had caused the fault, and if the problem could not be resolved he would
be obliged to shut down the reactor, which was very expensive.

The Alarm Analysis System was an expert system which determined
the relationship between the alarms that were lit and established the prime
cause, the extent of the problem and any dangerous conditions. It also ad-
vised the operator on the best course of action. The results were displayed
on a cathode ray tube system designed by Harold Hankins.

The contract specified that spares should be available for 30 years, a
period that has only just come to an end. The system is of course no
longer in use, but it did give valuable service over many years.

Returning to developments at Manchester University, reasonably fast
junction transistors had become available by the late fifties, and these
formed the basis of the Atlas computer. This machine was an outstanding
technical success. It had many innovative features including paging and a
fast carry propagate adder. This latter used the junction transistor as a
switch, exploiting the low impedance between the emitter and collector of
a saturated transistor.

The late Keith Bowden and I had the job of developing the read only
memory for the Atlas. This made use of transformer coupling, with the
primary formed by a pair of wires connected as a terminated transmission
line and driven by a transistor. The secondary was a loop of wire feeding
into a transistor amplifier. To store a “one”, the primary and secondary
were coupled by a small ferrite rod approximately 1mm in diameter and
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6mm long. A copper rod was substituted to store a “zero”.

The store was constructed using a mesh, about 4 feet by 8 feet, woven
from enamelled covered wire. The mesh was mounted on two sides of
a paxolin sheet covered with plasticine. For every digital cell a return
magnetic path was formed using another ferrite rod. A small jig was used
to load the ferrite rods into the mesh, and this required that the mesh
had to be uniform. The mesh was made by a wire weaving company
in Warrington, and early samples exhibited some non-uniformities which
were caused by tea breaks! The memory had a capacity of 8K words of 52
bits and an access time of 100 nanoseconds.

Editor’s note: this is an edited version of the talk given by the author
to the North West Group of the Society at the Museum of Science and
Industry, Manchester, on 13 December 1994. RL Grimsdale is Professor
of Electronic Engineering, University of Sussex.

Editorial fax number

Readers wishing to contact the Editor may do so by fax, on 0181-715
0484.
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Information Engineering: Exactly Where Are We?

Gordon G Scarrott

This article provides a philosophical backcloth to the research
projects described by the author in the last issue of Resurrec-
tion. It considers the precise nature of computers and those who
work with them in the contexts of science, engineering and tech-
nology generally. This line of thought leads to the fundamental
conclusion that there is as yet no science of information, and
this is the major reason for the problem known as the Software
Crisis. The author advances some ideas of his own as a starting
point for the development of a scientific basis for computing.

A classic foundation for the formulation of military operational plans
is that they must be explicitly based on an appreciation in depth of the
current situation. This principle applies equally to the formulation of
business plans.

There are now many business and academic organisations whose oper-
ations are concerned with the design, supply and use of computers. This
article is intended to offer an appreciation in historical depth of the cur-
rent situation in their field of operations. The emphasis on historical depth
is necessary to take into account the common experience that those who
ignore history are doomed to repeat it.

It is first necessary to define the proper meaning of the familiar but
overworked words Science and Engineering, in order to clarify the meaning
of the perhaps unfamiliar phrase Information Engineering.

Science is a coherent collection of concepts and relationships that enable
us to understand the structures and operations of some, but not all, of
observed nature. Scientific research is driven by curiosity regarding aspects
of nature that we do not yet understand.

Sometimes, but not necessarily, the understanding derived from scien-
tists’ efforts is eventually found to be useful. Even when this occurs, the
full extent of the utility cannot necessarily be foreseen when the scientific
work is undertaken.

For example Faraday was not trying to invent power stations when he
formulated his laws. He was simply trying to understand whether and how
the observed phenomena of electricity and magnetism might be related.
When he succeeded so splendidly, others whom we recognise as engineers
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devised practicable dynamos and electric motors based on Faraday’s laws.

An Engine is any ingenious and useful artefact. This definition would
include a Roman catapult regarded as a siege engine, so that it is much
more general than the conventional use of the word to refer to the power
unit of a motor vehicle.

An Engineer is an ingenious fellow who justifies his existence by devis-
ing, building or operating an engine to serve his fellow citizens. He expects
to be paid for his services, so engineering is a business, unlike science which
has long been recognised by the older universities to be one of the arts.

This clear distinction refers to the human activities known as Science
and Engineering, but not to the people engaged in them. It is quite normal
for a scientist to stimulate his curiosity by studying real problems in society
and conversely for an engineer to allow his curiosity to be aroused when
he encounters an aspect of nature for which science has not yet formulated
the laws.

When the first computers were devised they were mostly used to carry
out arithmetic operations on numbers, so it was appropriate that they
should have been known as Computers. The situation has now changed
profoundly, and current machines known as computers spend more of their
time operating on words than doing arithmetic operations on numbers.

I suggest, therefore, that we should refer to present day machines as In-
formation Engines, a term that includes the software and correctly implies
that the essential common purpose for which information engines are used
is to help people to handle information in its full general sense. Conse-
quently those engaged in the supply and operation of information engines
should be known as Information Engineers.

Every engineering product can usefully be regarded as a synthesis of
Ends and Means. The engineer starts by formulating an understanding
of the ends he is trying to achieve, stated in terms that are naturally
meaningful to the ultimate user. He then selects the means to achieve
these ends in the most cost-effective way. The ultimate user does not
concern himself with the detailed choice of technological means, but he is
very aware of their commercial consequences, such as effectiveness, cost,
reliability and availability.

The catalogue of available means is conventionally known as Technol-
ogy, so technology is essentially an engineering term, and technological
development must therefore necessarily be justified by foreseeable utility.
It is unfortunate that politicians and journalists so often bracket together
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the two words Science and Technology, which refer to contrasting activi-
ties, and use them together as if they were a single word.

For example there is a Commons Select Committee on Science and
Technology, and also a Government organisation known as OST, for Office
of Science and Technology. It is difficult to see how OST can serve a useful
purpose because if its members devise a policy to foster Technology it
would kill Science, and vice versa!

Most technology is founded on laws of nature that have already been
revealed by scientific endeavour. However sometimes engineers in their
pursuit of marketable utility stumble over aspects of nature for which
science has not yet formulated the laws.

For example the first steam engines were devised and demonstrated
at the beginning of the eighteenth century, but the science of thermody-
namics was not formulated until the middle of the nineteenth. So for 150
years the technology of steam engines was based on experience only, with-
out any illumination of design objectives from science. When eventually
thermodynamics was sorted out the design of heat engines made rapid
progress.

There is an important distinction between academic and industrial re-
search. The purpose of academic research is to push out the frontiers of
our understanding of nature, so that scientific endeavour is motivated by
curiosity, supported by patronage in its classic sense of investment without
a foreseeable return, and controlled by committees of scientific peers.

The ultimate function of industrial research, however, is to help the
company that supports it to survive in a competitive world. Few commer-
cial managers would be willing to support research projects whose only
justification is the satisfaction of curiosity.

However they are well aware that market requirements evolve by a Dar-
winian process of mutation and natural selection in the market place, and
that their company should cultivate an awareness of foreseeable changes in
market requirements and be prepared to survive such changes and perhaps
take commercial advantage from them.

Consequently a proper function of industrial research is to identify cus-
tomer needs that have not yet been recognised or met in the market place
and explore ways of meeting such needs. This function is quite distinct
from the process of industrial development which usually concentrates on
tactical improvements to established products. So the activities gener-
ally referred to as Industrial Research and Industrial Development require
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different personnel, communications, and management styles.

It is unfortunate that so many business men in engineering companies
whose training was primarily in accountancy have failed to recognise the
functional distinction between industrial research and industrial develop-
ment. They refer to both these activities by the conventional term R&D,
used as a single word.

The commercial consequence of this folly is that business managers in
engineering too often give inadequate attention to innovation. Another
consequence of these definitions is that science is concerned with natural
objects with the object of formulating the laws of nature. A computer
however is an artefact, not a natural object, so the conventional phrase
Computer Science is, strictly, a contradiction in terms!

The practice of every branch of engineering is illuminated by an under-
standing of the relevant laws of nature. For example bridges seldom col-
lapse essentially because there is a well established science of the strength
of materials, but we do not call it Bridge Science. The common use of the
term Computer Science demonstrates that those who use the term have
not understood the relationship between Science and Engineering.

Upon considering my own career in industrial research, my main con-
clusion is that the example of the history of heat engines— that engineers
designed them without the benefit of any illumination of their objectives
from any science of heat—has been repeated in our own time in the story
of information engines. They too have been introduced and evolved to
their present stage without any science of information.

However we have good reasons for expecting that we will not this time
have to wait 150 years for the situation to be resolved. Already in July
1994 an international meeting of scientists from a wide range of disciplines
was held in Madrid with the explicit objective of formulating foundations
of information science.

To draw attention to the situation I have written a paper, which was
published in the IEE Journal of Science and Education (Aug 1994 Vol 2
Number 4). It was then reprinted in the Journal of Information Science
(Vol 20 Number 2 1994)—so I have reason to believe that at least one
person has read my paper and found it to be of interest!

This is not the place to repeat the arguments outlined there in full, but
I will try to put the essence of the matter in a few sentences.

I am sure readers will be well aware of the essential distinction between
a System and a Subsystem. When we formulate the information exchange
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conventions between them we make the subsystem fit the system, not vice
versa. We all know that if we try to match the system to the subsystem
we run the risk of sabotaging all the other existing subsystems and all hell
will be let loose.

In established practice we regard the computer as a system and periph-
erals and communications as subsystems. Accordingly, we assume that we
have complete freedom to shape the computer design as we please, usually
to match the latest technological fashion.

If however we start by considering the role of information in human
affairs we are forced to the conclusion that human society is essentially an
information system that has evolved by a Darwinian natural selection pro-
cess for millions of years. A computer should be recognised as a subsystem
to this existing human information system.

Some natural properties of the human social information system can
be observed and understood, but cannot be changed. I conclude that the
widely recognised unsatisfactory state of the software development process
can be attributed to the fact that established system design practice has
been evolved mainly by tactical considerations, ignoring natural properties
of information derived from its role in human affairs. Consequently we
have sabotaged many existing subsystems in the human social information
system and all hell has been let loose.

If we endeavour to formulate an understanding of the place of mankind
in the evolution of life on earth we can immediately observe that mankind
is certainly the most successful species. Like many other evolutionary
successes mankind is a specialist, but it is far from obvious what is our
speciality.

When Linnaeus formulated his classification system his choice of the
term Homo Sapiens implied that our human speciality was wisdom, an
assumption that does not accord with most recorded human history. I
suggest that the unique achievement of mankind is to have evolved natural
language for rapid communication of concepts of far deeper subtlety than
the grunts of other creatures.

Evidently the use of natural language must have conferred decisive sur-
vival value since otherwise it could not have survived natural selection.
Most probably that survival value arises from practising our human spe-
ciality, which can be described most concisely as dynamically adaptive
social organisation — for which communication by speech is obviously es-
sential.
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Consequently I suggest that an appropriate term for the place of mankind
in life on earth would be Simia Ordinans—the organising ape. It can cer-
tainly be observed that mankind can organise almost anything by using
his information handling skills, although his choice of what to organise is
not always good!

With this view of our human speciality it follows that before embark-
ing on a computer system design we should seek to understand observ-
able features of the way that we construct meaningful messages in natural
language to operate our dynamically adaptive social organisation. An ob-
servable statistical feature of natural language text, known as Zipf’s law,
has been known for nearly a hundred years but its significance for systems
engineering has been overlooked.

The only credible explanation of Zipf’s law— that the distribution of
the usage of meaningful symbols (words) in every natural language is hy-
perbolic— is that meaningful text is constructed by a recursively defined
process that has no sense of scale. In other words, meaningful text is an
interdependent sequence of words and/or meaningful texts.

This formal definition is a consequence of the way that people instinc-
tively handle information, since it offers a way to deal with arbitrarily
complex matters by dividing them into manageable parts so that it is not
necessary to consider a complex matter all at once.

We also use the recursively defined technique when we create a human
organisation, or write a program for a computer. Many of the hazards
of program development arise when a program A, describing an aspect of
the overall problem that is currently being considered by the programmer,
initiates another program, B, referring to a distinct aspect of the overall
problem that arises later in the mind of the programmer.

When this occurs many of the hazards arise from store allocation, since
for A to communicate with B it is necessary for some storage addresses
to be accessible by both programs so that they can communicate with
one another, while other space should be accessible by B only, so that A
cannot accidentally sabotage B.

John Iliffe, my former colleague at Ferranti, showed in the sixties that
these requirements can be achieved provided that the system design is
shaped so that the structure of the information can be explicitly repre-
sented in the hardware of the system. His proposition was valid 30 years
ago and it is still valid.
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The Software Crisis has already been widely recognised but there are
few credible proposals on the table to solve the problem. There is still
a very long way to go to develop a valid and credible understanding of
the natural properties of a meaningful set of symbols such as a computer
program, but with the benefit of our present understanding of such matters
we can recognise that in the evolution of computer system designs two
fundamental errors occurred.

The first must be attributed to von Neumann, who made no attempt to
represent the organisational structure of data and processes. We should
not criticise von Neumann for this oversight so early in the history of
information engineering, but perhaps we could wish that two generations of
system designers had thought more carefully about their design objectives
before following von Neumann’s example.

The second error occurred when time sharing systems became fashion-
able and all efforts were put in to ensure intraprogram protection, while
the equally important need for interprogram protection was ignored.

Perhaps those systems engineers who are trying to banish the software
crisis should reconsider Iliffe’s techniques and start by abandoning these
hallowed practices.

If there is anyone reading this who is active in the academic world and
who recognises that there is a need to formulate a science of information,
they may be interested in some questions raised in my paper that I could
not answer but, if answered, might help to progress the formulation of a
science of information.

For example I pointed out that in the classic paper by Shannon and
Weaver (The Mathematical Theory of Communication), the well estab-
lished measure of the communicating power of a set of symbols, measured
in bits, is an entirely valid measure of communicating power as Shannon
intended, but it should not have been termed Information, since it did not
take into account the natural recursively defined structure of a meaningful
set of symbols.

I therefore proposed the term Useable Entropy (UE) to take into account
the structure of meaningful text, quite distinct from
Communicable Entropy (CE) as defined by Shannon. I gave some ob-
vious reasons why UE is much less than CE but I could not propose a
mathematical relationship between UE and CE.

However it ought to be possible to shed light on the question by ex-
perimental determination of the slope of frequency/rank plots for n word
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groups, and counting the total number of n word groups that exist in a
large sample of meaningful text. Evidence obtained in this way might stim-
ulate theoretical analysis to account for the measured results. If by such
activities it is possible to establish the relationship between UE and CE it
would supersede the notoriously useless figure cost per bit as a measure of
technological cost-effectiveness of storage techniques.

Editor’s note: this is an edited version of part of the talk given by
the author to the Society at Birkbeck College, London on 22 March 1995.
Gordon Scarrott is a Fellow of the Royal Academy of Engineering.

Internet addresses

Readers of Resurrection who wish to contact committee members via
electronic mail may do so using the following Internet addresses.
Chris Burton: chris@envex.demon.co.uk
Martin Campbell-Kelly: mck@dcs.warwick.ac.uk
Dan Hayton: Daniel@newcomen.demon.co.uk
Adrian Johnstone: adrian@dcs.rhbnc.ac.uk
Tony Sale: t.sale@qufaro.demon.co.uk
Robin Shirley: r.shirley@surrey.ac.uk
Doron Swade: d.swade@ic.ac.uk

Resurrection Autumn 1995 17



How We Made Atlas Useable

David Howarth

When Manchester University started the design of the Atlas com-
puter in the late fifties, it had become apparent that there should
be software within a computer designed both to optimise the use
of the machine’s resources and to insulate users from the need
to initiate routine machine operations.

So Atlas was the first computer to have what we now recognise as
an operating system, though the term did not come into use until
later, when IBM popularised it. The Atlas operating system was
actually called the Supervisor. This article describes the thinking
behind its development.

On Atlas, I/O operations were overlapped to save the processor having
to wait for devices such as the paper tape reader. So the operation of
reading a character consisted simply of starting the reader and then moving
on to execute the next instruction (rather than waiting while the reader
transmitted the character to a buffer) and then interrupting the processor
to say it had done so. Today, every computer works that way. Atlas was
the first.

If the Supervisor had merely done that— initiate the Read Character
process, then carry on executing other instructions — it would have been
hopelessly inadequate. Computer users do not wish to operate at that
level of detail. There was a need to provide higher level facilities, such as
Read Record and Print File, via standard software which automatically
carried out lower level activity such as reading characters.

There were operational considerations as well. Atlas was not a desktop
machine: it was a roomful of cabinets, which made it difficult to know
exactly how it was running. Operators needed help to tell them what was
going on and when to take actions such as loading magnetic tapes. They
also needed a log of system activity, so that the users could be charged
appropriately.

Finally, there was a need to use the machine’s resources effectively, that
is to maximise throughput and minimise response times. Not to make
sure the processor is running say 80% of the time doing useful work —the
literature of the time tended to focus on this metric, but it is not the main
objective. My original boss at Ferranti, the late Stanley Gill, brought
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this home to me by arguing that you don’t apply that principle to a fire
extinguisher, so why to a computer?

When I first joined Ferranti, Stanley directed me to work on the com-
piler compiler (effectively a means of generating a compiler in a hurry)
alongside Tony Brooker. While doing this I heard about the Atlas Super-
visor, and decided I would rather work on that. Stanley was not keen.

“It might sound interesting, but it is all done in hardware”, was his
initial response. What he meant was that the hardware played a major
part in helping it function, which it did— it was designed to; that proved
a stimulus rather than a deterrent. His next objection was that someone
(Bruce Payne) was already working on the Supervisor, and he didn’t think
we needed anybody else. Both responses show how little even experienced
computer scientists of the time understood the role that operating systems
were to play and the problems of constructing them.

I eventually persuaded Stanley that two people might be usefully em-
ployed on what was to become a gigantic project. It was a momentous
decision, because I stayed working on operating systems for virtually my
entire time with first Ferranti, then ICT, and then ICL.

The two man team of Bruce and myself never grew much larger: our
maximum size was seven people. I recall an occasion when Peter Hall,
facing questions about the slow progress of development, called a meeting
of the team in his office at 1030 one morning. The four of us assembled in
this palatial conference room dead on time: we waited, and waited, longing
to get back to our desks, when finally Peter came in and said “Where is
everybody?”. When we told him the entire operating system development
team was in front of him, he was shocked. That is how the team got up
to seven: it virtually doubled overnight.

Our first task was to evolve an operating strategy for using the com-
puter. People do not suddenly dream up new ideas: they evolve from past
experience and history.

In this case, our experience was of a machine room full of gigantic
machinery. Users queued to get access to it (or they had a booking system
to avoid actually standing in a queue, but this was still a logical queueing
system). When it was your turn, you entered the machine room, unpacked
your briefcase and settled down to use the machine. When your time was
up you had to leave. If you were lucky, you took some results with you,
but usually you were unwilling to leave because you had not had enough
time, or because you had come across a mistake in your program. So you
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had to rejoin the queue.

This process was refined by experience. To reduce the comings and
goings, a system was evolved whereby jobs to be run were put in an in-
tray: an operator would in due course take the job, enter it to the system,
take the results and put them in an out-tray.

This procedure allowed jobs to enter the machine room in batches,
rather than one at a time. That in turn increased the time the computer
spent processing, because input activity occurred only once per batch,
rather than once per job. Both the Ferranti Mark I and the Mercury were
run in this way.

Then the Ferranti designers realised that the factor limiting perfor-
mance was not the number of times material entered the machine room—
this can be minimised simply by increasing the number of jobs per batch.
The problem was that the input peripherals— punched card and paper
tape readers— operated very slowly relative to the processor.

The way to speed up I/O was to avoid use of paper tape or punched
cards as much as possible, by relying instead on higher performance input
subsystems such as magnetic tape.

IBM had developed what became known as the Fortran Monitor system,
which can be regarded as an embryonic operating system implemented in
hardware. The operator took the input and entered it to a small satellite
computer, typically an IBM 1401, which output the data onto magnetic
tape. The tape was then fed into the principal computer, a 709 or 7090.
That in turn produced its output onto magnetic tape, which was fed back
into the 1401 for final output onto whatever was required—punched cards,
a paper tape, or a line printer. This arrangement proved quite popular,
at least among scientific users, as it certainly speeded up throughput,
although at some cost in response time.

This was the background when we were considering what should be the
operational characteristics of Atlas. We had to rule out the possibility of
developing a multi-access system, because we didn’t have a disc subsystem,
or anything like it. (The first disc system, IBM’s original Ramac, did not
appear until late 1956.) To support multi-access, you need somewhere for
storing bulk information: if you simply gave your users character-based
terminals, they would spend all day entering their data. So multi-access
systems did not arrive until later.

So our thinking focussed on what is now known as a spooling sys-
tem. “Spool” was an acronym coined by IBM, standing for Simultaneous
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Peripheral Operation On-Line, and introduced with the 360 series, but the
concept was introduced by Ferranti on Atlas and Orion.

Our concept was to take the type of IBM Fortran Monitor system I
have described, incorporate it into one system instead of requiring transfers
between two separate computers, and get it to work automatically. To this
we added refinements such as software recognition of what a batch meant.
With all previous systems the computer had to wait until the operator fed
it the contents of an in-tray: if that only happened once a day, then the
users had to wait all day for their output.

Building this functionality into software allowed a more flexible inter-
pretation of the batch concept. A job that was input could be run right
away (especially if it was a small one), or queued for processing later (es-
pecially if it was a long one). Furthermore, you could have more than one
job being executed at any one time—the process that became known as
multiprogramming.

Some people understood the term multiprogramming to mean that the
computer was doing many different jobs at the same time, and that there-
fore you get more work done. This was not the case. There was only one
element of the machine actually executing instructions, and it could only
process one instruction at a time.

In practice it was only occasionally you wanted to interleave one job
with another, and the level of multiprogramming on Atlas was generally
very low —only two or three jobs at once. Many jobs, both long and short,
were not limited by waiting for peripheral activity, as they were protected
by the spool buffers.

Nonetheless the multiprogramming principle was implemented in the
Atlas supervisor. And that in turn created a need for an online scheduler,
which decided in what order jobs should be executed.

The spool buffer was one element heavily influenced by past history.
Our plan was for a system which executed jobs via a sequence of slow
input, fast storage, execute phase, fast storage and slow output. So what
should be used for fast storage?

In answering this question our designers felt that the IBM Fortran Mon-
itor system was a good model. It required a lot of batching, but the idea
of moving from slow I/O to magnetic tape and back was very attractive.
So the initial plan was to have a magnetic tape device at each end of the
system plus one for each program being run, with operators transferring
tapes from deck to deck as required.
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The problem with that was that it required an inordinate number of
tape decks. There were only eight on Atlas, so people running large I/O
bound commercial jobs could wait a long time for available resources.

Furthermore, if you looked at the machine you could observe that most
of the decks were doing nothing most of the time. A deck was capable of
operating 20 times faster than a paper tape reader, and if it only ran for
5% of the time this was not very cost-effective.

The next idea was a logical consequence of the design objective that
Atlas should be a supersystem—more powerful than anything yet seen,
with an extremely fast processor, a vast main store and a vast drum store.
The combination of core memory and drum became known as a one-level
store, because it could be addressed as if it were one logical unit.

So the idea was to use that one-level store to keep the spool buffers,
instead of relying on magnetic tape. The store would logically be divided
into two parts, one for the spool buffers and the other for executing pro-
grams.

The problem was the size of the main store. The designers were de-
lighted with it, because it was bigger than anything we had ever had. The
size was 128 kilobytes (Kb) —even that’s an exaggeration, as each “byte”
only contained six bits, but call it that. Today mainframes have that
number of megabytes of main store, and still people want more. We all
know the story— software expands to fill the space available. So it quickly
became apparent that the store size was not adequate for spool buffers as
well as program execution.

What we really needed to do was to extend the main store onto disc.
But all we had was magnetic tape.

The magnetic tape system was organised in a very unusual way, rather
like disc, in enormous blocks of 4Kb. The tapes were pre-addressed— that
is, written before use with a set of fixed length blocks with an interblock
gap between. Each block had a start marker, an end marker, and an
address.

So you could search for a specific block, bring it into memory, and read
it or overwrite it without affecting the next block. With most magnetic
tape systems of the time you couldn’t do that: you started at the front
and wrote consecutive records, just like an audio tape. So our tape was in
some ways like a disc, though it was slow and the seek time was enormous.

Since it was like a disc, you could use it like a backing store—search
for blocks, read those blocks, wind the tape on or back and write blocks.
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Some of my colleagues, such as Ian Pyle who was familiar with the Fortran
Monitor system, could not believe this was practicable, but some simple
sums prove the point.

Filling one block of tape using a slow input device took about 10 seconds
on Atlas. That is a long time, but they were enormous blocks. If you have
n such devices, you can set aside n blocks of store for data coming in from
them, sequentially, and another n blocks of store dedicated to information
waiting to go to tape.

That is not terribly expensive. You can keep the system occupied by
writing to tape every 10 seconds. Those n blocks set aside for the slow
input devices could only become available every 10 seconds. During that
time you can move a lot of tape— over 200 blocks worth.

So the way you could operate was to write blocks to tape every 10
seconds. While the n blocks are being refilled by the input devices, the
tape is idle, so you can move to a different part of the tape 100 blocks
away, pick up useful information and give it to the execute stage, and
then move back in time for the next write operation. Those 100 blocks
contained a fair amount of information.

You would still get problems with something exceptional. If you had a
job with an input file that occupied thousands of blocks of tape, it would
take several minutes to read it all in. During that time everything would be
piling up in main memory and there would be chaos. For those situations
we decided to go back to the Fortran Monitor system.

For some applications we could give the users a tape, and they could
put the data on serially. So we arranged a system for users with really
long input streams so that they could trickle the data slowly onto magnetic
tape themselves. We would subsequently read it on off the tape at tape
speed. This was acceptable so long as everybody wasn’t doing it.

The software needed to control these processes interacted with the hard-
ware. The Atlas processor had a lot of advanced features. It was multi-
state: you could run it in three different states, called main, extra-code
and interrupt. Main was employed by users for executing their programs,
extra-code provided library procedures (such as the instruction for Read
Next Record), and interrupt handled the low level I/O devices.

Connected with the processor were a variety of stores which could be
used differently in the different states. The main store could be accessed
by users or by the Supervisor, though in practice the Supervisor used it
rarely. This was because there were some parts of the store that were
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dedicated to the Supervisor’s use.

These included a read only memory, which was large for those days at
64Kb. It was used primarily for the code and the test routines. Then
there was the Random Access store, used for data, which could hold the
princely total of 8Kb. Finally there was the V-store, for I/O registers.

All of these elements together formed the main store, which was supple-
mented by the drum, and together these made, as I have said, a one-level
store. Today we would describe this by saying that a data item has a vir-
tual address which can be mapped to either the main store or the drum.
Only one address, not two, as was the contemporary practice, one for
the main store and one for the drum, which meant you had to program
transfers between them.

The one-level store is now universal. We did not call it virtual address-
ing—that was a term invented by IBM. They claim they invented the
concept in 1972, but the idea was there in Atlas in 1962.

But if the processor design was very advanced, the I/O interface was in
comparison primitive. The software could do all the basic things, but we
had not catered for the fact that I/O devices behave peculiarly sometimes.
At the Atlas inaugural ceremony at Manchester University in 1961, this
produced some embarrassing moments.

We had developed a demonstration to show how the system worked. We
had set up several desks, each equipped with its own paper tape reader
and punch. Our distinguished visitors were invited to use these to run
elementary programs: for example they could type in their name and the
machine would recognise it and output it not only onto a local paper
tape punch, but also on a teleprinter where they could see it. We had a
running commentary that said, for example, “Desk 2 start: Welcome Sir
John Cockcroft: desk 2 end”, as Sir John was being given the piece of
paper tape with his name on.

That was the plan: unfortunately things didn’t quite turn out like
that. Occasionally something went wrong, and what actually appeared
was “Welcome Sir John Cock desk 3 starroft...”, which seems funny now
but didn’t go down too well at the time. This was the first example of
what became known as a “Supervisor Incident”.

What caused this problem was that occasionally the teleprinter would
stop working for no apparent reason. Provision was made in software
for restarting it when this occurred, at the point where it had left off.
Unfortunately our procedure for doing so was logically flawed, in a way
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that was very hard to identify (but very easy to fix once we’d done so).

Supervisor Incidents became a measure of reliability and of progress in
software engineering— at any one time, there were up to 90 or so incidents
awaiting attention.

How effective was the Supervisor? As far as performance goes, the
throughput was initially just tolerable, but it got better as time passed,
partly because it influenced the way users and operators behaved. We
ended up, even on the system with the smallest main store, with over 70%
useful processor time, and on some sites we reached 90%, which was very
good by the standards of the sixties and excellent by today’s standards.

Reliability was never as good as performance. Initially it was poor,
largely because of the Supervisor Incidents I have described. It became
tolerable, but was never satisfactory. I don’t know whether it was better
or worse than other systems of the time: when you’re on the receiving end
you tend to take a jaundiced view!

I give great credit to all the staff involved— they started off good, and
ended up excellent. Anyone who could understand what was happening—
who could appreciate, for example, that the teleprinter had stopped when
it shouldn’t—had to be good. The people who worked on the Atlas project
have been exported throughout the world, as scientists, as professors and as
systems programmers. So the ideas developed were widely disseminated,
and who knows how much that contributed to the computer industry’s
progress?

Was Atlas a commercial success? Peter Hall has now retired, doubtless
with his millions, but I’m very sure he didn’t make them out of the Atlas
Supervisor. It only ran at three sites, and I suspect Atlas was really a
commercial disaster. But I think that one of the important things in life is
enjoyment: the kind of enjoyment that comes from intellectual satisfaction,
facing a challenge and meeting that challenge. From that perspective Atlas
gets full marks.

Editor’s note: this is an edited version of the talk given by the author
to the North West Group of the Society at the Museum of Science and
Industry, Manchester, on 12 June 1994.
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Letters to the Editor

Dear Editor,

My father Sid Michaelson, with Tony Brooker and Keith Tocher, built
the Imperial College computers ICCE1 and ICCE2 in the 1950s. I would
very much appreciate any information as to the final fates of these ven-
erable machines. It is possible that some or all of them are held by the
Science Museum or Imperial College.

I would also be delighted to hear from anyone who used them. I have a
copy of “Report of the work of the Computer Group, Part I, Department
of Mathematics, Imperial College” by KD Tocher dated October 1952, if
that is of interest to anyone. There is more information in the Computing
section of the “Centenary History of Imperial College”, and in my father’s
paper in Bowden’s “Faster than Thought”.

Yours sincerely,

Greg Michaelson
Edinburgh
8 June 1995

Editor’s note: letters will be forwarded.

Dear Mr Enticknap,

I was reminded, reading Gordon Scarrott’s article in issue 12, how dis-
appointed I was — for myself and other users— that ICT did not go ahead
and produce Cafs (Content Addressable File Store) in the 1970s.

In 1968 I led a team set up in the Management Services (Comput-
ers) Division of HM Treasury— the genesis of CCTA (Central Computing
and Telecommunications Authority)— to examine the feasibility and eco-
nomics of setting up a Civil Service Personnel Information System called
Prism.

It was soon apparent that a basic requirement was to be able to ex-
tract quickly (ie from a terminal), from the mass of personal data for
half a million Civil Servants, small sets of useful data which could not be
predetermined, both for statistical and personnel management purposes.

In 1968 I visited Gordon Scarrott and was given a demonstration of
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Cafs. I realised at once that it could go a long way towards meeting our
information retrieval needs by means of hardware, and I subsequently tried
hard to persuade ICT to see how important it could be, not just for Prism
but in many business and administrative systems. However, I had no more
success than Gordon did from within the company.

Subsequently the systems design for Prism1 included two software suites:
a user’s information retrieval language Pirl2 and a database called Countflow3.
The latter was a “date sensitive” totally inverted file which could provide
change or “flow” information as well as stocks. Peter Bellerby’s paper out-
lined Cafs and looked forward to its adoption during the course of Prims
development. He did not believe this would effect Pirl, that is the user
interface.

Yours sincerely,

CP Marks
Banstead
Surrey
9 June 1995

Dear Mr Enticknap,

With reference to issue 12, summer 1995 of Resurrection, page 8, Harry
Johnson is indeed correct that the packages for the prototype Pegasus
were made by subcontractors. As I recall they were made by Costain
John Brown, a firm that up to then I had regarded as builders, not elec-
tronic engineers! But they had some such activity near a London railway
terminus —Waterloo, Cannon Street, or perhaps London Bridge.

The fact that I don’t recall Racal being involved doesn’t mean they
weren’t.

Yours sincerely,

D Hogg
Munich
Germany
20 July 1995

1“Manpower planning in the Civil Service”. Civil Service Studies No 3, HMSO 1976. (See Chapter
13, Data Systems & Classification, by CPH Marks.)

2“Interrogating Date Sensitive Files” by FE Randall, Computer Journal November 1974, pp302- 305.
3“Prism Countflow - a date sensitive inverted file” by Group Captain PA Bellerby RAF, a CCA paper

for Datafair 1973.
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Forthcoming Events

2-3 September 1995 Bletchley Park V-J Day anniversary
commemorations

11 October 1995 Half day seminar

The Zebra computer. Four speakers, including the machine’s designer
Dr van der Poel. Seminar starts at 1400 hrs in the Science Museum. Please
note date has changed since the last issue. Organised by George Davis.

17 October 1995 North West Group meeting

J Howlett and A Bagshaw will speak on “Getting Atlas off the ground”.

21 November 1995 Whole day seminar

The IBM System/360. Seminar starts at 1100 hrs in the Science Mu-
seum. Organised by Chris Hipwell.

28 November 1995 North West Group meeting

Leonard Griffiths will speak on “Computing at Rolls Royce in the Fifties
and Sixties”.

6 February 1996 North West Group meeting

The Origin and Development of Database Software, by Professor Peter
King.

23 April 1996 North West Group meeting

Industrial Research in the Information Technology Field, by Gordon
Scarrott.

The North West Group meetings will be held in the Conference Room at
the Museum of Science and Industry, Manchester, at 1730. Refreshments
are available from 1700.
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