** Next:** Schedule of topics
** Up:** CS2411 - Subsymbolic Processing
** Previous:** Course Description

Listed below are the relevant sections of the recommended reading and
the supplemental readings for various topics of the course. It is
expected that you will need to read at least one piece of supportive
material for each topic.
**Introduction(Lectures 1):**
- Weiss and Kulikowski (WK) Chapter 1.
**Bayesian Decision and Classification(Lectures 2,3,4):**
- Probability
theory handout, WK Chapter 3.
**Learning theory I: validation(Lecture 5):**
- WK Chapter 2.
**Learning theory II: Generalisation(Lecture 6): **
- none
**Single-Layer Neural Networks (Lectures 7,8): **
- Perceptrons
handout; WK Chapter 4.
**Multi-Layer Neural Networks (Lectures 9 - 11): **
- Backpropagation handout; WK Chapter 4.
**Learning from Non-numeric Data(Lectures 12 - 14: **
- Information
theory handout, WK Chapter 5.
**Non-symbolic Search Techniques(Lectures 15, 16): **
- Handouts.
**Genetic Algorithms(Lectures 17, 18):**
- Genetic Algorithms
handout.
**Unsupervised learning(Lectures 19 - 21):**
- Unsupervised learning
handout.

*Jon Shapiro*

*1999-09-23*