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Applications: TD-Gammon

Tesauro, 1994

TD(λ) learning has been used to produce a very good backgammon playing

program.

Predictor Network: A multi-layer perceptron is used to predict the outcome

of the game from the current board position (originally coded as raw

board position; later hand-crafted features used).

Controller: A program generates all legal moves from the current position.

Predictor network scores them; that with the highest predicted outcome

(J) is the moved used.
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Training: Data consists of sequences of moves from the standard start

position to a result. Program plays itself over and over.

1. Network starts from random state (no knowledge of game)

2. Initially, games incredibly long (100’s to 1000’s of moves versus 50 – 60

moves for typical human game).

3. Later, basic strategies emerge: hitting opponents, building points, playing

safe, . . . .

Results: TD-Gammon 1.0 Contained 40 hidden units, trained for 200,000

games. Plays at strong intermediate level; good enough to win regional

tournaments.

Results: TD-Gammon 2.1 Close to the world’s best player.

Has changed how humans play certain board positions (discovered new

strategies which appear to be better).
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TD-Gammon (cont)

“TD-Gammon has definitely come into its own. There is no question in my mind that

its positional judgment is far better than mine. Only on small technical areas can I

claim a definite advantage over it . . . . I find a comparison of TD-Gammon and the

high-level chess computers fascinating. The chess computers are tremendous in

tactical positions where variations can be calculated out. Their weakness is in vague

positional games, where it is not obvious what is going on . . . . TD-Gammon is just the

opposite. Its strength is in the vague positional battles where judgment, not

calculation , is the key. There, it has a definite edge over humans . . . . In particular, its

judgment on bold vs. safe play decisions, which is what backgammon really is all

about, is nothing short of phenomenal . . . . Instead of a dumb machine which can

calculate things much faster than humans such as the chess playing computers, you

have built a smart machine which learns from experience pretty much the same way

that humans do”

Kit Woolsey, perennial world top 10 backgammon player (ranked #3 when this was written),

quoted in Tesauro, 1995.
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Elevator (lift) Displatching

Q-learning has been shown to find successfull strategies for distributing

elevators among floors in simulations.

The situation: A multi-story hotel with four elevators, filled with people who

want to go from upper floors to the lobby (typically), from the lobby to

upper floors, and between floors (occasionally).

The problem: People can wait a long time if there are too many requests,

not enough elevators, or a poor strategy for controlling the elevators.

Performance criteria: Mean waiting time to get into an elevator, total time

to get to destination, fraction of passengers who wait more than one

minute.
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Drop off requests Pick-up requests

Age of request
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Reinforcement-learning approach

Crites and Barto, 1996. Assumptions

� Each elevator makes an independent decision;

� an elevator cannot pass a floor if it contains passengers wanting to get

off there;

� an elevator cannot change directions until all passengers wanting to go

in that direction get off;

� an elevator cannot stop at a floor unless there is a request there;

� an elevator cannot stop to pick up passengers if an elevator is already

stopped there;

� given a choice of going up or down, go up.

Thus, the only decision occurs when approaching a floor with a pick-up

request, whether to stop or not.
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Crites and Barto used 1-step Q-learning.

Reward: was the mean-squared waiting time between two subsequent

times requiring decisions (discounted).
� Using squared waiting time requires times to be short, but also

penalizes more long times.
� True waiting time not known because number of people waiting at a

stop unknown. They tried two approaches:

1. assumed it was known during training (gave best results)

2. inferred under assumptions about distribution of requests.
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Neural Network: 47-20-2 MLP

Inputs:
� Inputs represented the hall request buttons. Real-valued representation

of wait time; binary representation of pressed
�
not pressed;

� one-of-n encoding of current location and direction of elevator being

controlled;
� coarse-grained representation of location, direction, and speed of other

elevators;
� binary input about whether the elevator was at the highest floor with a

passenger waiting;
� binary input about whether the elevators was at a floor with the longest

wait time.
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Output: State-action value Q.

Two controller architectures: RL1: A network for each elevator (although

one reinforcement signal for all). RL2: A network for all elevators.
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Results

Several conditions. Below is for “down-peak profile” with small number of up
traffic. .

Algorithm ave wait squared wait ave total time percent ¿60s

SECTOR 27.3 1252 54.8 9.24

LQF 21.9 732 50.7 2.87

HUFF 19.6 608 50.5 1.99

RL1 16.9 476 42.7 1.53

RL2 16.9 468 42.7 1.40

SECTOR: A sector-based method, similar to those used in real systems.

LQF: Longest queue first, gives priority to the person waiting the longest;

HUFF: Highest unanswered floor first, gives priority to highest floor with people

waiting.
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Classical Conditioning

References: Moore et. al. 1990; Desmond 1990, Sutton and Barto 1986.

TD-learning was motivated in part by classical conditioning experiments.

Helped to explain some mysteries in that fundamental aspect of animal

learning.
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Classical Conditioning

Unconditioned Stimulus(US): Stimulus which would cause response in

the untrained animal.

Conditioned Stimulus (CS): Stimulus caused response only due to

training.

Conditioned Response CR: The response.

Famous example discovered by Pavlov. Ringing of bell (CS) followed by food

(US) resulted in salivation (CR). Other experimental procedures: CS followed

by puff of air directed at eye cause animal to close eye in response to CS.
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Before condition After conditioning

US

CS

CR

US

CS

CR

Question: how does the CS and the CR become associated across time?
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Blocking
� After conditioning on stimulus A, US is preceded by simultaneous

presence of stimuli A and B.

Result: Not conditioned on B.

� However, if B precedes A, then conditioning on A is lost and US

becomes conditioned on B. (More complicated scenarios also studied).

Question: what prevents the association with stimulus B?
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Blocking Experiments

First 10 trials associate A with the US.

After trial 10

US

CR

CS B

CS A
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Trials 11–20

US

CR

CS B

CS A

Association with A is unaffected Association with B is blocked

US

CR

CS B

CS A

US

CR

CS B

CS A
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Trials 21–35

US

CR

CS B

CS A

Association with B is made Association with A is extinguished

US

CR

CS B

CS A

US

CR

CS B

CS A

CS6482 February 4, 2003 Applications of Reinforcement Learning 18



Slide 18

TD model of classical conditioning

The principles of TD learning can explain these puzzles:

� the animal associates the stimulus with the (discounted) expected future

reward,

� the eligibility for the stimulus to participate in learning persists, decaying

amount λ per unit time.
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A simple neural network model

Inputs Possible stimuli xi � t � .
Output: V represents the predicted value of the response. V � ∑i wixi or

possible related through a sigmoid function.
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Learning Rule

∆wi � α � r � t ��� γ f � ∑
j

w j � t � x j � t � 1 � ��� f � ∑
i

w j � t � x j � t � ��� Xi � t �

Here r is the reward, f ��� � is the output function for the neural network, and

the eligibility trace obeys,

Xi � t � � γλXi � t � 1 �	� xi � t � f 
 � ∑
i

w j � t � x j � t � ���
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This is precisely the TD learning rule for neural networks used in

TD-gammon.

Hebbian like rule, where input activation replaced by slowly decaying

eligibility trace, δ is a difference between outputs at different times.
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How this gives classical results

1. Eligibility trace cause information about CS to persist.

2. Temporal difference rule causes information about the CR (r) to act

during earlier times.
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Learning expected time to a reward
� One aspect of delayed-reward reinforcement learning involves learning

the expected time to wait for the reward.

� This may be useful for determining when the expected reward is not

forthcoming (e.g. the foraging patch is deleted and it is time to move on),

comparing reinforcement rates, etc.

� Numerous experiments that animals can do this, and do it in a

characteristic and striking manner — they exhibit scalar timing.
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Peak procedure experiments

Reward Trials (training) Stimulus (bell, light) comes on to indicate start of

trial. Animal is rewarded for the first response after a reinforcement time has

passed.

Response

Reinforcement Time

Stimulus
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Non-reward Trials Stimulus remains on even after animal responds after

reinforcement time has passed. This is to see for how long the animal

continues responding.

Response

Reinforcement Time

Stimulus
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Results on non-reward trials — the scalar property

Responses averaged over many non-reward trials give a smooth curve.

Studies of the curves for different reinforcement times show the following

features:

� The highest rate of response is at the expected reinforcement time.

� Scaled curves from different reinforcement times collapse when scaled

relative to the reinforcement time

CS6482 February 4, 2003 Applications of Reinforcement Learning 29



Slide 28

Slide 29

Let T be the actual time since the start of the trial and T̃ be subjective time.

P � T̃ � T ��� 1
T Pinv

�
T̃
T � � (1)

Here Pinv is the function which describes the shape of the scaled curves; it

is peaked near one. This is the scalar property of interval timing.

CS6482 February 4, 2003 Applications of Reinforcement Learning 30



Slide 30

Reinforcement Learning of Time Intervals

accumulator

Xi � t �

Vj � t �

wi j

Ai j

Stimulus
si

� si — presence of ith stimulus� Clock nodes Xi � t � — fire in response to� total activity of accumulator� (fine-grained encoding).� Learnable weights� learn via TD-λ learning rule� Fixed weights� Vj � t � — probability of producing response j
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Learning model

Time perception system: consists of
� Accumulator network — measures time as accumulation of neural

spikes (presented in Shapiro and Wearden, 2001).
� Clock nodes Xi

�
t � — fire in response to total activity of the

accumulator.
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Stimulus-response: Both the stimulus and the appropriate clock node must

be present for there to be reasonable chance of response.
� Response nodes V j � t � — determine the response. Response j is

triggered with probability min �V j � t ��� 1 � ,
Vj � t � �

�
∑

i

wi jXi � t ��� Ai jsi � θ j � � (2)

where � � � denotes a function which is the identity for positive argument,

zero otherwise. The threshold θ j is constant.

Reinforcement learning: Learnable weights learn via TD-λ learning rule.
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Simulations of Peak Procedure

Method: 50 trials with forced response followed by 1150 trials. Every 10th

one is a non-reinforced trial. Learning takes place throughout. Results

averaged over the last 100 non-reward trials (i.e. the last 1000 trials).
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Response per unit time for different

reinforcement times T . Parameters:

mI � 10, Cσ2
ν � 1 (Poisson limit), γ �

0 � 75, λ � 1, α � 0 � 5.

Response per relative time versus rel-

ative time for different reinforcement

times T . The data collapses, clearly

showing the scalar property (equa-

tion (1)).
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Conclusions
� Reinforcement learning is an important paradigm of adaptive

computation.

� It is often useful to separate learning the expected reward, and the policy

for choosing actions.

� Heuristics which are important for delayed reward problems are:

– Learn the discounted reward,

– associate action with reward by discounting a factor λ per unit time.

� These heuristics result in useful examples of AI (TD-gammon) and

effective models of animal experiments.

CS6482 February 4, 2003 Applications of Reinforcement Learning 35


