
Chapter 1

Lab 3 — Reinforcement
Learning

1.1 INTRODUCTION

Here you will use TD-learning to get an agent to move around in a little environment.
The environment is represented as a matrix (so a grid-world) where 0’s represent free
space, 1 represents the goal location, and -1’s represent walls and obstacles. You task
is to get the agent to find the goal(s) and avoid the obstacles. The agent gets a rein-
forcement of 1 at the goal location, -1 when it tries to bump into a wall or leave the
environment, and otherwise. Thus, the agent is rewarded for finding path to the goals
and for avoiding obstacles. In the first part, the states of the system are represented as
states in the environment. In the second part, you will use a neural network to general-
ize over states, so that similar states are assigned similar Q values.

1.2 Part I: Reinforcement Learning of the States and
Actions.

In the first part, we will learn the appropriate action for every state of the system. The
states will be the location in the environment (represented as a grid), and the goal is to
learn Q

�
s � a � .

1.2.1 Tasks

1. Train the system using Q-learning (or Sarsa) on a very small grid. Examine Q
and convince yourself that it is learning appropriately. What do you expect Q at
the goal state to be? What do you expect Q to be after one learning sequence?
After many learning sequences?

2. Train the system on a larger environment. Record how the time to reach the goal

1



state and the average reinforcement changes as the system goes through more
and more learning sequences. (The average reinforcement reveals how well the
agent is at avoiding obstacles.) Does the agent learn a short path to the goal?

3. Repeat the above for TD(λ) learning. Compare the two methods for speed of
learning and learned performance.

4. The agent is not rewarded for finding a short path to the goal. In order to encour-
age it to find a short path, you could change the reinforcement it receives to the
following: -2 for running into walls or leaving the environment, 1 for finding the
goal, and -1 otherwise. In order to maximize the reinforcement received, it needs
to find a short path. The reinforcement is given by the function response. Copy
response.m to your directory and modify it to give the desired reinforcement.
Does this lead to shorter paths?

1.3 RESOURCES

I have written some simple TD-learning functions

Environments: I have made five: TinyWorld, Line, BigEmpty, MazeWorld, and Sta-
dium. To load them, type

load TinyWorld

where TinyWorld can be replaced by the names of the other environments. These
are simply matrices, so you can easily make others. You can view them using

imagesc(TinyWorld); colormap(gray);

(The colormap is optional.)

Qlearn: A simple Q-learning function. The form is

[newQ,statetrace,rewardtrace]=Qlearn(Q,Environ,start,parameters)

where

Q is the Q matrix;

Environ is the environment matrix, e.g. TinyWorld;

start is the starting state in the environment,

parameters is a list of parameters: ε used by ε-greedy algorithm, γ, learning
rate, a flag which determines whether the algorithm implements Q-learning
(0) or Sarsa (1), and the maximum number of states the agent goes through
before the learning ends. E.g. parameters could be [0.1 0.9 0.1 0 1000 ].
Missing values or NaN are replaced by defaults.

2



This learns the complete matrix of all states and actions. Q is a matrix of the
form Q

�
i � j � a � where

�
i � j � is the location in the environment, and a takes values:

1 (down), 2 (right), 3 (up), and 4 (left).

This algorithm stops when the goal has been reached or the maximum number
of states has been visited. It outputs

newQ The updated Q matrix,

statetrace a list of the states visited,

rewardtrace a list of the rewards. So, for example, mean(rewardtrace) gives
the average reward in the learning sequence, and length(rewardtrace)
gives the number of states visited in the learning sequence.

TDLambda: similar to Qlearn, only implements a TD(λ) version of Sarsa. The vari-
ables are the same except λ is an additional parameter. It comes after the learning
rate and before the Sarsa flag.

initialize_Q: This function initializes the starting state to a random, allowed state
and Q to zero. It is used as follows,

[startstate,Q]=initializeQ(Environ);

show run: shows the states visited in a learning sequence. Use is

show_run(Environ,statetrace);

where Environ is the name of the environment, and statetrace is output from the
learning function.

show Q: This shows the direction of best move according to the Q matrix. If there is
more than one best direction, it displays a dot. It is used as follows,

show_Q(Environ,Q);

imageQ: This is another visualization tool. It shows the Q matrix for each of the four
directions. It is called like this,

imageQ(Q);

In this part of the lab the states are simply the coordinates of the environment.

1.4 Part II: Thinking about Generalization With a Neu-
ral Network

In a large environment, there will be too many states to the approach in which every
possible combination of coordinates is a different state. Firstly, the agent may not have

3



enough memory to remember so many state – action pairs. Secondly, it may take an
extremely long time to explore enough of the states so that good routes are known from
most of the states.

To alleviate this, we will use a neural network to approximate the Q-function and,
hopefully, generalize an appropriate Q-value for unexplored states. We will do this
using the simplest learning rule, namely Q-learning. To see how this works, first let
us remember the Q-learning update rule. If s is the current state, and a is the current
action, and under that action s � s

�
, the update equation is

Q
�
s � a ��� Q

�
s � a ��� α

�
r � γmax

a � Q
�
s
� � a � �
	 Q

�
s � a ����
 (1.1)

Consider a simple neural network with the states as inputs and with one output per
state, where the outputs should be the Q values. Denote the network output as fa

�
s �w � .

This is abstract, and only serves to remind us that it depends on some set of weights
and biases denoted w. Instead of updating Q, we will train the network with the targets,

fa
�
s �w ��� r � γmax

a � fa � �
s
� �w ��
 (1.2)

We are going to implement this. Consequently, we would like to find the simplest
neural network which can do the task.

This part is done with paper and pencil.

1.4.1 Tasks

1. Convince yourself that equation (1.2) is the correct update rule.

2. Consider empty 2-d space with a goal somewhere. With a pencil and paper,
sketch what the Q function would look like. If that gives you trouble, consider
a simple 1-d scenario. Sketch the shape of the Q-function. (If that gives you
trouble, ask for help.)

3. What network architecture is required to do this task? Could a linear associator
do this. How about a sigmoidal perceptron? Decide what type of architecture is
appropriate.

4. Consider what the input – output pairs will be for our situation in which there
are four actions, and two inputs. Write down the targets in detail. (You are going
to implement it in the next section.)

1.5 Part III — Implementing the Neural Network

We are now going to apply the neural network to this task. In order to do this, you will
need to modify the Qlearn function. I have made a function called nnetQlearn which is
called like this,

[newnet,statetrace,rewardtrace]=nnetQlearn(net,Environ,start,parameters)

4



where net is the name of the neural network. Cruelly, however, I have not implemented
the computation of the target and the network update. I have also made a function called
net2Q which computes a Q table from the network. It is called like this,

Q=net2Q(Environ,net);

This allows you to use previous functions like show_Q to visualize what is going on.

1. Copy this function to your working directory

2. Open it in an editor. Matlab has an build in editor, called edit.

3. There is a comment where you need to edit. Follow the directions. Compute
the target, and then train the network on that target. Since you want to train the
network incrementally, use adapt rather than train.

4. To use nnetQlearn, initialize a network to use ’traingd’, which is a learning al-
gorithm which can be used incrementally. Then repeatedly run nnetQlearn and
observe Q using net2Q and see how it evolves.

5. You may find that the initialize network produces Q values which make explo-
ration difficult (we cannot initialize all Q’s to zero using this approach). There-
fore, you might want to start with a large value of ε in the ε-greedy algorithm,
and decrease it as the system learns. For example,

[newnet,statetrace,rewardtrace]=nnetQlearn(net,Environ,start,[0.5])

would search randomly half the time.

5


