Analysis of evolutionary process using a stochastic Lyapunov function.
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A new technique, based on a stochastic Lyapunov function, was developed within the martingale theory to analyse a convergence of evolutionary processes and probabilistic search algorithms. This technique was applied to a stochastic model, describing evolution of “mutator genes” in a finite population. In the model mutators do not contribute to individual fitness, but control mutation of “fitness genes”. The evolution of genes with no immediate selective advantage is usually regarded as impossible or has to be supplemented with hypotheses of non-phenotypic selection. It was shown that, although the mutations are random and independent for both types of genes, evolution of the mutator shows a clear convergence resulting from indirect selection. 
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1. BIOLOGICAL INTRODUCTION

The history of mutation research began in the early 1900s when the concept of mutation as a sudden hereditary change was developed (de Vries 1909). For a long time it was assumed that the fidelity of gene replication is not perfect and that mutations arise randomly through “copy errors”. Detailed studies of spontaneous mutations have shown that the real situation is more complex. It is generally accepted now that the mutation process is controlled by the genotype itself (Auerbach 1976; Grant 1977) and a high gene stability can be explained not only by the resistance of genes to any changes, but by the presence in the organism of an active system which controls the process of mutation. The first example of this phenomenon, so-called “mutator genes”, was described in 1937 by Demerec (Demerec 1937). Mutator genes control the mutation rate of the other genes, increasing or decreasing it by 1000-fold. Another example is “jumping genes”, discovered in maize in the 1950s by Barbara McClintock (McClintock 1984). Jumping genes or transposable elements can move around in the organism's genome, altering the expression of the other genes.  There are numerous speculations on the possible role of the mutation mechanism in evolution (Doolittle & Sapienza 1980; Karlin & McGregor 1972; Kimura 1967; Semenov & Terkel 1985; Sniegowski, 2000; Dawson 1998; Johnson 1999; Taddei et al. 1997; Travis 1992).


If mutator genes do not contribute directly to the organism fitness, then they are not subject for direct selection. Thus it is important to answer the question if a trend is possible in the evolution of the mutator genes or its evolution represents a simple “random walk” (Grant 1977). 


The most natural explanation of the evolution of mutators is indirect selection. An organism with a “successfully” altered mutator will have an evolutionary benefit in a subsequent generation by supplying a larger variety of genes, which directly affect an individual fitness. Thus, co-evolution of both types of genes can be expected in the direction of increasing population adaptability to the environment and increasing the rate of adaptation.  The 'fitness' of an Esherichia coli mutator gene mutT1 was examined experimentally (Gibson 1970). Results showed that mutT1 populations consistently outgrew mut+ population when the two were grown together in the same chemostat. A likely explanation was that the mutT1 allele increased variation in individual fitness more than the mut+ allele because of a higher mutation rate in the mutT1 populations, which supplied a larger variety of phenotypes for testing in the environment. It has been shown through a verbal model and experiment (Sniegowski et al. 1997) and simulations (Taddei et al. 1997) that mutators can come to predominate in finite populations due to indirect selection.

2. MODEL OF EVOLUTION WITH MUTATORS

Evolution of mutators was studied previously using a deterministic model of infinite population (Karlin & McGregor 1972). We consider a conceptual probabilistic model, which describe the evolution of mutator in a finite population. This model should help to delineate the conditions under which mutators can evolve in a finite population through indirect selection We consider the model of evolution of continuous parameters as more adequate description of the process, because we are mainly interested in investigating the asymptotic properties of the evolutionary process.  Despite a certain lack of biological realism in the assumptions made, we speculate that the asymptotic properties may be robust and possibly applicable to biological systems.
There is a finite population of N individuals.  Each individual at time t is described by a pair of real numbers (xt,n, x*t,n), where xt,n determines  an individual fitness F(xt,n), and x*t,n controls “variability” of xt,n.  We assume, that x*t,n has no effect on the individual fitness and can be considered as an analogue of a mutator.  Each step of the evolution includes replication of individuals with random variation of both (xt,n, x*t,n) and then selection of a new population from generated rivals according to the fitness function  F.  

Replication. At a discrete time t each individual from population {(xt,n, x*t,n), n=1,..,N} produces M offspring. Each offspring originates from a parent according to the following rules. The parameter xt,n mutates randomly, changing proportionally to the value of the mutator x*t,n
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and the mutator x*t,n mutates independently from xt,n  increasing or decreasing with equal probability by a random  factor
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where (n,m,t are independent normally distributed random variables with a zero mean and a standard deviation equals 1, and (n,m,t  are independent and uniformly distributed on the interval  [‑a,a]  random variables, where a  is a constant.      

Selection. From the 
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generated rivals {(xt,n,m, x*t,n,m), n=1,..N, m=1,..,M } N individuals are selected with the maximum of the “fitness” function F(xt,n,m). For simplicity we assume that F is an unimodal function with a maximum F(x0) at x0. The selected individuals form a new population {(xt+1,n , x*t+1,n ), n=1,..,N}  for the next time step t+1.
Model behaviour and evolution of a mutator was investigated by computer simulations and analytically (section 3). Computer simulations demonstrated a convergence of the evolutionary process for a population as small as N=2 and the number of offspring M=3.
[image: image4.wmf]At the beginning, when |xt -x0| significantly exceeded x*t , e.g. |xt -x0| >> x*t, the value of the mutator x*t  increased, because a larger mutator has a selective advantage. This increase accelerated the movement of xt towards x0. At this stage the mutator x*t increased exponentially. When the situation changed and the mutator x*t had a value which is greater than |xt -x0|, the mutator decreased with simultaneous convergence xt ( x0. For the stationary condition the optimal individual is (x0, 0), e.g. maximum fitness with no variations (mutator equals 0). 
3. CONVERGENCE THEOREM

The most natural approach to investigate the convergence of stochastic processes, which describes the behaviour of probabilistic search algorithms and evolutionary process described in section 2, is an analogue of the method of the stochastic Lyapunov function in the theory of stability of stochastic processes (Kushner 1967). If  Zt  is a  random  process with values from an arbitrary state space Z,  then  its  Lyapunov function is a numerical  function  V(Zt) decreasing on average along the trajectories of the process Zt, i.e. it is a super-martingale (Doob 1953; Neveu 1964). The convergence theorem for super-martingales allows one to conclude the convergence of the stochastic Lyapunov function, which in turn can be used to prove, under some additional assumptions, the convergence of the process Zt  to an “optimal state” Z0. Although a universal method for constructing Lyapunov functions for arbitrary stochastic processes is unknown, properties of the evolutionary processes can be used in a “regular” way to construct such functions. In fact, the fitness function or its mathematical expectation could be taken. The aim of this section is to formulate the theorem on the convergence of the trajectories of the supermartingale Vt, ( (, where ( is a subset of  ( real numbers. Along with the main process  (Vt ) we will also consider  the random process (V*t ) characterizing the variation of the process (Vt) (Definition 1).  Although the results can be formulated in terms of arbitrary processes, the special assumptions imposed on them are determined by the fact that (Vt) is the stochastic Lyapunov function of the stochastic optimisation process. Let us fix a probability space ((, (, P), where ( denotes the sample space, ( is a (-algebra of measurable sets and P is a probability measure, provided with an increasing family of sub-(-fields (t   (t denotes the discrete time). Let (Vt ) and  (V*t ) be two random  processes  adapted to the family ((t ), such that Vt  take values from a  set U ( (.  
Definition 1 The pair  (Vt ,V*t )  of  stochastic  processes  satisfies the  A condition on the set G ( U,  if  ( V ( G,  V* ( (   (  ( > 0 such that
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where D = {ω( Ω : |Vt-V| < ( } ( { ω( Ω :Vt* > V* } and 
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 denotes the conditional probability with respect to the ( t  (-field at a point ( ( (..
     The A condition means that V*t  influences the variability of Vt in the following  sense. If the value of V*t is larger than a number  V*,  then  the  conditional probability of the  process  Vt  to leave an arbitrary  small neighbourhood of the point V ( G is separated from zero. The following proposition states that under the A condition, the convergence of Vt to the elements of the set G implies the convergence V*t ( -(. 

Proposition. If the pair (Vt ,V*t) of  stochastic  processes  satisfies the A condition  on the set G, then                   
lim t V*t = -(
almost surely on a set  { ( ( ( :(  limt Vt (() (  G }.
     Under the second condition imposed on the pair (Vt ,V*t ),  the  random  process  (V*t )  possesses the submartingale  property, if Vt  deviates insignificantly from a state V ( G and the value of  V*t   is sufficiently  small  (inequality (1) in Definition  2).  

Definition 2. The pair of stochastic processes  (Vt ,V*t)  satisfies the B condition  on the set G ( U, if ( V( G ( ( > 0, V*( (  and  c ( (  such  that for all t and for almost all ( ( { ω( Ω :(Vt (( ) - V ( < ( }(  { ω( Ω : V*t (()< V*  } the inequalities
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is a conditional expectation of V*t in respect to the (t   (-sub-algebra.

Theorem. Let (Vt ) be a super-martingale bounded from below and taking  values from the closed set  U( (  and let denote (V*t ) a random  process  adapted to the family of (-fields (( t ). If the pair (Vt,V*t) satisfies the  A and B conditions on the set  U \ (,  where  (( U, then  for  almost  every  ( ( (  the limit   limt Vt(() ( (  exists. If the A condition is satisfied on the set U, then limt V*t(() = -(  almost surely.

The proof of the theorem could be found in (Semenov 1984).

We apply the above theorem to prove the convergence of the modified evolutionary process from the section 2. The population consists of only one individual N = 1, which produce M offspring according to the following formulas:

x*t,i = x*t exp((t,i ), 

where the  random  variables (t,i  are independent and uniformly distributed on the interval  [‑a,a];

xt,i is constructed from the initially given xt  and the just  defined   x*t,i , according to the formula 



xt,i= xt + x*t,i(t,i   

where the  random  variables (t,i are independent and uniformly distributed on  [‑1,1].  From the M generated rivals (xt,i ,x*t,i ) only one will be selected which has maximum of F(xt,i), where F(x) is an unimodal fitness function with a maximum in x0. 


For M > 3 the convergence  xt (  x0     and x*t  (  0  takes place (Semenov 1984).  To prove this, the stochastic Lyapunov function  (Vt  )  is constructed as
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where Pxt ,x*t  denotes the transition probability of the  Markov  process  (xt ,x*t). The process (V*t) is defined as V*t = ln(x*t), and we set ( = { x0 }. The theorem implies the convergence Vt ( F(x0) and V*t ( -(  almost  surely, from which we conclude  the  convergence of the processes  xt  ( x0    and  x*t ( 0  almost  surely.

4. CONCLUDING REMARK

The evolutionary process described above can be considered as a probabilistic search algorithm on the class of unimodal functions. Its efficiency, the rate of convergence to the optimum x0, can be compared with the efficiency of the deterministic search algorithm, which has the fastest rate of convergence (in the case of deterministic algorithms this rate is exponential, e.g. 
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).  An evolutionary process without a mutator represents a random walk with selection and its rate of convergence is linear, when 
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. Incorporation of a mutator into an evolutionary scheme radically increases the efficiency of the evolutionary search. It was shown that the evolutionary process, incorporating a mutator, has the same exponential rate of convergence as the optimal deterministic algorithm, but the coefficient k is smaller (Semenov 1984; Semenov & Terkel 1984). 

This paper was sent to a number of people, including two referees, before publication and I wish to thank all of them for their helpful comments. I am eternally indebted to D. Terkel for his contribution.  IACR receives grant-aided support from the Biotechnology and Biological Sciences Research Council of the United Kingdom.
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