SECTION 4

 Modelling cognition and brain processes

One way of providing validity to a model, exploring hypothetical predictions and expressing a model in ways that can be imagined is to attempt construct a formal algorithmic description of the model and simulate it on a computer.    Computer simulations of natural cognition can be approached in a number of ways.  The most abstract way is to model natural cognition through the sequential manipulation of a declared set of symbols with a set of abstract rules.   This approach called ‘symbolic artificial intelligence’ fails to capture a number of important characteristics of natural cognition such as its lack of rigidity, tolerance to noise and ability to learn without explicit instructions.   More importantly natural cognition is thought to operate through the activity of the brain that appears to perform parallel rather than purely sequential processing.     It is by using forms of multiple parallel processing architectures, that the failures outlined above can be performed.  As a result cognitive scientists have increasingly come to adopt a more neurally inspired form of computational modelling called connectionism or neural network modelling. 

4.1 Neurons and their Interactions

The inspiration for neural networks stems from an understanding of the associative nature of knowledge and the behaviour of brain cells.  In short brains consist of neurons (nerve cells) which transmit electrochemical information to other neurons with which they have a close spatial affiliation. The transmission terminal between two neurons is called a synapse. It is common to use the term postsynaptic and presynaptic to refer to the receiving and transmitting neuron.   Neurons have either excitatory (EPSP) or inhibitory (IPSP) postsynaptic potentials.  IPSPs reduce the probability of a postsynaptic neuron firing whilst EPSPs increase it.   A presynaptic neuron sends chemical signals to a postsynaptic neuron.  The output of a postsynaptic neuron is an all or nothing event and is thought to depend on some threshold rule.  That is, taking the sum of inputs from neighbouring presynaptic neurons and other possible factors in to consideration in order to determine whether to fire or not.   If a postsynaptic neuron receives enough EPSPs in relation to possible IPSPs, and its threshold is exceeded, an action potential will occur, which involves the production of a week electrical signal by ionic changes in its axon.  This results in the subsequent release of a neurochemical from its synaptic terminal to its neighbouring postsynaptic neuron.  Neurons transmit information in brief spikes, which can vary in intensity and duration.   The firing of neurons can be modified by experience.   A phenomena known as ‘long term potentiation’ refers to a process involving structural changes to neurons thought to be responsible for learning. 

4.2 Artificial Neural Networks

In short artificial neural networks (ANN) consist of a set of processing units generally used to represent the activity of a set of neurons.   Units have weighted connections with at least one other unit in the network.   These weighted connections represent the synaptic influence between presynaptic and postsynaptic neurons and determine the extent to which a postsynaptic unit should be activated given the state of the presynaptic units.   Connections can be one or two way so activity can feed forward or in both directions.  Where two-way connectivity is present the network can yield dynamical interactions (e.g. Hopfield Networks).   The behaviour of an ANN usually involves some arithmetic that allows computation of the activation interaction between nodes.   There are many kinds of ANN architectures differing in connective organisation and other neural like properties.    Of particular importance is the fact that weight values can be modified through algorithmic means permitting the capacity of ANNs to learn.   A stored pattern in the network can be represented in a distributed manner by the value of weight connections and thresholds.   This allows a modelled memory or process in an ANN to be shown by a specific activation pattern that is determined in response to some input pattern by the weight values, thresholds and the presence of any other properties applied to the network.    ANNs can learn without explicit instruction.   Some ANNs learn through a form of ‘supervised learning’, in which the weights are changed to match a declared output pattern (e.g. Perceptrons).  Other ANNs learn in a ‘self organising’ fashion.  That is, they organise the vectors they experience in to meaningful activation patterns, which they learn to classify (e.g. ‘Self Organising Feature Maps’, ‘Adaptive Resonance Theory’, See Beale & Jackson, 1990 for a description).

Neural networks can be dichotomised in terms of abstraction.  Some models may capture closely a number of hypothesised properties of neurons and their dynamic interactions.  Researchers using these models will attempt to simulate how real neural networks are believed to perform computations.  This field of inquiry is generally referred to as computational neuroscience (See Churchland and Sejnowski 1992).   On the other hand, connectionist researchers attempt to model cognition in very abstract terms, aiming to capture the higher order structure and parallel interactions of the processes modelled (See Rumelhart and McClelland 1986).   The degree neuroscientific understanding and complexity of the relevant neural processes will constrain what level of abstraction can be taken. 

SECTION 5

Neurobiology of timing

As discussed in Section 1, the location and mechanisms of timing in the brain appears to be somewhat of a mystery.  There are three areas of the brain that have received attention by a number of researchers.  These are the cerebellum, basal ganglia and the prefrontal cortex.  Relevant research implicating these structures in timing will be briefly discussed.  Some of these locations have served as the inspiration for neural network models of timing that shall be discussed in the next section.

5.1: The Cerebellar Timing Hypothesis

Ivry and Keele have previously proposed that the cerebellum mediates both motor and perceptual timing (O’Boyle, 1997).    This proposal was later modified to limit the cerebellum to timing of only very short intervals (e.g. Ivy, 1996).   This position is known as the ‘cerebellar timing hypothesis’.   Their conclusion is based on the observation that individuals with damage to the lateral hemispheric cerebellum have been found to perform poorly on repetitive timed motor tasks showing increased variance attributed to an internal clock (e.g. Ivry, Keele and Diener, 1988)
.  Secondly impairments shown by cerebellar patients in perceptual timing tasks have also been reported.   These include tasks such as temporal reproduction in the range of seconds (e.g. Schugens, Daum, Ackerman, Lutzenberger and Birbaumer, 1994). 

Other researchers have found data confusing the cerebellar hypothesis (see O’Boyle, 1997).  This arises from reports of studies that implicate the basal ganglionic system in both motor and perceptual timing.  Parkinson’s disease (PD) patients typically show degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNp), a region of the basal ganglionic system.    Reports have been made of PD patients showing impairments on timing tasks when off their usual dopamine agonist medication.   This has been found in performance on motor timing tasks where PD patients showed elevated response variance attributed to both motor and clock systems (e.g. O’Boyle, Freeman and Cody, 1996).   In addition, PD patients off medication have also been reported impaired on a variety of perceptual tasks including the Peak procedure in the range of seconds (Malapani, Rakitin, Levy, Meck, Deweer, Dubois and Gibbon, 1998) as well as brief interval tasks in the millisecond range (Harrington, Haaland and Hermanowicz, 1998).   

In a recent review, Gibbon et al (1997) arrived at the conclusion that the cerebellum does not mediate temporal processing.  As only increases in variance were observed in timing tasks with cerebellar patients and these variance increases still preserved the scalar property, Gibbon et al (1997) suggested that cerebellar lesions may be causing a dysfunction in decision processes which detrimentally effect the encoding of comparison intervals.  According to the authors their proposal is in line with the view that the cerebellum plays a crucial role in motor co-ordination and not storing timed motor responses.

5.2 The Basal ganglia and frontal cortex

Meck and Colleagues have attempted to identify the structures involved in SET (see Meck, 1996; Hinton and Meck, 1997) including both clock and memory systems.   This work shall not be fully reviewed here because: 1) the conclusion made by the authors are based on many detailed studies that could be subject to a number of interpretations and 2) that neurobiological constraints are not of great relevance to the model reported in this thesis.  However, one important observation found by pharmacological manipulations is that the internal clock of animals can be speeded up or slowed down.  This can be shown when subjects are trained off the drug and then tested on it or visa versa.  For example when a rat is administered a dopamine agonist called metaamphetamine following PI training of some interval, they exhibit underestimation of that interval.  This is shown by a leftward shift in the PI response distribution, suggestive of an increase in the rate of the pulse generator.   In contrast, when rats are administered a dopamine antagonist such as haroperidol, their reproduced peak function is shifted to the right suggesting a decrease of normal clock speed and underestimation of elapsed time.    Moreover, these shifts maintain the scalar property so that the standard deviation of time estimates change proportionally with the peak shift (see Hinton and Meck, 1996).

Dopaminergic neurons are prevalent in the SNp and neurons in this region project to a location of the basal ganglia called the striatum consisting of the caudate/putman (Cpu).  Meck and colleagues (See Hinton and Meck, 1997; or Meck 1996) have found that when the SNp or CPu were lesioned, rats failed to reproduce a reinforced interval.   Rather, their probability of a response over time was flat and not characterised by the usual peak.    However, when rats who received lesions to the SNp, were given a dopamine agonist called L-dopa, they showed some recovery, reproducing the time with less precision than normal.  Note however, this observation was not found with those rats who received CPu lesions.  Hinton and Meck (1997) have interpreted these observations as indicating that the SNp is the location of the pacemaker and the CPu the accumulator.    As we have already mentioned humans with basal ganglionic degeneration such as PD patients have also been reported impaired on timing tasks of different ranges when off medication.   The precise role the basal ganglionic system plays in timing is still unclear.  Gibbon et al (1997) suggested that the striato-thalamo-cotical loops play an important part in mnemonic encoding and retrieval of comparison intervals.  Unlike the cerebellum, deregulation of the basal ganglia appears to not only increase variability but also affect timing accuracy.  

The striatum comprises of spiny neurons, each of which receives something in the region of 10000 afferents.  Such high convergence on to single neurons provides plausibility to the idea that the striatal circuit is involved in pattern recognition.   Note also that the cellular architecture of the striatal input has been likened to a type of artificial neural network called a perceptron, which is well documented for its pattern recognition capabilities (Houk 1994). The perceptron has a feed-forward architecture, characterised by high convergence of inputs on to single units. There is evidence that dopamine fibres of the SNp provide a training signal to the cortical afferents that project to the striatal spiny neurons, allowing them to respond to specific patterns of cortical activity.  Striatal neurons are generally quiescent, but have been observed to show abrupt pattern recognition thresholds when activated by cortical inputs (Houk 1994).  

Of particular relevance are observations concerning prefrontal neurons which also have projections to the striatal circuit.    A number of studies have found that the firing rate of prefrontal neurons show an average increase of decrease in timing tasks where some reward is predicted (Niki and Watanabe 1979).    The firing of these neurons increases until the relevant reward anticipating response is made and then abruptly ends.  Miall (1996) has suggested that such time dependent increases in activity are in line with a network of neurons acting as an accumulator. However a study discussed by Marcar and Casini (1998) observed that the level of prefrontal activity in a timing task related, in part, to response accuracy.  That is, accurate responses tended to result in lower levels of activity.  These authors proposed the possibility that time dependent activity changes may result from noisy neural networks generating task irrelevant information. The question, of whether prefrontal activity is due to timing mechanisms or processes of attention and memory related to the task, is still not clarified. One possibility is that they code for both in different ways.   According to these authors the time when neurons fire might code for duration, whereas the rate of firing might code for the intensity of a signal (Marcar and Casini 1998).

SECTION 6

Neural network models of animal timing

Many of the neural network models discussed here have been developed to account for timing of intervals in the milliseconds range such as on Pavlovian conditioning tasks as outlined in section 2.4. There is little research on time dependent neural changes that may be responsible for longer interval timing.  As a consequence, while short interval timing models have been approached in a neuroscientific manner, long interval timing models have not.  These models shall be reviewed to give the reader an insight in to the diversity of these schemes and associated problems.

6.1 Tapped delay lines 

One commonly reported architecture of timing involves the idea of ‘taped delay lines’ (Jeffress, 1948).  This has been used to simulate performance in Pavlovian conditioning tasks (Moore, 1992).   In such models elapsed time is mapped with the distance it takes for a neural impulse (i.e. CS) to travel a long sequence of connected neural units.   Each unit is tapped meaning that it is connected to another collateral unit outside the sequence.    The CS activates the sequence and the furthest tap activated when the US is present, can be used to represent that elapsed interval. In the model proposed by Moore and colleagues additional units are employed which associate the CS with the US and process an adaptively timed response.  Each potential CS could have its own delay line associated with its modality.  This model has been associated with the elegant neural circuitry of the cerebellum (See Moore, 1992).

The plausibility of delay line models, performed by lines of single neurons, for intervals in the range of seconds, is confounded by the proposed lack of accuracy that such a scheme would result in (Miall, 1996).    However, according to Miall (1996) the idea of time being mapped with distance using 2D populations of neurons would appear more resilient to this criticism.  Miall (1996) has proposed the possibility of time being mapped with distance across cortical sheets.   In such a scheme neurons could have different ‘temporal receptive fields’ that change in some direction.  

6.2 Time dependent spatial activity

Ivry (1996) classifies these models as ‘interval based’ meaning the class of timing mechanisms performed by a limited set of neural patterns that represent temporal units.  The first model to be discussed was proposed by Buonomano and Merzenich (1995).  This relies on an uncommonly used neural properties termed slow inhibitory postsynaptic potential (Slow-IPSP) and paired pulse facilitation (PPF), together with conventionally employed EPSPs and IPSPs.   The dynamic effects of these properties allow temporal information to be transformed in to unique spatial codes permitting timing of different cognitive and behavioural responses in the millisecond range.    Imagine that two pulses separated by some short interval are presented to the same input channel of a network.   A unique pattern of excitatory and inhibitory interactions will be observed in the network for each of the two pulses even though they might be identical.  This is because regular time dependent changes resulting from slow-IPSP and PPF cause the network to be in a different state when the seconds pulse arrives.   Each unit of time after the first pulse will elicit a unique pattern of activity.  By using supervised learning on weights connected to the network the authors demonstrate the capacity of this scheme to represent intervals of elapsed time in the range of 30-300 ms. The time constraints of this network are estimated by neuroscientific data on cortical neural properties.

Another similar model proposed by Buonomano and Mauk (1994) attempts to simulate the dynamics of cerebellar activity believed to permit timed motor responses (Pavlovian eye-blink tasks) in the milliseconds range.  Again this network involves dynamic interactions through realistic neural properties.  The model relies on the time dependent properties of a group of neurons called granule cells which occurs as a result of a negative feedback loop mediated by gorgi cells.  In this model the time dependent patterns of granule cell activity codes for a relevant interval.  The interval is initiated by a group of cells called climbing fibres hypothesised to provide the CS to the circuitry. Weight adjustments to active connections that exist between granule and purkinjie cells that occur following a particular interval allow the activity of Purkinjie cells to represent an accurate timed response. 

Time dependent spatial patterns have an air of plausibility.   There are a number of neural properties not considered by neural network modellers and very probably many neural properties that have not yet been discovered.    There is the possibility that a network of neurons could change their spatial activity with time as a result of sustained activity and the presence of neural properties that influence the state of the network over large time scales.  Even more plausible are time dependent changes of a networks spatial activity due to recurrent feedback.  The basal ganglionic system is a recurrent system containing a number of loops that feed back to frontal lobes and striatum.  As discussed, this system has been implicated in timing and could possibly be involved in such a scheme.  Miall (1996) has also commented on the possibility of such activity occurring in the cortex.  Waves of cortical activity have been reported to occur in very complex and sometimes chaotic ways.   Miall (1996) proposes how the presence of some input could cause complex time dependent reverberations of activity in cortical regions.
There is however, one problem with using purely spatial patterns to represent immediate elapsed time.  This concerns how an animal discerns the quantitative value of a spatial pattern.   In the case of performance on brief conditioned response tasks (e.g. eye-blink conditioning) there is no need to assume that the animal requires an explicit quantitative representation of elapsed time.   It could be the case, and is certainly modelled this way, that some regular neural pattern that occurs at reinforcement is associated with response processes.  This kind of timing behaviour is much more reactive than the more top down quantitative calculations proposed to occur by SET.   

In section 2.3 we mentioned why experimental data suggests a ‘readable’ quantitative representation is involved in animal timing for the range of seconds to minutes.   This is not to rule out the possibility of spatial patterns representing elapsed time in tasks explained by SET.  It would however seem that spatial patterns need to be either: 1) quantifiable to the cognitive system by virtue of some kind of quantitative structure they posses or 2) permit comparisons due to the degree of feature similarity that exists between spatial patterns of different times.  In the latter case, one might reason that the degree of shared features between different times must approximate the interval difference between them.

6.3 Spectral Timing

Another type of model proposed by Grossberg and Merrill (1992, See also 1996) relies on what these authors call spectral timing.  The model is constructed in the frame work of a well known connectionist architecture called ‘adaptive resonance theory’ (ART) developed by Grossberg and colleagues.  The model attempts construe in connectionist terms, an animal’s ability to establish an optimal balance between sustaining attention on a reward anticipated event and engaging in exploratory behaviour that might result in unexpected rewards.  In this scheme a population of cells react to the CS and US at different rates. The authors call this spectral timing because these rates refer to a spectrum of activations.  Again this kind of model is interval based (Ivry 1996).  In this scheme those cells that are best tuned to an experienced interval have their activation level enhanced. The CS initiates an output signal from the spectral timing populations that continues through the timed interval, but peaks at the time of the US.   This signal, which has the Weberian property, performs two functions each served by different pathways of the network.  One is to maintain attention through the response delay by inhibiting the recognition of what the authors call ‘predictive failures’.   This involves inhibition of an orienting subsystem that prevents attentional shifts and orienting behaviour. The other function serves to ‘energise’ timed responses with the highest probability at the US.  

The model is probably the most developed of the timing neural networks (Gibbon et al 1997).  The network involves learning in pathways that exist between sensory, drive and motor circuits. The pathways operate in parallel fashion involving feedback mechanisms.   These circuits are proposed to correspond to the activity of a number of brain structures for which relevant data is provided.  More importantly two spectral timing circuits are believed to exist, one located in the hippocampus and the other in the cerebellum.  The former is involved in timing of sustained attention whilst the latter is involved in timing motor responses.  Both timing circuits operate in co-operation. The timing of sustained attention performed by the hippocampal circuit is believed to evoke an early motor response if it were not for the cerebellar timing circuit which adaptively times such responses.  The model is reported to account for timing in a variety of tasks up to 6 seconds. The problem with this model is that it is not clear how such purely associative processes could allow quantitative decisions as suggestive by tasks like time-left. 
6.4 Oscillator models of timing

As mentioned in Section 1, Church and Broadbent (1990) developed a connectionist version of the original information processing model of SET.  This model is referred to the ‘standard model’ and has received positive appraisal by other authors (e.g. Wearden and Doherty 1995).  In this scheme timing is performed by resetting a small set of oscillators each of which  differ in frequency by a harmonic value.  As the different states of the set of oscillators are time dependent one can code a particular interval by the states of the oscillators when the interval has elapsed.   Each of the oscillators can represent only two states given by each of its half phases (+ or -).   For the system to yield the Weberian property, the period of each oscillator on each trial is its mean multiplied by a variable taken from a normal distribution with a mean of 1 and some standard deviation.  Two sets of oscillators are each connected to a set of status indicators. Each element of the status indicators records the phase state of each of the corresponding oscillators in the set.  The phase state recorded by the status indicators takes on values of  +, -, or 0 if the reward status is unknown.   One of the status indicators represents the retrieval vector whilst the other represents the storage vector.

The working memory is represented in the system by an auto-association matrix.   Each of the elements of the storage vector is connected to every other storage vector (except itself) by weighted values that represent the connection strength between the status indicators.  The net can be represented as a matrix where the weight connection is calculated by the product of the connected elements.  Hence weights are +1 if they are the same and -1 if different.  

The reference memory, which is intended to reflect long term storage of rewarded intervals, operates in the following way.   To store a reinforced period the contents of working memory is combined with reference memory by a linear combination rule, which is applied to every corresponding element by 1% of the working memory and 99% of reference memory.   The reference memory matrix (weights) indicates associations between status indicators.   A positive relationship reveals that the elements were the same; whereas a negative value indicates the elements were different at some interval. 

In order to compare the current temporal duration with a previously stored interval an output vector is computed by multiplying the retrieval vector with the reference memory.   This results in an output vector where each of its elements is the sum of the product of every element in a matrix.  The authors describe the reference memory as acting as a filter that is tuned to the time of reinforcement.  Hence a retrieval vector that is similar to the stored reinforcement time will yield an output vector similar to the retrieval vector and different if not.    A similarity measure is computed from the cosine of the angle between the retrieval vector and the output vector.   This is then compared to a threshold.  If it is above the threshold a response is recorded and not otherwise.

In this scheme the spatial pattern of activity allows a quantifiable representation. In general this model simulates PI data very well producing many important features including the scalar property. Note that the model has also been used for temporal bisection performance yielding geometrical mean bisection.
  However, the performance of this model can deteriorate under certain parameter manipulations (Wearden and Doherty 1995). One important point concerning the plausibility of this kind of model is that it is unclear how a population of oscillator neurons could be reset.   Another important point arises when the model is compared to schemes like the spectral timing model (Grossberg and Merrill, 1992). Like SET, the standard model lacks consideration of other important cognitive, emotional/motivational processes associated with timing behaviour such as attentional and hedonic elements.

A more neurally plausible oscillator model of timing has been developed by Miall (1989, 92).   In this model a large population of pacemaker neurons are employed, each of which have a slightly different oscillation frequency to any other neuron in the population.  Each of these neurons rhythmically spikes for a short period of their phase.   Miall calls the simultaneous spiking of pacemaker neurons the beat frequency.  As each neuron in the population spikes at a different frequency a reset population will show regular time dependent patterns of which neurons are and are not simultaneously spiking.  Each of these neurons was synapsed on to a single recognition unit.  An interval could be learnt by strengthening the weights of those neurons that were spiking when the interval had elapsed. Hence on recognition simulations the relevant spiking neurons would all input to the unit with a summed value that would activate it (Miall, 1989). 

There are three weaknesses to the model that Miall (1996) has pointed out.  Firstly the system is intolerant of noise.   Very slight frequency variations in the population of pacemaker neurons result in poor temporal estimation.   Secondly the system yields no distribution of timing accuracy characteristic of animal timing.   For such a pattern of performance one requires noisy oscillators like the standard model.  However, as mentioned, this network cannot tolerate noise.  Lastly, this model requires the population of neurons to be synchronously reset when an interval is being timed.  It is not easy to see how a natural neural system might be able to do this.

6.5 Accumulator timing

A second model proposed by Maill (1993) attempts to simulate how a neural system might be capable of acting as an accumulator as proposed by SET.   In this model the elapsed time quantity (or number of accumulated pulses) is represented as a quantity of active neurons.  Hence, as time increases, so does the number of active neurons.   Each neuron in the population receives inputs but has only a very low probability of firing.   Once these neurons become active they have a very high probability of staying active.   As the neurons have a very low probability of switching off, the network will have some boundary at which no further increase in active neurons will occur, thus placing limits on the number of time steps the network can encode.  This limit depends on the network size and the activation and deactivation probabilities assigned.

This scheme is proposed to be in line with the view that elapsed time is coded by an increase in activity possibly in the prefrontal frontal cortex (Niki and Watanabe, 1979) as discussed earlier. Note however that this model does not yield a linear increase in active neurons over time; rather the increase in activity over time appears a constant curved function producing a gradual increasing underestimation of elapsed time.  This does not seem to accord with what we might except given the experimental data reviewed here.  

�  Wing and Kristofferson (1973) developed a mathematical method for dissociating variance due to the motor system from variance due to an internal clock based on the observation that neighbouring responses tend to negatively covary.  It seemed out of context to elaborate the method in this thesis.  Interested readers should consult the cited references. 


� I am not aware of this being published. This information came from the supervisor John Wearden who has developed the model to do this. 
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