SECTION 7

The Accumulator Network
In Section 2 experimental data was discussed suggesting that an accumulator representation of elapsed time might have the following properties: a) a quantitative value, b) a mean that increases approximately linearly and c) scalar variance.  An abstract model of the accumulator neural network was designed to produce all of these properties. The model is a modification of the accumulator model proposed by Miall (1993) which has some plausibility as a result of the observations of Niki and Watanabe (1979).  In Miall’s model single nodes become activated and stay active for the course of the interval delay.   In this model nodes do not necessary stay active for the course of the interval delay, rather activation spreads around the network, each node becoming active for only a short temporal unit unless re-excited.  In short, the accumulator neural network is an abstract model that simulates the preservation of activation probabilities.  The following description elaborates the design considerations and implementation of the system.
7.1 Design and Implementation

Each node in the accumulator network has a fixed quantity of connections (Nc) with other nodes that it can excite.   This connectivity was randomly generated.   Each node can be active or inactive.   An active node can take on different activation levels.  The activation level of a node determines its probability of activating other nodes.  The activation level is the sum of discrete activation units (Av) a node possesses.  Each Av unit is equal to the value of one.  A node acquires a single Av unit for each successful input it receives. A node is active when it receives one or more Av units. On each time step the network receives a fixed quantity of inputs (Ni) from an external source which can be viewed as the pulse generator in SET.   Each of the inputs transmits a single Av unit to a node in the network, making that node active. Every node activated by an external source is selected at random, although this is not of any relevance to the performance of the algorithm. 

The dynamics of the network unfolds over a sequence of idealised time steps. In this model, nodes are active for a single time step unless they receive activation on the next time step.   Each active node has a probability of activating other nodes via its connection’s.   This activation transfer occurs over each time step.  The algorithm does not include intermediate states between neurons receiving input and firing, refractory periods or any other neural properties that unfold in real time. 

One constraint is that the mean sum of Av units in the neural network (Sa) for each time step should increase approximately linearly over the sequence of time steps.  For this to occur, a node should have a probability of activating on average one other node for each Av unit it has on that time step. The probability of an active node x activating another node y on a subsequent time step is calculated by dividing the activation level of node x  (sum of Av units) by the value of Nc.  If for example Nc equals 10 and the node x has an activation level of 2 Av units, then each output node (y1…..y10) will have a probability of being activated equal to 0.2. 

To determine whether an input node x activates an output node y on the subsequent time step the following rule is computed:

If 1/Nc ( Rn then y=y+1







(7.1)

where Rn is a random number between 0 and 1 drawn from a uniform distribution of such values. On each time step the algorithm searches for an active node in the network. When one is found the rule in 7.1 is computed for each of the nodes it can excite via its connections. 
If the input node x has an activation value greater than 1, then the rule in 7.1 is computed once for each Av unit it has. When all of the activation calculations have been performed for a single active node x, the algorithm moves on to the next active node. This process is continued for each active node in the neural network.   When this is completed, a new time step is initiated and the pattern of activation transfer calculated from the previous time step, together with the new external inputs, becomes the present activation pattern of the neural network.



The neural network should tend to preserve the quantity of activation it receives. The mean sum of activation units in the neural network on a given time step (t) can be predicted by multiplying the value of Ni by t. A second constraint relates to maintaining scalar variance.  It was assumed that if transfer of activation involved constant probabilities, then noise in the system would increase proportionally with the value of Sa. A sample of Sa at t should be a Gaussian distribution with some standard deviation (SD) that increases monotonically with the size of t.  The CV fraction depends of the size of Nc and Ni.  The greater Nc or lower Ni, the larger the value of CV. The author is not clear of the precise mathematical relations between Nc, Ni and CV. 

7.2 Results 

The data reported shows 100 simulations of 100 time steps.  Ni was set at 10 and Nc was set at 5.  These simulations provide a sample (n=100) of Sa for each time step.  As can be seen from figure 7.1 the mean value of Sa increases in a linear fashion as a function of time steps.   The SD of sample of Sa values on each time step also increases linearly as shown in figure 7.2.   These two observations predict that CV must approximate a constant fraction.   This is shown in figure 7.3 where for each time step, the SD of the sample of Sa values is divided by the mean Sa value and plotted as a function of time steps.  A last prediction was that a sample of Sa values at t should be a Gaussian distribution.  This is shown in figure 7.4 where the value Sa at eighty time steps was taken from each of 100 simulations.  The histogram of data shows that the distribution approximates a Gaussian.
Figures 7.1-7.4: Data from accumulator network
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Figure 7.3


Each figure is computed from 100 simulations of 100 time steps (Nc=5, Ni=10). Figure 1 shows the mean Sa as a function of time steps. Figure 2 shows the SD of a sample of Sa as a function of time steps. Figure 3 shows the CV fraction as function of time steps.  Figure 4 show a histogram of a sample of Sa at eighty time steps.

7.3 Discussion

As mentioned this model was designed to simulate activation probabilities although it can also be conceptualised in more concrete terms.    Each Av unit possessed by an active node, on each time step, can be thought of a single active neuron. The number of neurons, like the sum of activation units, increases over time steps in a linear fashion. Activation spreads around the neural network although the number of active neurons in the network evoked by an external input tends to preserve.

The neural network provides data in line with inferences based on empirical evidence as discussed in Section 2.   This model is however very abstract.  The main reason for these simulations was to establish whether a network of nodes with accumulating activity could generate the CV fraction through noisy interactions.  The model shows that if activity increases in a probabilistic fashion and the amount of probable noise is proportional to the activity then scalar variance will emerge.  

The pacemaker is modelled as a constant input to the neural network.   Speeding up or slowing down the internal clock can be manipulated by increasing or decreasing the amount of Ni on each time step. The effect of information load on the subjective passage of time (e.g. Ornstein, 1969) could also be related to the amount of input in this model.  This may occur as a result of the amount of neural activity reflecting the degree of information processed. 

As we have discussed each Av unit can be thought of as a single active neuron.   Lets assume the that the accumulator has a limited number of neurons and whatever mechanisms modulate the activation in the neural network, blindly activates already active neurons. As neurons do not have an infinite firing rate, and it is assumed that the firing rate of single neurons determines their probability of activating other neurons; one would expect a fraction of the representation of elapsed time to be reduced.   This reduction would increase the longer time elapses, as more neurons become active.  This is an important issue relating to conceptualising the plausibility of this kind of model.    Should one assume that single neurons always receive an equal amount of excitation or should one assume that some neurons receive disproportionately large amounts of excitation, as more neurons in the network become active.   For the former one is required to posit the view that either a very sophisticated regulation mechanism is being employed or the network consists of an extremely large number of neurons, much more than will ever be simultaneously activated.  For the latter one needs to assume the position that elapsed time estimates reduce to some fraction (depending on the network size and Ni) as a function of the interval length.

Noise in the system relates directly to the number of weights through which a node can output.   This relation between noise and weights was an unintended consequence of developing an algorithm that would preserve all activity in the neural network.  As this generated noise, no further need was considered to put noise anywhere else in the system.  One important question concerns what might cause this scalar noise to occur in a real neural network?  One might assume that if the number of active processors (neurons) represents elapsed time, then something that is noisy and associated with the activity of single processors would give rise to the scalar variance.    This could be a number of things including response thresholds, synapses or some unknown mechanism that modulates the activity. 

Exactly how hypothetical accumulator neurons could give rise to, or be modulated by external mechanisms to produce linearity and scalar variance is not an easy question even attempt to answer.  One speculative possibility is that some pattern of connectivity and/or dynamical time dependent properties of hypothetical accumulator neurons permit these properties to occur.   Another possibility is that the properties are accomplished by some kind of feedback mechanism that through neurochemical mediation modulates relevant time dependent neural properties.   Either way this is just imprecise speculation. The central issue in making an activation based timing accumulator seem plausible is developing mechanisms that could do this.  Neither Miall’s (1993) model or this model includes such a mechanism.  This should be the central goal for any further developments.

The last issue concerns how the neural network could be reset.  One possibility is that the input to the accumulator may be associated with the presence or absence of a representation evoked by the reward situation.  A working memory of an expected reward event consisting of a population of firing neurons could maintain sustained input to a neural network acting as a pacemaker or indirectly influencing this input.   How might the activity be reset? The simplest idea would be some form of inhibition that inputs to the neural network and cancels out the excitation.
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