SECTION 8

Peak Procedure Performance

The neural network for PI performance involves a different scheme to that proposed by Church and Broadbent (1990).    The model allows one to determine whether animal like response data can be acquired with an accumulator that had scalar variance using the decision rule of 2.2 proposed by SET.   In this model temporal generalisation is based on recognition processes.   This will also be a central theme of the discussion in section 10. The simple model reported involves a rearrangement of the decision rule proposed by SET.   The central idea is that responding is evoked by the activation of a response representation that is inhibited during the delay period by a system that computes the difference between currently elapsed time and a learnt value of the reinforcement time.    It is assumed that the response representation has an activation threshold that becomes relative to the value of reference memory.  It is suggested that this relativity may be due to the hetrogeniety of accumulator values experienced at reinforcement time.  

8.1 Reward Expectation

The spectral timing model developed by Grossberg and Merril (1992, 1998) incorporates the view that timing involves sustained attention on anticipated events.   One intuitive assumption is that the animal first learns to recognise the reward salience of a previously experienced context.  If this were the case, then it would seem reasonable to suggest that recognition may be mediated by an internal representation of the expected reward.  One might envisage a population of neurons with expectancy receptive fields tuned to the reward context.   Although this is only speculation, the idea of neurons being tuned to different stimuli and events in the environment is a common idea in the field of neuroscience. 

It is assumed that if it were not for the mediation of timing processes that maintain sustained attention and influence response inhibition, an expectancy representation would evoke an immediate response and orienting behaviour when no reward was attained.  In this model we include a unique population of expectancy nodes that become activated when the animal is exposed to a previously experienced reward situation.  These nodes remain active through the response delay and can be thought to represent a working memory of the reward event, maintaining the animals sustained attention on the reward salient context.     It is assumed that these nodes become associated with the temporal representation.   In this model the association is very direct. 

8.2 Temporal representation

In the accumulator neural network the internal representation of elapsed time is an activation quantity.    SET proposes that temporal reproduction occurs by comparisons made between a memory of the reinforced interval and the present accumulator value of elapsed time.  For this reason temporal memory is represented in a similar way to the accumulator, that is, by an activation quantity.  The weights that extend from expectancy nodes are trained to output the value of Sa at reinforcement time.  The summed output of these weights is given by the notation Sm and can be considered equivalent to the reference memory value in SET.   The learning that takes place is viewed to be a kind of supervised learning.  The difference between Sm and Sa, at reinforcement time, determines the extent to which a training signal modifies the value of Sm.  The temporal memory weights are modified on each training trial, and this occurs while Sm does not equal Sa.  For each weight w1….wn the following learning rule is applied:
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where ( is a learning rate. Each expectancy node has a single weight. These weights converge on to a relay node. The relay node excites both the difference network and a response memory via a weight to each. Both of these weights have a value of +1.  

8.3 Response representation

The response memory threshold (q) is tuned to the value of Sm it receives from the expectancy nodes.  The response memory was represented by a single node although it could also be considered to reflect a population of neurons in a real neural network or a more sophisticated model. 

The value of q represents the degree of temporal generalisation or response precision.   In this scheme, q was set relative to the value of Sm.  This is based on the suggestion that temporal reproduction involves recognition processes that learn to generalise as a function of the variability of the accumulator values it samples at reinforcement time.  If the accumulator has noise, as in this model, this would be an optimal way to behave.  Concentrating all responses over a very short unit of time would not be an intelligent thing to do if the internal representation of elapsed time tended to be inaccurate.  Temporal generalisation can be viewed to compensate for the extent and probability of within trial accumulator error.  Remember that the standard deviation of a sample of accumulator values for some interval t increases as a function of the size of t.  As a consequence, under these assumptions, the extent to which a recognition process should generalise would be a monotonic function of the reinforcement time that Sm represents.   A method could be developed to train the value of q to be relative to Sm and the heterogeneity of values from the distribution of Sa at reinforcement time, but due to time constraints this was not done.  This idea will be discussed later in this section.

This organisation reflects the PI formulations of SET in slightly different way.  Instead of the decision rule of 2.1, the threshold to respond in 2.1 was  performed by q and instead of the differences (abs (r*-a))  being relative to the reference memory, q was set relative to Sm.  Setting q is performed by the following calculation:
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where G is a fixed generalisation parameter that is equivalent to the response threshold in decision rule 2.1. In accordance with SET q was made to have error.  The value of q on each trial was q multiplied by a value taken from a Gaussian distribution with a mean of 1 and some SD.
8.4 Difference network

The difference network represents part of the decision processes in SET.  The central function of the difference network is to inhibit the response memory until Sa is close to Sm. The decision to respond based on the proximity of Sm to Sa is performed by q.  The difference network is modelled in a very abstract way with only four nodes. All nodes have zero thresholds and have either excitatory or inhibitory weight values of 1. Note that weights multiply values, hence having weight values of 1 preserves the quantity output from a node. 

There are two inputs to the difference network, the accumulator output (Sa) and the memory of the reinforced time (Sm).  Each node in the accumulator has a single weight and each of these weights converges on to a single node in the difference network.  This pattern of feed forward convergence might be considered analogues to the input form the prefrontal cortex to the striatum.  Remember that the activation based accumulator originally proposed by Miall (1993) is inspired by observed prefrontal activity in a timing task (Niki and Watanbe 1979). 

One unit Da takes the value Sa, whilst the other unit Dm takes the value Sm.   The other two units D1 and D2 compute differences.  Both D1 and D2 send inhibitory activation to the response memory.  D1 has an inhibitory weight with Da and an excitatory weight with Dm and visa versa for D2.     D1 and D2 can be in only one of three states, excited, inhibited or cancelled. Whilst one is in an excitatory state the other is in an inhibitory state and visa versa. Both can be simultaneously cancelled which occurs when Sa matches Sm. At any given time either D1 or D2 but not both can inhibit the response memory which prevents responding when above some level.  The magnitude of inhibition depends on the difference between Da and Dm computed by D1 or D2.  The following rules describe the behaviour of the difference network.  One can deduce that D1 is active before Da matches Dm (before the reinforcement time has elapsed) and D2 after Da has matched Dm (after reinforcement time has elapsed).

Excitation: 
If Dm >Da then D1=(Dm-Da) 
If Da >Dm then D2=(Da-Dm) 


Inhibition:
If Dm <Da then D1=0


If Da <Dm then D2=0 


Cancelled
If Dm =Da then D1=0


If Da =Dm then D2=0 







(8.3)

8.5 Summary of simulation

In early training trials, learning of a unique population of expectancy nodes is assumed to take place.   Over training trials the accumulator becomes activated when the expectancy nodes are activated by the presence of the reward context (e.g. house light, auditory signal).   On each reinforcement trial the value of Sm is modified to match the value of Sa.   It is also assumed that q would undergo learning but this has not been modelled.   On peak trials Sa is constantly compared to Sm.  The difference network computes the difference between these inputs.  This difference via D1 or D2 determines the amount of inhibition that the response memory will receive.  The response memory receives a sustained input quantity (Sm) from the expectancy nodes.  This by itself would activate the response memory above its threshold q and cause abrupt responding. However, the inhibition from D1 or D2 can cancel out the input from the expectancy nodes preventing the response memory from being activated above its threshold.  Only when the inhibition from D1 or D2 is small (< Sm-q) is the response memory excited above its threshold.    If this occurs, a single response is recorded for that time step.   Each calculation to respond involving all weights and nodes, are computed on single steps. 

Illustration 8.1 Accumulator Timing Model of Peak Procedure Performance
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D1: 
Computes differences and inhibits Rm

D2: 
Computes differences and inhibits Rm

Dm:  
Takes the value of Sm

Da: 
Takes the value of Sa 

8.6 Results

The algorithm was simulated with the accumulator parameters as set before (Ni=10 and Nc =5) where CV was estimated at approximately 0.2.   The G value was set at .3 (equivalent to the response threshold in the SET decision rule).  Ten expectancy nodes were employed each of which had a single weight.  The value of ( was set at 0.01.   Each training session consisted of 50 training trial simulations. The weights were set at 0 because having a random value between 0 and any Sa value was considered just as arbitrary. The value of q was multiplied by a value from a Gaussian distribution with a mean of 1 and a SD of 0.03.  PI training simulations with reinforcement at 20, 100 and 300 time steps were performed.    

Figure 8.1 shows the weight changes occurring over 50 trials of learning with reinforcement at 50 time steps.  Figure 8.2 shows a single trial of PI performance with reinforcement at 50 time steps.  As can be seen, an abrupt state of responding typical of PI data is observed.   Figure 8.3 shows the probability of a response from 100 simulation trials for each of the reinforcement times.  As can be observed the spread of the response distribution increases with the reinforcement time.  One should note that the peak response probability does not decrease for longer reinforcement times.  The model only incorporated the decision rules of SET, which does not include rules for reducing response rate with reinforcement time. 

Another important observation concerns the asymmetry of the distributions.  This is a consequence of the response threshold proposed by SET that is implemented in q in this model.  The q threshold allows a range of accumulator values above and below the reinforcement period to initiate responding. As the variability of accumulator values above the reinforcement time are greater than those below the reinforcement time, the right side of the response distribution is wider than the left.   This pattern is in line with PI data.   Figure 8.4 shows superimposition of the three response distributions.    As can be observed, when the response probability is plotted as a function of time relative to peak time the three distributions superimpose. This indicates that the CV fraction approximates a constant for each of the response distributions.

Figures 8.1-8.4: Data from PI simulations




Figure 8.1displays the output of Sm as a function of training trials.  Figure 8.2 shows an example of a step function computed from a single trial. Figure 8.3 shows the probability of a response as a function of time steps for the three reinforcement times (20, 100 and 300 time steps) taken from 100 simulation trials.  Figure 8.4 shows superimposition of the three response distributions when response probability is plotted as a function of elapsed time relative to peak time.

8.3 Discussion

Needless to say this model is very abstract and simplistic.  There are no dynamic recurrent interactions between different elements of the network.  The model incorporates the same calculations as SET but in different ways.   The central idea is that a response representation, that has a threshold tuned to the memory value at reinforcement time, is inhibited above and below the reinforcement time by the difference network.  

In the model we have not included explanations of mechanisms that cause this inhibition to cease, the expectancy nodes to become quiescent or the accumulator neural network to stop accumulating and reset activity.  One could take the view that after responding external mechanisms inhibit the expectancy nodes, which would stop the input to the accumulator neural network and thus prevent the response memory from being activated.  This would also be in addition to mechanisms that reset the accumulator neural network.

The most obvious way to design a neural network that computed differences was to take advantage of the fact that neurons can have either excitatory or inhibitory influences and therefore in principle can carry out subtraction. One advantage of adopting difference computations in this way is that the computation is ongoing.  If one were to employ some kind of relaxation neural network one might have to deal with the problem of performing sequential computations in successions of temporal units. Each temporal unit having a ANN receive the two inputs (accumulator and reference memory) and relax at some state with them. A possible research challenge is to develop a neural network that computes differences by some kind of dynamic ongoing recurrent process. There is the possibility that differences are computed by neural excitatory and inhibitory configurations although a more elegant idea that can do away with the need to explicitly compute differences shall be discussed Section 10.   All weights that are part of or input to the difference network, have values of + or –1.   For something remotely like this to occur in a neural system, learning must take place to balance or equalise these weights unless the weights were hard wired.  The biological plausibility of this model was not given a great deal of consideration, due to the project time.

The original idea of an expectancy representation was different to that proposed in this model.  One possibility that interested the author was the view that a clock mechanisms was not a detached system singularly specialised for timing but instead a time dependent property of some other kind of process.   An intuitive view is that timing is a direct consequence of, or at least closely implicated with, processes involved in anticipation. The idea of an expectancy representation was aimed to capture some aspect of anticipatory processes.  It could be thought of as a higher order representation of both episodic and hedonic information relating to reward or event prediction. Could something like an expectancy representation have time dependent changes acting in some way as an accumulator? According to Kesner (1998), increases in activity observed in the prefrontal cortex during delayed response tasks has been considered by a number of researchers to occur in anticipation of some event. As already discussed the prefrontal cortex has been implicated in timing (Niki and Watanbe 1979, Marcar and Casini, 1988). Note also that the prefrontal cortex has also been strongly implicated in related activities such as planning, maintaining attention or a working memory of a future event, motivation and the initiation of goal directed behaviour (See Parkin 1996, for example).  This idea could be considered in further research developments.   

In this model each timing signal would evoke a different expectancy population of nodes each of which could have a different accumulator associated with it.  In timing tasks where the animals time more than one signal simultaneously (Olton, Weuk, Church and Meck, 1988) accumulators could run simultaneously.   If one were to take the view that the accumulator was also a context specific expectancy representation (or some other context specific representation) the idea of two single accumulators running together would seem more plausible.

The model has ignored two main components of SET, the working memory and the accumulator switch.  The reason for ignoring working memory was that it seemed to serve little explanatory purpose in basic PI performance.   There are however reports of PI tasks which employ a ‘gap’ or ‘blackout’ manipulation (Roberts, 1981).   In such cases the animal can stop timing for some interval then continue when a signal is present.   It is believed that the function of maintaining a representation of an elapsed interval during an interval gap is performed by a separate working memory system.   Results from animal lesioning studies have led authors to propose that the hippocampus mediates the function of working memory (See Hinton and Meck, 1997; Kesner, 1998). However, if one has an accumulator neural network that preserves activation over delays without input, why would one need to propose a working memory? 

As mentioned the accumulator switch was also not explicitly considered.  One could model the opening or closing of the accumulator switch by the presence or absence of accumulator input.  If the presence of input is dependent on the activation of the expectancy nodes then possible variance in the switch (Wearden, 1999) could be a result of the activity of the expectancy neurons and associated activity that results in accumulator input. In the gap procedure the accumulator switch is proposed to remain closed through the gap period.   An alternative position is that the input to the accumulator is merely stopped for that interval reflecting the view that the nervous system does expect a reward during the gap.  In such a situation the expectancy nodes would not be active therefore the input to the accumulator would terminate.

Another issue concerns the q threshold that was set relative to Sm in this model.   It was suggested that the relativity of a response threshold to a reinforcement time may occur as a result of the heterogeneity of accumulator values experienced at reinforcement time.  This is based on the view that the response generalisation exhibited by animals is to compensate for error in the accumulator and therefore increases as a function of reinforcement time.     How might a relative response threshold be learnt?  A common sense view is that q should be lowered as a function of the frequency and degree of regular discrepancies between Sa and Sm that occur over a number of learning trials.  For this to be possible it seems reasonable to suggest that learning must involve a process that remembers the frequencies of experienced accumulator values at reinforcement time. 

Employing the sum of weighted values output is a very simplistic and abstract view of how a reference memory could be represented as an activation quantity.  The possible incorrectness of this view is suggested by a study performed by Malapani et al (1998).  In this study PD patients appeared to show an interference effect in reproducing each of two learnt intervals in a PI analogue task with human subjects.   The response distribution for the larger interval was shifted to the left (underestimation) whilst the response distribution for the smaller interval was shifted to the right (overestimation).  The data suggests the possibility that retrieval processes are performed by some kind of attractor network.  This is based on the observation that under certain circumstances attractor networks such as Hopfield’s, have been reported to converge at patterns that represent combinations of patterns learnt by the network (Quinlan 1991).  Even if the pattern occurred as a result of faulty encoding mechanism or other cognitive processes not considered, such data would not be predicted in this simplistic network.

Another problem with the memory organisation in this model concerns data from studies of reinforcement time transitions.   Meck, Komeily-Zadeh and Church (1984) have observed transitions from one FI time to another to be characterised by the emergence of an intermediate plateau rather than a smooth gradual transition.  More interestingly, the plateau was observed at the geometrical mean of the two times (also the same as the bisection point).  This plateau however does not occur under all transition conditions.  Another group of researchers found gradual transitions except in some cases where 50% of PI trials were employed (Lejeune, Ferrara, Simons and Wearden, 1997). When the percentage of PI trials were lower this effect did not occur.   Another interesting observation from this study was that ascending transitions occurred more readily than descending ones.  The network reported here does not include processes that would account for the plateau effects or asymmetrical transitions.  Again the plateau effect seems to support some kind of dynamic memory process that is not employed in this model.  

The learning rule of 8.1 permits more discrepant accumulator values at reinforcement time to have a greater affect on the modification of the current value of Sm.  Clearly it would be beneficial for a nervous system to give little priority to highly discrepant values that occur randomly with less frequency unless abrupt temporal transitions are predicted.  In such circumstances it would be more beneficial to be highly sensitive to these changes.  This has been demonstrated in a temporal transition tasks where rats were observed to make transitions more readily with increasing experience of the transition changes (Lejeune et al, 1997). This data suggest that processes of interval learning in animals are quite flexible and can be adapted to the timing context.  An understanding of learning processes may reveal a lot more about timing behaviour than some proponents of SET care to consider.  Connectionist experimentation of learning processes could prove to be an important step forward in understanding timing decisions (e.g. geometrical mean bisection and plateau effects) and the nature of the representation of intervals.  This is particularly interesting if the degree of temporal generalisation is a learnt compensatory behaviour as discussed.

SECTION 9

Temporal Bisection Performance

As discussed in Section 2.2, animals show a bias in classifying a range of intervals in an experimental task called temporal bisection.  In this task animals bisect near the geometrical rather than arithmetic mean of S and L.  One explanation of this, is that animals learn explicit representation of both S and L and bisection is performed by normalising one of the difference between the current accumulator value and another by a memory value, as shown in decision rule 2.2.   

In the course of this research other ideas were experimented with.  One idea, which will be elaborated, is that animals do not learn explicit separate representations of S and L but instead learn the most optimal discriminant between the two.   For each experience of S and L on training trials, the accumulator would generate a range of values with the highest probability at the means of S and L.  More importantly though, the SD of the accumulator distributions for S and L would be different.  As the SD increases with the mean, the ratio of the SD of the two accumulator distributions is the same as the ratio of the two times. If either the two distributions cross at some point or at least the L distribution crosses the arithmetic mean, one would predict that the best discriminate between the two distributions would not be at the arithmetic mean, but would always be somewhere between the value of S and the arithmetic mean of S and L (see illustration 9.1).  The proximity of the discriminant to the geometrical mean would depend on the ratio of the means and the CV value of the two accumulator distributions.  It was predicted that there must be some CV value where the best discriminant lies at the geometrical mean of the means of the two accumulator distributions.  If animals tested on bisection tended to generate accumulator distributions close to this value, then of course, one would observe a tendency to bisect near the geometric mean.

Illustration 9.1 Sketched histogram plots showing the best discriminate between the two accumulator distributions
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9.1 Expectancy representation

Again we assume that firstly the reward situation evokes a unique population of expectancy nodes. There is no way of the animal predicting beforehand which interval will be presented as the timing signal is the same for both S and L.   As a result, it seemed justified to assume that only a single expectancy representation was evoked.  Again active expectancy nodes output modifiable weights.  However, unlike the previous model, these weights are trained to represent a discriminant between the two times.  

9.2Temporal representation

It is assumed that the animal learns the most optimal discriminant in error situations. The animal responds L when Sa is above Sm and S when Sa is below Sm.  In situations where the animal is rewarded for pressing the correct lever no weight changes take place.  If they did the discriminant would take on a value that may result in a less optimal discrimination. Imagine that the interval L is presented and the animal responds to the S lever.  The value of Sa will be from a distribution of possible accumulator values for the interval L that is below the discriminant value Sm.  On this trial learning involves changing the value of Sm in the direction of the current Sa value.  On another trial where the interval S is presented and L is responded, the value of Sm will be moved in the opposite direction of the present Sa value. With a large enough accumulator value of CV within some ratio limit of S and L, the discriminant will tend to move around some location between S and the arithmetic mean of S and L, over a large number of training trials.  The learning rule employed was the same as the rule in 8.1 where each weight w1…….wn was modified.


(9.1)

9.3 Difference network

The discriminant represents a value that can be compared to Sa.  If Sa is above the discriminant, the animal responds L and if below the discriminant, the animal responds S.  If L or S is equivalent to the discriminant then the animal responds at random.  A very simple abstract network that computes this involves a difference network similar to that used for PI performance.  Again four nodes were used D1, D2, Da and Dr where Dr takes the discriminant value of Sm.  In addition, two response nodes were employed Sr and Lr.  D1 has a positive weight connection with Sr and D2 a positive weight connection with Lr.  Both of the response nodes output 1 if excited. All these weights, as before, take on values of 1 or –1 and all nodes have 0 thresholds.   In this network the following rules are computed.

Excitation: 
If Dr >Da then D1=(Dr-Da) & Sr=1
If Da >Dr then D2=(Da-Dr) & Lr=1

Inhibition:
If Dr < Da then D1=0 
&  Lr=0
If Da < Dr then D2=0 & Sr=0

Indifference
If Dr =Da then D1=0 
&  Lr=0
If Da =Dr then D2=0 & Sr=0 

(9.2)
9.4 Summary of simulation

In training, only one expectancy representation is learnt.  On each trial that results in an incorrect response the value of Sm is modified to match the current value of Sa.  After a number of training trials the value of Sm will come to represent an optimal discriminate between the accumulator distributions for S and L.  For each interval presentation, the difference between Sa and Sm is computed by the difference network.  If Sa is below Sm, Sr outputs 1 and if Sa is above Sm, Lr outputs 1.  When the summed values are equal, responses are made at random.  Following each interval presentation a single response is made.

Illustration 9.1 Accumulator Model of Temporal Bisection
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Sm: 
Value of weights trained to output an optimal discriminant between S and L

Sa:
Sum of activation units in accumulator

D1: 
Computes differences and can excite Lr

D2: 
Computes differences and can excite Sr

Dr:  
Takes the value Sm

Da: 
Takes the value Sa

Sr:
Short response node

Lr:
Long response node

9.5 Results

The value of Sm was represented by 10 weights and these were trained on 1000 simulated learning trials consisting of alternating S and L presentations.  S was set at 20 time steps and L was set at 80 time steps. The value of ( was set at 0.03. To save the computational expense of a very large quantity of training trials the Sm output was initiated at the arithmetic mean of S and L.   Although a number of Ni and Nc values were experimented; training simulations are reported only when Ni and Nc were set at 5.  These parameter values yield a CV value of .26 that is close to the average CV value reported in animal studies with rats and pigeons.

Figure 9.1 shows the decreases in the summed output of these weights as a function of training trials.  The value of Sm in figure 9.2 was normalised to time step values by dividing Sm by Ni.  On many of the training trials no weight changes were made because incorrect responses would not have occurred.   As can be observed the normalised Sm value converges to approximately 38, close to the geometrical mean of 40 time steps.  Figures 9.2 and 9.3 shows the distributions for S and L.   Again these distribution were normalised by Ni to give time step values. Table 9.1 displays relevant statistics for the two normalised accumulator distributions. 

Table 9.1 Normalised statistics for accumulator distributions of L and S

Disribution
N
Mean
SD
cV
Min
Max

L
500
81.1
21.4
.26
34
69

S
500
20.6
5.4
.26
9
38

Over more simulations it is probable that Sm would have moved around between the maximum S value and minimum L value.  These distributions only just cross. Note that in previous experiments using a higher CV value, increasing Ni so the accumulator distributions had greater overlap, moved the normalised value of Sm away from the geometrical mean and closer to the mean of S. 

Figure 9.4 shows bisection performance for 20 and 80 time steps with the final value of Sm from the reported training simulations.   The intermediate intervals presented were linearly spaced values form 20 to 80 time steps increasing by 10.  A response was recorded for each stimulus interval.   In this simulation the probability of an L response was plotted as a function of the stimulus intervals.  One can estimate by eye that the interval at which 50% of responses for L were made was close to the bisection point of 40 time steps and approximates the normalised learnt output value of Sm.
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