
Binary Input and Output

CS1092: Object-Oriented Programming with Java

Binary Input and Output with Files

Howard Barringer

Room KB2.20/22: email: howard.barringer@manchester.ac.uk

February 2005

Binary Input and Output

Supporting and Background Material

• Copies of key slides (will appear in Resource Centre later
today)

• Chapter 18 of the JTL book (follows this presentation) —
lecture notes

• Recommended reading books for course

• Chapter 9 (9.4) of Savitch “JAVA: An introduction to
Computer Science and Programming”, 3rd Edition

• Chapter 17 (17.11) of Liang “Introduction to JAVA
Programming”, International Edition

Binary Input and Output

Outline

Binary Input and Output
ObjectOutputStream & ObjectInputStream
A Graphing Task
Summary

Binary Input and Output

Textual versus Binary Output

• Why use text files

• What use binary files

Binary Input and Output

Simple Binary Output

• For “binary” output, we use the ObjectOutputStream class

• Methods such as writeInt, writeDouble, writeBoolean,
. . . , are provided

• To write to a file, set up a FileOutputStream for the given
filename

• Then wrap with an ObjectOutputStream to be able to use
the appropriate writing methods

Binary Input and Output

Let’s generate some data

import java.io.ObjectOutputStream;

import java.io.FileOutputStream;

import java.io.PrintWriter;

import java.io.FileWriter;

public class GenerateRandomData {

public static void main(String [] args) throws Exception {

ObjectOutputStream outputStream =

new ObjectOutputStream(new FileOutputStream(args[2]));

PrintWriter outputWriter =

new PrintWriter(new FileWriter(args[3]));

//
... --- see next slide

outputStream.close();

outputWriter.close();

}

}

Binary Input and Output

The generation part

int numberOfRandoms = Integer.parseInt(args[0]);

int xStep = Integer.parseInt(args[1]);

outputStream.writeInt(numberOfRandoms);

outputStream.writeInt(xStep);

outputWriter.println(numberOfRandoms);

outputWriter.println(xStep);

double randomNumber;

for (int i = 0; i < numberOfRandoms; i++)

{

outputStream.writeInt(i*xStep);

outputStream.writeDouble(randomNumber = Math.random()*1000000);

outputWriter.println("" + i*xStep + " " + randomNumber);

}

Binary Input and Output

Actual Comparison of Output

Add the following four lines after the close of files

File first = new File(args[2]);

File second = new File(args[3]);

System.out.println(first.length()

+ " bytes written to file " + args[1]);

System.out.println(second.length()

+ " bytes written to file " + args[2]);

And we obtain

$ java GenerateRandomData 100 5 random.dat random.txt

1219 bytes written to file random.dat

2472 bytes written to file random.txt

$

Binary Input and Output

Size difference

A double requires 8 bytes of storage

When printed, a double may use around 17 to 20 characters

An int in the range 0..500 takes 4 bytes but typically 3 bytes
textually

Hence, we get an approximate halving in file size for the binary
version.

Binary Input and Output

Reading it back

• Data written to a file through an ObjectOutputStream

• can be read back from that file through an
ObjectInputStream

• Data must be read back in the same order as written.

• For the above, we can use the readInt and readDouble
methods.

• These methods throw an EOFException when they attempt
to read past the end of file.

Binary Input and Output

Graph Data Manipulation

Our task is to read & process time-stamped sensor data.

We can assume the data in the form generated above:-

1. an integer: the number of time-stamped data items

2. an integer: the usual time step between data items

3. a series of pairs of values:

3.1 an integer time-stamp value
3.2 a double for the sensor data value

Some time-stamped data may be missing. One required task is
thus to interpolate for the missing data items.

Binary Input and Output

The Graph Class

public class Graph {

private int maxDataPointPairs;

private int noOfDataPointPairs;

private int [] xValues;

private double [] yValues;

private int normalXStep;

public Graph(int size, int xStep) {

noOfDataPointPairs = size;

maxDataPointPairs = (int)Math.round(size*1.1);

xValues = new int [maxDataPointPairs];

yValues = new double [maxDataPointPairs];

normalXStep = xStep;

} // Graph
...

} // class Graph

Binary Input and Output

Reading raw values into the graph

public void readValues(ObjectInputStream rawValues)

throws GraphException

{

int i = 0;

try {

while (true) {

xValues[i] = rawValues.readInt();

yValues[i] = rawValues.readDouble();

i++;

} }

catch (IndexOutOfBoundsException e){

throw new GraphException("Too much graph data input"); }

catch (EOFException e){

if (i != noOfDataPointPairs)

throw new GraphException("Insufficient graph data input"); }

catch (IOException e){

throw new GraphException("Problem reading graph data input"); }

}

Binary Input and Output

More powerful writing methods

• The ObjectOutputStream class can also be used to write
arrays of primitive data

• In fact, it can be used for any object that is serializable - but
we do not go there today

• We show the writing (and reading) of array data - it’s so
simple!

Binary Input and Output

Saving the Graph

public void saveGraph(ObjectOutputStream output)

throws GraphException

{

try {

output.writeInt(normalXStep);

output.writeObject(xValues);

output.writeObject(yValues); }

catch (IOException e) {

throw new GraphException("Problem saving graph data");

}

}

Binary Input and Output

Reading a saved Graph

public void readGraph(ObjectInputStream input)

throws GraphException

{

try {

normalXStep = input.readInt();

int [] tempXValues = (int [])input.readObject();

double [] tempYValues = (double [])input.readObject();

xValues = tempXValues;

yValues = tempYValues; }

catch (IOException e) {

throw new GraphException("Problem reading saved graph"); }

catch (ClassNotFoundException e) {

throw new GraphException("Problem reading saved graph"

+ " --- corrupt data?"); }

}

Binary Input and Output

A Simple Interpolation

No time now! — for completeness see forthcoming notes

Binary Input and Output

Summary

• Use ObjectOutputStream class for binary output of data

• And ObjectInputStream for reading data (written via an
ObjectOutputStream)

• Used writing methods: writeInt, writeDouble for primitive data

• With reading methods: readInt() returning an int,
readDouble() returning an double

• Attempt to read past end of file raises an EOFException

• Can write an array of primitive data with writeObject method

• And read an array of primitive data with readObject() — but
must cast to the appropriate type

• An ClassNotFoundException exception (as well as IOException
may raised with readObject

	Binary Input and Output
	ObjectOutputStream & ObjectInputStream
	A Graphing Task
	Summary

