
1

CS1092 : Inheritance in Java
(#3 of 4)

Gavin Brown

Kilburn Building, rm 2.81

gavin.brown@cs.man.ac.uk

www.cs.man.ac.uk/~gbrown/teaching/java/

REMINDER OF YESTERDAY

Vehicle [] vehicleList = new Vehicle[4];

vehicleList[0] = new Porsche();
vehicleList[1] = new Bicycle();
vehicleList[2] = new Plane();
vehicleList[3] = new Porsche();

for (int i=0; i<4; i++)
System.out.println(vehicleList[i].numberOfWheels)

Or even more useful, an array of Vehicle objects:

Making use of polymorphism

> java test
4
2
6
4

Let’s run that code:

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

http://www.cs.man.ac.uk/~gbrown/teaching/java/
http://www.pdfpdf.com

2

public abstract class Vehicle
{

protected int numberOfWheels;

public int getNumWheels() {
return numberOfWheels;

}

public abstract void turn();
}

Forces ALL subclasses to
have a “turn()” method

Abstract class: Vehicle

Abstract classes : Useful software engineering tool: when working in a team,
write an abstract class and give it to a colleague to work from. You can provide
some functionality, and impose some rules, like the above class making the rule
that subclasses should have a turn() method - causes compile errors without it!

REMINDER OF YESTERDAY

Today

1. dynamic method binding
2. ‘final’ keyword to control inheritance
3. is-a and has-a rules
4. constructor chaining
5. class Object (including inheritance in the Java API)

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

http://www.pdfpdf.com

3

public class Cat {
public void talk() {

System.out.println(“Miaow!”);
}

}

public class test {

public static void main(String [] args) {

Cat tiddles = new Cat();

tiddles.talk();

}

}

A new example

> javac test.java
> java test
Miaow!

public abstract class Animal {

public abstract void talk();

}

public class Cat extends Animal {
public void talk() {

System.out.println(“Miaow!”);
}

}

public class Dog extends Animal {
public void talk() {

System.out.println(“Bark!”);
}

}

A new example

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

http://www.pdfpdf.com

4

Dynamic method binding

Animal myPet = null;

Double d = Math.random();

if (d > 0.5) myPet = new Dog();

else myPet = new Cat();

myPet.talk();

public abstract class Animal

public class Cat extends Animal

public class Dog extends Animal

Bark or Miaow?

We don’t know until we run the code, and neither does the
compiler – so it DYNAMICALLY figures out which talk()
method to call.

Dynamic method binding

Employee bob = new Worker();

bob.paySalary(); //pays Bob as a worker

if (promotionReceived(bob)) {

bob = new Manager();

}

bob.paySalary(); //pays Bob as a manager

public abstract class Employee

public class Worker extends Employee

public class Manager extends Employee

Same variable, same type (Employee), but a different method is called!

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

http://www.pdfpdf.com

5

public abstract class Employee {

private String taxCode;

public Employee(String code) {

taxCode = code;

}

public abstract double salaryBeforeTax();

public double salaryAfterTax() {
double pay = salaryBeforeTax();

if(taxCode.equals(“LOW”))
pay = pay - (pay*0.24); //low rate

else
pay = pay - (pay*0.40); //high rate

return pay;
}

}

public class Manager extends Employee {
private double bonus;
private double fixedWage = 40000;

public Manager(double b) {
super(“HIGH”);
bonus = b;

}

public double salaryBeforeTax() {
return fixedWage+bonus;

}
}

public class Worker extends Employee {
private double numHours;
private double hourlyRate=5.50;

public Worker(double h) {
super(“LOW”);
numHours = h;

}

public double salaryBeforeTax() {
return numHours*hourlyRate;

}
}

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

http://www.pdfpdf.com

6

Company FileServer

Class Library

(you can’t alter this

or the see details)

class Manager

Create a subclass from the
Manager class

class NaughtyManager

1 Make an object from the
subclass and use in place

of a Manager class

2

Controlling Inheritance – how it can be misused…

3
Reinsert the code,

customized how YOU
want it

if (bob instanceof Manager)
System.out.println(“Valid Manager”);

Employee

NaughtyManager

Manager Worker

Evaluates to TRUE because
Bob is a Manager and a
NaughtyManager!

Polymorphism!

Meanwhile, deep in the Company Compute Server…

What can we do with this kind of power then…?!

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

http://www.pdfpdf.com

7

public class NaughtyManager extends Manager {

public NaughtyManager(int b) {
super(b);

}

public double salaryAfterTax() {
double pay = salaryBeforeTax();

pay = pay - (pay*0.24); //low rate!

return pay;
}

}

public class test
{

public static void main(String []args)
{

Employee bob = new Manager(15000);

if (bob instanceof Manager)
System.out.println("Pay Bob : " +bob.salaryAfterTax());

bob = new NaughtyManager(15000);

if (bob instanceof Manager)
System.out.println("Pay naughty Bob : "+bob.salaryAfterTax());

}
}

> javac test.java
> java test
Pay Bob : 33000.0
Pay naughty Bob : 41800.0

Bob is now on the
lower tax bracket!

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

http://www.pdfpdf.com

8

> javac test.java
NaughtyManager.java:14: salaryAfterTax() in NaughtyManager cannot
override salaryAfterTax() in Employee; overridden method is final

public double salaryAfterTax() {
^

1 error

public class Employee {

. . .

final public double salaryAfterTax() {
double pay = salaryBeforeTax();

if(taxCode.equals(“LOW”))
pay = pay - (pay*0.24); //low rate

else
pay = pay - (pay*0.40); //high rate

return pay;
}

. . .

Make the method ‘final’ – and he can’t do it any more!

> javac test.java
NaughtyManager.java:1: cannot inherit from final Manager
public class NaughtyManager extends Manager {

^
1 error

public final class Manager {

. . .
}

Or we could make the entire class ‘final’ !

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

http://www.pdfpdf.com

9

is-a and has-a rules: trade-offs to be made…
Too many classes are costly…

Item

Canned Fresh

Veg Fruit

Apples

Beans

Heinz

Baked Green

Tesco

1.Speed!

2.Memory!

Heinz beans is-a type of Beans

OR Beans has-a brandname a variable

a class

So we represent
it as…

public class Beans {

private String brandname;

Item

Electrical Food

PerishableFood NonPerishableFood

Clothing Intangible

Follow the is-a and has-a rules sometimes, but in reality trade-offs are
made, according to speed, memory usage, business & pricing models.

Priorities differ according to business needs – so will the class design.

• Accenture-Sainsburys project.

• Automate stock inventory.

• 1998-2004, £7 billion.

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

http://www.pdfpdf.com

10

5 minutes…

public class A {

public A() {

System.out.println(“Initialised A”);

}

}

public class B extends A {

public B() {

System.out.println(“Initialised B”);

}

}

public class test {

…

B = new B();

…

> javac test.java

> java test

Initialised A

Initialised B

>

…so default
superconstructor
is called.

no call to super()

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

http://www.pdfpdf.com

11

public class A {

}

public class B extends A {

public B() {

System.out.println(“Initialised B”);

}

}

public class test {

…

B = new B();

…

> javac test.java

> java test

Initialised B

>

No constructor specified, so Java inserts a
default (empty) one at compile time.

no call to super()

The empty default
constructor is called

public class A {

public A(int x) {

System.out.println(“Initialised A: “+x);

}

}

public class B extends A {

public B() {

System.out.println(“Initialised B”);

}

}

public class test {

…

B = new B();

…

> javac test.java
B.java:3: A(int) in A cannot be applied to ()
{
^
1 error

At least one constructor
specified, so Java does not
insert a default one.

no call to super()

No default one, so
cannot be called
= ERROR!!

Common compile-time error – watch out for it!

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

http://www.pdfpdf.com

12

public class A {

public A(int x) {

System.out.println(“Initialised A: “+x);

}

}

public class B extends A {

public B() {

super(99999);

System.out.println(“Initialised B”);

}

}

public class test {

…

B = new B();

…

> javac test.java

> java test

Initialised A: 99999

Initialised B

At least one constructor
specified, so Java does not
insert a default one.

call to super(int)

A class called “Object”

Object

Animal

Dog Cat

Every Java class
implicitly extends
“Object”.

…automatically
done for you!

Because of constructor
chaining, the
constructor up here
gets called first.

This does all the memory
allocations necessary
for your objects.

If you could make the
subclass constructor
be called first, your
objects would be
working without any
memory allocation!

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

http://www.pdfpdf.com

13

Inheritance in the Java API…

Today
1. dynamic method binding
2. ‘final’ keyword to control inheritance
3. is-a and has-a rules
4. constructor chaining
5. class Object (including inheritance in the Java API)

Tomorrow
1. Case study – investments
2. More on using these tools when working in a team
3. Wrapping up and relation to rest of the course

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

http://www.pdfpdf.com

