Binary Input and Output
0000000

0000000

o]

(CS1092: Object-Oriented Programming with Java
Binary Input and Output with Files

Howard Barringer

Room KB2.20/22: email: howard.barringer@manchester.ac.uk

February 2005

Binary Input and Output
0000000

0000000

o]

Supporting and Background Material

e Copies of key slides (will appear in Resource Centre later
today)

o Chapter 18 of the JTL book (follows this presentation) —
lecture notes

e Recommended reading books for course

o Chapter 9 (9.4) of Savitch “JAVA: An introduction to
Computer Science and Programming”, 3rd Edition

e Chapter 17 (17.11) of Liang “Introduction to JAVA
Programming”, International Edition

Binary Input and Output
0000000

0000000

o]

Outline

Binary Input and Output
ObjectOutputStream & ObjectlnputStream
A Graphing Task
Summary

Binary Input and Output
000000

0000000

o]

Textual versus Binary Output

e Why use text files

e What use binary files

Binary Input and Output

Simple Binary Output

e For “binary” output, we use the ObjectOutputStream class

Methods such as writelInt, writeDouble, writeBoolean,
..., are provided

e To write to a file, set up a FileQutputStrean for the given
filename

Then wrap with an ObjectOutputStream to be able to use
the appropriate writing methods

Binary Input and Output
00@0000

0000000

o]

Let's generate some data

import java.io.ObjectOutputStream;
import java.io.FileOutputStream;
import java.io.PrintWriter;

import java.io.FileWriter;

public class GenerateRandomData {
public static void main(String [] args) throws Exception {
ObjectOutputStream outputStream =
new ObjectOutputStream(new FileOutputStream(args[2]));
PrintWriter outputWriter =
new PrintWriter(new FileWriter(args([3]));

// : ——- see next slide
outputStream.close();
outputWriter.close();

Binary Input and Output
000e000

0000000

o]

The generation part

int numberOfRandoms = Integer.parselnt(args[0]);
int xStep = Integer.parselnt(args([1]);
outputStream.writeInt (numberOfRandoms) ;
outputStream.writeInt (xStep);
outputWriter.println(numberOfRandoms) ;
outputWriter.println(xStep);

double randomNumber;

for (int i = 0; i < numberOfRandoms; i++)

{
outputStream.writeInt (i*xStep);
outputStream.writeDouble (randomNumber = Math.random()*1000000) ;
outputWriter.println("" + i*xStep + " " + randomNumber) ;

}

Binary Input and Output
0000000

Actual Comparison of Output

Add the following four lines after the close of files

File first = new File(args[2]);
File second = new File(args[3]);
System.out.println(first.length()

+ " bytes written to file " + args[1]);
System.out.println(second.length()

+ " bytes written to file " + args[2]);

And we obtain

$ java GenerateRandomData 100 5 random.dat random.txt
1219 bytes written to file random.dat
2472 bytes written to file random.txt

$

Binary Input and Output
00000e0

Size difference

A double requires 8 bytes of storage

When printed, a double may use around 17 to 20 characters
An int in the range 0..500 takes 4 bytes but typically 3 bytes
textually

Hence, we get an approximate halving in file size for the binary
version.

Binary Input and Output

000000e
0000000
[e]

Reading it back

Data written to a file through an ObjectOutputStream

can be read back from that file through an
ObjectInputStream

Data must be read back in the same order as written.

For the above, we can use the readInt and readDouble
methods.

These methods throw an EOFException when they attempt
to read past the end of file.

Binary Input and Output

®000000

Graph Data Manipulation

Our task is to read & process time-stamped sensor data.

We can assume the data in the form generated above:-
1. an integer: the number of time-stamped data items
2. an integer: the usual time step between data items

3. a series of pairs of values:

3.1 an integer time-stamp value
3.2 a double for the sensor data value

Some time-stamped data may be missing. One required task is
thus to interpolate for the missing data items.

Binary Input and Output

0O@00000

The Graph Class

public class Graph {

private int maxDataPointPairs;
private int noOfDataPointPairs;
private int [] xValues;

private double [] yValues;
private int normalXStep;

public Graph(int size, int xStep) {
noOfDataPointPairs = size;
maxDataPointPairs = (int)Math.round(sizex*1.1);
xValues = new int [maxDataPointPairs];
yValues = new double [maxDataPointPairs];
normalXStep = xStep;

} // Graph

} // class Graph

Binary Input and Output
0000000

00e0000

o]

Reading raw values into the graph

public void readValues(ObjectInputStream rawValues)
throws GraphException
{
int i = 0;
try {
while (true) {
xValues[i] = rawValues.readInt();
yValues[i] = rawValues.readDouble();
i++;
3
catch (IndexOutOfBoundsException e){
throw new GraphException("Too much graph data input"); }
catch (EOFException e){
if (i !'= noOfDataPointPairs)
throw new GraphException("Insufficient graph data input"); }
catch (IOException e){
throw new GraphException("Problem reading graph data input"); }

put and Output

More powerful writing methods

e The ObjectOutputStrean class can also be used to write
arrays of primitive data

e In fact, it can be used for any object that is serializable - but
we do not go there today

e We show the writing (and reading) of array data - it's so
simple!

Binary Input and Output
0000000

0000e00

o]

Saving the Graph

public void saveGraph(ObjectOutputStream output)
throws GraphException
{
try {
output.writeInt (normalXStep) ;
output.writeObject (xValues);
output.writeObject(yValues); }
catch (IOException e) {
throw new GraphException("Problem saving graph data");
}
}

Binary Input and Output
0000000

00000e0

o]

Reading a saved Graph

public void readGraph(ObjectInputStream input)
throws GraphException
{
try {
normalXStep = input.readInt();
int [] tempXValues = (int [])input.readObject();
double [] tempYValues = (double [])input.readObject();
xValues = tempXValues;
yValues = tempYValues; }
catch (IOException e) {
throw new GraphException("Problem reading saved graph"); }
catch (ClassNotFoundException e) {
throw new GraphException("Problem reading saved graph"
+ " --- corrupt data?"); }

Binary Input and Output
0000000

000000e

o]

A Simple Interpolation

No time now! — for completeness see forthcoming notes

Binary Input and Output

Summary

Use ObjectOutputStrean class for binary output of data

And ObjectInputStream for reading data (written via an
ObjectOutputStreanm)

Used writing methods: writeInt, writeDouble for primitive data

With reading methods: readInt() returning an int,
readDouble () returning an double

Attempt to read past end of file raises an EOFException
Can write an array of primitive data with writeObject method

And read an array of primitive data with readObject () — but
must cast to the appropriate type

An ClassNotFoundException exception (as well as I0Exception
may raised with readObject

	Binary Input and Output
	ObjectOutputStream & ObjectInputStream
	A Graphing Task
	Summary

