
Exception Classes

CS1092: Object-Oriented Programming with Java

More on EXCEPTIONS

Howard Barringer

Room KB2.20/22: email: howard.barringer@manchester.ac.uk

February 2005

Exception Classes

Supporting and Background Material

• Copies of key slides (already handed out)

• Chapter 17 of the JTL book (follows this presentation) —
lecture notes

• Recommended reading books for course

• Chapter 8 (8.2) of Savitch “JAVA: An introduction to
Computer Science and Programming”, 3rd Edition

• Chapter 13 (13.2, 13.5, 13.7) of Liang “Introduction to JAVA
Programming”, International Edition

Exception Classes

Supporting and Background Material

• Copies of key slides (already handed out)

• Chapter 17 of the JTL book (follows this presentation) —
lecture notes

• Recommended reading books for course

• Chapter 8 (8.2) of Savitch “JAVA: An introduction to
Computer Science and Programming”, 3rd Edition

• Chapter 13 (13.2, 13.5, 13.7) of Liang “Introduction to JAVA
Programming”, International Edition

Exception Classes

Supporting and Background Material

• Copies of key slides (already handed out)

• Chapter 17 of the JTL book (follows this presentation) —
lecture notes

• Recommended reading books for course

• Chapter 8 (8.2) of Savitch “JAVA: An introduction to
Computer Science and Programming”, 3rd Edition

• Chapter 13 (13.2, 13.5, 13.7) of Liang “Introduction to JAVA
Programming”, International Edition

Exception Classes

Outline

Exception Classes
Review
Inheritance in Action
Custom Exceptions
The Notional Lottery with Exceptions
Summary

Exception Classes

Outline

Exception Classes
Review
Inheritance in Action
Custom Exceptions
The Notional Lottery with Exceptions
Summary

Exception Classes

Brief Recap

• Run-time errors are instances of the Exception class

• Exceptions can be captured by try ... catch ...
statement blocks

• There can be multiple catch blocks

• Exceptions can be explicitly thrown by the throw statement

• Exceptions in GUIs: an unhandled exception in a GUI event
thread doesn’t terminate the main application

• Methods declare exceptions that are not handled within the
method

• The invoking method of a method that declares an exception
is thrown must either declare the exception or handle it

Exception Classes

Brief Recap

• Run-time errors are instances of the Exception class

• Exceptions can be captured by try ... catch ...
statement blocks

• There can be multiple catch blocks

• Exceptions can be explicitly thrown by the throw statement

• Exceptions in GUIs: an unhandled exception in a GUI event
thread doesn’t terminate the main application

• Methods declare exceptions that are not handled within the
method

• The invoking method of a method that declares an exception
is thrown must either declare the exception or handle it

Exception Classes

Brief Recap

• Run-time errors are instances of the Exception class

• Exceptions can be captured by try ... catch ...
statement blocks

• There can be multiple catch blocks

• Exceptions can be explicitly thrown by the throw statement

• Exceptions in GUIs: an unhandled exception in a GUI event
thread doesn’t terminate the main application

• Methods declare exceptions that are not handled within the
method

• The invoking method of a method that declares an exception
is thrown must either declare the exception or handle it

Exception Classes

Brief Recap

• Run-time errors are instances of the Exception class

• Exceptions can be captured by try ... catch ...
statement blocks

• There can be multiple catch blocks

• Exceptions can be explicitly thrown by the throw statement

• Exceptions in GUIs: an unhandled exception in a GUI event
thread doesn’t terminate the main application

• Methods declare exceptions that are not handled within the
method

• The invoking method of a method that declares an exception
is thrown must either declare the exception or handle it

Exception Classes

Brief Recap

• Run-time errors are instances of the Exception class

• Exceptions can be captured by try ... catch ...
statement blocks

• There can be multiple catch blocks

• Exceptions can be explicitly thrown by the throw statement

• Exceptions in GUIs: an unhandled exception in a GUI event
thread doesn’t terminate the main application

• Methods declare exceptions that are not handled within the
method

• The invoking method of a method that declares an exception
is thrown must either declare the exception or handle it

Exception Classes

Brief Recap

• Run-time errors are instances of the Exception class

• Exceptions can be captured by try ... catch ...
statement blocks

• There can be multiple catch blocks

• Exceptions can be explicitly thrown by the throw statement

• Exceptions in GUIs: an unhandled exception in a GUI event
thread doesn’t terminate the main application

• Methods declare exceptions that are not handled within the
method

• The invoking method of a method that declares an exception
is thrown must either declare the exception or handle it

Exception Classes

Brief Recap

• Run-time errors are instances of the Exception class

• Exceptions can be captured by try ... catch ...
statement blocks

• There can be multiple catch blocks

• Exceptions can be explicitly thrown by the throw statement

• Exceptions in GUIs: an unhandled exception in a GUI event
thread doesn’t terminate the main application

• Methods declare exceptions that are not handled within the
method

• The invoking method of a method that declares an exception
is thrown must either declare the exception or handle it

Exception Classes

Many sorts of Exceptions

Name some exceptions you’ve seen raised in your programs ...

• IndexOutOfBoundsException

• NumberFormatException

• NullPointerException

• ArithmeticException

• . . .

Exception Classes

Many sorts of Exceptions

Name some exceptions you’ve seen raised in your programs ...

• IndexOutOfBoundsException

• NumberFormatException

• NullPointerException

• ArithmeticException

• . . .

Exception Classes

Many sorts of Exceptions

Name some exceptions you’ve seen raised in your programs ...

• IndexOutOfBoundsException

• NumberFormatException

• NullPointerException

• ArithmeticException

• . . .

Exception Classes

Many sorts of Exceptions

Name some exceptions you’ve seen raised in your programs ...

• IndexOutOfBoundsException

• NumberFormatException

• NullPointerException

• ArithmeticException

• . . .

Exception Classes

Many sorts of Exceptions

Name some exceptions you’ve seen raised in your programs ...

• IndexOutOfBoundsException

• NumberFormatException

• NullPointerException

• ArithmeticException

• . . .

Exception Classes

Many sorts of Exceptions

Name some exceptions you’ve seen raised in your programs ...

• IndexOutOfBoundsException

• NumberFormatException

• NullPointerException

• ArithmeticException

• . . .

Exception Classes

The RuntimeException Class

• Apart from IOException, the exceptions we’ve shown before
are subclasses of the RuntimeException class

• Which itself is a subclass of the Exception class

• What’s special about the RuntimeException class?

Programs do NOT need to catch such exceptions

What about IOException? What happens there?

Exception Classes

The RuntimeException Class

• Apart from IOException, the exceptions we’ve shown before
are subclasses of the RuntimeException class

• Which itself is a subclass of the Exception class

• What’s special about the RuntimeException class?

Programs do NOT need to catch such exceptions

What about IOException? What happens there?

Exception Classes

The RuntimeException Class

• Apart from IOException, the exceptions we’ve shown before
are subclasses of the RuntimeException class

• Which itself is a subclass of the Exception class

• What’s special about the RuntimeException class?

Programs do NOT need to catch such exceptions

What about IOException? What happens there?

Exception Classes

The RuntimeException Class

• Apart from IOException, the exceptions we’ve shown before
are subclasses of the RuntimeException class

• Which itself is a subclass of the Exception class

• What’s special about the RuntimeException class?

Programs do NOT need to catch such exceptions

What about IOException? What happens there?

Exception Classes

Outline

Exception Classes
Review
Inheritance in Action
Custom Exceptions
The Notional Lottery with Exceptions
Summary

Exception Classes

Throwable objects

The Exception class is a subclass of the Throwable class, itself a
subclass of Object

The Exception class has a very large number of subclasses.

Exception Classes

Some of the Exception Class Hierarchy

Exception Classes

More of the Exception Class Hierarchy

Exception Classes

The Error class

The Error class is also a subclass of the Throwable class.

Errors can also be caught via a try ... catch ... block.

What’s the difference between an Error and an Exception?

Errors, e.g. NoSuchMethodError or OutOfMemoryError, are
typically beyond rectification by the program

Hence, instances of the Error class do not need to be caught
— rather like RuntimeException

However, if an Error is caught, it should be re-thrown and
allowed to propagate out

Exception Classes

The Error class

The Error class is also a subclass of the Throwable class.

Errors can also be caught via a try ... catch ... block.

What’s the difference between an Error and an Exception?

Errors, e.g. NoSuchMethodError or OutOfMemoryError, are
typically beyond rectification by the program

Hence, instances of the Error class do not need to be caught
— rather like RuntimeException

However, if an Error is caught, it should be re-thrown and
allowed to propagate out

Exception Classes

The Error class

The Error class is also a subclass of the Throwable class.

Errors can also be caught via a try ... catch ... block.

What’s the difference between an Error and an Exception?

Errors, e.g. NoSuchMethodError or OutOfMemoryError, are
typically beyond rectification by the program

Hence, instances of the Error class do not need to be caught
— rather like RuntimeException

However, if an Error is caught, it should be re-thrown and
allowed to propagate out

Exception Classes

The Error class

The Error class is also a subclass of the Throwable class.

Errors can also be caught via a try ... catch ... block.

What’s the difference between an Error and an Exception?

Errors, e.g. NoSuchMethodError or OutOfMemoryError, are
typically beyond rectification by the program

Hence, instances of the Error class do not need to be caught
— rather like RuntimeException

However, if an Error is caught, it should be re-thrown and
allowed to propagate out

Exception Classes

The Error class

The Error class is also a subclass of the Throwable class.

Errors can also be caught via a try ... catch ... block.

What’s the difference between an Error and an Exception?

Errors, e.g. NoSuchMethodError or OutOfMemoryError, are
typically beyond rectification by the program

Hence, instances of the Error class do not need to be caught
— rather like RuntimeException

However, if an Error is caught, it should be re-thrown and
allowed to propagate out

Exception Classes

The Error class

The Error class is also a subclass of the Throwable class.

Errors can also be caught via a try ... catch ... block.

What’s the difference between an Error and an Exception?

Errors, e.g. NoSuchMethodError or OutOfMemoryError, are
typically beyond rectification by the program

Hence, instances of the Error class do not need to be caught
— rather like RuntimeException

However, if an Error is caught, it should be re-thrown and
allowed to propagate out

Exception Classes

Outline

Exception Classes
Review
Inheritance in Action
Custom Exceptions
The Notional Lottery with Exceptions
Summary

Exception Classes

Defining your own Exceptions

• Java API defines a very large number of exceptions

• BUT the programmer can still define her own

• How and when?

• typically, for explicit throws of exceptions that don’t
appropriately relate to any of the API defined exception classes

Exception Classes

The Date class revisited

Recall the re-usable Date class (chapter 14.7)

The constructor was modified to throw an exception for illegal
dates

The exception object was an instance of class Exception

Better practice to create a special DateException and then throw
an object of that class.

Question: Should we force the exception to be handled?

I.e., should DateException be a subclass of:
Exception or of RuntimeException?

Exception Classes

The Date class revisited

Recall the re-usable Date class (chapter 14.7)

The constructor was modified to throw an exception for illegal
dates

The exception object was an instance of class Exception

Better practice to create a special DateException and then throw
an object of that class.

Question: Should we force the exception to be handled?

I.e., should DateException be a subclass of:
Exception or of RuntimeException?

Exception Classes

The Date class revisited

Recall the re-usable Date class (chapter 14.7)

The constructor was modified to throw an exception for illegal
dates

The exception object was an instance of class Exception

Better practice to create a special DateException and then throw
an object of that class.

Question: Should we force the exception to be handled?

I.e., should DateException be a subclass of:
Exception or of RuntimeException?

Exception Classes

The DateException class

public class DateException extends RuntimeException {

public DateException() {
super();

}

public DateException(String message) {
super(message);

}

}

Note: we have not overridden the superclass methods, getMessage(), etc.

Exception Classes

The DateException class

public class DateException extends RuntimeException {

public DateException() {
super();

}

public DateException(String message) {
super(message);

}

}

Note: we have not overridden the superclass methods, getMessage(), etc.

Exception Classes

Other required changes

The Date class is then modified by replacing

all occurrences of Exception

by DateException

Well, that’s not quite right. There’s one occurrence that should
become a RuntimeException. Can you find it?

Exception Classes

Other required changes

The Date class is then modified by replacing

all occurrences of Exception

by DateException

Well, that’s not quite right. There’s one occurrence that should
become a RuntimeException. Can you find it?

Exception Classes

The DateDifference Program

public class DateDifference {

public static void main(String [] args) {

Date date1, date2;

try {

date1 = new Date(args[0]);

date2 = new Date(args[1]);

System.out.println("From " + date1 + " to " + date2

+ " is " + date1.daysFrom(date2) + " days");

} // try

catch (ArrayIndexOutOfBoundsException exception)

{ System.out.println("Please supply two dates");

System.err.println(exception); }

catch (DateException exception)

{ System.out.println(exception.getMessage());

System.err.println(exception); }

} // main } // class DateDifference

Exception Classes

And the difference is ...

Now we obtain:

$ java DateDifference 16/12/2004 30/2/2004
Day 30 must be from 1 to 29 for 2/2004
DateException: Day 30 must be from 1 to 29 for 2/2004
$ _

instead of previously

$ java DateDifference 16/12/2004 30/2/2004
Day 30 must be from 1 to 29 for 2/2004
java.lang.Exception: Day 30 must be from 1 to 29 for 2/2004
$ _

Exception Classes

And the difference is ...

Now we obtain:

$ java DateDifference 16/12/2004 30/2/2004
Day 30 must be from 1 to 29 for 2/2004
DateException: Day 30 must be from 1 to 29 for 2/2004
$ _

instead of previously

$ java DateDifference 16/12/2004 30/2/2004
Day 30 must be from 1 to 29 for 2/2004
java.lang.Exception: Day 30 must be from 1 to 29 for 2/2004
$ _

Exception Classes

And the difference is ...

Now we obtain:

$ java DateDifference 16/12/2004 30/2/2004
Day 30 must be from 1 to 29 for 2/2004
DateException: Day 30 must be from 1 to 29 for 2/2004
$ _

instead of previously

$ java DateDifference 16/12/2004 30/2/2004
Day 30 must be from 1 to 29 for 2/2004
java.lang.Exception: Day 30 must be from 1 to 29 for 2/2004
$ _

Exception Classes

Outline

Exception Classes
Review
Inheritance in Action
Custom Exceptions
The Notional Lottery with Exceptions
Summary

Exception Classes

An Exceptional Notional Lottery

Chapter 16 presented the Notional Lottery case study.

It’s prime purpose has been to demonstrate inheritance.

We can revisit a part, to add exceptions,
and define exceptions as subclasses of other user-defined
exceptions.

We will focus on the abstract class BallContainer
and one its subclasses, the Machine class.

Exception Classes

An Exceptional Notional Lottery

Chapter 16 presented the Notional Lottery case study.

It’s prime purpose has been to demonstrate inheritance.

We can revisit a part, to add exceptions,
and define exceptions as subclasses of other user-defined
exceptions.

We will focus on the abstract class BallContainer
and one its subclasses, the Machine class.

Exception Classes

An Exceptional Notional Lottery

Chapter 16 presented the Notional Lottery case study.

It’s prime purpose has been to demonstrate inheritance.

We can revisit a part, to add exceptions,
and define exceptions as subclasses of other user-defined
exceptions.

We will focus on the abstract class BallContainer
and one its subclasses, the Machine class.

Exception Classes

About the size of a BallContainer

The constructor for a BallContainer is passed the required
maximum size.

What about a minimum size?

Sensible to ensure the container can hold at least one ball.

What should we do if the required maximum size is less than one?

Throw an exception! - A BallContainerException

Exception Classes

About the size of a BallContainer

The constructor for a BallContainer is passed the required
maximum size.

What about a minimum size?

Sensible to ensure the container can hold at least one ball.

What should we do if the required maximum size is less than one?

Throw an exception! - A BallContainerException

Exception Classes

About the size of a BallContainer

The constructor for a BallContainer is passed the required
maximum size.

What about a minimum size?

Sensible to ensure the container can hold at least one ball.

What should we do if the required maximum size is less than one?

Throw an exception! - A BallContainerException

Exception Classes

About the size of a BallContainer

The constructor for a BallContainer is passed the required
maximum size.

What about a minimum size?

Sensible to ensure the container can hold at least one ball.

What should we do if the required maximum size is less than one?

Throw an exception! - A BallContainerException

Exception Classes

About the size of a BallContainer

The constructor for a BallContainer is passed the required
maximum size.

What about a minimum size?

Sensible to ensure the container can hold at least one ball.

What should we do if the required maximum size is less than one?

Throw an exception! - A BallContainerException

Exception Classes

The BallContainer constructor

public BallContainer(String requiredName,
int requiredMaximumSize)

throws BallContainerException

{

if (requiredMaximumSize < 1)
throw new BallContainerException

("Size must be at least 1");

name = requiredName;
balls = new Ball[requiredMaximumSize];
noOfBalls = 0;

}

Exception Classes

The BallContainer constructor

public BallContainer(String requiredName,
int requiredMaximumSize)

throws BallContainerException

{

if (requiredMaximumSize < 1)
throw new BallContainerException

("Size must be at least 1");
name = requiredName;
balls = new Ball[requiredMaximumSize];
noOfBalls = 0;

}

Exception Classes

The BallContainer constructor

public BallContainer(String requiredName,
int requiredMaximumSize)

throws BallContainerException
{

if (requiredMaximumSize < 1)
throw new BallContainerException

("Size must be at least 1");
name = requiredName;
balls = new Ball[requiredMaximumSize];
noOfBalls = 0;

}

Exception Classes

The BallContainerException class

public class BallContainerException extends RuntimeException
{
public BallContainerException()
{
super();

}

public BallContainerException(String message)
{
super(message);

}
}

Exception Classes

Modification to other methods in the BallContainer

class

The methods

getBall — there may be no balls in the container

addBall — there may be no room in the container

removeBall — there may be no ball to remove

swapBalls — the specified balls may not exist

all require attention.

Exception Classes

The original SwapBall method

public void swapBalls(int i, int j) throws BallContainerException

{

if (i >= 0 && i < noOfBalls && j >= 0 && j < noOfBalls)

{

Ball oldBallAtI = balls[i];

balls[i] = balls[j];

balls[j] = oldBallAtI;

}

}

Exception Classes

The original SwapBall method

public void swapBalls(int i, int j) throws BallContainerException

{

if (i >= 0 && i < noOfBalls && j >= 0 && j < noOfBalls)

{

Ball oldBallAtI = balls[i];

balls[i] = balls[j];

balls[j] = oldBallAtI;

}

}

Exception Classes

The new SwapBall method

public void swapBalls(int i, int j) throws BallContainerException

{

if (noOfBalls == 0)

throw new BallContainerException("Cannot swap balls: is empty");

if (i < 0 || i >= noOfBalls)

throw new BallContainerException("Swap ball at " + i

+ ": not in range 0.." + (noOfBalls - 1));

if (j < 0 || j >= noOfBalls)

throw new BallContainerException("Swap ball at " + j

+ ": not in range 0.." + (noOfBalls - 1));

Ball oldBallAtI = balls[i];

balls[i] = balls[j];

balls[j] = oldBallAtI;

}

Exception Classes

The new SwapBall method

public void swapBalls(int i, int j) throws BallContainerException

{

if (noOfBalls == 0)

throw new BallContainerException("Cannot swap balls: is empty");

if (i < 0 || i >= noOfBalls)

throw new BallContainerException("Swap ball at " + i

+ ": not in range 0.." + (noOfBalls - 1));

if (j < 0 || j >= noOfBalls)

throw new BallContainerException("Swap ball at " + j

+ ": not in range 0.." + (noOfBalls - 1));

Ball oldBallAtI = balls[i];

balls[i] = balls[j];

balls[j] = oldBallAtI;

}

Exception Classes

The new SwapBall method

public void swapBalls(int i, int j) throws BallContainerException

{

if (noOfBalls == 0)

throw new BallContainerException("Cannot swap balls: is empty");

if (i < 0 || i >= noOfBalls)

throw new BallContainerException("Swap ball at " + i

+ ": not in range 0.." + (noOfBalls - 1));

if (j < 0 || j >= noOfBalls)

throw new BallContainerException("Swap ball at " + j

+ ": not in range 0.." + (noOfBalls - 1));

Ball oldBallAtI = balls[i];

balls[i] = balls[j];

balls[j] = oldBallAtI;

}

Exception Classes

The new SwapBall method

public void swapBalls(int i, int j) throws BallContainerException

{

if (noOfBalls == 0)

throw new BallContainerException("Cannot swap balls: is empty");

if (i < 0 || i >= noOfBalls)

throw new BallContainerException("Swap ball at " + i

+ ": not in range 0.." + (noOfBalls - 1));

if (j < 0 || j >= noOfBalls)

throw new BallContainerException("Swap ball at " + j

+ ": not in range 0.." + (noOfBalls - 1));

Ball oldBallAtI = balls[i];

balls[i] = balls[j];

balls[j] = oldBallAtI;

}

Exception Classes

And now for the Machine

Again, is there a minimum size for a machine.

Sensible for it to hold at least two balls.

Exception Classes

The Machine constructor

public Machine(String requiredName,
int requiredMaximumSize)

throws BallContainerException

{

super(requiredName, requiredMaximumSize);

if (requiredMaximumSize < 2)
throw new MachineException("Size must be at least 2");

}

Exception Classes

The Machine constructor

public Machine(String requiredName,
int requiredMaximumSize)

throws BallContainerException
{

super(requiredName, requiredMaximumSize);

if (requiredMaximumSize < 2)
throw new MachineException("Size must be at least 2");

}

Exception Classes

The Machine constructor

public Machine(String requiredName,
int requiredMaximumSize)

throws BallContainerException
{

super(requiredName, requiredMaximumSize);

if (requiredMaximumSize < 2)
throw new MachineException("Size must be at least 2");

}

Exception Classes

The MachineException class

MachineException should be a subclass of
BallContainerException

public class MachineException extends BallContainerException
{

public MachineException()
{

super();
}

public MachineException(String message)
{

super(message);
}

}

Exception Classes

The MachineException class

MachineException should be a subclass of
BallContainerException

public class MachineException extends BallContainerException
{
public MachineException()
{
super();

}

public MachineException(String message)
{
super(message);

}
}

Exception Classes

The ejectBall method of the Machine class

public Ball ejectBall() throws MachineException

{

try

{

int ejectedBallIndex = (int) (Math.random() * getNoOfBalls());

Ball ejectedBall = getBall(ejectedBallIndex);

swapBalls(ejectedBallIndex, getNoOfBalls() - 1);

removeBall();

return ejectedBall;

}

catch (BallContainerException exception){

throw new MachineException("Cannot eject ball: is empty");

}

}

Exception Classes

Testing - I

public class TestMachineExceptions

{

public static void main(String [] args)

{

int machineSize = Integer.parseInt(args[0]);

int fillCount = Integer.parseInt(args[1]);

int findIndex = Integer.parseInt(args[2]);

int removeCount1 = Integer.parseInt(args[3]);

int swapIndex1 = Integer.parseInt(args[4]);

int swapIndex2 = Integer.parseInt(args[5]);

int removeCount2 = Integer.parseInt(args[6]);

int ejectCount = Integer.parseInt(args[7]);

Exception Classes

Testing - II

try {

System.out.println("Creating machine sized " + machineSize);

Machine machine = new Machine("Test4U", machineSize);

System.out.println("Filling with " + fillCount + " balls");

for (int i = 1; i <= fillCount; i++)

machine.addBall(new Ball(i, Color.red));

System.out.println("Finding ball at " + findIndex);

machine.getBall(findIndex);

System.out.println("Adding another ball");

machine.addBall(new Ball(fillCount + 1, Color.red));

System.out.println("Removing " + removeCount1 + " balls");

for (int i = 1; i <= removeCount1; i++)

machine.removeBall();

Exception Classes

Testing - III

System.out.println("Swapping balls at " + swapIndex1

+ " and " + swapIndex2);

machine.swapBalls(swapIndex1, swapIndex2);

System.out.println("Removing " + removeCount2 + " balls");

for (int i = 1; i <= removeCount2; i++)

machine.removeBall();

System.out.println("Ejecting " + ejectCount + " balls");

for (int i = 1; i <= ejectCount; i++)

machine.ejectBall();

} // try

catch (Exception exception) {

System.out.println("Got exception " + exception);

} // catch

} // main

} // class TestMachineExceptions

Exception Classes

Testing - Some Results

OK, let’s try it out

machine fill find remove swap swap remove eject expected
Size Count Index Count1 Index1 Index2 Count2 Count result
0 -1 -1 -1 -1 -1 -1 -1 Size at least 1
5 5 5 -1 -1 -1 -1 -1 Get Ball at 5: not in range 0..4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Exception Classes

Outline

Exception Classes
Review
Inheritance in Action
Custom Exceptions
The Notional Lottery with Exceptions
Summary

Exception Classes

Summary

• Quick review of exception handling

• Large inheritance structure underneath the Throwable class

• Can create custom exception classes

• Rule of thumb:

1. try to find suitable an existing exception classes
2. none appropriate, create your own
3. use inheritance as appropriate
4. provide two constructors, without and with a message

	Exception Classes
	Review
	Inheritance in Action
	Custom Exceptions
	The Notional Lottery with Exceptions
	Summary

