
The Design of a Branch Target Cache

for an Asynchronous Microprocessor

A THESISSUBMITTED TO THE UNIVERSITY OFMANCHESTER

FORTHE DEGREEOFMASTEROF PHILOSOPHY

IN THE FACULTY OFSCIENCEAND ENGINEERING

October 1998

By

Suck-Heui Chung

Department of Computer Science

 2

Table of Contents

1 Introduction 12

1.1 Why asynchronous design?... 13

1.2 History of the AMULET processors... 16

1.3 Overview of the thesis.. 17

1.4 Contribution of the thesis.. 20

2 Asynchronous design 23

2.1 Basic concepts... 23

2.2 Signalling protocols.. 24

2.2.1 2-phase protocol... 25

2.2.2 4-phase protocol... 25

2.2.3 Comparison between 2-phase and 4-phase protocol........ 27

2.3 Asynchronous delay models... 27

2.3.1 Asynchronous finite state machines................................. 28

2.3.2 Delay-insensitive circuits... 28

2.3.3 Quasi delay insensitive circuits.. 29

2.3.4 Speed-independent circuits... 29

2.3.5 Comparison between asynchronous delay models........... 29

2.4 Data signalling.. 31

2.4.1 Bundled data... 31

2.4.2 Encoded data.. 32

2.4.3 SutherlandÕs micropipelines... 33

2.4.4 Comparison between data signalling techniques.............. 34

2.5 Control circuit synthesis... 35

2.5.1 Compilation style.. 35

2.5.2 Asynchronous finite state machine style.......................... 35

2.5.3 Graph based style... 36

2.5.4 Comparison between control circuit synthesis techniques 37

3 The AMULET3 microprocessor 39

3.1 AMULET3i ... 40

3.2 AMULET3 .. 42

 3

4 Instruction prefetch unit 48

4.1 Overview... 48

4.2 Instruction prefetch unit.. 49

4.2.1 Configuration.. 49

4.2.2 Functions.. 57

5 Branch Prediction Mechanism 61

5.1 Basic concepts... 63

5.1.1 Branch target prediction schemes..................................... 64

5.1.2 How to get the branch target address earlier.................... 67

5.2 AMULET2e branch target cache.. 68

5.3 AMULET3 branch target cache.. 72

5.4 Summary... 78

6 Implementation 80

6.1 Basic concepts... 80

6.2 Front-end implementation... 82

6.2.1 Data path circuit implementation..................................... 83

6.2.2 Control path circuit implementation................................. 88

6.3 Back-end implementation... 91

6.4 Evaluation... 92

6.5 Summary... 94

7 Conclusion 97

7.1 Contributions... 97

7.2 Future work... 99

Bibliography 101

A Schematics 109

B Layouts 124

 4

List of Figur es

2-1 Data-validity scheme for the 2-phase protocol.....................................25
2-2 Data-validity schemes for the 4-phase protocol....................................26
2-3 Bundled data scheme..32
2-4 Encoded data scheme..32
2-5 Micropipelines ..33
3-1 AMULET3i block diagram (Courtesy of Prof. Steve Furber).............. 40
3-2 AMULET3 block diagram (Courtesy of Prof. Steve Furber)............... 43
3-3 AMULET3 organization (Courtesy of Prof. Steve Furber)..................47
4-1 First IPU organisation...50
4-2 Second IPU organisation...52
4-3 Simulation result comparing first and second IPU organisations......... 53
4-4 New parallel organisation...55
4-5 Simulation result comparing first and parallel IPU organisations........ 57
5-1 BTC structure..62
5-2 Address interface of AMULET2e (Courtesy of Jim Garside).............. 69
5-3 Write operation in the BTC...70
5-4 Look-up operation in the BTC..71
5-5 CAM comparison circuitry...73
5-6 Mode detection circuitry...75
5-7 Odd and even hit determination mechanism...76
5-8 Effect of the BTC size on prediction rates (Courtesy of Jim Garside). 77
6-1 CAM cell 1 ..83
6-2 CAM cell arrays..84
6-3 CAM cell 2 ..85
6-4 Dummy bit cell for CAM cell 1..86
6-5 Dummy bit cell for CAM cell 2..86
6-6 RAM register cell..88
6-7 RAM cell arrays..89
6-8 CAM control circuit for write and hit detection...................................90
6-9 BTC layout diagram..91
6-10 Test circuit for simulation...94
6-11 CAM cell layout diagram for one word..96

 5

List of Tables

2-1 Asynchronous Circuits Delay Models.. 28
4-1 Exception processing mode.. 59
6-1 HSPICE Simulation result.. 93

 6

Abstract

A high performance,low power asynchronousbranchtarget cachewith several

new featureshas been developed for the AMULET3 microprocessorat a low

hardware cost. A new design for the THUMB instruction set has been

implemented,togetherwith several circuit designtechniquesincluding dynamic

comparisonlogic, resultingin a comparisontime in 1.06nswith 0.35 mm three-

level metal CMOS process technology.

 7

Declaration

No portionof thework referredto in thethesishasbeensubmittedin supportof an

applicationfor anotherdegreeor qualiÞcationof this or any other university or

other institution of learning.

 8

Copyright and the Ownership of
Intellectual Property Rights

(1) Copyright in text of this thesisrestswith theAuthor. Copies(by any process)

either in full, or of extracts, may be made only in accordancewith

instructionsgivenby theAuthor andlodgedin theJohnRylandsUniversity

Library of Manchester. Details may be obtainedfrom the Librarian. This

page must form part of any such copies made. Further copies (by any

process)of copiesmadein accordancewith such instructionsmay not be

made without the permission (in writing) of the Author.

(2) Theownershipof any intellectualpropertyrightswhich maybedescribedin

this thesisis vestedin the University of Manchester, subjectto any prior

agreementto the contrary, andmay not be madeavailable for useby third

partieswithout thewrittenpermissionof theUniversity, whichwill prescribe

the terms and conditions of any such agreement.

Further information on the conditionsunderwhich disclosuresand exploitation

may take place is available from the Head of Department of Computer Science.

 9

The Author

The author was awarded the degrees of Bachelor of Science in Electronic

Engineering,at Yonsei University, Korea, in 1990. SigniÞcantexperiencewas

gained from involvementin the 16 bit Digital Signal Processingprocessorand

ASIC chip designat LG SemiconandSamsungElectronics,Korea,from 1992to

1996andfrom 1991to 1992,respectively. He becameinterestedin asynchronous

designwhenat Cogency Technologyin UK, asa co-developingdesigner, in 1996.

Currently, he is working on ÒLow Power AsynchronousVLSI DesignÓwithin the

AMULET group at the University of Manchester.

 10

Acknowledgements

My deepestthanksgo to ProfessorSteve Furberfor his insightful commentsand

invaluableguidancein the supervisionof this work. I could not hopefor a better

supervisor.

Specialthanksto Jim GarsideandJiangweiLiu for their efforts to make me feel

easierin my researchwork. Thanksto Phil Endecott,Oleg Petlin,Steve Temple,

andSiamakMohammadifor their kind help.Thanksto William J Bainbridgeand

David Lloyd for their readingandcommentingonthedraftof this thesis.Thanksto

Sun-Yen Tan for his helpful advice and interestingconversations.Thanks to

everyone else of theAMULET group for their support and encouragement.

I would alsolike to acknowledgewith gratitudethegrantfrom theBritish Council

in Korea and the European Commission.

Last but not least, I am grateful to Nigel Paver, who brought me into the

asynchronousworld whenI stayedatCogency Technologyin UK asaco-engineer

in 1996.

 11

Dedication

To

My parents Ñ Sang-Sun Chung and Young-Ja An

My sister Ñ Hoon-Hee Chung

And one of my seniorsÑ Dong-Woon Han

Introduction 12

Intr oduction 1

Following the advent of the semiconductorintegratedcircuit (IC) in the 1960s,many

researchershave tried to Þndwaysto improve theperformanceof ICs [1]. For thelast30

years,the main streamof very large scaleintegrated(VLSI) chip designhasbeenthe

synchronousdesignstyle.It hasbeenthoughtthatasynchronousdesignstyleis easierto

develop and more reliable in operationthan an asynchronousone [2][3]. Recently,

interestin asynchronousdesignstyleshasincreasedsincethe synchronousdesignstyle

faces many difÞculties [3][28].

This thesispresentstheresultsof adesignexercise,theobjectiveof which is to developa

branchprediction mechanismfor the AMULET3 asynchronousmicroprocessor. This

chaptergivesthebackgroundto this work. Section1.1describesthemainadvantagesof

using an asynchronousdesignstyle for making a VLSI chip. Section1.2 presentsthe

historyof theAMULET processors,andanoverview of this thesisandthecontribution

made by the author are contained in the last two sections, 1.3 and 1.4, respectively.

Introduction 13

1.1 Why asynchronous design?

Asynchronousdesignhasattractedrenewed interestin recentyears.Peoplearetalking

aboutit asif it is a new idea.It is, however, not a new paradigmbut rathera resurrection

from the forgottenpast[4][5]. The advantagesof using an asynchronousdesignstyle

[27] are as follows, where they are compared to the opposite style, synchronous design:

· No clock skew problem.In synchronousdesign,thereis a globalsynchronous

clockwhich is usedto storeandaccessthestateof eachstorageelementin the

storagedevicesof a silicon chip. As the clock cycle time is reducedandthe

numberof transistorsconnectedto a global clock increasesit is difÞcult for

designersto keepexactsynchrony dueto delaysin theclock distribution net.

The differencesin the clock delaysto differentnodesis calledÔclockskewÕ,

andthiscancausetheunwantedmalfunctionof storageelementssynchronised

by the clock signal. This problem is getting more severe as transistorsare

shrinking with new processtechnology. This can be explained as follows:

shrinking the design improves clock speedbecauseparasitic capacitance

reduceswith theshrinkage.This clock-speedgain is hardto achieve,however,

when building a bigger chip on the new process.In fact, designerscan

confront the problemof the samelength of clock track with reducedmetal

width, which meansthat if theheightof theclock metalline andthedistance

betweenthis line andanothermetalline in anadjacentlayerarereducedat the

samerateasthewidth of theclock metalline, thecapacitance(C) of theclock

line will beheldconstant,but theresistance(R) of theclock line will increase.

ThereforetheRCproductwill make thedelayof theclock line worse,andthis

Introduction 14

is the main causeof the clock skew. It hasbeenshown that this effect needs

very careful designeffort, for example in the DEC Alpha chip [6] and the

AMD-K6 chip [7]. On the other hand,in asynchronousdesign,there is no

clock signal.This meansthatanasynchronousdesign,asa resultof its nature,

has no clock skew problem.

· Low electro-magnetic interference. Since hand-held wireless electronic

productslike cellular phonesbecamepopular, electro-magneticcompatibility

problemsincluding excessive electro-magneticemissionandsusceptibilityto

interferencefrom electro-magneticÞeldshave been increasinglyimportant

issuessince such productsare required to meet rigorous electro-magnetic

compatibility speciÞcations.Asynchronousdesignmay offer reducednoise

emissionsince there is no interferencegeneratedby regular clocking and

asynchronoussignalsspreadtheir energy over a broaderandlower frequency

rangeanddo not generaterelatively high-energy levelsat any onefrequency.

On the other hand, repetitive signals, such as clocks, are potentially

troublesome,becauseperiodic signals concentratetheir energy in discrete

harmonicsandhigh-frequency clock signalsaretheprimarysourceof electro-

magnetic radiation from a system.

· Low power consumption. ComplementaryMetal Oxide Semiconductor

(CMOS)technologyhasbecomethemosteffective fabricationprocessfor the

productionof VLSI digital circuitsbasicallybecauseof low powerdissipation.

Even if a designerusesCMOStechnology(which is usedfor theAMULET3

Introduction 15

microprocessorand is the assumedtechnologythroughoutthis thesis),the

recent trend to portable systems creates a need for decreasingpower

consumptionto increasethe life of the battery [8][9][10]. In synchronous

design,theclockkeepsrunningevenif ablock is notactivated.Thiscancause

unnecessarypower consumption.Asynchronousdesigndoesnot suffer from

this kind of problem since it has no clocking mechanism.

· Potential for betterperformance. In synchronousdesign,the critical path in

every pipeline stageis constrainedby the Þxed clock period,and the clock

periodmustbenoshorterthanthelongestpathin any stage.Evenif adesigner

canmakeacircuit in aparticularpipelinestagefaster, thiswill havenobeneÞt

unlesseveryotherpathis alreadyfasterthanthisone.Thisargumentappliesto

the differentpipelinestagesalso.Even if a designercan implementa faster

pipelinestage,hemustalsospeedup otherslower stagesbeforehecanmake

the global clock faster. In summary, sincethe clock periodis deÞnedby one

critical path, other faster paths must wait doing nothing. As a natural

consequence,synchronoussystemdesignusesa worst-caseapproach.On the

otherhand,in asynchronousdesign,communicationshappenwhenindividual

blocks are ready, so an average-case performance can be achieved.

· Easyto modify. Whena higherclock rate is neededor a new VLSI process

technologyis introduced,a synchronousdesignerneedsto checkevery effect

causedby thenew clock rateandthenew processandevery circuit mustobey

the new timing requirements.An asynchronousdesigneronly needsto see

Introduction 16

whetherthecommunicationprotocolis observedor not. This latterprocedure

is akind of functionaltest.Normally, a functionaltestis easierto verify thana

timing test.

1.2 History of the AMULET pr ocessors

The AMULET (AsynchronousMicroprocessorUsing Low Energy Techniques)group

wasestablishedlatein 1990,led by ProfessorSteve Furber, to investigatethepossibility

of using asynchronoustechniquesfor VLSI designand to seehow electrical power

consumption can be reduced with asynchronous design [11].

In April 1994thegroupdeliveredtheAMULET1 microprocessor[12], theworldÕs Þrst

implementationof a commercialmicroprocessorarchitecture(ARM) in asynchronous

logic. The primary intent wasto demonstratethat an asynchronousmicroprocessorcan

offer a reductionin electricalpower consumptionover a synchronousdesignin thesame

role. It demonstratedthe feasibility of asynchronousdesignand openeda new era of

asynchronousdesign in the respectthat it showed comparablecharacteristicsto its

synchronouscounterpart.The 2-phasemicropipeline design method was used (see

chapter2 for anexplanationof theseterms).In spiteof thesuccessof AMULET1, it did

not fully exploit the potential of the asynchronousdesignstyle to deliver improved

performance and power consumption.

AMULET2e wasproducedin 1996[13]. It is anembeddedsystemchip incorporatingan

enhancedversionof AMULET1. AMULET2e demonstratedcompetitive performance

and power-efÞciency, ease of design, and innovative features that exploit its

Introduction 17

asynchronousoperationto advantagein power-sensitive applications.Sinceit turnedout

that the 4-phasesignalling protocol is more efÞcient than the 2-phaseone, 4-phase

micropipelineswereusedin AMULET2e (again, thesetermsareexplainedin chapter2

and an explanationof why the 4-phaseprotocol is more efÞcient than the 2-phase

protocol is also presented there).

Currently AMULET3 is being developed as the Þrst commercial embedded

asynchronous32 bit microprocessorin theworld. It will bea signiÞcantmilestonefrom

the viewpoint of the commercialacceptanceof asynchronousdesignby industryandis

expectedto leadto a commerciallyviableproductasa resultof its inherentlow electro-

magnetic interference properties.

1.3 Overview of the thesis

This thesiscoversa numberof aspectsof silicon designusingasynchronoustechniques.

The main topic is the implementationof the branchtarget cachefor the instruction

prefetchunit in AMULET3. This thesisshows how to implementan asynchronous

systemfrom thestandpointof transistorlevel designandgivespracticalexamplesrather

thana theoreticalapproachwith theparticularsubjectmatterof thebranchtargetcache

of theinstructionprefetchunit. However, detaileddescriptionsof theblock implementa-

tionsarenot includedin themaintext. Insteadseveralmajorschematicsandlayoutsare

attached as appendices at the end of the thesis.

It shouldbe notedhere that the designof the AMULET3 microprocessoris a major

cooperative project involving many people.The authoris responsiblefor designingthe

Introduction 18

instructionprefetchunit in theAMULET3 microprocessor, andthebranchtarget cache

is a part of the instruction prefetch unit.

In chapter2, basic and fundamentalbackgroundknowledge is introduced.A brief

descriptionof theAMULET3 microprocessorfollows in chapter3 to give thereaderan

overview of thecontext of thebranchtargetcache.To help thereaderto understandthe

functionsof the branchtarget cachein the instructionprefetchunit, chapter4 explains

what the instructionprefetchunit is, what kinds of sub-blocksexist, anddescribesthe

functionsandconÞgurationof the instructionprefetchunit. The remainingchaptersare

devoted to the designof the branchtarget cachefor the instructionprefetchunit. An

improvedbranchpredictionmechanismis describedin chapter5, whereit is comparedto

the prediction mechanismused in AMULET2e. The implementationis presentedin

chapter6, startingfrom aschematiclevel andreferringto thelow level. Front-enddesign

is carried out using static and dynamic circuit techniques,and then the back-end

implementationsof circuitsfor thedataandcontrolpathsfollow. Finally, in chapter7 the

work is evaluated and future work is proposed.

Before going any further, it is worthwhile mentioning particular features of the

instructionprefetchunit in AMULET3 comparedto thoseof AMULET2e. They areas

follows:

· Harvard architecture. In AMULET2e the instruction prefetch unit was

coupled with the data addressinterface, allowing the processorto be

connectedto a single memory for both instructionsand data.This led to a

complex architecturewhich was not efÞcient. For AMULET3, a Harvard

Introduction 19

architecture is introduced and the instruction addressand data address

interfacesareseparated.Eachis connectedto its own memoryport throughits

own bus.TheÞrstAMULET3 systemincorporatesa dualportedmemory, so

theinstructionanddataaddressinterfaceshave independentaccessto auniÞed

instruction and data memory. This will boost the total performanceof

AMULET3 to supportfasteroperationof theaddressingblocksandto give the

chip more concurrent behaviour.

· Non-sequentialinstruction address stream handling. An interrupt can be

treatedas a branch instruction from the point of view that it causesthe

processorto deviatefrom sequentialinstructionexecution.Becauseof this, the

AMULET3 interrupt handling block is included in the instruction prefetch

unit. Normal instructionaddresssequencescanbe changedby threefactors:

systemreset,an interrupt, or a branch.All the logic handling this issueis

implementedin the instructionprefetchunit. Using an asynchronousarbiter,

theasynchronousnatureof aninterruptwhich couldleadto a synchronisation

problem in synchronousdesign can be implementedeasily, and several

innovative control mechanisms are used.

· Improvedbranch predictionmechanism.A branchpredictionmechanismwas

introducedin AMULET2e to improve performancesince a non-sequential

instructionfetchtakessometime to settledown into a sequentialstream[14].

In AMULET2e, thebranchtargetcachestores20 predictedbranchesandthis

is expandedto 32entriesin AMULET3. Thegreaterthenumberof entries,the

Introduction 20

more possibility there is to improve performance.Since the THUMB

instructionset [15] is introducedin AMULET3, in which the length of an

instruction is 16 bits, new special circuitry is required to support it.

· Halt function.Anotheradvantageof usinganasynchronousdesignstyleis the

ÔhaltÕfunction. In a synchronousdesign,when halting a chip, a designer

shouldconsiderwhethertheclock is stoppedor not andif it is stoppedhow it

canbebroughtbackwhennecessary. By contrast,in anasynchronousdesign,

a chip can be stoppedabruptly and revived instantly without any redundant

circuitry. Exceptfor minimal power consumptiondueto the inherentleakage

currentsin a CMOStransistorcell, thepower consumptioncanbealmostzero

when ÔhaltÕis asserted.This halt function is also implementedin the

instruction prefetch unit.

Detailed explanations are presented in chapters 4, 5, and 6.

1.4 Contribution of the thesis

Thetitle of this thesisimpliesthatthethesisdescribesthedesignwork carriedouton the

branchtargetcachein theAMULET3 microprocessor. Sincetheinstructionprefetchunit

of AMULET3 wasdesignedby the authorandthe branchtarget cacheis a part of the

instructionprefetchunit, thedesignof theinstructionprefetchunit is alsodescribedhere

(in chapter4) to help the readerunderstandthe environmentsurroundingthe branch

targetcache.Thehigh level speciÞcationof andinterfaceto theinstructionprefetchunit

weredeÞnedby the AMULET3 designteam,led by Dr. Jim Garside.The authorwas

Introduction 21

responsiblefor translatingthe speciÞcationinto a detailedVLSI implementation.The

work involved:

· understandingthe high-level speciÞcationas deÞnedby the AMULET3

ÔLARDÕmodel, which is written in an asynchronoushardware description

language developed by Dr. Philip Endecott [99].

· using the LARD model to explore two alternative organisationsfor the

instruction prefetch unit.

· developing low-level schematic and layout details to yield detailed

performance estimates.

· on the basis of these numbers, rejecting both proposed organisations.

· devising andproposinga third organisationwith increasedconcurrency, and

proving its functionality in the LARD model.

· developinga detailedimplementationof this third organisationto show that it

will meet the performance targets.

· completinganddocumentingthe Þnaldesignof the instructionprefetchunit,

including design-for-test features.

Thelasttwo stepsin thework will only befully completedwhentheAMULET3 design

is Þnalised for fabrication.

The main contributionsof the thesis,describingwork carriedout by the authorare,as

follows:

· In chapter 4, a high performance,low power asynchronousinstruction

prefetchunit is introduced.Unlike the caseof AMULET2e, the instruction

Introduction 22

prefetchunit is detachedfrom the dataaddressinterfaceunit - AMULET3

usesa Harvard architecture.All the speciÞcationsand descriptionsand the

new architecture of the instruction prefetch unit are presented.

· In chapter 5, an improved (compared to that of AMULET2e) branch

predictionmechanismis described.It was designedfor higher performance

andsupportsmorefunctions.Thenumberof entriesstoredin thepredictoris

increasedfrom 20 to 32, and new function blocks supportingthe THUMB

instruction set are included.

· In chapter6, varioustechniqueswhich couldbeusedto implementthebranch

target cacheof the instructionprefetchunit and the instructionprefetchunit

itself are shown. Custom cell design techniquesfor the datapathand the

controlpathdesignareproposed.This chaptercanbereadasa guidebookto

asynchronoussystemdesign,not just thebranchtargetcacheof theinstruction

prefetchunit, sinceit includesbothdataandcontrolpathdesignandtogether

these are the components required to build any VLSI chip.

Asynchronous design 23

Asynchronous design 2

In orderto deÞnea systemandits environment,differentapproachesanddiversemodels

areusedin accordancewith differentsituations.So it is for asynchronousdesign.Some

approachesemphasizethe communicationsbetweenblocks and othersemphasizethe

behavioursof theblocksthemselves.Somedescribethecommunicationasa sequential

handshake and others see it as multiple changesof inputs and outputs. Different

approachesto asynchronousdesign offer different prospective and employ different

rules.Subsequentsectionsexplain themodelsusedin asynchronousdesignaccordingto

various different ways to interpret a system and the environment surrounding it.

2.1 Basic concepts

Synchronousdesign forces every circuit to follow one rule - obey the clock. This

centralizedsystemappearsatÞrstsightto beaneasiermethodfor implementingasilicon

chip than asynchronousdesign.Becausethe designerÕs attention is conÞnedto the

periodicclocking,his concernis solelywhetherhecanmeeta timing constraintwith his

implementedcircuit. Whenhesucceedsin observingthis rule,his circuit is safeandwill

work well.

Asynchronous design 24

Asynchronousdesign,however, hasno clock guidingtheway which you shouldfollow.

In somesenseit soundsanarchic,but throughwell disciplinedmethodsonecomponent

candetectwhetherothercomponentsareready. Thesemethodsarecalledprotocols,with

whichblocksandcellsin asiliconchipcancommunicatewith eachother. This is abasic

conceptin asynchronousdesign.To make asynchronousdesigneasier, many researchers

have investigated and invented many types of models to describe asynchronous

behaviours. The rest of this chapter is dedicated to show these asynchronous models.

2.2 Signalling protocols

Communication requires that something happensbetween two participants. The

Ôhandshake protocolÕcanbe explainedas follows: thereare two sides,a senderanda

receiver. Thesendertransfersinformationto thereceiver with a ÔrequestÕsignalandthe

receiver acceptsit. After the receiver has acceptedthe information, it sends an

ÔacknowledgeÕsignal back to the sender. Then the senderis allowed to sendfurther

informationto the receiver. However, the initiator thatstartsthis communicationcanbe

either side dependingon the speciÞcation.Dependingon this, the protocol can be

categorisedaseitherapushtransferor apull transfer[16]. In apushtransfer, theinitiator

sendsthedataasin thecasedescribedabove. In a pull transfer, theinitiator requeststhe

data.In thiscasethereceiversendsarequestsignalto thesenderandthesendercansend

data to the receiver. Even if a pull protocol is available, communicatingdata with

handshakesin a pull protocolis not very common.In this thesis,only thepushprotocol

is considered.

Asynchronous design 25

2.2.1 2-phase protocol

The 2-phaseprotocol usestransition signalling. Since there are only two transitions

available in the digital domain, 0 to 1 and 1 to 0, a data transferhappensat each

transition edge.When data are ready to be transferred,the sendersendsa request

transitionto thereceiver (in thecaseof thepushprotocol).Thereceiver receivesdataand

returns an acknowledge transition to the sender. After the sender receives the

acknowledge,it will beableto sendmoredata.Figure2-1 shows a diagramof thedata-

validity scheme for the 2-phase protocol.

2.2.2 4-phase protocol

The 4-phaseprotocol is called level signalling, since its actionsfollow a signal level

ratherthanatransition.A redundantÔreturnto zeroÕsignalchangeis required.Unlike the

2-phaseprotocol,the4-phaseprotocolhasthreedata-validity schemes- early, broad,and

late. They are shown in Þgure 2-2.

Request

Acknowledge

Valid Data Valid Data

Figure 2-1: Data-validity scheme for the 2-phase protocol

Asynchronous design 26

Considerthe early data-validity scheme.When datais readyfor transferringfrom the

senderto the receiver, the sendersendsa requestsignalto the receiver andthe receiver

respondswith an acknowledgesignal (in the caseof the pushprotocol).However, the

transferis not yet Þnished.The sendermust still return the requestsignalback to the

inactive level and then the receiver must also follow the sameprocedurewith the

acknowledgesignal.Thereturnto zerophaseis aredundantfunctionwhichdoesnothing

but returnthesignalsto theoriginal state.This seemslike a wasteof time.But designers

should take into accountthe fact that most of the datastorageelementsavailable in

reality, such as latches and ßip/ßops, naturally operate with the 4-phase protocol [17].

Request

Acknowledge

Early Data

Broad Data

Late Data

Figure 2-2: Data-validity schemes for the 4-phase protocol

Asynchronous design 27

2.2.3 Comparison between 2-phase and 4-phase protocol

The2-phaseprotocolhastheadvantagecomparedto the4-phaseprotocolin that it does

nothaveany redundantsignaltransitions.It couldmakea fastercontrolcircuit to usethe

2-phaseprotocol rather than the 4-phaseprotocol, since it could save time taken for

resettingsignalsin the4-phaseprotocol.In orderto usethe2-phaseprotocol,however,

designersmust use a double edge-triggeredßip/ßop for data storagewhich requires

approximatelytwicetheareacomparedto a level-sensitive latchandconsumesupto four

timesasmuchpower [18]. Alternatively, if designerswant to usethe 2-phaseprotocol

with a single edge-triggeredßip/ßop or a latch as in conventionaldesigns,they must

convert theprotocolfrom 2-phaseto 4-phase[19], whichrequiresrathercomplex control

circuitry. 2-phasecontrol wasusedin the AMULET1 design,but for AMULET2e and

AMULET3 4-phasecontrol waschosen.This wasbecause4-phasecontrol is easierto

usewith dynamiclogic asshown in [94], and2-phasecontrolcircuitsareslow in practice

sincethey maketheexclusiveuseof XOR gateswhich, in CMOS,areexpensive in terms

of speedand area.For thesereasonsthe 4-phaseprotocol seemsto be usedmore in

practice.

2.3 Asynchronous delay models

Asynchronousdesignrequiressomeassumptionsto be madeabout wire and/or gate

delays.Thesedelayassumptionsaresummarizedin table2-1 (Termsareexplainedin

subsequent sections)

Asynchronous design 28

.

2.3.1 Asynchronous Þnite state machines

AsynchronousÞnite statemachines(AFSMs) [4][5] are comprisedof combinational

logic and feedbackdelay pathsfrom outputsto inputs. They appearto be similar to

synchronousÞnite statemachines(SFSMs)[34] except for the fact that the clocks in

SFSMsare replacedby feedbackdelay elements.Justas SFSMsshouldobserve the

clockingperiod,AFSMsalsoshouldobserve the limit of thedelayelement.The inputs

of AFSMscannotchangebeforethefeedbackdelaysignalsarestable.This is known as

the limit of fundamentalmodewhich assumesthat only oneinput canchangeat once,

andthenext input changecanenterthecircuit only after theentirecircuit hasreacheda

stable state.

2.3.2 Delay-insensitive circuits

Thedelay-insensitive circuit [20][21][22] operatescorrectlyregardlessof gateandwire

delayvariations.This assumesthat gatesandwires have arbitraryÞnitedelays.This is

suchan attractive approachin that all the dataand control can be deÞnedby signal

Table 2-1: Asynchronous Circuits Delay Models

Models Gate assumption Wire assumption

Asynchronous FSM bounded bounded

Delay Insensitive Circuits unbounded unbounded

Quasi Delay Insensitive Circuits unbounded unbounded + some
isochronic fork

Speed Independent Circuits unbounded all isochronic fork

Asynchronous design 29

transitionsandthentrueasynchronousdesigncanbeachieved.For datatransfer, dualrail

encodingcanbeused;oneline is usedto transfera 0 andanotheris usedto transfera 1.

Consequently, a delay-insensitive circuit will work with any amountof delay. Delay-

insensitive circuitsmustbedesignedsothatdelayvariationson thewiresdo not causea

malfunction of the circuit.

2.3.3 Quasi delay insensitive circuits

A circuit is saidto bequasidelayinsensitive [25] if its correctoperationis independent

of thedelaysof gatesandwires,exceptfor certainwiresthatform isochronicforks.The

term ÔforkÕmeansthat therearetwo or morewire pathsavailablefrom the outputof a

componentto theinputsof othercomponents.ThetermÔisochronicforkÕmeansthatthe

delays in wires from the same output to separate inputs are equal.

2.3.4 Speed-independent circuits

In a speedindependentcircuit [29][30][31], it is assumedthatwireshave zerodelayand

theglobalbehaviour of thecircuit is independentof thedelaysof all of thegates.Thatis,

ordered input events produce ordered output events and all the forks are isochronic.

2.3.5 Comparison between asynchronous delay models

Thelimit of fundamentalmodein AFSMsis a very weakpoint in termsof performance,

and only by making many back-annotationsimulationswith timing factorsextracted

from the layout canthe exact behaviour after fabricationbe guaranteed.WhenAFSMs

are used in datapathpipelines, the timing constraintseven affect the next AFSMs

connectedin series.The ÞrstAFSM mustnot acceptnew input changesbeforeits own

Asynchronous design 30

timing constraintsandthenext oneÕs have beensatisÞed.This resultsin extremelypoor

throughput in designs with many pipelines.

The set of componentsconnectedwith wires which can supportthe delay-insensitive

delaymodelis very limited, sinceforks areallowed but it cannotbe assumedthat they

are isochronic,and most VLSI componentscan fail due to inputs having a very slow

edge-speed [23][24].

Thequasidelayinsensitive circuit hasa strongpossibilityof failure if designersusean

auto placeand route layout approach.To meet the criteria of quasidelay insensitive

operation,careful circuit designis needed[24]. Designersmust avoid slow edgeson

control wires. If not, two different gates on an isochronic fork may see the same

transition at very different times [26].

Thespeedindependentassumptionis viablewhenthewire within a chip hasnegligible

delayscomparedto gatedelays.Thereforeall thewire routingmustbe localizedsothat

the wire delay is small comparedto the gatedelay, andthe skew betweenwire delays

aftera fork mustbelessthanthegatedelay. Evenif theserequirementsarefulÞlled, the

behaviour of isochronicforks canbreakdown wherea wire is connectedto a gatewhich

hasanearly logic thresholdvoltage[24]. Theoutputof this gateis triggeredbeforethe

input reachesa discretelogic level, andthentheoutputof thegatetriggersthenext gate

whenthe input still hasnot reacheda discretelogic level. This canbreakthe isochronic

fork assumption.Thereforeit is importantto keepthelogic thresholdvoltageof gatesas

uniform as possible [24][26].

Asynchronous design 31

Nevertheless,the speedindependentcircuit model is powerful since multiple input

changescan be allowed without timing constraints,therebyinvoking more concurrent

behaviour. This is why theAMULET3 designadoptedthespeedindependentmodelfor

the control path. It is important for the speedindependentcircuit to make correct

correlational speciÞcationsbetweenordered inputs and outputs, since outputs are

followed by inputsandvice versa.Becausedesignerscannotchangethe environment,

they shouldknow the behaviour of the environmentafter the outputsof the circuit are

generated [32].

2.4 Data signalling

MostVLSI chipscontainadatapathonwhich thedatais transferredwhenacomputation

is running.A typical synchronousdatapathis formedby pipelinesthathave registersin

their input and output sidesto store the data betweencombinationalcircuits. These

registers are controlled by clocks.

In asynchronousdesign,two kinds of datatransfermethodare available: the bundled

data method and the data-encoding method.

2.4.1 Bundled data

The bundleddatamethod[16][33][34], asshown in Þgure2-3, hasa requestsignal,an

acknowledge signal, and data lines. A block of combinationallogic sendsa request

signalto thenext block whendatais available,andthenext block sendsanacknowledge

signalto thepreviousblock in returnto indicatethat thedatahasbeenreceivedandit is

available for the next data transfer.

Asynchronous design 32

2.4.2 Encoded data

Theencoded-datamethod[35] generatesthecompletiondetectionsignalwhenthedata

transferis Þnisheddependingon the latcheddatapatternasshown in Þgure2-4. Oneof

thepossibleencodeddatamethodsis thedual-railstyle,whichhas2 wiresfor everydata

bit. For example,suppose01 is usedto transfera 0 bit and10 is usedto transferto 1 bit;

everydatabit will beencodedas01or 10afterthecomputationis done.Thereforeoneof

the2 wiresbecomes1. Whenonewire of every databit changesto 1, thesendersends

Control
Circuit

Control
Circuit

Delay

Combinational

Cir cuit
Latches LatchesData Data DataData

request request

acknowledge

request

acknowledge

request

acknowledge

Figure 2-3: Bundled data scheme

Control
Circuit

Control
Circuit

Combinational

Cir cuit
Latches LatchesData Data

acknowledgeacknowledge

C
om

pletion
D

etection

Data

C
om

pletion
D

etection

DataData Data

Figure 2-4: Encoded data scheme

acknowledge (full/empty)

Asynchronous design 33

thecompletiondetectionsignalto thereceiver andthereceiver returnstheacknowledge

signal back to the sender and then the sender will reset every data bit.

2.4.3 SutherlandÕs micropipelines

Micropipelineswereintroducedby IvanSutherland[36]. A micropipelineis similar to a

synchronouspipeline without the clocking mechanism.There are registers between

combinationallogic blocks,which arecontrolledby circuits which usethe requestand

acknowledgesignal.Eachstageof amicropipelinehasarequestsignalto inform thenext

stagewhenthedatais readyandthenext stagereturnsanacknowledgesignalwhenthe

data is received. In conclusion, micropipelines use the bundled data method for

transferringdataandanevent-driven2-phasesignalprotocolfor thecontrolcircuit. This

is shown in Þgure 2-5.

register

logicregister

logic

C

Delay

C

DelayRin

Ain

Rout

Aout

PCd

C Pd

PdC

Cd P

Figure 2-5: Micropipelines

Asynchronous design 34

2.4.4 Comparison between data signalling techniques

An advantageof thebundleddatamethodis thatnormalstandarddatapathcomponents

canbeused.This is why all AMULET processorsadoptedthebundleddatamethod.A

disadvantageof this methodis that a matcheddummy single-bit datapathis normally

usedto generateacompletionsignal,to useasarequestsignalto thenext block,andthis

delaymustbeat leastequalto theworstcasedatapathdelay. This meansthatdesigners

may have to sacriÞceone of the advantagesof asynchronousdesign- the ability to

achieve average case performance.

The encoded-datamethodcanbe efÞcientin termsof speedcomparedto the bundled

data method - it achieves averagecaseperformance- but the completiondetection

overheaddueto using2 wires for every databit cannotbe neglectedin termsof power

andsilicon area.Evenwhendesignersimplementa processingpipeline,no beneÞtwill

beobtainedby completingprocessingearlyif thesubsequentpipelinestageis not freeto

acceptthe data.This may meanthat the averageperformanceobtaineddoesnot justify

the overhead of the dual-rail logic and completion detection circuits.

SutherlandÕs micropipelinessharethe sameproblemmanifestedin othercircuits which

usethebundleddatamethodasmentionedin section2.4.1- delaymatching.It mustbe

guaranteedthat thedataarrivesat thereceiver beforetherequestsignalfrom thesender.

So carefully designeddelay elementsmay be required in the senderÕs requestline.

Furthermorein order to copewith the 2-phaseprotocol, a speciallydesignedregister

must be used, which Sutherland also proposed in [36].

Asynchronous design 35

2.5 Control circuit synthesis

Somedesignerscanmake control circuits intuitively but not everybodycando it well.

Testingthesecircuitsis alsoempirical.Theintuitivemethodcanresultin mistakeswhich

designersdo not recognizewhen they Þrstmake the circuits. Therehave beenseveral

designmethodsproposedfor controlcircuitswhich formalizethedesignßow andassure

the result if the speciÞcations are correct.

2.5.1 Compilation style

This method makes circuits by compiling high-level languageswhich express

concurrency [37][38][39][40][41][42]. The result of synthesis is usually a delay-

insensitive or a speed-independentcircuit. Fundamentally, this methodmapslanguage

descriptions to hardware components.

2.5.2 Asynchronous Þnite state machine style

TheasynchronousÞnitestatemachine(AFSM) [4][5] wastheÞrstasynchronousdesign

methodology. It assumedthatasingleinputchangeinvokesthesystemandthenext input

cannotenterbefore the systemis stable.This meansthat inputs that changeserially

shouldwait for sometimeto guaranteethesystemandtheoutputis settled.This is called

the fundamentaldelaymode.This may be a weakpoint to make a systemin termsof

concurrent behaviour.

To overcomethis disadvantage,a new AFSM was proposed,namedthe burst-mode

machine[43][44][45], which allows multiple input changes.Whenthe speciÞedsetof

input edgesappear, thesystemgeneratesa setof outputchangesandthennew multiple

Asynchronous design 36

inputchangescanbeaccepted.ThespeciÞedinputchangescanhappenin any timeanda

setof outputchangescanhappenconcurrently. Sinceburst-modeAFSMs usethe same

Þnite machinestyle as usedin synchronousdesign,they appearfamiliar to designers.

However, they suffer from the problem that input changesare not allowed to be

concurrent with output changes.

Recently, the extendedburst-modemachine[46][47][48] was introducedto reducethe

problemof the burst-modemachineand to add more ßexible input choice.Directed-

donÕt-caresandconditionalsweredevised.Directed-donÕt-caresallow aninput signalto

changeconcurrentlywith outputsignalsandconditionalsallow control ßow to depend

on the input signal levels.

2.5.3 Graph based style

Thegraphbasedstylemeansusinga Petrinet [49] or a similar graphicalrepresentation

[50] of concurrency to specify the required functionality. The Petri net is a model

describing a concurrent system. The signal transition graph (STG)

[51][52][53][54][55][56][57][58][59][60] was introducedasan interpretedPetri net. It

interpretsvaluechangeson input andoutputsignalsof thespeciÞedcircuit astransitions

of the STG. Positive transitions(labelledwith a Ô+Õ)representa 0 ® 1 changeand

negative transitions(labelledwith a Ô-Õ)representa 1 ® 0 change.This way, designers

canspecifychangesof all the inputsandrelatedoutputs.Generally, the strongpoint of

this method lies in its ability to describe concurrency.

Recently, a very powerful tool namedPetrify [61][62] was introduced.It has basic

functionswhichallow themanipulationof concurrentspeciÞcations.This tool surmounts

Asynchronous design 37

theproblem,which wasthoughtto bea disadvantageof this method,of specifyinginput

choices.Givenaninitial STGor Petrinet,thetool checksthepropertyof CompleteState

Coding [63]; whetherdifferent statesof the systemareencodedwith the samebinary

code.If thereis a violation of this property, thetool automaticallyinsertsa new internal

statevariable. The tool can make a speedindependentcircuit which has no timing

constraints, unlike the extend burst-mode machine.

2.5.4 Comparison between control circuit synthesis techniques

An advantageof the compilationstyle is that designerscan write a conciseand well

orderedprogramandget a silicon result in muchshortertime thanusinga traditional

handmadedesignmethodology. However, a drawbackis that it is difÞcult to geta very

optimizedcircuit, sincea mappingfunction is usedto do the translationandengineers

cannotoptimizefurther to the level below the basiclibrary components.A methodfor

simplifying these synthesizedcircuits by repeatedprovable reÞnementhas been

demonstrated which allows some of this complexity to be reduced [98].

Whentheextendedburstmodemachineis usedto designasystem,becauseit is basedon

the fundamentaldelay mode, it must be guaranteedthat input changescannotoccur

beforethe systemhasstabilized,anddelayelementsmustbe insertedin the feedback

paths.However, this methodcould be attractive to designerssince this is the same

methodasusedin synchronousdesignexceptthat in thesynchronousmachinetheclock

is used to control feedback paths using memory elements.

As wasmentionedearlier, thegraphbasedstylehastheadvantagein that it canbeused

to describehighly concurrentsystemswithout timing constraints.This is why this

Asynchronous design 38

methodhasbeenadoptedfor AMULET3. In many cases,however, thismethodproduces

very complex andslow circuitry to implementthe full concurrency. It is necessaryfor

designersto be aware of the critical path in their STG deÞnition and to reduce

concurrency to lessenthe complexity of the circuitry within the limits of the system

speciÞcation requirement. This process needs very careful intuition and experience.

The AMULET3 microprocessor 39

The AMULET3 micr oprocessor 3

Though several asynchronous microprocessors have been developed

[64][65][66][67][68][69][70][71][72][12][13], most were designedfor the purposeof

demonstratingthe feasibility of asynchronousdesign.AMULET1 andAMULET2e are

in thiscategory. UnlikeAMULET1 andAMULET2e, AMULET3 is beingdevelopedfor

a commercial application as an embedded 32bit RISC microprocessor in a

communicationschip. Currently AMULET3i (the AMULET3 asynchronousisland) is

under development[73]. AMULET3i is an asynchronousembeddedsubsystemchip

incorporating AMULET3 as a microprocessor.

AMULET1 showed the feasibility of implementingan asynchronousdesign with a

highly concurrent behaviour. AMULET2e proved that asynchronousdesign could

achieve competitive performanceon an equal footing with synchronousdesign.

AMULET3 is intended to be the Þrst commercial application of the AMULET

asynchronoustechnology. Through AMULET3Õs use in the commercial domain,

asynchronousdesigncan win recognitionas having a role in mainstreamVLSI chip

design.Therestof this chapterwill describethestructuresandfunctionsof AMULET3

andAMULET3i in orderto giveanoverview of thecontext for thework describedin the

The AMULET3 microprocessor 40

rest of the thesis,which covers the design of the instruction prefetch unit for the

AMULET3 microprocessor.

3.1 AMULET3i

AMULET3i (the AMULET3 asynchronousisland) is an integrated asynchronous

microprocessorsubsystembasedaroundAMULET3. Its block diagramis shown in

Figure 3-1.

AMULET3

8 Kbyte
RAM

DMA
contr oller

16 Kbyte
ROM

MARBLE/
SOCB
bridg e

Test
interface
contr oller

Sync hronous
peripheral
subsystem

data

address

chip
selects

DRAM
control

peripheral
I/Os

asynchronous

synchronous

MARBLE bus

DMArq DMAak

delay

test

Memor y
interface

Figure 3-1: AMULET3i block diagram (Courtesy of Prof. Steve Furber)

SOCB

The AMULET3 microprocessor 41

In addition to the AMULET3 processor, AMULET3i comprises:

· 8 KbyteRAM. The8 Kbyte internalstaticmemoryis dividedinto eight1Kbyte

blocks. Each block contains 64 lines of 4 words.

· DMA controller. The DMA controller has 32 independentlyprogrammable

channelseach of which can perform memory to memory, memory to

peripheral, peripheral to memory or peripheral to peripheral transfers.

· MARBLEbus. TheManchesterAsynchRonousBusfor Low Energy is amulti-

master on-chip bus for connecting macrocells.

· MARBLE/SOCBbridge. The MARBLE to SynchronousOn-ChipBus bridge

is a single MARBLE target device which handlesthe bus handshake and

control signal retiming on behalf of the SOCB.

· 16 Kbyte ROM. The 16 Kbyte ROM containsapplicationcode and also a

number of routines to support the testing of AMULET3i components.

· Testinterfacecontroller. Thetestinterfacecontrollersupportsthedirectaccess

to individual on-chip macrocellsvia the external memory interface and

MARBLE.

· Memory interface. The AMULET3 external memory interfacesupportsthe

direct connection of external memory and peripheral devices.

· Synchronous peripheral subsystem. This contains telecommunication

peripheral devices.

Staticmemorydevices,suchasSRAM, EPROM andperipheralchips,canbeconnected

directly to theprocessorwith noextra logic. In addition,DRAM is supported,againwith

no external support logic.

The AMULET3 microprocessor 42

3.2 AMULET3

AMULET3 is thethird generationasynchronousARM microprocessorcoreandsupports

theARM 32bit RISCarchitecture.It implementstheARM architectureversion4T [74]

andsupportsThumb instructionset compatibility [15][74]. The processorcorecanbe

divided into 5 sub blocks, as shown below in Þgure3-2. The ÔPrefetchÕblock is the

instruction prefetchunit which is being developedby the author. This is explained

further in chapter4. The ÔDecode& Register readÕblock is to decodeinstructions,to

readtheregistervalues,andto producecontrolsignalsto relevantblocks.TheÔExecuteÕ

block is comprised of the ALU and the multiplier to execute arithmetic/logical

manipulations.The ÔDataaccessÕblock is to accessdata memory. The ÔReorder&

WritebackÕblock is to implementareorderbuffer andresultforwardingmechanism.The

detailed AMULET3 organization is shown in Þgure 3-3.

The processorcorecontainsa numberof novel featuresto enhanceperformance.This

chapterexplainsin brief only the distinguishingfeaturesof AMULET3 comparedwith

the previous AMULET1 and AMULET2e designs. They are:

· A Dual Bus Interface(Harvard Architecture). As shown in Figure 3-2, the

instructionprefetchunit andthedatainterfaceunit areseparated,unlike those

of AMULET2e. Thedatainterfaceis sidelinedfrom themaininstructionßow

allowing the decoupling of data transfer operations(especially multiple

register moves) from purely internal operations. Interestingly, although

separateinstructionanddatabusesareused,a uniÞedmemory(which is an

internalRandomAccessMemory(RAM) in thecaseof AMULET3i) canstill

The AMULET3 microprocessor 43

be used. This is possible becausea new memory architecturehas been

developedusingblock-level arbitrationbetweeninstructionanddatarequests.

The memory area is not divided into instruction and data areas.When

instructionanddatarequestsaccessthesameblock in thememory, therequest

which arrives earlier will be granted access to the memory via an

asynchronousarbiter. After this accessÞnishes,the later requestwhich was

held at the input to the arbiter will be grantedaccessto the sameblock. In

short, this memory behaves like a dual port RAM but usesa number of

transistornotmuchgreaterthanin asingleportRAM. Comparedto atruedual

port RAM, the new RAM can save a lot of silicon area.

Execute Data access

Reorder &
Writebac k

Decode &
Register read

Prefetch

Instruction fetch

Data
transfers

FIQ IRQ

Figure 3-2: AMULET3 block diagram (Courtesy of Prof. Steve Furber)

The AMULET3 microprocessor 44

· Reorder Buffer andResultForwarding Mechanism.Instructionscancomplete

out of orderandexecutionresultsarestoredin thereorderbuffer to bewritten

back to the general registers [76]. The reorder buffer supportsa result

forwarding mechanism,so if an operationundergoing processingrequiresa

recentresultwhich maynot have beenreturnedto thegeneralregisterbank,it

canbeaccessedfrom thereorderbuffer. If thedatafetchoperationis aborted,

resultsin thereorderbuffer generatedby subsequentinstructionsarediscarded

whereasresultsfrom previous instructionsarewritten to the registerbank.In

short,thereorderbuffer giveseachinstructionaslot in thebuffer andtheresult

producedby theexecutionof eachinstructiongoesto its slot, possiblyout of

order. Writing out to thegeneralregisterbankis deterministicandsequential.

This mechanismprovidesa generalsolutionto the forwardingproblemwhile

still allowing precise aborts.

· Branch Prediction. Branchpredictioncan be performedon a proportionof

previously encounteredbranches.This increasesperformanceand lowers

systempower consumptionsinceit reducesthenumberof erroneousprefetch

cycles. Until a branch instruction is decodedand recognizedas a branch,

subsequentinstructions following the branch are prefetched from the

instructionmemoryandsentto the decoderthroughthe instructionpipeline.

This will burn unnecessarypower when the branch is taken. It has been

estimatedin a cachedARM thattheprocessorcoreis typically responsiblefor

only 30% of the total power dissipation.70% of the power consumption

happensin the cache/memorysystem.This meansthat even if the branch

The AMULET3 microprocessor 45

target cacheusespower to check for a predictedbranchevery cycle, and

therebyincreasesthe processorÕs power consumptionfor a given instruction

frequency, a predictedbranchcansave power overall by reducingthenumber

of unwanted memory accesses. This is explained further in chapter 5.

· Fastinterrupt response. Interruptsarenotdealtwith in theinstructiondecoder

but in the instructionprefetchunit. This wasmadepossibleby separatingthe

instructionanddatainterface.An interruptis treatedasakind of unconditional

predictedbranchandthe interruptservicecodecanbe fetchedassoonasthe

interrupt occurs.

· Halt mechanism. A haltmechanismcanbeimplementedeasilyby intercepting

and disabling requestor acknowledge signalsat somecritical point in the

processor. Furthermore,recovery from the halted state can be achieved

instantly by releasingthe interceptedsignals,while a synchronousdesign

would wait for stabilizationof the clock, which could take sometime and

requirecarefulconsiderationof dealingwith clock generationblocks.In the

instruction prefetch unit, this mechanismis implementedby disabling a

request signal in the unit until an interrupt occurs.

As highlighted above, three of the Þve major featuresare related to the instruction

prefetchunit. This implies the designof the instructionprefetchunit will be a crucial

factorin determiningthe AMULET3 performance.As wasmentionedin chapter1, the

The AMULET3 microprocessor 46

interrupt and halt mechanismis explained in chapter4 and the branch prediction

mechanism is dealt with in detail in chapter 5.

The AMULET3 microprocessor 47

BTC
+4

Imem Ctl

+4?

Thumb

I decode

Q read Regs read

Mul/Sh

ALU

repl.

rot/sgnex

Xpipe

CP Ctl

Imem

co
pr

oc
es

so
r(

s)

Br Add

Base R

Q writeRegs write

store data

load data

PC
A B C

data address

instruction address

instructions

indirect
PC value

link PC

im
m

ed
ia

te
s

PC

post-indexed indirect PC address

branch/indirect PC address

internal
results

external resultsin order

Figure 3-3: AMULET3 organization (Courtesy of Prof. Steve Furber)

Dmem

Instruction prefetch unit 48

Instruction pr efetch unit 4

This chapterdescribesthe conÞgurationand functionsof the instructionprefetchunit

(IPU) in AMULET3 to help the readerto understandthe function of the branchtarget

cache (BTC).

4.1 Overview

Programsarestoredin a memoryanda processorfetchesappropriateinstructionsand

dataandruns the instructions.The traditionalapproachto connectingthe processorto

the memory started with the simple idea called the von Neumann method. All

instructionsand data are stored together in a single memory. Instruction and data

addressesaregeneratedin adedicatedblock in theprocessor, normallycalledtheaddress

generationunit. Fromtheviewpoint of thememory, instructionsanddataaretreatedthe

same.This approachhasa big disadvantagewhenever a programaccessesinstruction

anddataaddressesin turn. A largeburdenis imposedon theaddressgenerationunit in

order to handle the instruction and data addressestogetherand as a consequence

performancefalls. A solutionis to divide the addressgenerationunit into two separate

units, the instruction and the data addressgenerationblocks, and to have separate

instruction and data memories. This is normally called a Harvard architecture.

Instruction prefetch unit 49

4.2 Instruction prefetch unit

In AMULET2e, theIPU wasincludedin theaddressinterfaceunit. Theaddressinterface

unit generatedboth instruction and data addresses.For AMULET3, a Harvard

architectureis introducedand the instruction addressand data addressinterfacesare

separated.Each is connectedto its own memoryport through its own bus. The Þrst

AMULET3 systemincorporatesa dual ported memory, so the instruction and data

address interfaces have independent access to a uniÞed instruction and data memory.

4.2.1 ConÞguration

First organisation

Thehigh level speciÞcationof, andinterfaceto, theIPU weredeÞnedby theAMULET3

designteam, led by Dr. Jim Garside.The author was responsiblefor translatingthe

speciÞcationinto adetailedVLSI implementation.Theoriginalproposedorganisationof

the IPU is shown in Þgure 4-1.

This organisationhasthe forward path from the memoryaddressregister multiplexer

(MARMUX) to the memoryaddressregister (MAR) and the programcounterregister

(PC)via theexceptionunit (EU), thebranchtargetcache(BTC) andtheprogramcounter

multiplexer (PCMUX). There is also the backward path from the PC to the MARMUX.

The normal instruction addresspath starts from the MARMUX, which acceptsthe

instruction addresseither from the PC or from the ALU, and producesthe program

counteraddressto the EU. The EU checkswhetheror not an exceptionhashappened.

Instruction prefetch unit 50

(The exceptionsareexplainedin section4.2.3.)The result from the EU is sentto the

MAR, the INC and the BTC. The MAR waits for the result from the BTC.

If a hit happensin theBTC, theconditioncodeandthe link bit of a predictedbranchin

the BTC go to the MAR, andthe MAR sendsthe programcounteraddresswith these

conditioncodeandlink bits to the memorycontrol unit. The BTC alsosendsa branch

target address to the PC.

BTC

INC

PC

EU

MARMUX

to Memory Control Unit

from ALU

INT

PCMUX

Interrupts

Indirect PC

MAR

CC, link

Figure 4-1: First IPU organisation

Instruction prefetch unit 51

If thereis nohit in theBTC, theMAR sendstheprogramcounteraddressto thememory

control unit, and the incremented result from the INC goes to the PC.

When an interrupt or indirect PC load happens,an interrupt vector or the indirect

program counter address takes the path to the PC instead of the BTC or the INC.

In this organisation,the critical path is from the MARMUX to the PC and the MAR

throughthe EU andthe BTC. The forward path is long andthe backward path is very

short.To reducethe long processingtime causedby this long serial forward path,an

attractive organisation was proposed by the author as shown in Þgure 4-2.

Second organisation

As wasmentionedabove, theÞrstorganisationhasthelong serialforwardpath.In order

to reducethis forwardtime theauthorproposedthesecondorganisationwhich put more

emphasison thebackwardpathasshown in Þgure4-2.Thisorganisationhastheforward

pathfrom theMARMUX to theMAR via theEU. Unlike theÞrstorganisation,theMAR

doesnot wait for theresultfrom theBTC. Theresultfrom theEU goesto theBTC and

the INC.

Whenthereis no hit, the incrementedresult from the INC goesto the PC.Whena hit

happens,theconditioncodeandthelink bit goto thePC,andthePCacceptstheprogram

counteraddressfrom the INC. This is differentfrom theÞrstorganisation.At this time,

the target addressis storedat the latch in the BTC and the ßag indicating that a hit

Instruction prefetch unit 52

happenedis set.In the next cycle, the PC getsthis latchedtarget addressinsteadof the

incremented address from the INC.

Comparison between Þrst and second organisations

The secondorganisationwasbasedon the assumptionthat the total processingtime of

theAMULET3 microprocessorwould beshorterif the forwardpathprocessingtime in

theIPU wasfastereventhoughtheIPU cycle time wassame.(Thecycle time is thesum

of the forward time andthebackward time.) But, simulationusingtheLARD hardware

descriptionlanguagewith thedhrystonetestprogramgave a differentresultasshown in

INC

PC

EU

MARMUX

to Memory Control Unit

from ALU

INT

PCMUX

Interrupts

Indirect PCMAR

CC, link

BTC

Figure 4-2: Second IPU organisation

Instruction prefetch unit 53

Þgure4-3.Eachpipelinecycle time in theAMULET3 LARD modelwassetas100time

units, which is a nominal value.Eachblock in the IPU wasset as20 time units. The

Þgureshows how theBTC processingtime affectsthetotal simulationtime to Þnishthe

dhrystonetestprogram.BeforetheBTC processingtime reaches90 time units, theÞrst

organisationhasbetterresults.This meansthat thereis little impact from the forward

time in the IPU on the AMULET3 processingtime. After the BTC processingtime

exceeds90, the forward time burdenin the IPU canbe a major obstacleto the system

simulationrun time. But, in this case,the cycle time in the IPU is too long to meetthe

AMULET3 speciÞcation. Therefore, the Þrst organisation was chosen for the IPU.

Figure 4-3: Simulation result comparing Þrst and second IPU organisations

Instruction prefetch unit 54

Need for another organisation

Although the Þrst organisationwas chosenfor the IPU, an unexpectedproblemarose

when the authortried to implementthe IPU schematic.As wasmentionedearlier, the

Þrstorganisationhasthe long serialforwardpathfrom theMARMUX to theMAR and

to thePC via theEU andtheBTC. After theauthorimplementedtheschematic,it was

evident that this organisationcould not be used,becausethe forward path time of the

schematicimplementationis too slow to meet the AMULET3 speciÞcation.The

AMULET3 speciÞcationrequiresthat theIPU cycle time mustbelessthanabout6.5ns,

which is equivalent to about150 MIPS in a synchronousARM microprocessor. The

schematicimplementationof the Þrst organisationtook about 13ns cycle time. This

result was measuredby counting the number of requestand acknowledge signal

inversions.It wasassumedthatit takesabout0.2nsfor oneinversionof thesignal,which

is equivalent to an inverter delay time. So the author proposeda third parallel

organisation as shown in Þgure 4-4.

New parallel organisation

The new parallelorganisationwasproposedby the authorasshown in Þgure4-4. The

forwardpathof this organisationis from MARMUX to theMAR andto thePCvia the

EU, the INC, the BTC, or the IND. In the Þrstorganisation,the EU andthe BTC were

connectedserially. In thenew parallelorganisation,every unit is locatedin parallelafter

the MARMUX. This can reducethe forward time signiÞcantlycomparedto the Þrst

organisation.Sincetheprocessingtime in theBTC is the longestof theparallelblocks,

we canassumethe total cycle time is deÞnedasfollows: the time for theMARMUX +

Instruction prefetch unit 55

the time for the BTC control circuits + the time for the BTC itself + the time for the

PCMUX + the time from the PC to the MARMUX.

In normalinstructionexecution,theresultof theMARMUX, which is eitherfrom thePC

or from the ALU, goesto the MAR via the EU, andthe incrementedprogramcounter

address from the INC is stored into the PC.

Whenahit happensin theBTC, thetargetaddressgoesto thePCandtheconditioncode

andthelink bit go to theMAR. TheMAR getsthepresentPCfrom theEU andsendsit

together with the condition code and the link bit to the memory control unit.

IND

PC

MARMUX

to Memory Control Unit

from ALU

PCMUX

Interrupts

Indirect PC

CC,link

BTCINC

EU

MAR

Figure 4-4: New parallel organisation

Instruction prefetch unit 56

Whenanexceptionhappens,theEU detectsit andsendsanexceptionvectoraddressto

the PC and the MAR. During the next cycle, the IPU doesnothing but incrementthe

programcounteraddressin the INC and store the incrementedaddressinto the PC,

becausetheMAR alreadyhadanexceptionvectoraddressin thepreviouscycle,andthe

next addressin theMAR mustbetheexceptionvectoraddress+ 4. For example,assume

the instruction addressfrom the MARMUX is 100 and the EU detectsthe software

interrupt.TheEU will producetheaddress8 to thePCandtheMAR. TheMAR sends8

to thememorycontrolunit. ThePCsends8 to theMARMUX. TheMARMUX sends8

to eachof theparallelblocks.But, this time only theincrementedvalue12 will go to the

PCandtheMAR doesnothing.ThenthePCwill send12 to theMARMUX andnormal

operationwill becontinued.Thisseemsawasteof anIPU cycle.But exceptionsarevery

rare, and thereforethis redundantcycle affects little the total performance.This was

veriÞedby LARD simulationusingthedhrystoneprogramandthe resultsareshown in

Þgure 4-5.

Comparison between Þrst and new parallel organisations

A comparisonbetweentheÞrstandthenew parallelorganisationis shown in Þgure4-5.

If the IPU cycle time is the same,the simulationtime of the new parallelorganisation

increasesvery slightly sincethereare redundantcyclesafter exceptions.But, with the

new parallelorganisation,the IPU cycle time canmeetthespeciÞcation,which is about

6.5ns.Becausethe IPU schematicof theÞrstorganisationhasabout13nscycle time, it

canbeassumedthat its cycle time is almostdoublethatof thenew parallelorganisation.

In this casewe can comparethe cycle time of 100 time units for the new parallel

Instruction prefetch unit 57

organisationwith thecycle time of 200time unitsfor theÞrstorganisationin Þgure4-5.

It is evident that the new parallel organisation produces a faster simulation time.

4.2.2 Functions

The new parallel IPU has Þve major functions as follows:

1. Program Counter Incrementing

2. Branch Address Management

3. Interrupt Handling

4. Indirect Program Counter Loading

5. Halt

Figure 4-5: Simulation result comparing Þrst and parallel IPU organisations

Instruction prefetch unit 58

Each function is explained as follows:

· Program CounterIncrementing:THUMB is a compressedrepresentationof

the ARM instruction set; ARM instructionshave a 32 bit length whereas

THUMB instructionshave a 16 bit length. In the ARM processorthe two

instruction setscan be usedalternatelybut not mixed. Thus two different

instructionexecutionmodesareavailablein oneARM processor. The Þrst is

calledARM modewhere32bit instructionsareused,andthesecondTHUMB

modewhere16 bit instructionsare used.The current instructionaddressis

incrementedby 4 bytesto producethenext instructionaddressin ARM mode

and, in THUMB mode,the presentinstructionaddressis incrementedby 2

bytes under the normal instruction sequence.Exceptionalcasescausinga

deviation from thenormalinstructionsequencearea branch,aninterrupt,and

an indirectPC.In thesecasesthepresentaddresschangesdependingon each

situation. In AMULET3, the present instruction addressalways can be

incrementedby 4 bytes under normal sequentialexecution as THUMB

instructionsarefetchedin pairs.Thisfunctionis performedin theincrementer.

· Branch Address Management: One of the exceptions from the normal

instructionsequenceis abranch.If thereis abranchin theprogram,thebranch

addressis calculatedin theALU andinsertedinto theIPU. This addressgoes

to MAR via the MARMUX andthe EU. Whena branchhappens,the source

addressandthetargetaddressof thebrancharestoredin theBTC. Thesource

addressis placedin theContentAddressableMemory(CAM) in theBTC and

Instruction prefetch unit 59

the target addressis storedin the associatedRAM memory. At every fetch

cycle thepresentinstructionaddressis passedfrom theMARMUX to theBTC

andis comparedwith addressesin theCAM to seewhetheramatchedaddress

exists.If thereis a matchedaddressin theCAM, theassociatedtargetaddress

in the RAM goesto the PC, insteadof the resultof the incrementer, via the

program counter multiplexer (PCMUX). Thus branch prediction is

accomplished. This mechanism is explained in chapters 5 and 6.

· Interrupt handling:Thereareseveninterrupts(Thesearecalledexceptionsin

the ARM processormanual [74]. In table 4-1, the term exception is used

insteadof interrupt.)in theARM processorasshown in table4-1. Depending

on each interrupt, the EU producesthe appropriatevector address.This

addressgoesto theMAR andto thePCinsteadof theresultof theincrementer

via the PCMUX.

Table 4-1: Exception processing mode

Exception type Mode Vector address

Reset SVC 0x00000000

UndeÞned Instructions UNDEF 0x00000004

Software Interrupt (SWI) SVC 0x00000008

Prefetch Abort (Instruction fetch memory abort) ABORT 0x0000000c

Data Abort (Data access memory abort) ABORT 0x00000010

IRQ (Interrupt) IRQ 0x00000018

FIQ (Fast Interrupt) FIQ 0x0000001c

Instruction prefetch unit 60

· Indirect Program Counter Loading: The indirect programcounter loading

happenswhen a load multiple instruction (LDM) containingthe PC in the

register list or any single register load (LDR) to the PC is executed.This

causes the PC to be loaded from the memory via the PCMUX.

· Halt: The ÔhaltÕmechanismcan be initiated when a programentersan idle

loop, and is implementedusing the ARM ÔB.Õinstruction.This normally

causesan instruction to loop back continuouslyto itself until an interrupt

occurs,which is clearlywastingpower anddoingno usefulwork. Instead,as

in AMULET2e, AMULET3 will halt the processorby blocking a local

handshake until an interrupt occurs.Blocking one handshake causesa local

stall which rapidly propagates through the system, reducing the system

activity to zero.This mechanismcanbe implementedeasilyby intercepting

anddisablingrequestor acknowledgesignals.In the IPU, this mechanismis

implementedby interceptinga requestsignal in the unit until an interrupt

occurs.For example,the requestfrom the MARMUX is grabbedby the halt

functionunit andthentheprocessorwill stopoperatingsincethereis no more

updatingof the presentinstructionaddressin the MAR. After receiving an

interrupt,this reserved requestsignalwill be releasedandthenthe processor

will operate again.

Branch Prediction Mechanism 61

Branch Prediction Mechanism 5

To improve the performanceof AMULET2e, a branchpredictionunit was introduced

[13]. Dynamicandstaticalgorithmsfor branchpredictionwerefully investigated[14],

thena branchtarget cache(or branchtarget buffer) waschosenbecauseof the easeof

integration into the AMULET2e implementation.

From the viewpoint of low power technology, the branchtarget cacheof AMULET2e

seemsto have a problem. It attemptsa branch prediction during every instruction

prefetchcycle regardlessof the frequency of branchinstructions,checkingwhetherthe

present instruction memory addresscorrespondsto a previously executed branch

instruction.At every instructionfetch, signiÞcantcircuitry is activatedto searchfor an

addressmatch, consumingsigniÞcantpower. Therefore in the senseof low power

implementation,usinga branchtargetcacheasa branchpredictionunit for AMULET2e

hasa drawback.However, researchhasshown that therecanbe a performancebeneÞt

from adoptingbranchprediction,especiallywherea pipelinestructureis used[77], and

total systempower can be saved sincethe frequency of wastedmemoryaccessesfor

instruction prefetch is reduced (as shown in [13]).

Branch Prediction Mechanism 62

From the silicon testresultson AMULET2e shown in [13], the power-efÞciency of the

coredropsby 5% whenthebranchtargetcacheis turnedon, thoughtheoverall system

power-efÞciency risesby 4%whenthecodeis beingexecutedfrom theexternalmemory

due to the reductionin wastedinstruction fetches.Thus, AMULET2e useda branch

predictionunit using a branchtarget cacheto achieve betterperformanceand to save

power. Furthermore,the comparisonlogic of the AMULET2e BTC is divided into two

areasasshown in Þgure5-1: high bits andlow bits. Sincemost instructionfetchesrun

sequentially, thehigh bits changerarelyandthehigh sectionof theContentAddressable

Memory (CAM) need not be invoked. Therefore only the low bits are normally

comparedwith thepresentprogramcounteraddress.This is thepower saving schemeof

CAM

Hit Detection Logic

RAM
(Registers)

From ALU
or PC

Target Address

(high)

CAM (low)

PC
frequently
not used

Figure 5-1: BTC structure

Hit/miss

Branch Prediction Mechanism 63

the BTC, which saves around70% of the power consumptionof the CAM and also

reducesthe averagelook-up time improving performance.From the test results on

AMULET2e shown in [13], the power-efÞciency of the corewith this segmentationof

the CAM is almost the sameas without the BTC due to the reduction in wasted

instructionfetches.This meansthatwhentheCAM segmentationis usedin theBTC the

core power-efÞciency loss is eliminatedshowing that branchpredictioncan be power

neutralwith respectto thecorewhencarefullydesigned,andcancontributesigniÞcantly

to overall system performance and power-efÞciency.

A very similar branchpredictionalgorithm is usedin AMULET3. (AMULET3 is an

ongoingproject,so thehardwareimplementation,proposedin this thesis,couldchange

later.) However, new functionshavebeenaddedandapreviouslyexistingblockhasbeen

improved. Firstly, the THUMB instructionmode [15] has beenadded.Secondly, the

condition codeand the link bit of a branchaddressare storedin the RandomAccess

Memory(RAM) of thebranchpredictionunit togetherwith thetargetaddressin orderto

avoid fetchingpredictedbranchesfrom memory. Thirdly, the numberof entriesin the

CAM and the RAM in the branch prediction unit has been increasedfrom 20 in

AMULET2e to 32. Detailed explanations of these three features are given in section 5.3.

5.1 Basic concepts

Accordingto HennessyandPatterson[77], about20% of the 80x86instructionsin the

Þve SPECint92 programs are categorised as branches,of which about 80% are

conditional branch instructions. This suggeststhat microprocessorsusing pipeline

techniquescan have a branchpenaltyevery six or seven instructions.In general,the

Branch Prediction Mechanism 64

deeperthe pipeline,the worsethe branchpenalty. For example,architectureswith very

deeppipelines,such as the DEC Alpha [78] and MIPS R4000 [79], suffer a heavy

pipelinepenaltyfor mispredictingabranch(upto 10cycles[78]). In orderto addressthis

loss of performance, we should focus on two issues as follows:

1. Detectionof whetheror not thebranchis takenearlyin thepipeline:theearliera

processorknows whetherthe branchis taken or not, the fewer unwantedinstructions

following thebranchinstructionwhich enterthepipeline.Of course,whenthebranchis

not taken, thereis no difference.Whenthe branchis taken,however, a processorneed

not fetch instructionsfollowing the branchinstruction.Thoseinstructionswhich have

enteredthe pipelinewill needto be discarded.This is why the detectionof whetheror

not the branch is taken early in the pipeline is important.

2. Knowing the addressof the branch target earlier in the pipeline: even if a

processorcandecidewhetheror not thebranchis takenearly in thepipeline,thebranch

instructionwill stall in the pipelineif the branchtarget addresscannotbe calculatedin

time. If the target is speciÞedindirectly, for exampleusingthe contentsof a registeror

memory location, and the branchtarget is not in the data/instructioncache,this will

cause the pipeline to stall until the target can be fetched from the external memory.

5.1.1 Branch target prediction schemes

The Þrst issue is related to the branch prediction strategy. Many branch prediction

strategieshave beeninvestigatedin the questto improve the performanceof pipelined

microprocessors.

Branch Prediction Mechanism 65

Branch prediction strategies can be divided into two groups: static and dynamic

predictors.Staticpredictorsareso-namedbecausethe actiontaken doesnot dependon

dynamicprogrambehaviour. Dynamicpredictionmeansthat thepredictionwill change

if the branch changes its behaviour while the program is running.

Static branchpredictionschemesuseinformation gatheredbeforeprogramexecution,

suchasbranchopcodesor proÞles,to predictthebranchdirection.Thesimplestform of

thesepredictsthatall conditionalbranchesaretaken,asin MIPS-X [80], or arenot taken

asin theMotorolaMC88000[81]. Otherstaticpredictionschemescanbebasedon the

opcodeor onthedirectionof thebranchasin Òifthebranchis backward,predicttaken;if

forward, predictnot takenÓ[82]. This schemeis effective for loop intensive code,but

does not work well for programswhere the branch behaviour is irregular. Some

processors[83] allow the compilerto passpredictioninformationto the hardwarewith

additionalhint bits. Run-timeproÞleinformation from programexecutionis typically

usedto predictbranchesstatically. This proÞle-basedbranchpredictionis basedon the

results determined by proÞling the program on a training input data set [84].

Unfortunately, branchbehaviour for thesampledatamaybevery differentfrom thedata

that appears at run-time.

To get morepreciseresultsfrom branchpredictionschemes,it is essentialto userun-

time information. Dynamic branchpredictionalgorithmsuse information gatheredat

run-time to predictbranchdirection.Smith [82] proposeda branchpredictionscheme

usinga tableof two-bit saturatingup-down countersthatis incrementedwhenthebranch

is taken anddecrementedwhenit is not; the most-signiÞcantbit is usedto predict the

futuredirectionsothatthebranchis predictedtakenif thisbit is setandnot takenif reset.

Branch Prediction Mechanism 66

Eachbranchis mappedvia its addressto a counter. Theadvantageof thetwo-bit method

is that a single unusual iteration will not change the predicted direction.

For further improvementin predictionaccuracy, Yeh and Patt [85] proposedthe two-

level branchpredictor. Their algorithmis basedon thefactthatmorehistoryinformation

can enablegreaterbranchpredictionaccuracy. In order to achieve this, two levels of

branchhistory information are used.The Þrst level is the history of the previous k

branchesencountered.Thesecondlevel is thebranchbehaviour for thelastsoccurrences

of the speciÞcpatternof thesek branches.The two level branchpredictorusesoneor

morek-bit shift registers,calledBranchHistory Registers(BHR), to recordthe branch

outcomesof themostrecentk branches.It usesoneor morearraysof 2-bit saturatingup-

down counters,calledthePatternHistory Table(PHT), to keeptrackof themorelikely

directionfor branches.Thelower bits of thebranchaddressareusedto selecttheproper

PHTandthecontentsof theBHR areusedto choosetheappropriate2-bit counterwithin

that PHT.

Becausethe completetwo level branchpredictor requiresa time-consumingpair of

lookups,commercialprocessorsgenerallyusea simpliÞedversion in which a global

historyvalueis usedto index into thehistorytable.Pan,So,andRahmehproposed[86] a

derivative of this algorithm,calledGselect[87], in which the countertable is indexed

with a concatenationof theglobalhistoryandsomebits of thebranchaddress.Sincethe

sameglobalhistorypatternscanoccurfor differentbranchesduringprogramexecution,

theglobalhistorypatterncanbe lessefÞcientat identifying thecurrentbranchthanthe

branchaddressitself. To overcomethis disadvantage,McFarling proposedGshare[87],

anotherderivative of the global history two-level predictor which XORs the global

Branch Prediction Mechanism 67

history with the branchaddressto index the PHT. This algorithm is usedin several

recently announcedmicroprocessorsand is likely to becomestandardpractice as

designersrevise their processorsover the next couple of years [88]. Hybrid branch

predictorshave recentlybeenproposedin orderto improve predictionaccuracy further

[87][89][90]. A hybrid branchpredictorcomprisestwo or moresingle-schemepredictors

and a mechanism to select among these predictors.

In conclusion,Gshareproposedby McFarling is expectedto becomea standardin

industryover thenext coupleof yearsasexplainedabove.However, it is veryhardto say

which branch prediction scheme must be used for every case.

Rememberthat AMULET2e adopteda simplebranchpredictionschemenot becausea

sophisticatedbranchpredictorcannotbedevelopedfor AMULET2e but becauseevena

simple predictor can deliver a good result with a limited silicon resource.Since

AMULET3 is an embeddedmicroprocessorfor a communicationapplication,it cannot

allow thebranchtargetcacheto take anexcessive areato improve performance.If some

of theschemesdescribedabove wereusedfor AMULET3, thecoreperformancemight

increasebut at a signiÞcantcost in silicon area.Since an embeddedmicroprocessor

shouldput more emphasison areathan the general-purposemicroprocessor, a similar

scheme to that used in AMULET2e was adopted for AMULET3.

5.1.2 How to get the branch target address earlier

As for the secondissue,we shouldconsiderthe types of addressingmethodsin the

instruction.When the target addressis pointed to with direct or absoluteaddressing,

thereis no problemto getthetargetaddress.Thetargetaddresscanbeproduceddirectly

Branch Prediction Mechanism 68

from an instructionin the decodingstagein the pipeline,but specifyinga full 32 bit

addresswithin the instructionis not practical.To get the target addressin the decoding

stage,PC-relativeaddressingrequiresanadditionalseparatebranchaddersincethemain

ALU is busy dealingwith an earlier instruction.If the target is speciÞedwith indirect

addressing,for exampleusingthecontentsof a registeror memorylocation,gettingthe

target addressin the decodingstageis very difÞcult sincea pipelinedmicroprocessor

cannotevaluatea register or memorylocation without recognizingwhetheran earlier

instruction is about to alter its contents.

Other solutionsare basedon the cachestructure.When a branchis taken, the target

addressof the branchis storedin a cacheandthis will be usedthe next time the same

branch addressis predicted taken. This results in efÞcient and fast target address

submissionto the instructionmemoryandwe do not needto usean additionalbranch

adderandlogic to calculatethe target address.A variety of branchpredictionschemes

can be coupled with this branch target address cache.

5.2 AMULET2e branch target cache

Variousstaticanddynamicbranchpredictionschemeshadbeeninvestigatedprior to the

implementationof theAMULET2e branchpredictor. Thechoicewasheavily inßuenced

by theeaseof integrationinto theAMULET2e implementationasshown in Þgure5-2.In

view of this, the dynamic Branch Target Cache (BTC) was chosen [14].

Figure5-1 shows thestructureof theBTC in AMULET2e. TheCAM andtheRAM can

store 20 words and each word has 30 bits. The CAM storeswords which can be

comparedagainstan input addressword (bit31...bit2)asshown in Þgure6-2. A match

Branch Prediction Mechanism 69

detectionsignalwhich is the hit/missline in Þgure6-2 is sentby the CAM to indicate

whetheror not a valuestoredin theCAM arraymatcheswith theinput addressword.A

CMOS implementationfor oneof the CAM word lines is depictedin Þgure5-5. It is

readableandwritable just like an ordinaryRAM cell. During the precharge phase,the

hit/miss line is prechargedhigh by the active low Precharge signal,the Write signal is

low, andtheBit linesarepredischargedlow. During thelook-upoperation,thePrecharge

signal is inactive. If the word in the CAM does not match, the hit/miss signal is

dischargedlow. Otherwisethehit/misssignalwill bepreservedhigh andthis meansthat

there is a matched word in the CAM.

As for thewrite procedure,whenanew branchtargetaddress,which is to bestoredin the

RAM, entersfrom theALU into themaininstructionaddressstream,theoriginal branch

BTC

hit

INC

PC

MAR

(cache)

MARMUX

to Memory

MUX

from ALU

PC: Program Counter
Register

MAR: Memory Address
Register

MARMUX: MAR
Multiplexer

MUX: PC multiplexer
INC: Incrementer

Figure 5-2: Address interface of AMULET2e (Courtesy of Jim Garside)

Branch Prediction Mechanism 70

instructionaddressis alsoinsertedinto the BTC andstoredin the CAM asdepictedin

Þgure 5-3.

Considerthelook-upoperationin theBTC. TheBTC acceptsanaddressfrom eitherthe

ALU or the PC and comparesit with the stored addressesin the CAM at every

instructionfetchcycle. If thesameaddressis foundin theCAM, theBTC indicatesthis

via thehit signalasexplainedabove. Thehit signalindicatesthat thesameaddresswas

usedpreviously for a branchinstructionaddressandit is predictedto be taken.The hit

signal indexes the appropriatetarget addressout of the RAM, which was previously

loadedwhenthebranchinstructionjumpedto the targetaddressbefore.This procedure

is depicted in Þgure 5-4.

CAM

RAM
(Registers)

20 entries

30bits

Target

Source

30bits
Address

Address

Figure 5-3: Write operation in the BTC

Branch Prediction Mechanism 71

The look-up is a simple and efÞcientmechanismand, becauseof this, the BTC was

chosen for the branch prediction function in AMULET2e.

Since the BTC takes a longer time to produceits result than the incrementer, and is

locatedin parallelto theincrementerasseenin Þgure5-2, it is partof thecritical pathfor

theperformanceof theaddressinterfacein AMULET2e. To reducethe layoutarea,the

comparisonlogic is implementedusing dynamic circuitry. This is conÞguredwith a

precharged, wire-ORed miss line as shown in Þgure 5-5 [92].

To reducethepower consumptionin theBTC, eachCAM entry is split into two partsas

shown in Þgure5-1. Thesepartsmay performseparatecomparisons;only if both parts

indicatea hit is the addressrecognised.The advantageof this mechanismis that the

addressbits in the upper section(26 bits in AMULET2e) rarely change,since most

CAM

Hit Detection Logic

RAM
(Registers)

20 entries

30bits
From ALU

or PC

Target Address
to PC

Figure 5-4: Look-up operation in the BTC

Hit/miss

Branch Prediction Mechanism 72

instruction fetchesrun sequentially(about75% of instruction fetches[14]). Thus by

comparingonly the lower section(4 bits in AMULET2e) in most cycles, the power

consumptionof thesplit BTC canbereducedto about30%of thatof a moresimplistic

designby thetestresultof AMULET2e shown in [13]. Thereis anexplanationin section

6.2.2 of how and when the upper and lower sections are activated.

5.3 AMULET3 branch target cache

Fundamentally, theBTC of AMULET3 is similar to thatof AMULET2e. However, there

are major improvements implemented in the BTC of AMULET3.

1. To supportthe THUMB instruction set, the functionality of the THUMB

mode is added.

2. Theconditioncodeandthe link bit arestoredin theRAM sono instruction

fetch is needed for a predicted branch.

3. To improve performance,thenumberof CAM entriesis increasedfrom 20 to

32.

The instructionprefetchunit (IPU) of AMULET3 is depictedin Þgure4-4. The BTC

receivesits addresseitherfrom thebranchchannelwhichcontainsthebranchinstruction

addressor from the PC channelwhich containsthe next address.It sendsthe target

address to the PC register in the case of a hit.

THUMB is a compressedrepresentationof the ARM instructionset;ARM instructions

are32bits longwhereasTHUMB instructionsare16bits longbut with asimilar function

Branch Prediction Mechanism 73

[15][74]. Two modes,the ARM and the THUMB mode, are available in a single

processor. In theinstructionmemoryof AMULET3, all thecontentsarehandledas32bit

quantities.Thereis no differencebetweenthe ARM and the THUMB modefrom the

viewpoint of the instruction memory. This meansthat two THUMB instructionsare

fetched simultaneously and then decoded separately in the instruction decoder.

In ARM mode,a branchdestinationcanonly be a multiple of 4 bytes,but in THUMB

mode,aftera branch,anaddresscouldbea multiple of 2 bytesandthusonly oneof the

instructionsin the 32 bit word is required.In ARM mode,bit<1> and bit<0> of the

instructionaddressin the IPU are always Ô00Õ.On the other handin THUMB mode,

bit<0> of the instructionaddressin the IPU is alwaysÔ0Õandbit<1> of the instruction

Bit Bit

Write

Precharge

Bit Bit

30bits

............

..................................

Figure 5-5: CAM comparison circuitry

Hit/miss

Branch Prediction Mechanism 74

addressin theIPU couldbeeitherÔ0Õor Ô1Õ.Thereforebit<0> of theinstructionaddress

in theIPU is neverusedandall instructionaddressesin theIPU have31bits. In THUMB

mode,whenthereis no branchinstruction,the instructionaddressalsoincreaseslike in

ARM mode.For example,instructionaddressesincreasethrough0, 4, 8 andso on in

THUMB mode.Whentheaddress0 goesto theinstructionmemory, a32bit wordcomes

out of the instructionmemoryandthis will bedivided into 2 parts;thehigher16 bits of

the instruction correspondto the address2, and the lower 16 bits of the instruction

correspondto theaddress0. Thenaddress4 goesto theinstructionmemoryandthis will

yield two instructionswith addresses4 and6. However, after a branch,the instruction

addressin THUMB modecouldbeanaddresswhich is anoddmultiple of 2 bytes.For

example, the instruction addresscould be 6 if this is a target addressof a branch

instruction.In this case,the contentsof the instructionaddress4 are fetchedfrom the

instructionmemoryandonly the higher16bitsaredecoded.This featureconfusesthe

operationof the BTC CAM, sincea word in the CAM has30 bits. For example,the

addresses4 and6 have no differencein the CAM. It is possibleto make words in the

CAM have 31 bits,but this will increasethelayoutarea.In orderto solve this matterthe

following novel scheme was proposed.

To supportTHUMB code,theCAM is divided into two equalsizedsections,ÒoddÓand

ÒevenÓ.In THUMB mode, a branch instruction addressmust be cachedin the odd

sectionif bit<1> of its addressis high or in the even sectionif bit<1> of its addressis

low. For example,whereasthesourceaddress4 is storedin theevensection,thesource

address6 is put in theoddsection.In ARM mode,a branchinstructioncanbestoredin

eithersection.For example,thesourceaddress4 couldbestoredeitherin theoddsection

Branch Prediction Mechanism 75

or in theevensection.This is implementedby attachingsimplemodedetectioncircuitry

to theinput linesof theCAM addressdecoderasshown in Þgure5-6 andappendixA.4.

The numberof lines in the CAM addressdecoderis 5 bits to support32 entries,and

modedetectioncircuitry is attachedto the most signiÞcantbit. In the RAM, a 31 bit

target address is stored, unlike the 30 bits used in AMULET2e.

Thelook-upoperationin theBTC presentsnoproblemin ARM mode,sinceonly onehit

may happenat any time either in the odd sectionor in the even section.In THUMB

mode,only theoddsectionmayhaveahit whenbit<1> of theMAR is high. If bit<1> of

the MAR is low in THUMB mode,however, thereareseveral possiblecases:the BTC

couldmiss,predicta hit in eithersection,or in bothsections.For example,in THUMB

mode,thesourceaddress4 is storedin theevensectionandthesourceaddress6 is put in

theoddsection.SincetheCAM has30 bits in a word,address4 and6 arestoredas4 in

bothcases.Sowhentheinstructionaddress4 enterstheCAM for thelook-upoperation,

the CAM canhave two hits, onein the odd sectionandonein the even section.In the

caseof two hits in THUMB modewith MAR bit<1> low, only theevensectionmustbe

chosen. This mechanism is pictured in Þgure 5-7.

MAR bit<1>

Original Address Decoder

ModiÞed

Input Bit<5>
Address Decoder

Input Bit<5>

&
OR

Figure 5-6: Mode detection circuitry

ARM/THUMB

Branch Prediction Mechanism 76

In the RAM, the condition code and the link bit are storedtogetherwith the target

address.This makes it possiblenot to fetch the branchinstruction itself. If the BTC

predictsahit, thetargetaddressgoesto thePCandtheconditioncodeandthelink bit are

sentto thememorycontrolblock with thebypasssignal.Thusthereis no needto access

the instruction memory to get the condition code and the link bit of the branch

instruction.This is alsoexpectedto reducesystempowersincethefrequency of memory

access is decreased.

Odd area Even areabit2

bit31

Word
31

Word
0

CAM

MAR bit<1> MAR bit<1>

Odd Hit Even Hit

Delay
Matching

Even Miss

Figure 5-7: Odd and even hit determination mechanism

Branch Prediction Mechanism 77

In AMULET3 thenumberof BTC entriesis increasedfrom 20to 32.Figure5-8explains

why the numberof the entriesare important for the performanceof the BTC. For

AMULET2e, two testprograms,espressoanda C compiler, wereusedas the basisto

determinethe numberof entries.Anotherprogram,dhrystone,wastestedbut not used

sincethisprogramhasanuntypicallylong loopwith many branches.In addition,thecost

of implementingmoreentriescannotbedisregardedin termsof layoutarea.However, if

there is enoughareato implementmore entries,there is no reasonnot to implement

more.We cangethigherpredictionaccuracy in thecasewherea programhaslong loop

behaviour suchasdhrystone.As shown in Þgure5-8,in thecaseof thedhrystonetest,the

0 5 10 15 20 25 30 35 40 45 50

10%

0%

30%

20%

50%

40%

70%

60%

90%

80%

100%

es
pr

es
so

C
 c

om
pi

le
r

dhrystone

espresso
C compiler

Number of BTC Entries

Pe
rc

en
ta

ge
 o

f p
re

di
ct

ed
 b

ra
nch

es
 in

 c
at

eg
or

y

dh
ry

st
on

e

Figure 5-8: Effect of the BTC size on prediction rates (Courtesy of Jim Garside)

Branch Prediction Mechanism 78

percentageof predictedbranchesincreasesby about 14%. (The increaseare much

smaller in the casesof espressoand the C compiler test.) Furthermore,Þve bits of

addressarealreadyavailable for 20 entries,and implementing32 entriesincreasesno

overheadin thecontrolcircuitry. Thereforethenumberof entriesis increasedto 32.This

changeis a resultof anengineeringtrade-off - silicon areaversusperformance.The32

entries may be reducedagain later in the design processdependingon the Þnal

AMULET3 layout size.

5.4 Summary

A similar branch prediction scheme is used for the BTCs of AMULET2e and

AMULET3. The main improvements(comparedto the AMULET2e BTC) of the

AMULET3 BTC are as follows.

· In order to supportTHUMB mode,a novel BTC organisationwasrequired.

Two 16 bit THUMB instructionsare fetchedsimultaneouslyfrom memory,

and either or both of thesecould be branchesthat shouldbe cachedin the

BTC. Handling double BTC hits and half-word predicted branch targets

required signiÞcant changes to the AMULET2e BTC organisation.

· In orderto avoid fetchingpredictedbranchesfrom memory, theconditioncode

and link bit are storedin the RAM. This reducespower consumptionand

improves performance since the number of memory access is reduced.

Branch Prediction Mechanism 79

· By increasingthe numberof entries,the percentageof correctly predicted

branchesis expectedto beabout90%whena testprogramsuchasdhrystone

is running.With a moreaccuratebranchpredictionschemesuchasa hybrid

predictor this Þgure could reach about 97% or 98% in typical programs

[87][90] but only at thecostof substantialadditionalcomplexity. This is aÞeld

for future improvement.

As wasmentionedearlier, dependingon therequirementsof theAMULET3 design,the

detailed implementationof the BTC could be changedlater. However, the branch

prediction scheme will be maintained.

Implementation 80

Implementation 6

6.1 Basic concepts

Several logic designtechniquescanbe usedin CMOS.However, all of thembelongto

one of the following logic disciplines [91][95][96]:

1. Static logic

2. Dynamic logic

Static logic is simple and straightforward. It is so-namedsince the information is

permanentlystored so long as the circuit is powered, and any gate output node is

connected via a conducting transistor part to either Vdd or Vss.

Dynamiclogic is basedon theconceptof precharging, which consistsof pulling a gate

output node up to Vdd or down to Vss either to charge or discharge the parasitic

capacitanceassociatedwith that node.If the inputsof a gategeneratethe outputvalue

driven during precharge, no changein the output nodeoccurs.Otherwisethe nodeis

stronglypulled down if precharge washigh, or pulled up if precharge waslow. During

precharge, the precharge value is stored in parasitic capacitors,such as the gate

Implementation 81

capacitance,anddisappearsin a time of few hundredsof ms to a few msafterprecharge,

the actual time being a function of the temperature,the storagecapacitance,and the

leakage current, unless the node is recharged (or refreshed).

Static logic has a beneÞtin terms of power saving since there is no static power

dissipationandno periodicrecharge.It canbe implementedeasilysinceit is a ratioless

logic.

Sincethegateof eachn-channeldevice is connectedto thegateof thecorrespondingp-

channeldevice,staticlogic hasa biggerareaandoutputcapacitancethandynamiclogic.

Thus static logic suffers from low density and long gate delays. Furthermore,in

submicrontechnology, areaandspeedareno longerindependentvariables.Largerareas

lead to longer interconnections and therefore to lower speed.

Dynamic logic has the advantagesof smaller area and faster speedover its static

counterpart.Smallerareacanbe achieved sincethe logic usesthe nMOS circuit of the

staticgatewithout the pMOS circuit, replacingthe pMOS circuit with a singlepMOS

transistorfor precharge.Fasterspeedcanresultfrom several factorswhentheprecharge

phaseis notconsidered;Þrstly, theoutputof thedynamicgatedrivesacapacitancewhich

is the sum of all the gate input capacitancesof the n-channel(or p-channel)devices

connectedto it, whereasa staticgateseesbothp- andn-channeltransistorcapacitances.

Secondly, theswitchingthresholdof thegatedependson theswitchingthresholdof the

device itself (the device thresholdvoltage), rather than half of ÒVdd-VssÓ(the gate

threshold voltage) for a balanced complementarystatic gate. Finally, the stray

Implementation 82

capacitancesarelarger in staticlogic design,sincedynamicgatesrequirelessareathan

static gates do.

However, dynamic logic has somedisadvantagesalso. Firstly, it has the problem of

chargesharingor redistribution. Dynamiclogic canwork correctlyonly whenthevalue

of the sensingcapacitoris much smaller than the value of the capacitorwhich stores

information.Otherwise,it will fail to operatecorrectly. Thechargewill redistributeitself

betweenthesensingcapacitorandtheoutputnodecapacitor. Secondly, thechargestored

in theoutputnodewill leakaway if thereis no rechargeoperationafterprecharging the

node.Thuswhenapowerdown modeis appliedto dynamiclogic, theremustbeacharge

storageschemeoneveryoutputnodeof thedynamiclogic. Finally, dynamiclogic cannot

be fully utilized. All dynamic logic uses precharging techniquesthat lower the

availability of the circuit, since during precharge, the logic cannot be utilized.

6.2 Front-end implementation

Dynamic and static logic are usedtogetherin the branchtarget cache(BTC) of the

instructionprefetchunit (IPU). Dynamiclogic is usedto give smallerlayout andfaster

speedthanstaticlogic. However, dynamiclogic needscarefuldesign,sincethedesigner

mustmake surethat thecircuit hasthecorrectbehaviour betweentheprechargeandthe

evaluation period, and that there is no charge sharing problem.

Thesubsequentsectionswill show thereaderhow to implementthedataandcontrolpath

of the BTC in detail.

Implementation 83

6.2.1 Data path circuit implementation

The datapathcomponentsin the BTC are divided into three sections:the Content

AddressableMemory(CAM), theRandomAccessMemory(RAM) andtheinput latches

as shown in appendix A.1.

The input latchesaresetsof transparenttrue singlephaseclock (TSPC)latcheswhich

storedatawhentheenablesignalEN is low asshown in appendixA.3. This transparent

latchis opennormally. Thismeansachangeon thedatainput is transferredto theoutput

whentheenablesignalEN is high.After theenablesignalEN goeslow, a changeon the

datainput cannotbetransferredto theoutputandtheoutputof the latchholdsthevalue

that was on the data input before the enable signal EN went low.

TheCAM cell consistsof a normalStaticRAM cell with additionalpasstransistorsP1

andP2 which form an XOR gate,andN1, which is a distributedNOR pull-down [92].

This is shown in Þgure 6-1 and in appendix A.9.

Bit Bit

Word

N1

hit/miss

D D

P1 P2

Figure 6-1: CAM cell 1

Implementation 84

Thewrite operationis simple.WhentheWord line is takenhigh, theinformationon the

Bit line is storedin D via a passtransistorandtheBit line in D. A look-upoperationis

performedto seewhetherthevaluestoredin theRAM onD andD matcheswith thenew

input valueon theBit andBit lines.During theprechargeperiodtheBit andBit linesare

predischargedandthehit/missline is precharged.ConsiderthecasewhereD is high and

theBit line is alsohigh duringtheevaluationperiod.In this casetheBit line pulls down

the prechargedhit/missline to Vss by switchingthe N1 transistoron via P2. If the Bit

line is low, the N1 transistoris kept off andno changehappenson the prechargedhit/

missline. Thedrainsof theN1 transistorsof all thecellsin thesamerow arecommoned

asshown in Þgure6-2. Theseform a distributedNOR gateusingdynamiclogic. Each

bit31 bit31 bit3 bit2bit3 bit2

word31

word30

word1

word0

Global

CAM cell

......
.....

......

......

......

.....

.....

hit/miss 0

hit/miss 1

hit/miss 30

hit/miss 31

hit/miss

Figure 6-2: CAM cell arrays

Implementation 85

hit/missline remainshigh if all thecells in thesamerow have thesamevaluesof D and

D asthevaluesoneachBit andBit line. Thishit/missline is usedto selecttheRAM row

to get the targetaddresswhich goesto thePC.To indicatetheoverall hit/missfunction,

thehit/missline of eachrow is usedasaninput signalin theglobalNOR gateasshown

in Þgure6-2. (This Þgureshows a simpliÞedstructureto illustratethe behaviour of the

comparison function, not the exact implementation in the BTC.)

A differentCAM cell structureasshown in Þgure6-3canbeused[95]. Thiscomprisesa

normalstaticRAM cell with additionaltransistorpairs:N1 + N2 andN3 + N4. This has

an advantageover the previous CAM cell whena dummybit cell is usedfor the self-

timing completion detection function; when the hit/miss line remains high after

comparison,thereis the needto detectwhen the comparisonhasÞnished.In order to

Bit Bit

Word

hit/miss

D D

N1

N2

N3

N4

Figure 6-3: CAM cell 2

Implementation 86

implementthis function,a self-timeddummybit cell is usedasshown in Þgure6-4. If

the CAM cell in Þgure6-3 is used,a more preciseself-timeddummy bit cell can be

implementedasshown in Þgure6-5. This canbeexplainedasfollows. Bit andBit lines

in the ÞrstCAM cell arecoupledthroughtwo passtransistors.Always,oneof the two

passtransistorsis openandtheotheris closed.ThustheBit or Bit line is connectedto the

pull down transistorandtheclosedpasstransistorvia theopenpasstransistor. But, in the

self-timeddummybit cell of Þgure6-4 bothpasstransistorsshouldbeopentogetherto

hit/miss

Bit Bit

Figure 6-4: Dummy bit cell for CAM cell 1

Bit Bit

hit/miss

Figure 6-5: Dummy bit cell for CAM cell 2

Implementation 87

mimic thehit operationin boththecasewhenBit is high andthecasewhenBit is high.

SotheBit andBit linesarenot connectedto theclosedpasstransistorasshown in Þgure

6-4.This completiondetectioncircuit canproducea differentresultfrom therealcircuit

operation.If the secondCAM cell is used,the self-timeddummy bit cell is madeas

shown in Þgure6-5.This canmimic therealCAM cell timing moreprecisely. However,

sincethereare serial nMOS transistorsto pull down the hit/miss line, it might take a

longertime to producetheresulton that line. In orderto escapefrom this disadvantage,

wider nMOS transistor could be required and need more layout area.

Thetopschematicof theRAM is shown in appendixA.12 whichhasanaddressdecoder

andRAM registercells.Theaddressdecoderis simpleandprovidesWrite signalsto the

RAM registercells.TheRAM cell is madeby usinga normalregistercell asshown in

Þgure6-6 andappendixA.14. This registercanbewritten to usingonewrite enableline

and one data bit line with minimum input capacitance.

Thebehaviour of theRAM cell is asfollows.D is theinputof theRAM cell andO is the

outputwhich is prechargedhigh andstayshigh or is discharged low during the RAM

readoperation.WhentheWrite signalgoeshigh,N2 andN3 areopenandtheinput D is

storedin the internal nodeQ. When D is high, N1 is openand this helpsQ go high

quickly sinceQ is dischargedvia N3 andN1. During thereadoperation,theReadsignal

is high andO dependson thevalueof Q. Whenthevalueof Q is high, this turnson N4

andserially openN4 andN5 will discharge O, which is alreadyprechargedduring the

prechargeoperation.Whenthevalueof Q is low, thisswitchesoff N4 andtheprecharged

O is kept high. SinceO shows the inversevalue of Q during the readoperation,it is

written overlined. The precharge circuit for the outputsof the RAM register cells is

Implementation 88

depictedin appendixA.13. The top view of theRAM cell arrayis shown in Þgure6-7.

This comprises 32 words and each word has 31 bits.

6.2.2 Control path circuit implementation

The RAM control circuit consistsof the decoderto issue write enablesignals and

dynamiclogic to producetheoutputduringa readoperation.This is shown in Þgure6-7.

(The decoder is omitted since it is a simple address generator.)

The CAM, aswasmentionedin chapter5, is divided into two sections:odd andeven.

The hit detectionlogic for this featureis describedin chapter5.3 and is implemented

with simplelogic asshown in appendixA.10 andA.11. To reducepower consumption

Read

Write

D

O

Q

Precharge

N1

N4

N2
N3

N5

P6

Q

Figure 6-6: RAM register cell

Implementation 89

during the CAM comparison,the samerow is divided into two sections:the high

bits<31:6>andthelow bits<5:2>.Thebehaviour of this functionis explainedin chapter

5. Thecircuit implementationof this functionis illustratedin Þgure6-8andexplainedas

follows.

ThenWritesignalcomesfrom theaddressdecoder. If thissignalis low, awrite operation

is activatedandonly whenthis is high canthe readsignalbe invoked. During a write

Q<31>

Precharge

Q<30>

Q<2>

Q<1>

.....

.....

.....

.....

.....

.....

.....
D<31>

D<1>

D<2>

D<30>

Write<31> Write<1> Write<0>

Read<31> Read<1> Read<0>

RAM register cell

Figure 6-7: RAM cell arrays

Word<31:0>

bi
t<

31
:1

>

Implementation 90

operationthehit/missline is discharged.Thehit/missline is dividedinto two parts:HitH

and HitL.

Normally theHitL line is prechargedeverycycle for comparison.Thatis, thelow bitsare

activatedevery cycle. Whenthereis a matchedaddressin the low bits, HitL stayshigh

and this meansthat a hit hasbeendetected.When the low bits do not match,HitL is

discharged low.

Therearefour caseswhenthe HitH line is precharged(whenthe PrechargeH signal is

taken high and the CAM high bits are activated). Firstly, when the special HitH

prechargesignalis insertedfrom theoutside,this line is precharged.This forcesthehigh

bits to beactivatedfrom theoutside.Secondly, afternew datais storedin theCAM, this

line is precharged,sincethe sequentialinstructionaddressstreamin the IPU is broken.

nWrite
(from the decoder)

Write

HitH

reset

PrechargeH

D[31:6] nD[31:6]

<31:6>

HitL

nPrechargeL

D[5:2] nD[5:2]

<5:2>

Figure 6-8: CAM control circuit for write and hit detection

Implementation 91

Thirdly, if thereis a hit in the BTC, this line is precharged,sincethis also altersthe

sequentialinstructionaddressstreamin the IPU. Finally, whenthe low bits<5:2>of the

addressareall 1s,this line is precharged,sincetheaddressis aboutto overßow into the

higherbits. Whenthereis no matchin the high bits, the HitH signal is dischargedlow

and this makes the HitL signal low also, whether or not there is a match in the low bits.

6.3 Back-end implementation

The BTC has been laid out using 0.35 micron triple metal CMOS technology.

As shown in Þgure6-9, theRAM is locatedat theleft sideof theCAM. Threedatabuses

calledIndirPC,MAR, andSourceAddress(SA), passacrosstheBTC. TheMAR andSA

buses are directly connected to the CAM. The MAR bus is connected to the RAM also.

RAM CELLS CAM CELLS

IndirPC

MAR

Source Address

Hit Signals
INPUT
LATCHES

Figure 6-9: BTC layout diagram

Implementation 92

Eachlayout in appendixB matchesa correspondingschematicin appendixA with the

same name.

The RAM cell arraysarestraightforward asshown in Þgure6-7. The CAM cell layout

diagramfor oneword is depictedin Þgure6-11.A moredetailedexplanationis givenin

the next section.

6.4 Evaluation

The CAM and RAM have been simulatedusing HSPICE operatingat typical-case

conditions(Vdd = 3.3V, Vss = 0.1V, typical-typical processcorner, at 100 oC). The

simulation results are shown in table 6-1.

The critical path in the CAM for the look-up operationlies in the comparisoncircuit,

from the Readsignalto the hit/misssignalwhenonly onemismatchhappensin the 30

CAM cells,shown asbit<31>of word<31>in theupperdrawing of Þgure6-10.This is

explainedas follows. The RD signal activatesthe DRIVER cell and this invokes the

look-up operation.The worst casehappensat bit<31> of word<31>,sincethis cell is

farthestfrom theDRIVER andfrom thehit/misssignalat theright sideof theHITL cell.

Thedatawrite time from thewrite signalto dataloadingin theCAM hasbeensimulated

also.Thereadoperationof theRAM hasbeensimulatedfrom thereadsignalto thedata

out line which is shown in the lower drawing of Þgure 6-10.

The write time simulationof the CAM wasperformedasmeasuringthe time from the

WR signalto theD andDN changesof a CAM bit cell locatedfar away from thedriver,

Implementation 93

which is word<31>in theupperdrawing of Þgure6-10.In orderto measurethelook-up

operationtime, themostsigniÞcantbit cell, which is bit<31>of word<31>in theupper

drawing of Þgure6-10, is given a different value from other bit cells which are from

bit<30>to bit<2> in thesamepicture.Thenthetime from theRD signalrising to HITH

falling andHITL falling aremeasured.(As wasexplainedearlier, thehit/misssignalis at

theright sideof theHITL signal.)Thedifferentrisetimefor D andDN is dueto different

loading dependingon whetherthe passtransistorin the CAM cell is open.The read

simulationof the RAM usedthe samemethodas the CAM. After writing a different

valuefrom therestof thebit cells,thetime from theRD signalrising to Dataout falling

is measured. The test circuit is shown in Þgure 6-10.

Thesilicon layoutdiagramof a CAM cell arrayis drawn in Þgure6-11.ThePrecharge

Low cell matcheswith the HITH cell in the upperdrawing of Þgure6-10 and the Hit

Detectioncell is identicalwith the HITL cell in the upperdrawing of Þgure6-10.The

arrow namedHit Signal to RAM meansthe Hit/miss signal in the upperdrawing of

Table 6-1: HSPICE Simulation result

Simulation Path Result (ns)

WR -> D 0.51

WR -> DN 0.38

WR -> D ¯ 0.43

WR -> DN ¯ 0.43

RD -> HITH ¯ 0.75

RD -> HITL ¯ 1.06

RD -> Data out̄ 0.46

Implementation 94

Þgure6-10.As depictedin Þgure6-9, theRAM cell arraysarelocatedat theleft sideof

the CAM cell arraysin Þgure6-11 (thoughthis is not drawn in the Þgure).VDD and

VSS stand for Power and Ground respectively.

6.5 Summary

The designof the BTC for the AMULET3 processorhasbeencarriedout usinga self-

timedtechnique.Themajorityof thedesignis purelystatic,composedof complementary

CMOS gates. In certain situations,wide NOR functions are requiredand theseare

implementedin dynamiclogic. To indicatewhenthereadoperationof theCAM andthe

RD
WR

D DN HITH HITL

bit<2>bit<5>bit<6>bit<31>

............

DRIVER

WORD<0>

WORD<31>

...
...

Figure 6-10: Test circuit for simulation

RD WR

D DN Data out

Word<0>Word<5>Word<6>word<31>

............

Bit<1>

Bit<31>

...
...

CAM

RAM

Hit/miss

Implementation 95

RAM is Þnished,a self-timedtechniqueis used.That is, anextra self-timingcolumnof

dummybit cellswith a dynamicbit line is implementedto mimic thetiming of thedata

bit lines.

As wasmentionedin section5.3, thenew THUMB function is addedin AMULET3. In

termsof functionality, this is the biggestchangein the designof the AMULET3 BTC

comparedto thatof AMULET2e. The layout for thestoragefor theconditioncodeand

the link bit wasaddedandof coursethe layoutgeometryis totally renewedasshown in

Þgures 6-9, 6-10, and 6-11.

Dependingontheprogressin designingtherestof theAMULET3 processor, thedetailed

implementationof the BTC may change.However, the major look-up and write

operationsof the CAM cell arraysand the readand write operationof the RAM cell

arrays are unlikely to be changed.

Implementation 96

Hit Detection

[2]

[3]

[4]

[5]

Precharge

[6]

[31]

Precharge

0

1

2

3

4

5

6

31

32

Hit Signal to RAM

VSS

VDD Metal3

Metal3

WR

High

Low

Figure 6-11: CAM cell layout diagram for one word

Conclusion 97

Conclusion 7

This thesishaspresentedengineeringwork on asynchronousdesign.The branchtarget

cache(BTC) wasdesignedandimplementedfor theinstructionprefetchunit (IPU) in the

AMULET3 processor. As was mentionedin chapter1, the author is responsiblefor

designingthe IPU, andthe BTC is a part of the IPU. The BTC consistsof the content

addressablememory (CAM) and the random accessmemory (RAM). These two

componentsdetectcompletionusingdummybit self-timedlogic. The CAM comprises

the CAM cell arraysand the hit/missdetectionlogic which is the critical path for the

performanceof theBTC. Thecoreof thework is mainly engineeringwhich focuseson

implementinglow level transistorcircuitry. Many asynchronousdesigntechniqueswere

used in the course of the work.

7.1 Contributions

The designof the BTC in AMULET3 hasshown that it is possibleto achieve better

performanceandmore functionality usinga new conÞguration,althoughthe designis

similar to theoneusedbeforein AMULET2e. As shown in Þgure5-8, in thecaseof the

dhrystonetest,thepercentageof predictedbranchesincreasesby about14%comparedto

that of the AMULET2e BTC. (The increasesaremuchsmallerin the casesof espresso

Conclusion 98

andtheC compilertest.)As shown in chapter5.3,new functionalityto supportTHUMB

modehasbeenadded,andtheconditioncodeandthelink bit of abranchaddressarenow

storedin the BTC RAM togetherwith the target address,in order to avoid fetching

predicted branches from memory.

AMULET3 is an ongoingproject,and so is the BTC design.Thereforethe hardware

implementation,proposedin this thesis,couldbechangedlater. For thesamereason,the

exact numericalvaluesof the power consumption,total speed,andtotal layout areaof

the BTC are not available sincethey dependon the rest of AMULET3. Nevertheless,

sincetheCAM andRAM cell designsareÞnished,thespeedof theCAM block,which is

the critical path in the BTC and the major factor of the BTC accesstime, can be

ascertained and is given in this thesis.

Methodsfor implementingtheBTC usingstaticanddynamiclogic have beendescribed

in detail. Although a similar BTC was usedin AMULET2e, there are three distinct

improvements implemented in AMULET3.

· In order to support the THUMB instruction set, the functionality of the

THUMB modeis added.Thus from the viewpoint of the BTC the THUMB

and the ARM instruction sets are equally supported.

· The condition codeand link bits in the branchinstructionare storedin the

RAM, sothereis no needto fetchthe instructionfor a predictedbranch.This

saves power and increases performance as it saves a memory access.

Conclusion 99

· The numberof the CAM entriesis increasedfrom 20 to 32. Thus the total

performance is increased.

Post-layoutsimulation,in a 0.35micron triple metalCMOStechnology, shows that the

comparisonfunctionof theCAM takes1.06nsto producethehit/misssignalwhena full

30 bit comparisonis performed.Thehigherbit<32:6>comparisontakes0.75ns.Taking

accountof the fact that usuallyonly the lower bit<5:2> comparisonis performed,just

0.51ns is taken for the CAM comparison in the most frequent case.

In addition,AMULET3 hasa muchshorteraveragecycle time thanAMULET2e. Some

of this is achievedthroughusingamoreadvancedprocesstechnology, but therest(about

a further factor 2) hasrequireda radical redesignof the IPU organisationin order to

ensure that the IPU is not a major bottleneck in the design.

7.2 Future work

Historically, asynchronousdesignhasbeenconsideredto have potentialadvantagesin

the implementationof designswith low power consumption.As describedin chapter5,

asynchronousdesignhasbeenshown to have potentialfor low power consumption,as

evidencedby AMULET2e. It is naturalto think AMULET3 will alsohave good low-

power characteristics in the light of past experience.

There is anotherissuerelatedto asynchronousdesign,electro-magneticinterference.

This emerging issueis consideredasoneof themostimportantfeaturesin asynchronous

design. In synchronousdesign, clock speedshave already reached500 MHz, and

gigahertzprocessorswill probablybeavailablewithin thenext few years.At thoseclock

Conclusion 100

rates,evenshorttransmissionlineswill actasantennas,producingunwelcomeamounts

of electro-magneticinterferenceand cross-talk[97]. The fundamentalpropertyof the

periodicoperationdeÞnedby theclock worsensthis problem.However, this effect does

not appearin asynchronousdesignsince all signal changesare aperiodic.To make

mattersworse,in synchronousdesignlogic activity happensimmediatelyfollowing the

clock edge, whereasin asynchronousdesign it is distributed over time. Thus in

asynchronousdesignthe noise spectrumis spreadwithout the high amplitudepeaks

which arefoundin thespectrumof synchronousdesigns.This rigorousEMI compliance

will be proven in AMULET3.

Bibliography 101

Bibliography

[1] G.D. Hutcheson and J. D. Hutcheson, ÒTechnology and Economics
in the Semiconductor IndustryÓ, ScientiÞc American The Solid-
State Century, Special Issue Volume 8, November 1, 1997.

[2] W. I. Fletcher, ÒWhy Asynchronous Circuits?Ó, Engineering
Approach to Digital Design, chap 10-2, Prenctice-Hall, Inc., 1980.

[3] S. Hauck, ÒAsynchronous Design Methodologies: An OverviewÓ,
Proceedings of the IEEE, Vol. 83, No. 1, pp. 69-93, January 1995.

[4] D. A. Huffman, ÒThe synthesis of sequential switching circuitsÓ,
J. Franklin Institute, March/April 1954.

[5] S. H. Unger, ÒAsynchronous Sequential Switching CircuitsÓ,
Wiley-Interscience, John Wiley & Sons, Inc., New York, 1969.

[6] D. Dobberpuhl et al, ÒA 200-MHz 64-b Dual-Issue CMOS
MicroprocessorÓ, IEEE Journal of Solid-State Circuits, vol. 27, no.
11, November 1992.

[7] D. Draper et al, ÒCircuit Techniques in a 266-MHz MMX-Enabled
ProcessorÓ, IEEE Journal of Solid-State Circuits, vol. 32, no. 11,
November 1997.

[8] D. Manners, ÒPortable Prompt Low-Power ChipsÓ,
Electronics Weekly, no. 1574, pp. 22, November 13, 1991.

[9] D. Maliniak, ÒBetter Batteries for Low-Power JobsÓ,
Electronic Design, vol. 40, no. 15, pp. 18, July 23, 1992.

[10] J. Mello and P. Wayner, ÒWireless Mobile CommunicationsÓ,
Byte, vol. 18, no. 2, pp. 146-153, February 1993.

[11] The AMULET Group, ÒAbout AMULETÓ,
http://www.cs.man.ac.uk/amulet.

[12] S. B. Furber et al, ÒAMULET1: A Micropipelined ARMÓ,
Proceedingsof CompConÕ94,pp.476-489,IEEEComputerSociety
Press, CompConÕ94, San Francisco, March 1994.

[13] S. B. Furber et al, ÒAMULET2e: An Asynchronous Embedded
ControllerÓ, Proceedings Async Ô97, pp. 290-299, IEEE Computer
Society Press, April 1997.

Bibliography 102

[14] R. York, ÒBranch Prediction Strategies for Low Power
Microprocessor DesignÓ, MSc thesis, Department of Computer
Science, The University of Manchester, 1994.

[15] J. L. Turley, ÒThumb Squeezes ARM Code SizeÓ, Microprocessor
Report, vol. 9, no. 4, March 1995.

[16] Ad M. G. Peeters, ÒSingle-Rail Handshake CircuitsÓ, Proefschrift
Technische Universiteit Eindhoven, The Netherlands, 1996.

[17] S. B. Furber and P. Day, ÒFour-Phase Micropipeline Latch Control
CircuitsÓ, IEEE Transactions on VLSI Systems, vol. 4, no. 2, pp.
247-253, June 1996.

[18] K. Y. Yun, P. A. Beerel, and J. Arceo, ÒHigh-Performance Two-
Phase Micropipeline Building Blocks: Double Edge-Triggered
Latches and Burst-Mode Select and Toggle CircuitsÓ, IEE
Proceedings-Circuits, Devices and Systems, pp. 282-288, vol. 143,
no. 5, October 1996.

[19] N. C. Paver, ÒThe Design and Implementation of an Asynchronous
MicroprocessorÓ, PhD Thesis, Dept. of Computer Science,
University of Manchester, 1994.

[20] C. E. Molnar, T. -P. Fang, and F. U. Rosenberger, ÒSynthesis of
Delay-insensitive ModulesÓ, In Henry Fuchs, editor, 1985 Chapel
Hill Conference on Very Large Scale Integration, pp. 67-86,
Computer Science Press, Inc., 1985.

[21] J. Sparso and J. Staunstrup, ÒDelay-insensitive Multi-ring
StructuresÓ, Integration, the VLSI journal, vol. 15, pp. 313-340,
1993.

[22] J. Udding, ÒClassiÞcation and Composition of Delay-insensitive
CircuitsÓ, PhD thesis, Technische Universiteit Eindhoven, 1984.

[23] A. J.Martin, ÒTheLimitation to Delay-insensitive in Asynchronous
CircuitsÓ, 6th MIT Conference on Advanced Research in VLSI,
MIT Press, Cambridge, Massachusetts, 1990.

[24] K. vanBerkel, ÒBewaretheIsochronicForkÓ,Integration,theVLSI
journal, vol. 13, pp. 103-128, 1992.

[25] R. Manohar and A. J. Martin, ÒQuasi-delay-insensitive Circuits are
Turing-completeÓ, Technical Report, Caltech-CS-TR-95-21,
Department of Computer Science, California Institute of
Technology, 1995.

[26] S. B. Furber, ÒFundamental Concepts: part 2Ó, Lecture Notes,
Summer School on Asynchronous Circuit Design, Technical
University of Denmark, August 18-22, 1997.

Bibliography 103

[27] A. J. Martin, ÒTomorrowÕs Digital Hardware will be Asynchronous
andVeriÞedÓ,TechnicalReport,Caltech-CS-TR-93-26,Department
of Computer Science, California Institute of Technology, 1993.

[28] S. B. Furber, ÒBreaking Step - the Return of Asynchronous LogicÓ,
Keynote talk - IEE Colloquium on the Design and Test of
AsynchronousSystem,Savoy Place,London,28February1996,pp.
1/1 - 1/4.

[29] D. E. Muller and W. C. Bartky, ÒA Theory of Asynchronous
CircuitsÓ, Kluwer Academic Publishers, 1993.

[30] Kishinevsketal,ÒConcurrentHardware:theTheoryandPracticeof
Self-timed DesignÓ, John Wiley & Sons, Inc., New York, 1994.

[31] R. M. Keller, ÒTowards a Theory of Universal Speed-independent
ModulesÓ, IEEE Transactions on Computers, vol. C-23, no. 1, pp.
21-33, January 1974.

[32] S. B. Furber, ÒExperiences with PetrifyÓ, In Proceedings of the
Third UK Forum on Asynchronous System, Department of
Computer Science, The University of Edinburgh, Edinburgh,
Scotland, U.K., December 15-16, 1997.

[33] W. A. Clark, ÒMacromodular Computer SystemsÓ, In AFIPS
Conference Proceedings: 1967 Spring Joint Computer Conference,
vol. 30, pp. 335-336, Atlantic City, NJ, Academic Press, 1967.

[34] C. L. Seitz, ÒSystem TimingÓ, In C. A. Mead and L. A. Conway,
editors, Introduction to VLSI Systems, Addison-Wesley, 1980.

[35] T. Verhoff, ÒDelay-insensitive codes - an OverviewÓ, Distributed
Computing, vol. 3, pp. 1-8, 1988.

[36] I. E. Sutherland, ÒMicropipelinesÓ, The 1998 Turing Award
Lecture, Communications of the ACM, vol. 32, pp. 720-738, June
1988.

[37] A. J. Martin, ÒSynthesis of Asynchronous VLSI CircuitsÓ, Course
Notes, VLSI~91, Edinburgh, August 1991.

[38] S. M. Burns, ÒPerformance Analysis and Optimization of
Asynchronous CircuitsÓ, PhD thesis, California Institute of
Technology, December 1990.

[39] K. vanBerkel, ÒHandshakeCircuits:anAsynchronousArchitecture
for VLSI Programming, vol. 5 of International Series on Parallel
Computation. Cambridge University Press, 1993.

[40] E. Bruvand, ÒDesigning Self-timed System using Concurrent
ProgramsÓ, Journal of VLSI Signal Processing, 7(1/2): 47-59,
February, 1994.

Bibliography 104

[41] Jo C. Ebergen, J. Segers, and I. Benko, ÒParallel Programs and
AsynchronousCircuit DesignÓ,In GrahamBritwistle andAl Davis,
editors, Asynchronous Digital Circuit Design, Workshops in
Computing, pp. 51-103, Springer-Verlag, 1995.

[42] A. Bardsley, ÒBalsa: An Asynchronous Circuit Synthesis SystemÓ,
MPhil thesis, Department of Computer Science, The University of
Manchester, 1997.

[43] W. S. Coates, A. L. Davis, and K. S. Stevens, ÒThe Post OfÞce
Experience: Designing a Large Asynchronous ChipÓ, Integration,
the VLSI Journal, 15(4): 341-366, 1993.

[44] S. M. Nowick and D. L. Dill, ÒSynthesis of Asynchronous State
Machines using a Local ClockÓ, In Proceedings of the 1991 IEEE
InternationalConferenceonComputerDesign:VLSI in Computers
and Processors, pp. 192-197, IEEE Computer Society Press,
October 1991.

[45] S. M. Nowick, ÒAutomatic Synthesis of Burst-mode Asynchronous
ControllersÓ, PhD thesis, Stanford University, 1993.

[46] K. Y. Yun, ÒSynthesis of Asynchronous Controllers for
Heterogeneous SystemsÓ, PhD thesis, Stanford University, August
1994.

[47] P. A. Beerel,K. Y. Yun,andW. C. Chou,ÒOptimizingAverage-case
Delay in Technology Mapping of Burst-mode CircuitsÓ, In Proc.
International Symposium on Advanced Research in Asynchronous
Circuits and Systems, IEEE Computer Society Press, March 1996.

[48] S. Chakraborty et al, ÒTiming Analysis for Extended Burst-Mode
CircuitsÓ, Third International Symposium on Advanced research in
AsynchronousCircuitsandSystems,IEEEComputerSocietyPress,
April 1997.

[49] J. L. Peterson, ÒPetri Net Theory and the Modelling of SystemsÓ,
Prentice-Hall, Inc., N. J., 1981.

[50] R. Y. Rosenblum and A. V. Yakovlev, ÒSignal Graphs: from Self-
timedto TimedonesÓ,In Proceedingsof InternationalWorkshopon
Timed Petri Nets, IEEE Computer Society Press, pp. 199-207,
Torino, Italy, July 1985.

[51] T. -A. Chu, ÒOn the Models for Designing VLSI Asynchronous
Digital CircuitsÓ, Integration, the VLSI Journal, 4(2): 99-113, June
1986.

[52] T. -A. Chu, ÒSynthesis of Self-timed VLSI Circuits from Graph-
theoretic SpeciÞcationsÓ, PhD thesis, MIT, June 1987.

[53] A. V. Yakovlev, L. Lavagno, and A. Sangiovanni-Vincentelli, ÒA
UniÞed Signal Transition Graph Model for Asynchronous Control

Bibliography 105

Circuit SynthesisÓ, Formal Methods in System Design, 9: 139-188,
1996.

[54] L. Lavagno, ÒSynthesis and Testing of Bounded Wire Delay
AsynchronousCircuitsfrom SignalTransitionGraphsÓ,PhDthesis,
Department of Electrical Engineering and Computer Science, The
University of California at Berkeley, 1992.

[55] P. Vanbekbergen et al, ÒOptimized Synthesis of Asynchronous
Control Circuits from Graph-theoretic SpeciÞcationsÓ, IEEE
Transactions on Computer-Aided Design, 11(11): 1426-1438,
November 1992.

[56] L. Lavagno and A. Sangiovanni-Vincentelli, ÒAlgorithms for
Synthesis and Testing of Asynchronous CircuitsÓ, Kluwer
Academic Publishers, 1993.

[57] M. A. Kishinevsky, A. Y. Kondratyev, and A. R. Taubin,
ÒSpeciÞcation and Analysis of Self-timed CircuitsÓ, Journal of
VLSI Signal Processing, 7(1/2): 117-135, February 1994.

[58] J. Cortadella et al, ÒDeriving Petri Nets from Finite Transition
SystemsÓ, Technical Report UPC-DAC-1996-19, Department of
Computer Architecture, Universitat Politecnica de Catalunya, June
1996.

[59] J. Cortadella et al, ÒTechnology Mapping of Speed-independent
CircuitsBasedonCombinationalDecompositionandResynthesisÓ,
In Proc. European Design and Test Conference, 1997.

[60] J. Cortadella et al, ÒTutorial: Synthesis of Control Circuits from
STG SpeciÞcationsÓ, Lecture Notes, Summer School on
Asynchronous Circuit Design, Technical University of Denmark,
August 18-22, 1997.

[61] J. Cortadella et al, ÒPetrify UserÕs ManualÓ, VLSI Design Group in
the Department of Computer Science, The University of Newcastle
upon Tyne, June 1997.

[62] J. Cortadella et al, ÒPetrify: a Tool for Manipulating Concurrent
SpeciÞcations and Synthesis of Asynchronous ControllersÓ, IEICE
Transactions on Information and Systems, E80-D(3): 315-325,
1997.

[63] J. Cortadella et al, ÒComplete State Encoding Based on the Theory
of RegionsÓ,In InternationalSymposiumonAdvancedResearchin
Asynchronous Circuits and Systems, pp. 36-47, March 1996.

[64] A. J. Martin et al, ÒThe First Asynchronous Microprocessor: the
Test ResultsÓ, Computer Architecture News, 17(4): 95-110, June
1989.

Bibliography 106

[65] A. J. Martin et al, ÒA 100-MIPS GaAs Asynchronous
MicroprocessorÓ, IEEE Design and Test of Computers, 11(2): 43-
49, 1994.

[66] M. E. Dean, ÒSTRiP: A Self-Timed RISC Processor ArchitectureÓ,
PhD thesis, Stanford University, 1992.

[67] T. Nanya et al, ÒTITAC: Design of a Quasi-delay-insensitive
MicroprocessorÓ, IEEE Design & Test of Computers, 11(2): 50-63,
1994.

[68] T. Nanya et al, ÒTITAC-2: A 32-bit Scalable-Delay-Insensitive
MicroprocessorÓ,HOT ChipsIX, Stanford,pp.19-32,August1997.

[69] E. Bruvand, ÒThe NSR ProcessorÓ, In Proceedings of the 26th
Annual Hawaii International Conference on System Science, pp.
428-435, Maui, Hawaii, 1993.

[70] W. F. Richardson and E. Brunvand, ÒFred: An Architecture for a
Self-Timed Decoupled ComputerÓ, Technical Report UUCS-95-
008, The University of Utah, 1995.

[71] R. F. Sproull, I. E. Sutherland, and C. E. Molnar, ÒCounterßow
Pipeline Processor ArchitectureÓ, IEEE Design and Test of
Computers, vol. 11, no. 3, 1994.

[72] S. V. Morton, S. S. Appleton, and M. J. Liebelt, ÒECSTAC: A Fast
Asynchronous MicroprocessorÓ, In Proceedings of the Second
Working Conference on Asynchronous Design Methodologies, pp.
180-189, London, U.K., 1995.

[73] The AMULET Group, ÒThe AMULET3 MicroprocessorÓ,
http://www.cs.man.ac.uk/amulet/AMULET3_uP.html.

[74] D. Jagger, ÒARM Architecture Reference ManualÓ, Prentice-Hall,
July 1996.

[75] C. Svensson and D. Liu, ÒLow Power Circuit TechniquesÓ, In J. M.
Rabaey andM. Pedram,editors,Low PowerDesignMethodologies,
Kluwer Academic Publishers, 1996.

[76] D. A. Gilbert, ÒDependency and Exception Handling in an
Asynchronous MicroprocessorÓ, PhD thesis, Department of
Computer Science, The University of Manchester, 1997.

[77] J. L. Henessy and D. A. Patterson, ÒComputer Architecture: A
Quantitative ApproachÓ, Morgan Kaufman Publishers, Inc., San
Francisco, California, Second Edition, 1996.

[78] R. L. Sites, ÒAlpha Architecture Reference ManualÓ, Digital Press,
Burlington, MA, 1992.

[79] G. KaneandJ.Heinrich,ÒMIPSRISCArchitectureÓ,PrenticeHall,
1992.

Bibliography 107

[80] P. Chow andM. Horowitz, ÒArchitectureTradeoffs in theDesignof
MIPS-XÓ, In Proceedings of the 14th Annual International
Symposium on Computer Architecture, June 1987.

[81] C. Melear, ÒThe Design of the 8800 RISC FamilyÓ, IEEE Micro,
pp. 26-38, April 1989.

[82] J. E. Smith, ÒA Study of Branch Prediction StrategiesÓ, In
Proceedings of the 8th International Symposium on Computer
Architecture, pp. 135-148, May 1981.

[83] Ed.C. May etal, ÒThePowerPCArchitecture:A SpeciÞcationfor a
New Family of RISC ProcessorsÓ, Morgan Kaufman Publishers,
Inc., San Francisco, CA, 1994.

[84] J. A. Ficher and S. M. Freudenberger, ÒPredicting Conditional
Branch Predictions from Previous Runs of a ProgramÓ, 5th
International Conference on Architectural Support for
Programming Languages and Operating Systems, 1992.

[85] T. -Y. Yeh and Y. N. Patt, ÒTwo-level Adaptive Branch PredictionÓ,
24th ACM/IEEE International Symposium on Microarchitecture,
November 1991.

[86] S. T. Pan, K. So, and J. T. Rahmeh, ÒImproving the Accuracy of
Dynamic Branch Prediction using Branch CorrelationÓ, In
Proceedings of ASPLOSV, pp. 76-84, Boston, MA, October 1992.

[87] S. McFarling, ÒCombining Branch PredictorsÓ, WRL Technical
Note TN-36, Digital Western Research Laboratory, Palo Alto, CA,
June 1993.

[88] L. Gwennap, ÒGshare, ÒAgreesÓ Aid Branch PredictionÓ,
Microprocessor Report, November 17, 1997.

[89] P. Chang and U. Banerjee, ÒProÞle-guided Multiheuristic Branch
PredictionÓ, In Proceeding of the International Conference on
Parallel Processing, July 1995.

[90] M. Evers, P. -Y. Chung, and Y. N. Patt, ÒUsing Hybrid Branch
Predictors to Improve Branch Prediction Accuracy in the Presence
of Context SwitchesÓ, The 23rd Annual International Symposium
on Computer Architecture, May 1996.

[91] J. Yuan and C. Svensson, ÒHigh-Speed CMOS circuit techniquesÓ,
IEEEJournalof Solid-StateCircuits,vol. 24,pp.723-726,February
1989.

[92] N. WesteandK. Eshrachian,ÒPrinciplesof CMOSVLSI Design:A
System PerspectiveÓ, Second Edition, Addison-Wesley Publishing
Company, 1994.

Bibliography 108

[93] J. Yuan and C. Svensson, ÒNew Single-Clock CMOS Latches and
Flipßops with Improved Speed and Power SavingsÓ, IEEE Journal
of Solid-State Circuits, vol. 32, no. 1, pp. 62-69, January 1997.

[94] J. Liu, ÒArithmetic and Control Components for an Asynchronous
SystemÓ, PhD thesis, Department of Computer Science, The
University of Manchester, 1998.

[95] A. Bellaouar and M. I. Elmsry, ÒLow-Power Digital VLSI Design:
Circuits and SystemsÓ, Kluwer Academic Publishers, 1995.

[96] M. Annaratone,ÒDigitalCMOSCircuit DesignÓ,Kluwer Academic
Publishers, 1986

[97] M. S. Mirotznik and D. Prather, ÒHow to choose EM softwareÓ, In
IEEE Spectrum Magazine, December 1997

[98] T. Ono-Tesfaye, C. Kern, M. Greenstreet, ÒVerifying a Self-Timed
DividerÓ, Proc. International Workshop Symposium on Advanced
Research in Asynchronous Circuits and Systems, 1998, pp. 146-
158, IEEE Computer Society Press.

[99] http://www.cs.man.ac.uk/amulet/projects/lard

Appendix A 109

Schematics A

This appendixcontainsthe schematicsof someof the cell library for the AMULET3

branch target cache. Below is a list of the following appendix sections:

o BTC Top

o Input Latch

o TSPC Latch

o Addr ess Decoder

o CAM Top

o CAM Dri ver

o CAM High Pr echarge

o CAM Lo w Precharge

o CAM Cell

o CAM Odd Hit Check

o CAM Even Hit Check

o RAM Top

o RAM Pr echarge

o RAM Cell

Appendix A 110

A.1 BTC Top

Appendix A 111

A.2 Input Latch

Appendix A 112

A.3 TSPC Latch

Appendix A 113

A.4 Address Decoder
C

o
m

p
a
ss

 D
e
si

g
n
 A

u
to

m
a
tio

n
 p

lo
t
[la

]a
d
d
r4

d
e
c_

ia
i b

y
ch

u
n
g
sh

 o
n
 2

3
-S

e
p
-9

8
 a

t
6
:1

4
 P

.M
.

Appendix A 114

A.5 CAM Top

Appendix A 115

A.6 CAM Dri ver

Appendix A 116

A.7 CAM High Precharge

Appendix A 117

A.8 CAM Low Precharge

Appendix A 118

A.9 CAM Cell

Appendix A 119

A.10 CAM Odd Hit Check

Appendix A 120

A.11 CAM Even Hit Check

Appendix A 121

A.12 RAM Top

Appendix A 122

A.13 RAM Precharge

Appendix A 123

A.14 RAM Cell

Appendix B 124

Layouts B

This appendixcontainsthe layoutsof someof thecell library for theAMULET3branch

target cache. Below is a list of the following appendix sections:

o TSPC Latch

o CAM Dri ver

o CAM High Pr echarge

o CAM Lo w Precharge

o CAM Cell

o CAM Odd Hit Check

o CAM Even Hit Check

o RAM Cell

Appendix B 125

B.1 TSPC Latch
of

f,
st

rip
 1

, s
he

et
 1

Appendix B 126

B.2 CAM Driver

,
st

ri
p
 1

,
sh

e
e

t
1

Appendix B 127

B.3 CAM High Precharge

, s
tr

ip
 1

, s
he

et
 1

Appendix B 128

B.4 CAM Low Precharge

, s
tr

ip
 1

, s
he

et
 1

Appendix B 129

B.5 CAM Cell

,
st

ri
p

 1
,

sh
e

e
t

1

Appendix B 130

B.6 CAM Odd Hit Check
, s

tr
ip

 1
, s

he
et

 1

Appendix B 131

B.7 CAM Even Hit Check
,

st
ri
p

 1
,

sh
e

e
t

1

Appendix B 132

B.8 RAM Cell
,

st
rip

 1
,

sh
e

e
t

1

