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What is Balsa?

Basic
concepts

Introduction

1.1. Introducing Balsa

This document describes versi8rb of the Balsa system and introduces significant performance
enhancements. All users should recompile their Balsa source code descriptions after upgrading to
this release. See OChanges in releasesO ob fagurther details. An online bug reporting
mechanism has been introduced: see OReporting BugsO on page 155.

The tools described here can be run on any POSIX environment with X11 and at least 32bit integers
(Linux, FreeBSD, MacOS X, Solaris). However, in order to produce a concrete implementation in
either silicon oFPGAform, vendor specific tools are required: for example Xilinx design software,

or the Cadence design framework with an appropriate cell library technology.

Balsa is the name of both the framework for synthesising asynchronous (clockless) hardware
systems and the language for describing such systems. The approach adopted is that of syntax:
directed compilation into communicating Handshaking Components and closely follows the
Tangram1] system of Philips. The advantage of this approach is that the compilation is transparent:
there is a one-to-one mapping between the language constructs in the specification and the
intermediate handshake circuits that are produced. It is relatively easy for an experienced user to
envisage the architecture of the circuit that results from the original description. Incremental
changes made at the language level result in predictable changes at the circuit implementation level.
This is important if optimisations and design-tradeoffs are to be made easily at teh source level and
contrasts with a VHDL description in which small changes in the specification may make radical
alterations to the resulting circuit.

A circuit described in Balsa is compiled into a communicating network composed from a small set
of Handshake components (~45 components, listed in Section OThe Breeze ComponentsO ol
pageldl). The components are connectedchgnnelsover whichcommunication®r handshakes

take place. Channels may have datapaths associated with them (in which case a handshake involve
the transfer of data), or may be purely control (in which case the handshake acts as a synchronisatior
or rendez-vous point).

Each channel connects exactly grassiveport of a handshake component to to antive port of
another handshake component. An active port is a port which initiates a communication. A passive
port responds (when it is ready) to tlequestfrom the active port by aamcknowledgesignal

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 1



1.1. Introducing Balsa

Data channels may lushchannels opull channels. In a push channel, the direction of the data
flow is from the active port to the passive port, corresponding toiczopipeline style of
communication. Data validity is signalled by request and released on acknowledge. In a pull
channel, the direction of data flow is from the passive port to the active port. The active port
requests a transfer, data validity is signalled by an acknowledge from the passive port. An example
of a circuit composed from handshake components is shown in Fig. 1.1.

request acknowledge

0 request

request request
-
acknowledge

request

acknowiédge /ack/nowledge

e
1 acknowledge

"0:1"

bundled data

Figure 1.1: Two connected handshake components

Here aFetch component, also known as a Transferrer, (denoted®o®)Gind &asecomponent
(denoted by O@O) are connected by an internal data-bearing channel. Circuit action is activated by
request to the Fetch component which in turn isues a request to its environment (on the left of the
diagram). The environment supplies the demanded data, indicating its validity by the
acknowledgement signal. The Fetch component presents a handshake requests and data to the Ca:
component using an active port (shown as a filled circle) which the Case component receives on its
passive port (shown as an unfilled circle). Depending on the data value, the Case component issues
a handshake to its environment on either the top right or bottom right port. Finally, when the
acknowledgement is received by the case component, an acknowledgement is returned along the
original channel and terminating this handshake. The circuit is ready to operate once more.

Data follows the direction of the request in this example and the acknowledgement to that request
flows in the opposite direction. In this figure, individual physical request, acknowledgement and
data wires are explicitly shown. Data is carried on separate wires from the signalling (it is ObundledO
with the control although this is not necessary with other data/signalling encoding schemes.

The bundled data scheme illustrated in Eig. is not the only implementation possible.
Methodologies exist (DI codes, dual rail encoding, NULL Convention L{#jicto implement
channel connections with delay-insensitive signalling where timing relationships between individual
wires of an implemented channel do not affect the functionality of the circuit. Handshake circuits
can be implemented using these methodologies which are robust to naive realisations, process
variations and interconnect delay properties. Ver8idnof Balsa supports bundled data, and DI

dual rail and 1-of-4 back-ends.

Normally, handshake circuits diagrams are not shown at the level of detail af1-ig.channel

being shown as a single arc with the direction of data being denoted by an arrow head on the arc and
control only channels, comprising only request/acknowledge wires, being indicated by an arc
without an arrowhead.

The circuit complexity of handshake circuits is often low: for example, a Fetch component may be
implemented using only wires. An example of a handshake circcuit for a modulo-10 dsaater
ORemoving auto-assignmentO on ga&yds shown in Figl.2. The corresponding gate level
implementation is shown in Fig. 1.3.

Note that the compilation function results in circuit fragments in which both input and output ports
are active. Since passive ports can only connect to active ports and vice-versa, circuits constructed
from compositions of compiled circuit fragments must have their interconnecting ports connected
by passivatorcomponents. A passivator synchronises requests from input and output ports and

2 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06



1.2. Tool set and design flow

activate

Figure 1.2: Handshake circuit of a modulo-10 counter

r ay aclk
activate —| >0-5 c
(no ack)

Control sequencing components (3 gates each)

C [

i

Compare r
I=9?
a
—
r
g\_ —

\

latch

Figure 1.3: Gate level circuit of a modulo-10 counter

arranges the overlapping of the two handshakes (one push, one pull) such that the data-valid phase:
of the two data-validity protocols overlap.

1.2. Tool set and design 3ow

Balsa comprises a collection of tools, some of the more important are listed below.

¥ balsa-c the compiler for the Balsa language. The ouput of the compiler is an intermediate
languagebreeze.

¥ balsa-netlist:produces a netlist appropriate to the target technology/CAD vvarkdrom
a Breeze description.

¥ breeze2psa tool which produces a postscript ble of the handshake circuit graph.
¥ breeze-costa tool which gives an area cost estimate of the circuit.
¥ balsa-md:a tool for generating makebles

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 3



1.2. Tool set and design flow

balsa-mgr:a graphical front-end toalsa-mdwith project management facilities.
balsa-make-testutomatically generates test harness for a Balsa description.

K K K

breeze-simthe preferred simualtor working at the handshake component level

¥ breeze-sim-controla graphical front-end to the simulation and visualisation environment
Obtainable in separate packages are:

¥ gtkwave:a waveform viewer

¥ balsa-verilog-sima package which makes Verilog simulation of Balsa descriptions easier
by providing wrapper scripts for common simulators and by supporting user-written builtin
functions which can be called from Balsa

A balsa-mode is also available for xemacs providing automatic syntax-based indentation of Balsa
descriptions

An overview of the Balsa design flow is shown in Fig. 1.4

Balsa description

‘breeze2ps’
“breeze-cost'

Breeze description y

(HC netlist) N\

Balsa behavioural
simulation system

“balsa-c'

synthesis
reuse

Simulation
“balsa-netlist' results
v Behavioural
Gate-level sim.
Gate-level netlist » [Functional
Commercial Si
or FPGA P&R
Layout sim.
Layout / bitstream » Timing
Key:
“Balsa tool' / Automated process
Object / File » Object / File

Figure 1.4:Design Flow

A Balsa description of a circuit is compiled usibglsa-cto an intermediatbreezedescription.

Most of the Balsa tools are concerned with manipulatng the breeze handshake intermediate files.
Breeze files can be used by back-end tools implementations for Balsa descriptions, but also contain
procedure and type definitions passed on from Balsa source files allowing breeze to be used as the
package description format for Balsa.
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1.3. Changes in releases

Behavioural simulation is provided Hyreeze-simThis simulator allows source level debugging,
visualisation of the channel activity at the handshake circuit level as well as producing conventional
waveform traces that can be viewed using the waveform vigikesave The target CAD system

may also be used to perform more accurate simulations and to validate theltesiggsinis still

under active development: the facilites and user interface provided may be differ in detail from that
described in this manual.

1.3. Changes in releases

Version 3.5

This release adds several changes aimed at achieving substantial performance improvements by the
introduction of new handshake components. A number of experimental features have been made
visible to the to the general user B use at your own peril B and there have been a number of minol
bug fixes. Theremay be timing issues in the Xilinx back-end with certain combinations of
handshake components. A future release will address these problems.

Performance ¥ New FalseVariable, Concur and SequenceOptimised Handshake Component

Enhancement. implementations. These were described in a paper at ICCDO05. These new implementations
overlap the RTZ phase of the command, resulting in better performance with no area
penalty. These are now the default implementations. The user can get the old,
OconventionalO implementations using the style options FV=conv, PAR=conv and
SEQ=conv respectively when setting the BALSATECH environment variable or from
balsa-mgr.
In the single-rail (bundled-data) backend, the new FalseVariable implementations are only
allowed if the new PassivatorPush implementation is used. If the PP=conv style option is
used, the FV style option is ignored. This is required for correct implementation of the
single-rail circuits.

¥ \Variable and FalseVariable Handshake Components are now implemented with variable-
sized read ports. This results in better area and performance by eliminating the need to split
Variable and FalseVariable components (using the balsa-c option var-read-split)
introducing additional split and combine components. This makestinead-split balsa-c
option unnecessary.

¥ New average-case adder in DR. Previous releases only had a worst-case (time-balanced)
adder in DR. This release introduces e@rage-case DR adder, with a quick return-to-zero
phase. This results in better performance. The user can still get the balanced adder using the
style option LOGIC=balanced when setting the BALSATECH environment variable or
from balsa-mgr.

Experimental Several experimental features are included in this release. As the name implies, they may not be
features supported in future releases. They are believed to be correct at this time.
¥

this parallel operator instructs the compiler not to check for concurrent read and write
accesses to variables by the composed commands. The user should be careful when using
this operator: the circuit will fail if these access do exist. This operator should only be used
when the user knows that the environment will NOT produce the concurrent read and write
accesses.

¥ >l
select!
These input operators modify the semantics of the input commands. The normal operators
(- andselect ) wait for the input to arrive before activating the enclosed command. The
new operators will activate the command as soon as the control Row reaches the input
operation, without waiting for the data to arrive. This gives the control a head start. The
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1.3. Changes in releases

command will not operate on the wrong data since the data will identify its validity (with
the reg/ack signals) but any operation that dmeslepend on the data may occur before

the data arrives. This may result in the wrong operation. The new operators still guarantee
that the command will not complete until data has also completed. For example:

a, b->!then
ol<-a+b

I
02<-1
end

In this casegl always gets the value afb aftera andb have arrived. Howeves will
get the value 1 as soon as the control Bow reaches the input command, without waiting for
a andb.

a, b->!then
o<-1
end

In this caseo will get a1 as soon as the control 3ow reaches the input command without
waiting for a and b. It should be noted that the input command will not complete until the
inputs have arrived thus maintaining the overall Row of control.

Clearly, theselect!  operator should only be used for passive inpitisout choice.
Otherwise, all the alternative commands will be activated without waiting for the data to
make the choice. These will result in incorrect operation.

Single-rail data validity protocol problem.

A new Fetch component is introduced. As an alternative, a new PassivatorPush with data
storage is introduced which also solves the problem resulting in better performance albeit at
the cost of larger area.

Explanation: The Fetch component has a reduced_broad input (pull channel) and a broad
output (push channel). This cannot be done with an "all-wires" implementation of the
Fetch. Most of the time we get away with it because the inputs come from Variable or
FalseVariable components that make those inputs broad. The problem is with active input
commands liké->o , which get the input from a PassivatorPush. In this case, the new
Fetch or the new PassivatorPush is needed..

The new PassivatorPush component is the default, to target better performance. The user
can still get the old, "conventional" implementation of the PassivatorPush using the style
option PP=conv when setting the BALSATECH environment variable. This will
automatically introduce the new Fetch component implementation (resulting in better area
and reduced performance).

added handling of global signals by balsa-make-impl-test

dual-rail implementation of CaseFetch was not guaranteed QDI for certain specibcations
insertion of suggest-buffers in Variable, FalseVariable and PassivatorPush components is
done in a better way in all design styles.

Support for builtin functions in verilog was added for the 1-of-4 style.

balsa-make-helpers has been updated. It supports all design styles (single-rail, dual-rail, 1-
of-4). It generates a helpers-cells ble and a gate-mappings Ple which include the new,
generated cells onlfhe user must concatenate these bles with the original ones

The reference sections of the manual have been updated to correct errors and to re3ect the
latest changes to the system.

Bug Fixes ¥
¥
¥

Other ¥

Changes v
¥

6

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06



1.3. Changes in releases

Deprecated or
eliminated
constructs/
bles

New
constructs

Changed
behaviour

Version 3.4

This release adds ObuiltinO types [see OBuiltin typesO ai7jpRgie 1/0, string handling and
memory models are included adding significant changes in the capabilities of the simulation tools.

Interfaces to a number of Verilog simulators have been included.

Version 3.3

The changes listed here are the major changes since the first version of the Balsa manual. Some o
these changes have however appeared in various snapshots that were published on the Balsa websi
and some were described a text bf@lkproduced to promote the European Low-Power Initiative

for Electronic System Design.

¥
¥
¥

public andprivate  keywords have been eliminated
else clauses ofvhile statement are no longer supported

the keywordbcal is not required for declarations which immediately follow procedure
declarations.

.sbreezébles are no longer generated as part of the compilation process. A mbdéeead
format now replaces bothreezeand.sbreezdles.

Ports to procedures can now be connected to variables to allow communications on the
procedureOs ports to perform reads and writes to the variable [see OVariable portsO on
page 41].

amulicast ~ keyword has been added to prebx channel/sync declarations to supress
warning about multicast channels. The O-c warn-multicastO option to balsa-c now does
nothing B it is enabled by default.

implicants and donOt care values may be used more widely in expressions; see QimplicantsC
on page 32, and Ocase statementsO on page 37.

ports, local and global declarations may be conditional [see OConditional portsO on
page 41].

new loop constructs have been added [see OLooping constructsO on page 36].
case statements may be parameterised [see OConditional executionO on page 37]

simulation time printing is now supported by i  command [see OControl Flow and
CommandsO on page 34]

a bit-array-cast operatdr,has been added as syntactic sugar to simplify array slicing and
casting.

active input enclosure commands have been added

the syntax of parameterised procedure calls has changed

the syntax of thehile command has been changEdisting programs may no longer
compile [see OLooping constructsO on page 36] for more details.

should multiple guards be true ifinandwhile) commands, the earliest command in the
guard list is executed B previously the command chosen was undebned.

if commands, ports and declarations now correctly fail to evaluate subsequent commands
if an earlier guard is true.

breeze bles must be regenerated b they are no compatible with the latest version, sbreeze
bles are obsolete.
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Balsa-mgr
Cost Estimator

Simulation
environment

Channel
viewer

Back-end
technologies

The Manual

The GUI to the Balsa system, balsa-mgr, is now stable and is the recommended way of driving the
tool set.

The cost estimator now handles hierarchical circuits correctly.

LARD is no longer the recommended functional simulation route. A new simulation engine operating
on the breeze description of circuits simulates directly and gives a speed improvement of 25,000
times. Co-simulation with existing lard test harnesses is still possible, but with reduced
performance. Lard support for Balsa is no longer part of the main distribution, but is available as a
separate packagealsa-lard

The LARD channel viewer is no longer used for a graphical representation of channel activity.
Although impressive for small demonstration purposes, it was very slow, it was difficult to restrict
the view to OimportantO channels, snapshots could not be saved and restarted etc. The ne\
simulation viewer is based on a conventional waveform viewer derived from GTKWave.

A wide range of backend technologies and styles are supported and easily controlled via balsa-mgr.
Users can select between single rail (bundled data), dual rail, 1-of-4 and NCL styles each with
different latch implementations. A Xilinx technology and a generic Verilog netlist are distibuted.
For users with appropriate licensing arrangements, a number of silicon technologies, e.g. AMS
0.35mm and ST 01.8m are available.

The format of the manual has changed. A more complete definition of the language is included.
There is now a section on how to create different back-end technologies and styles. The example
descriptions have been extended. The emphasis of the manual has changed: the previous versiol
over-emphasised passive enclosed selection. Many users were misled into believing that this
descriptive style was good practice. It is hoped that this version separates the issue of passive versu:
active ports from that of enclosed handshakes and encourages a more natural style of description.
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Summary

Description

bufferla.balsa

Commentary
on the code

Getting Started

In this chapter, simple buffer circuits are described in Balsa introducing the basic elements of a
Balsa description. The GUI to the Balsa systdmlsa-mgr is used to hide the complexity of the
underlying command line tools. All the examples illustrated here can be found in the Examples
directory of this documentation.

To install the Basla system, either from a binary distribution, or from a build of the source
distribution, follow the instructions in the INSTALL file.

2.1.  Asingle-place buffer

A Balsa description, ibufferla.balsaof a byte-wide, single place buffer is:

(- Balsa program defining an 8 hit wide single place buffer
This is an example of a multi-ine (-- nested --) comment

)

-- Single line comments are also allowed
import [balsa.types.basic]

procedure bufferl (inputi : byte; output o : byte) is
variable x : byte

begin
loop
i->X -- Input communication
; -- Sequence operator
0<-X -- Output communication
end
end

This Balsa description builds a single-place buffer, 8 bits wide. The circuit requests a byte from the
environment which, when ready, transfers the data to the register. The circuit signals to the
environment on its output channel that data is available and the environment reads it when it
chooses. The description introduces:

comments: Balsa supports both multi-line and single line comments; both types may be nested.
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2.1. A single-place buffer

Reserved
words

Compiling the
circuit

The
synthesised
circuit.

modular compilation: Balsa supports modular compilation. Tlweport statement in this

example includes the definition of some standard data types sty asibble , etct. A full list

of the current definitions is given wBalsalnstallDir>/share/balsa/types/basic.breedde search

path given in thémport statement is a dot separated directory path similar to that of Java except
multi-file packages are not implemented. The import statement may be used to include other pre-
compiled balsa programs thereby acting as a library mechanismimpére statements must
precede other declarations in the files. The import statement is included in this example for
completeness only. None of the types defineldasic.breezeare actually used this example so the
import  statement could have been omitted.

procedures: The procedure declaration introduces an object that looks similar to a procedure
definition in a conventional programming language. In Balsa, a procedure is compiled to handshake
circuit comprising a network of handshake components. The parameters of the procedure define the
interface to the environment outside of the circuit block. In this case, the module has an 8-bit input
datapath and an 8-bit output datapath. The body of the procedure definition defines an algorithmic
behaviour for the circuit; it also implies a structural implementation. In this examydeakée

X (of typebyte and therefore 8 bits wide) is declared implying that a 8-bit wide storage element
will be appear in the synthesised circuit.

The behaviour of the circuit is obvious from the code: 8-bit values are transferred from the
environment to the storage variabbe, and then sequential output from the variable to the
environment. This sequence of events is continually repeased E end).

channel assignment: the operators-© O and < O are channel input and output assignments and
imply a communication or handshake over the channel. Because of the sequencing explicit in the
description, the variablg will only accept a new value when it is ready; the value will only be
passed out to the environment when requested. Note that the channel is always on the left-hand side
of the expression and the corresponding variable on the right-hand side.

sequencing: The O;0 symbol separating the two assignments is not merely a syntactic statement
separator, it explicitly denotes sequentiality. The program has been formatted somewhat artificially
to emphasise the point. The contentg afe transferred to the output port after the input transfer has
completed. Because a O;0 connects two sequenced statements or blocks, it is an error to place a (
after the last statement in a block.

Care must be take to avoid using BalsaOs keywords as variable or procedure names. Usually, this i
not a difficult restriction to remember, but a common mistake, especially for beginners
experimenting with the language, is to name an input channé&Jnfortunately,in is a reserved

word and will generate a Balsa compile error.

balsa-c bufferla

The description ifbufferlais compiled producing an output fieifferla.breezeThis is a file in an
intermediate format which can be imported back into other balsa source files (thereby providing a
simple library mechanism). The file extensiabalsg of the source filename is optional and
contains no special significance to the compilation system. However, if a different file extension is
used, the file name including the extension must be given as the argumertiatséhecommand.

The file extensionbreezds of significance to the compilation system

Breeze is a textual format file designed for ease of parsing and therefore somewhat opaque. A
primitive graphical representation of the compiled circuit in terms of handshake components can be
produced (irbufferla.p} by:

breeze2ps bufferla

The resulting handshake circuit is shown in Figlifie Note that this is not actually taken from the
output ofbreeze2psbut has been redrawn to make the diagram more readable. Although it is not
necessary to understand the exact operation of the compiled circuit, a knowledge of the structure is

1. there is, of course, no predebned typel

10
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2.2. Two-place buffers

1st design

buffer2a.balsa

Loop

Sequence

Fetch Variable

Figure 2.1: Handshake Circuit for a single place buffer

helpful for an understanding of how to describe circuits which can be efficiently synthesised using
Balsa. A brief description of the operation of the circuit is given below. The circuit has been
annotated with the names of the various handshake elements.

The port at the top of theoop (O#O) component is antivation port which encloses(see
OHandshake EnclosureO on f#fyeghe behaviour of the circuit. It can be thought of as a reset
signal which, when released, initiates the operation of the circuit. All compiled Balsa programs
contain an activation port.

The activation port starts the operation of te®p which initiates a handshake with tBequencer
(O;O)This component first issues a handshake to the left-Ratahcomponent ® O causing data

to be moved to the storage element in tegiable element (marked OxO to match the variable
name). The Sequencer then handshakes with the right-hand Fetch component causing data to be rea
from the Variable element. When these operations are complete, the Sequencer completes its
handshake with the repeater which start the cycle again.

2.2.  Two-place buffers

Having built a single place buffer, an obvious goal is a pipeline of single buffer stages. Initially
consider a two-place buffer; there are a number of ways we might describe this. An obvious way is
to define a circuit with two storage elements:

-- buffer2a: Sequential 2-place buffer with assignment between variables
import [balsa.types.basic]

procedure buffer2 (inputi : byte; output o : byte) is
variable x1, X2 : byte

begin
loop
i->x1; -- input communication
X2 :=x1; -- implied communication
0<-X2 -- output communication
end
end

In this example in we explicitly introduce two storage elemeditsandx2. The contents of the
variablexl are caused to be transferred to the varigbley means of the assignment operate0
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2.3. Parallel composition and module reuse

However, transfer is still effected by means of a handshaking communication channel. This
assignment operator is merely a way of concealing the channel for convenience.

2nd design The implicit channel can be made explicit as showuiifer2b.balsa

buffer2b.balsa -- buffer2b: Sequential version with an explicit internal channel
import [balsa.types.basic]

procedure buffer2 (input i : byte; output o : byte) is
variable x1, X2 : byte
channel chan : byte

begin
loop
i->x1; - input communication
chan <- x1 || chan -> x2; -- transfer x1 to x2
0<-X2 -- output communication
end
end

The channel, which was in the previous example, concealed behind the usesfthasdignment
operator has been made explicit. The handshake circuit produced (after some simple optimisations)
is identical tobuffer2a TheO||O operator is explained in the next example

It is important to understand the significance the operation of the circuits produbatfdsaand

buffer2b Remember the O;0 is more than a syntactic separator: it is an operator denoting sequence
Thus, first the inputi, is transferred t@l. When this operation is completq, is transferred ta2

and finally the contents of are written to the environment. Only after this sequence of operations

is complete can new data from the environment be readlirdagain.

2.3. Parallel composition and module reuse

The operation above is unnecessarily constrained: there is no reason why the circuit cannot be
reading a new value intdl at the same time tha&® is writing out its data to the environment. The
program inbuffer2cachieves this optimisation.

-- buffer2c: a 2-place buffer using parallel composition
import [balsa.types.basic]
import [bufferla]

procedure buffer2 (input i : byte; output o : byte) is
channel ¢ : byte
begin
bufferl (i, ¢) ||
bufferl (c, 0)
end

Commentary In the description above, a 2-place buffer is composed from 2 single-place buffers. The output of the

on the code first buffer is connected to the input of the second buffer by their respective output and input ports.
However, apart from communications across the common channel, the operation of the two buffers
is independent

The deceptively simple program above illustrates a number of new features of the balsa language:

modular compilation: The import mechanism is used to include thdferlacircuit described
earlier.

connectivity by naming: The output of the first buffer is connected to the input of the second
buffer because of the common channel name (c) in the parameter list in the instantiation of the
buffers.
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2.4. Placing multiple structures

buffer_n.balsa

Commentary
on the code

Creating a new
project

parallel composition: The O]|O operator specifies that the two units which it connects should
operate in parallel. This does not mean that the two units may operate totally independently: in this
example the output of one buffer writes to the input of the other buffer creating a point of
synchronisation. Note also that the parallelism referred to is temporal parallelism. The two buffers
are physically connected in series.

2.4. Placing multiple structures

If we wish to extend the number of places in the buffer, the previous technique of explicitly
enumerating every buffer becomes tedious. What is required is a means of parameterising the buffer
length (although in any real hardware implementation the number of buffers cannot be variable and
must be known before-hand). Tlee construct together with compile-time constants may be used.

-- buffer_n: an n-place parameterised buffer
import [balsa.types.basic]

import [bufferla]

constantn=8

procedure buffer_n (input i : byte; output o : byte) is
array 1 .. n-1 of channel c : byte

begin
bufferd (i, c[1]) || -- first buffer
bufferl (c[n-1], 0) || -- last buffer
for||iin1..n-2 then -- bufferi

bufferd (c[i], c[i+1])

end

end

constants: the value of an expression (of any type) may be bound to a name. The value of the
expression is evaluated at compile time and the type of the name when used will be the same as the
original expression in the constant declaration. Numbers can be given in decimal (starting with one
of 1E9), hexadecimal (Ox prefix), octal (0 prefix) and binary (Ob prefix).

arrayed channels: procedure ports and locally declared channels may be arrayed. Each channel
can be referred to by a numeric or enumerated index [see OArrayed channels@Znipadgeom

the point of view of handshaking, each channel is distinct and no indexed channel has any
relationship with any other such channel other than the name they share.

for loops: afor loop allows iteration over the instantiation of a subcircuit. The composition of the
circuits may either be parallel composition B as in the example above B or sequential. In the latter
case, O;0 should be substituted for O||O in the loop specifier. The iteration range of the loop must |
resolvable at compile time.

A more flexible approach uses parameterised procedures and is discussed later [see OParameteris
descriptionsO on page 49].

2.5. Using balsa-mgr

Balsa-mgr is project manager environment which acts as a front-end to the Balsa commands such
ashalsa-c andbreeze2ps. It hides much of the complexity of the various command-line options
that more complicated compilation and simulation scenarios demand. The use of the project
manager is best illustrated by using it to rerun the compilation of the single place buffer described in
bufferla[Obufferla.balsa® on page 9]

The commandbalsa-mgr  invokes the project manager. Select OPrdjedtlewO from the pull-
down menu as shown in Figu2e? to display the dialogue box shown in Figar8. A default name
for the project is generated; this may be over-ridden to something more meaningful. The OProject

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 13



2.5. Using balsa-mgr

O Balsa Project Manager -0OXx
i- Flle View Help |
gl S Files

Cpen... Shit+CHl+O {} v A @

Open Recent I

Enviranment Options...

Quit cil+@

Figure 2.2: Creating a new project.

(| Project Options 4

Mame and paths | Compilation options | Deﬂnitionsl

Froject Mame | Froject Name
Froject Directory |!“tmprlaIsa.-’GettingStarted

File Import Path |

Save as default template Ok Cancel

Figure 2.3: The New Project Dialogue Box.

DirectoryO text box specifies the root directory: a file named OProjectO is created here containing
information about the project. The button to the right of the text box activates a file browser for
graphically selecting the required directory. The OFile Import PathO text box allows the directory in
which the source Balsa files reside to be specified. By default, this is the current directory (relative
to the root of the project) but may be changed either by directly typing in the text box or by using the
file browser activated by clicking on the button to the right of the text box. More directory import
paths can be added by means of the ONewO button.

Only one project is allowed per dire(;tory but each project may ha}ve several c,ompilation targets. The
options in the other tabbed panes, OCompilation optionsO and ODefinitionsO are described later.

The source files to be compiled must be specified. Either select OF#ekl Files into ProjectO
from the pull-down menu, or the keyboard accelerator Ctrl-A, or click on the icon as shown in

Figure2.4. Pick bufferla.balsaand click OOKO. The filename should appear in the left-hand pane of

14
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Compiling a
description

'—| Balsa Project Manager |_ Ox
‘ Fraject File view  Build Help |
Project - Project Name Files

A Cud P s ]
O B O G X
Files | Name | In Project 7 ‘ &
Name / Dotted patn | ||2

huiferzZc balsa
hutferzh balsa
buffer_n.halsa
huffer2a halsa
M bufferl a halsa

L

= T

Impart Mew Path.. QK Cancel

Figure 2.4: Adding Files to the Project Manager.

the project manager together with the name of any procedures listed in that file. Clicking on the file
or procedure name will cause the contents of the file to be listed in the right hand edit pane as shown
in Figure2.5. The file may be edited in-situ in the pane or by an external editor (defined in the
environment options pane assessable by the OPmojé¢ewO pull-down menu) which can be
invoked by clicking on the edit icon above the edit pane.

Files that have not been compiled will have a warning symbol against them. Users should be aware
that until the file has been compiled, the list of procedures displayed under any filename is the result
of a simplistic parsing of the source file and magcasionally be misleading: for example
procedures that have been commented out and parameterised procedure defigit@ns (
OParameterised descriptionsO on g8gevill be shown erroneously . Further, conditionally
declared procedures (see OConditional ports and declarationsO 46) magemissing. Upon a
successful compilation, the procedures will be correctly displayed.

In order to compile the circuit, either middle click on the file name or click on the Makefile tab in

the left-hand pane. The new view, Fig@ré, reveals the actions available. Click on @ampile

button to compile the description. If the project has been changed since the user last saved it, a save
project dialogue box appears. A new window, the execution window, is spawned which records
various stages in the compilation process.

Behind the scenebalsa-mgr analyses the dependencies in the sources files in the project, creates
a Makefile that reflects these dependencies and generates rules in the Makefile to invoke the various
Balsa commands. If the initial Balsa description is syntactically incorrect in such a way as to make
impossible the determination of dependencies, the Makefile will not be correctly generated.

Running Balsa from the command line allows more flexibility than from within balsa-mgr, however
balsa-mgr is much more convenient for the majority of tasks. Since describing a GUI is
exceptionally tedious, users are encouraged to browse the various icons and pull-down menus
themselves. Note that right-clicking in the various panes brings up various context sensitive menus.
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| Balsa Project Manager. —0OX
‘ Project  File Selected ltem  Wiew  Build Help ‘
Froject * Project Mame Files
Ceo G X CP0OREE
Files | Makeﬂlel hufferia.balsa |

Marme / Dotted path | 1 {-- Balsa progran defining an 8 bit wide single place buffer [J|
2 This is an example of a multi-line (- nested —-} connent
B | bufferiabalsa N
L huffert procedure 4
5 — Single line conments are also allowed
& import [balsa.types.basic]
7
8 = procedure buffert (input i : byte; output o : byte) is
g variable % : bhyte
10 = hegin
11 = Toop
12 i-» % —— Input connunication
13 H —— sequence operator
14 o <— ¥ —— Output comnunication
15 end
16 end
17

Figure 2.5: Displaying a Ple in the Edit Pane.

) Balsa Project Manager _Ox
‘ Project  File Selected ltem  Yiew  Build Help ‘
Froject ¥ Project Mame Files

Cad g X CeOELE
Fileg |Makefile | buffert a.balsa |
1 ({-- Balsa progran defining an 8 bit wide single place buffer [J|
2 This is an example of a multi-line {— nested —} connent
Tests 1 )
4
. 5 —- Single line connents are also allowed
Implementations 6 import [balsa.types.basic]
7
- 8 =procedure buffer1 (input i @ byte; output o @ byted is
W= 9 variable % : byte
buffer!a.balsa Selevied 10 = begin
; 11 =  Toop
(U2 & BlEEee w 1 = ou —— Input conmunication
cost Bun 13 H -- sequence operator
_— 14 [ —— Dutput connunication
bufferta.ps Make Wiew 15 end
_— 16 end
17
Others
Clean intermediate files Make Clean
Clean intermediate and Make Very-Clean
test-harness files
! ||

Figure 2.6: The Makeble Pane.

If errors are found during the compilation of a circuit, the errors, together with the line number and
character position of the error, are reported in the output pane of the execution window. Clicking on
the displayed error message causes the offending code to be highlighted in red in the edit pane
window.

Compilation
errors

1. Start balsa-mgr and select the project debned previously for the loirfeitla
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2.5. Using balsa-mgr

Handshake
circuit graph

Circuit cost

Add the blduffer2bto the project

Compile the circuit by clicking on th@ompile button for luffer2hbreeze. The circuit should
compile OK

Change the parallel composition operator O||O to the sequential operator O;0.
Save the ble and recompile buffer2b.breeze

An compile time error should now be reported in the execution window:

buffer2b.balsa:11:16: unbalanced channel usage; can't perform <write> ; <read> on channel
“chan’

7. Click on the message. The offending code should be highlighted in the edit-pane window on
line 11 starting at character position 16. If tabs are used in the source ble, the tab size must be
known in order for the character position to be correctly reported. VI users may set the value in
their ~/.exrcble which is consulted by balsaAdternative, -t <tabsize> may be passed as
an option to balsa-c from the Compilation Options pane from the Project Options menu.

Quite apart from illustrating the mechanics of error reporting within the balsa-mgmfcakne

this example demonstrates why designing asynchronous circuits requires a deeper understand-
ing of the design process than does the design of synchronous circuits. It is important to realise
why the compiler objects to the circuit description. Line 11 contains two statements. In the
brst, data is output from variabld to the internal channehan The next statement, because

of the sequence operator O;O cannot start until the previous statement has completed whict
requires data to be taken on the channel to be acknowledged. It is this second statement trans-
ferring data from the channethanto the variablex2 which would cause the data transfer on to

the channel to be acknowledged. In other words, the prst statement is waiting for the second
statement, but the second statement can not start until the brst has terminated.

In this particular case, the compiler can spot the problemvekder conceptually similar dead-
lock situations can arise at highevdés of system specibcation. In such cases, the circuit will
compile satisfactorily, but will deadlock in operation.

8. Correct the error before proceeding further.

Click on theView button opposite the label Obufferla.psO. If necessary, the circuit will be compiled
and a PostScript viewer will appear displaying the handshake circuit graph just as it did when the
viewer was invoked via the command line.

The area cost of a circuit may be found by determined by clicking dRuhéutton opposite the

cost label. Doing so will cause the execution window (Figui@ to display the area cost of the
circuit. This cost is only a guideline figure assuming a particular back-end implementation.
Nevertheless, the cost figure is useful for gaining quick feedback on how changing the description
of a circuit affects its size. The output from breeze-cost needs some interpretation: each handshake
circuit is listed together with its cost, name, data width, and the internal channel identifiers to which
the component is connected. Note that the cost of the Fetch component is zero. This is because in the
back-end assumed for the cost function, a Fetch component is a wire only element.
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2.6. Simulation.

B 0202020202000 Executonwindow RN
Frocess Mame | Cutput | State |
I balsa-make-makefile -h -p "tmp/Balsa/c Finished
EF make -n bufferiahreeze Out
Lhalsa-c -h -I . bufferia Finished
ost bufferla.breeze Qut Finished
|
Cutput StdErr
4
Cutput StdOut
Io e o oo - - - l_ [ breeze-cost: Breeze cost estimation 1]
123D M=t =r A= - (L3 I {C) 1998, The University of Hanchester
Part: HriteHessage
Total cost: 0
Part: StringfAppend
Total cost: 0
Part: bufferl
{0 {component "$BrzFetch" {8 "false"} (7 2 B})}
{0 {component "$BrzFetch" {8 "false"} (5 4 3>}
{20,795 {conponent "#BrzLoop” {} {1 8)}))
{49.5 {(conf t “$#BrzSeq Optinised” (2 "5} (8 (7 5))}}
{198.0 {conponent "#BrzYariable"™ (8 1 "x[0,.71" ""} {6 {4)) {at 9 3 "bufferla.balsa" 0}})
Total cost: 268.25
Total costs:
bufferl = 268,25
StringAppend = 0
HriteHessage = 0
Figure 2.7: Execution window, showing the cost of bufferla
Saving The ouputs logged in the StdErr or StdOut panes can be edited or saved to a file by right-clicking in
Window the pane. When editing, either the internal editor in the Balsa-mgr edit pane or an external editor as

Contents defined in the environment options can be nominated.

2.6. Simulation.

Apart from the various simulation possibilitiegadable once the design has beenveoted to a
silicon layout, there are three strategies for evaluating/simulating the design from Balsa.

1. Default test harness.

A default test harness can be generated. The default test harness exercises the target Balsi
block by repeatedly handshaking on all external channels; input data channels receive auser
defined value on each handshake, although it is possible to associate an input channel with a
data file. Data sent to output channels appears on the output pane xéd¢htoa windov.

Note that if the interface to procedure under test is changed, a new test-harness must be gener
ated. By default, the MalHe can not check this dependency: the test-harness ble must either
be removed manually or by runningke clean

2. Balsatest harness

If a more sophisticated test sequence is required, Balsa ibcestlly [fexible language in its
own right to be able specify most test sequences. A default test harness can then be generatec
to exercise the Balsa test harness: see OBuilding test harnesses with BalsaO on page 77.
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Adding a test
pxture

3.

CustomLARD test harness.
For some applications, it may be necessary to write a custom test harness in a language such a:
LARD. HoweverLARD is no longer supported as part of the Basla system.

To simulate a circuit description. using BalsaOs simulation facilities, a test fixture has to be added to
the design framework. The easiest way is to automatically generate a default test harness.

1. Start balsa-mgr and select the project debned previously for the lpirifeitLa
2. Delete the blduffer2bfrom the project by selecting it in the ble pane and right clicking to
choose ODeleteO from the pop-up menu. This step isnOt actually necebaffer2his not
used again
Add the bleébuffer2cto the project.
In the MaleHe tab, you can notice that a set of compilation actionsuffer2chas been added
to those folbufferla(see Figure 2.8).
| Balsa Project Manager |- o x
‘ Project  File Selected ltem  Wiew  Build Help
Froject * Project Mame Files
CaoGE X De0EEE
Files ME"'<9f'|9| hufferia balsa buﬁech.baIsa|
[& 1 —- buffer2c: 2-place buffer using parallel conposition [
2 import [balsa.types.basic]
Tests 3 dimport [buffertal
4
) 5 = procedure buffer2 (input 1 : byte; output o : byte) is
Implementations E channel ¢ : byte
7 = begin
) g buffert (i, < |1
Files 9 buffert (e, o)
bufferla.balsa 10 end
hufferla.breeze Compile "
cost Run
hufferla.ps hake Wiey
hufferZc.balsa Selected -
hufferZc.breeze Compile
cost Run
hufferZc.ps hake Wiey /
- ] M |/
|

Figure 2.8: Buffer2c actions added to Makeble pane

5.

10.

Back in the Files pane, make sure that buffer2 is selected.

Pick OSelected Item Add Test FixtureO from the pull-down menu or right-click oufloi20
in the Files pane. A window for creating a text bxture is spawned (Figure 2.9).

A Warning button warns you that the Breeze ble has not been generated, meaning that the
Balsa ble bffer2c.balsa has not been compiled. Compiling is necessary for the GUI to get a
knowledge of the procedureOs input and ouput ports. Click on the warning button to compile
buffer2c.balsa.The OTest OptionsO dialog should change and show the proceduss@s.port

Change the name of the test bxture from the default (testl) to something more meaningful, e.qg.
buff2c

Select the Port Name @

Change the asté radio button in the OCompon@gpeO pane from Oinput valueO to Oinput
from PleO (see Figure 2.10).
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(| Test Options 4

Fort Types | Deﬂnitionsl

Test Fixture File |buﬁer20.balsa

Top-level Procedure |buffer2
Test Fixture Name |

Warning .breeze file not present. Click here to generate

Type | Fortis) | Farameter(s) |

Refill

Ok Cancel

Figure 2.9: The test options dialog before Balsa compilation

Test Options - OXx
Fort Types | Deﬂnitionsl

Test Fixture File |buﬁer20.balsa

Top-level Procedure |buffer2

Test Fixture Mame |buﬁ20

Type |Port(s) Farameter(s) Delete
B o
Refill
Component Type Component Properties
w SYNC Faort Mame |i
& (R GEm dE Filename [tn1.daf ||

+ input value
+ Output to file
+ Output to stdout

+ <undefined=

Ok Cancel

Figure 2.10: The test option dialog after Balsa compilation

11. Some test values (in a variety of representations: decimal, hex and binsryetesa preided
in the blethl.datin the directory containing the example. Set the value of the bPlename in the
OPortvalue/FilenameO text box tbl.dateither by typing directly into the text box or by
clicking on the ble browser button immediately to the right of the text box.

Note that data values can be specibed in various notations (binary, octal, hexadecimal, deci-
mal). The format of data bles is line based: Only one data items is allowed per line and com-

20
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2.6. Simulation.

plex data types values should not be split across lkmghing after a data item is treated as a
comment and is passed to the simulation.

12. Validate your test bxture debnition by clicking OK.

Text-only In order to run the test, click on the Makefile tab. The Makefile view shown in Rgltenow
simulation
| Balsa Project Manager |- o x
‘Emject File Selected ltem  View  Build Help ‘
Froject * Project Mame Files
C@o G X CPOREE
Files Makeﬂl9| hufferla balsa | bufferzc balsa th1.dat|
5 T =
2 0x10 —— Hex: Decinal 16
Tests 3 022 -- Dctal: Decinal 18
huffZc Selected 4 0b0111m - Bin?r‘u: Decinal 29
sim-buffze Make Fun g -3 — Decinal 251!!

sim-win-buffZc hake Run

Implementations

Files
hufferla.balsa | |
hufferla.breeze Compile
cost Run

hufferla.ps hake Wiey

hufferZc.halsa ;

|90 ] J

Figure 2.11: Test Harness added to Makeble pane

shows two actions added under the Tests section. Clicking oRuhebutton for sim-buff2c
generates the simulation output in the execution window (F&ja&. The numbers reported on the

left hand side of each channel activity are simulation times B either the time at which data is
presented at an input channel from the external environment or the time at which data is presented
on an output channel to the external environment. Note however that at the breeze level the
simulator has a very simplistic timing model, so these values should be treated with caution.
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B 222 Executionwindow  [EIFT
Frocess Mame | Cutput | State | &
[ halsa-make-makene -b -p TiMprEasarc Fnished
EF make -n buffer2c hreeze Out
Lhalsa-c -b -, hufferzc Finished
- balsa-make-makefile -b -p “Amp/BalsasCc Finished
EF make -n sim-bufiZc Out
F balsa-make-test-b -1 . -p . buffec Finished
halsa-c -b -1 . test-hufféc Finished
. - Finished 7
LT

Cutput StdErr

Cutput StdOut

B13: chan 'i' writing 1

4513: chan 'i' writing Ox10 —— Hex: Decimal 16
47202 chan 'o' reading 1
8313: chan 'i' writing 022 —— DOctal: Decinal 18

85202 chan 'o' reading 16

12113: chan 'i' writing Ob011101 —— Binary: Decinal 29
123202 chan 'o' reading 18

15913: chan 'i' writing -5 —— Decinal 2511!!

16120: chan 'o' reading 29

199203 chan ' reading 251
Activity finished at time 21400

=]

Figure 2.12: The ouput from a text-only simulation

Capturing output The contents of the output window of the execution window can be captured by right-clicking in the
output pane; alternatively the output can be directed to a file when defining or editing the test

harness.
Graphical In the previous examples, the output of the simulation is textual appearing in the output pane of the
Simulation execution window. The simulation may also be viewed in a conventional style waveform viewer or
Tools the channel activity can be viewed directly on a representation of the handshake circuit graph. To

activate the viewers, switch to the Makefile pane of Balsa-mgr and clicRuonbutton for
sim-win-buff2c. This will generate any intermediate files required and bring up a window
breeze-sim-ctrl (Figure 2.13) which controls the simulations and animations.

sirulation n sirmulation stop simulation speed simulation

existing simulation
Bution button controller length

file waming icon

o=
simulation \ waveform viewer H/S drouit source code
status icon graphicon  wiewer icon

Figure 2.13:The Simulator Controller

The controller allows:

¥ anew simulation Ple for a design to be produced and displayed in a waveform viewer
(GTKWave).
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Breeze-sim-
controller icons

Generating the
simulation trace

an existing simulation pble to be viewed in the GTKWave viewer.
the speed of the simulation to be varied.
the handshake circuit graph to be displayed, animated and analysed.

the source code to be displayed.

K K K K K

the associations between handshake circuit channels and source code constructs to be
displayed.

¥ If an existing simulation ble is detected when the controller is started, a warning triangle
icon is displayed to alert the user to the possibility that this ble could be overwritten (the
ble has the extension @ihh).

¥ An existing simulation bPle may be viewed without it being regenerated by clicking on the
waveform viewer icon at the bottom of the controller window. If the waveform viewer is
active, clicking on the icon kills the viewer.

¥ The coloured button at the bottom left of the controller window indicates the status of the
simulation: red means the simulation is stopped, green that the simulation is running and
blue that the simulation is paused.

¥ A new simulation trace ble can be generated and displayed by clicking on the simulation
run/pause button at top-left of the controller window. The simulation can be terminated by
means of the simulation stop button to the right of the run/pause button. The simulation is
displayed in the GTKWave viewer as the simulation Ple is produced. The speed of the
simulation can be slowed down by means of the speed slider control.

¥ The two icons at the bottom right of the window reveal further functionality: the left icon
reveals a graph of the handshake circuit and the right button opens a window onto the
source code.

Although breeze-sim-ctrl can be used to view the static handshake circuit (in order, for example, to
analyse the associations between the handshake elements and the Balsa description), its aim is ti
graphically control the simulation process and display the simulation events in various ways. Before
any visualisation, it is necessary to generate a simulation trace. The presence of a simulation trace is
indicated by theDuration indicator, showing the total length of the actual simulation. You can
generate a new simulatiorhiih) trace file by running the simulation with tfay button. The
simulation is generating events very quickly, and the trace file can quickly become very large. If
your simulation is too long, you may want to keep the simulation trace short by slowing the
simulation speed down with the slider control and by stopping the simulation witapéutton

when it reaches the desired size @heation indicator of the simulation is updated in real time).

Which simulated events are saved in the trace file can be chosen from the Trace options menu, in the
Breeze-sim options section (Figwtel4). The choice is between tracing all the channels or tracing
only the procedure ports. Tracing all the channels results in a large trace file containing all the
necessary information for any kind of visualisation or post-analysis. Tracing only the procedure
ports is useful for keeping the trace file small, while still being able to view in GTKWave the events
happening at the interface of your procedures. This is often enough for checking that high-level
communications are behaving as expected without going into the details of the implementation.
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X! Breeze-sim-ctrl <test-testl>

Trace options | Simulation Debug
b -- Breeze-sim Options —
- ~ Trace &ll channels
-|— + Trace Procedure ports anly
-- GTKWave Options --
+ Wiew All traced channels
+ Wiew Procedure ports anly

“ Wiew Named ports only
+ Wiew MNone

File

[Ceveloper Options]
+ Procedure Structure

« Thread Structure
« Behaviour Structure

Figure 2.14:Trace options menu

GTKWave, the  Clicking on the waveform viewer icon or the simulation run button will start the GTKWave viewer
Waveform Viewer (this automatic launch of GTKWave when a simulation is runned is the default behaviour, and can
be overriden by placing an empty file nammexjtkwavean the project directory). A list of channels
is displayed in the right-hand pane as shown in Figuré Request signals are shown in red and

: a X GTKWave
| File Edit Traces Time Markers Help

m om X B

Add..  Show all Cut Faste

iQ@l@lWWQ@@SwW@é

Fram: 10 g To: 1194 ng Primary marker: 24 ns Cursar: 176 ns

| Time

hufferz :1=r-a-
| bufferz bufier1#1.:5 =r+a-
| bufferz buffer1#1.:5 =r-a-
| bufferz bufferi#l 7 =r+a-
| bufferz bufferi#1 G =r+a-
| hufferz buffer#1 x4 =r-a- 0

huffer buffer1#1 x:6 =r-a- 0

l{ I~ B

f El=N A

Figure 2.15:Channel viewer window.

acknowledge signals are shown in green. Data bearing channels have the data value displayed unde
the request/acknowledge signals. Clicking in this pane will display a vertical timeline cursor in the
window.

Which channels are viewed at the launch of GTKWave can be chosen from the Trace options menu,
in the GTKWave options section (Fig2zel4d. The four possible choices axéew all traced
channels View procedure ports onlyiew named ports onland View none They are self-
explanatory, except perhaps the third one: Named ports correspond to all the procedure ports but the
activation signals associated to every procedure (these signals do not have any name in the breez
file).
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Viewing and
animating the
handshak circuit
graph.

The left-hand pane shows the channel names and the state of the request/acknowledge signals an
data values at the cursor point. It is necessary to click in the waveform display pane to get the
channel names to display correctly in the first instance. GTKWave is highly configurable: a detailed
description of its operation is not given here, rather a summary of its capabilities is provided below.

¥ The display of the traces passed to the viewer from the simulation controller can be
conbgurable by use of tlaeld or add all buttons. The former allows signals to be chosen
from a pick-list or by a regular expression description together with range specibers b
useful for specifying buses.

¥ Traces can be removed or repositioned by means aifiti@dpastebuttons.
Traces can be sorted in a number of different ways.

¥ The traces can be zoomed in or out at the mid point of the display window by means of the
zoombuttons.

¥ Specibc areas of the display can be zoomed by right-click, drag in the display window.

¥ The display can be stepped by a bxed number of nsecs at a time or by the width of the
display window.

¥ Data may be displayed in a number of formats.

¥ Markers can be added to the display.

The various menubars and toolbars can be hidden by means of the icons at the bottom right
of the window.

¥ The various menubars and tool bars are detachable. Click and drag on the gripper at the
left-hand end of the bar to detach it. To return it to the window, drag it back to its correct
place in the window or, more simply, double click on the gripper.

Note: the features described in this section are experimental and are likely to change in future
releases. Not all buttons/controls are described B in the main this is because they are for
internal developer use only.

If the handshake circuit graph icon (at the bottom-right corner of the controller window) is clicked,
the controller window changes to that shown in Fiduié. It shows a graph representation of the
handshake circuit compiled, and is intended to display the activity (events) happening on the various
channels during the simulation.

First, you might want to change the layout style, especially if your graph does not appear nicely
when using the default layout. This is done by selecting the check box entitled OLayout uses control
flowO, near the bottom left corner of the window. When this check box is selected, the layout
hanshake circuit graph is laid out with the control flows going from top to bottom. When the check
box is unselected, the graph is laid out based on data flows, with data flowing from top to bottom.
The default style (data flow-based) gives a good visualisation of large circuit, especially when
associated with the OControl: GrayO button (located above the check box). However, for small
circuits, organising the data flow vertically does not always result in a nice layout.

Then, you might want to customise the appearance of the graph. For this, you can:
¥ drag&drop components or groups.

resize groups with Shift+drag&drop.

pan the display by dragging the background.

zoom in/out by using the zoom icons.

toggle the channel names and their values by using the next toggle icons.

K K K K K

reduce/develop groups to show their components and sub-groups with middle-click and
right-click (Right-clicking on a group reducesyeéops its sub-groups; Middle-clicking on

a group hides/shows its handshake components. You typically need to use right-click to
fully develop groups and middle click to fully reduce them).
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X/| Breeze-sim-ctrl <test-testl>

File Trace options Simulation Debug

P | siow Fast Duration:14?00&

Selection Animate| Slow Fast Time17 —

O

<root>

{buffer2}

{bufferi#1} _

Delete| Dilate| Ruril| Fallow]|

ShowiHide| Capture

Handshake circuit graph
Control: »~ Elack . Gray @

Data: -~ Elack .. Gray

I Layout uses contral flow

ool || @O

o= G

Figure 2.16:Channel tree and handshake circuit graph revealed.

¥ make a group become the main viewed group by using Ctrl+Left click. Ctrl+Shift+click
sets the parent of the selected group to be the main viewed group, and you can use
successive Ctrl+Shift+clicks on successive parents to go back to a higher level view of the
circuit.

On the left, a group of controls offer you to gray some parts of the circuit out, in order to visualise
more effectively either the control flow or the data flow. Mex Dev button recursively develops
every group in the circuit.

Pressing the empty icon button under the graph view develops a new button bar for accessing
developpersO functionalities. The first button, OScreen ShotO, may be useful to you, as it generates
screenshot.ps file in the current directory, containing a postscript version of the viewed graph
(however, the graph is usually not centered on the page and needs post-processing).

The circuit is then animated by clicking on theimate button. The speed of the animation can be
modified by means of the slider control next to the button. The animation may be stepped by means
of the up/down arrows next to the current time value. As a short-cut, right-clicking on the arrows
will take the simulation to the start/end of the animation. This feature is useful for rerunning the
animation. The two buttons next to the time-controlling up/down arrows are stepping the animation
to the next/previous viewable event.

Clicking on a channel selects it for a list of action available in the left-hand pane entitled
OSelectionO:

¥ ObDeleteO unselects a channel(s).

¥ ObDilateO expands the selection to the surrounding channels.

¥ ORun®tilO runs the simulation until some activity appears on the selected channel(s).
¥

OFollowO runs until some activity on the channel and then looks for activity on the
surrounding channels and expand the selection to those newly activated surrounding
channels.

26
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Debugging a
deadlock

Source Code
Viewer

When OCaptureQ is pressed, hovering the mouse over a handshake channel automatically selects
Associated with the source code viewer, one can quickly see what source code corresponds to eact
channel.

Finally, the text box next to the Capture button is a search box that selects/unselects all the channels
whose name contain the entered string (the search is run when the user presses the Return key). Thi
search box is useful, for example, when dealing with Verilog files generated from the Balsa
description: The channel numbers being the same in Verilog and in Breeze, specific Verilog channel
numbers can be searched and viewed on the handshake circuit graph (or in the source code viewer
in order to link Verilog back to the original Balsa description).

If your simulation ends up in an unexpected deadlock, you can try our Odeadlock debugging helperO
currently in development (i.e. if it does not work for you, it is kind of normal). Select the channel
corresponding to the latest event that happened during your simulation and run the deadlock
analysis by selecting OHighlight DeadlockO in the Debug menu. It should highlight (and add in the
Selection box) a list of channels which are thought to be related to the deadlock. The most useful
channels for debugging the deadlock are those where a change of channel activity happens, for
example when the string of highlighted channels passes from a channel where no event happened tc
a channel blocked with a ORequest UpO event pending. You can follow this string of highlighted
channels and use the source code view to locate the position of some of them, as explained below.

Clicking the source code viewer icon brings up a separate (initially empty) window. It is advised to
click on OShow All Channel PositionsO, in order to load every file and colorise keywords according
to the handshake channels that are referred to in the compiled circuit. Once the source code window
is open, any channel selection from the main window is reported at the bottom of the source code
window. A subsequent click on the OGoto SourceO button highlights the source code that corresponc
to the selected channel. In the other way around, it is possible to select channels that correspond to ¢
keyword from the source code by right-clicking after the first letter of the desired keyword and
choosing OSelect ChannelsO in the contextual menu (the algorithm searches backwards from thi
selected character until it finds a matching channel).When the checkbox next to the OGoto SourceC
button is selected, any newly selected channel will be automatically reported inside the source code,
as if the user pressed the OGoto SourceO button after selecting the channel. Unselecting ONotebo
styleO displays every opened file simultaneously, next to each other.
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Summary

Numeric types

The Balsa Language

The previous chapter introduced Balsa, but was mostly concerned with the auxiliary tools that
support the Balsa environment. The language itself is small and in this section most of its major
features and constructs are introduced. Later chapters discuss more advanced topics such a:
parameterisation and recursively defined structures (OParameterised & Recursively Defined
CircuitsO on pagk9) and the enclosed semantics of the choice operator (OHandshake EnclosureO on
page55). A more formal and complete, BNF style, language description can be found in
Section 11.3. on page 131.

3.1. DataTypes

Balsa is strongly typed with data types based on bit vectors. Results of expressions must be
guaranteed to fit within the range of the underlying bit vector representation. There are two classes
of anonymous types: numeric types which are declared withitthekeyword and arrays of other

types. Numeric types can be either signed or unsigned. Signedness has an effect on expressior
operators and casting. Only numeric types and arrays of other types may be used without first
binding a name to those types. Balsa has three separate namespaces: one for procedure and functic
names, a second for variable and channel names and a third for type declarations.

Numeric types incorporate numbers over the range'le, 7] or [-T'l, 1. 1] depending on
whether they represent either unsigned or signed and wihef#,diNT_MAX; on a 32-bit machine

nT [1, 22- 1]. Named numeric types are just aliases of the same range. An example of a numeric
type declaration is:

type word is 16 bits

This defines a new typeord which is unsigned (there is mosigned keyword) covering the range
[0, 2'6- 1]. Alternatively, a signed type could have been declared as:

type sword is 16 signed bits
which defines a new typsvord covering the range [22, 21°-1].

Some predefined types are availableBalsalnstallDir>/share/balsa/types/basic.balsacluding
byte , nibble , boolean andcardinal  as well as the constarttse andfalse.  Other predefined
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Enumerated
types

Record types

types may be added from time to time. Users are advised to consult the contents of the file in their
particular release of the Balsa system.

Enumerated types consist of named numeric values. The named values are given values starting a
zero and incrementing by one from left to right. Elements with explicit values reset the counter and
many names can be given to the same value, for example:

type Colour is enumeration
Black, Brown, Red, Orange, Yellow, Green, Blue, Violet
Purple=Violet, Grey, Gray=Grey, White
end

The value of the/iolet element ofColour is 7, as iPurple.  Both Grey andGray have value 8.
The total number of elements is 12. An enumeration can be padded to a fixed size by userof the
keyword:

type SillyExample is enumeration
el=1,e2
over 4 bits

Here 2 bits are sufficient to specify the 3 possible values of the enumeration (0 is not bound to a
name, el has the value 1 and e2 has the value 2pvdih&eyword ensures that the representation
of the enumerated type is actually 4 bits.

Occasionally, it is necessary when referring to an element of an enumeration to indicate the type to
which that element belongs. The notaticolourOPurple  specifically indicates the identifier

Purple as being a member Gblour . Most users will never need this notation; about the only time

it is required is when using elements of enumerations within casts and even in that case there are
more transparent ways of achieving the same effect.

Enumeration types must be bound to names by a type declaration before use.

Records are bitwise compositions of named elements of possibly different (pre-declared) types with
the first element occupying the least significant bit positions, e.g.:

type Resistor is record
FirstBand, SecondBand, Multiplier : Colour;
Tolerance : ToleranceColour

end

Resistor  has four elementsirstBand , SecondBand , Multiplier of typeColour andTolerance

of type ToleranceColour ~ (both types must have been previously declaféd)Band is the first
element and so represents the least significant portion of the bitwise value of Redigpe

Selection of elements within the record structure is accomplished with the usual dot notation. Thus
if R15 is a variable of typeResistor , the value of itsSecondBand can extracted by
R15.SecondBand .

A record can be constructed by listing its fields as a list within braces. TR4&ifis a record
variable of type Resistor, its value may be set:

R4K7 :={Yellow, Violet, Red, Gold}
As with enumerations, record types can be padded:

type Flags is record
carry, overflow, zero, negative, int_en : bit
over byte

The 5-bit record is padded to 8 bits by use ofotlee keyword. Even in those cases where padding

is not required such as in the example below, specification of the data-type required is useful
because the compiler will enforce error checking to ensure that the structure is in fact what it is
believed to be.

type Flags is record

30
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carry, overflow, zero, negative : bit
over 4 hits

Array types Arrays are numerically indexed compositions of same-typed values. An example of the declaration
of an array type is:

type RegBank_t : array 0..7 of byte

This introduces a new tyegBank_t which is an array type of 8 elements indexed across the range
[0, 7], each element being of typge . The ordering of the range specifier is irrelevardy 0.7

is equivalent tarray 7.0 . In general a single expressi@spr , can be used to specify the array
size: this is equivalent of a range®@expr-1 . Anonymous array types are allowed in Balsa, so
that variables can be declared as an array without first defining the array type:

variable RegBank : array 0..7 of byte

Arbitrary bit-fields within an array can be accessed by an array slicing mechanis#fs.6.9.]
extracts elementss, a6, anda7. As with all range specifiers, the ordering of the range is irrelevant.

In general Balsa packs all composite typed structures in a least significant to most significant, left to
right manner. Array slices always return values which are based at index 0.

Arrays can be constructed by means of a list constructor or by concatenation of other arrays of the
same base type:

variable a, b, ¢, d, e f: byte
variable z2 : array 2 of byte
variable z4 : array 4 of byte
variable z6 : array 6 of byte

z4:={a,b,c,d} -- array constructio n
26:=74 @ {e, f} -- array concatenation
22:=(z4 @ {e,f}) [3.4] -- element extraction by array slicing

In the last example, the first elementzaf is set tod and the second element is setetolrhe
parentheses are necessary to satisfy the precedence rules. Note that array slices always return value
which are based at index 0. Thus in the following rather bizarre example, the first eleaferg of
assigned te and the second elementdo

z2=({a, b, c,d} @ {e, ) [1..4])[1..2] -- returns {c,d}

Array slicing is useful to allow arbitrary bitfields to be extracted from other datatypes. In general,
the original datatype has to be cast into an array first before bitfield extract and then cast back again
into the correct datatype. See OCastsO on page 32 for concrete examples.

Constants Constant values can be defined in terms of an expression resolvable at compile time. Constants may
be declared in terms of a predefined type otherwise they default to a numeric type. However, sting
constants are not allowed. Valid examples are:

constant minx =5

constant maxx = minx + 10
constant hue = Red : Colour
constant colour = ColourOGreen

Complex data type (array and record) constants may be defined:

constant InitArray = {1, 2, 3, 4} : MyArrayType
constant R4K7 ={Yellow, Violet, Red, Gold} : Resistor

The two examples above may also be written:

constant InitArray = MyArrayType {1, 2, 3, 4}
constant R4K7 = Resistor {Yellow, Violet, Red, Gold}
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implicants

Arrayed
channels

Casts

Integer constants may be specified in decimal (e.g. 42), binary (e.g. 0b00101010) octal (e.g. 052) or
hexadecimal (e.g. Ox2a). Note that leading zero signifies an octal constant. The underscore charactel
O_0O is allowed within numbers to improve readability (e.g. Ob_0010_1010).

Implicants B values containing donOt caresb are allowed as normal expression types and be used
define both simple numeric constants and complex data type constants. The syintehGtes a

single donOt care digit, and the vale® @ields an implicant matching all values of the expected
type. Not all operators may be used with such implicants, working operators ias|uateay and

record construction antl Examples of the use of implicants are:

constant OddNum = Obx1
constant DataProclnst = {?, 0b00x, ?, ?} : InstructionFormat

The latter could be used in decoding an instruction formatted into four fields in which it is known
that data-processing type instructions are uniquely identified by the value 000 or 001 in the second
field.

The main use of implicants is in matching case guards [see Ocase statementsO on page 37].

Channels may arrayed, that is they may consist of several distinct channels which can be referred to
by a numeric or enumerated index. This is similar to the to the way in which variables can have an

array type but in the case of arrayed channels, each channel is distinct for the purposes of
handshaking and each indexed channel has no relationship to the other channels in the array othe
than the single name they share. The syntax for arrayed channels is different to that of array typed
variables making it easier to disambiguate arrays from arrayed channels. As an example:

array 4 of channel XYZ : array 4 of byte

declares 4 channelgyz[0] to XYZ[3] , each channel is a 32-bit wide tyseay 0..3 of byte
An example of the use of arrayed channels was shown previously when discussing the placement of
multiple structures [see OPlacing multiple structuresO on page 13].

3.2. DataTyping Issues

As stated previously, Balsa is strongly typed: both left-hand and right side of assignments are
expected to have the same type. The only form of implicit type-casting is the promotion of numeric
literals and constants to a wider numeric type. In particular care must be taken to ensure that he
result of an arithmetic operation will always be compatible with the declared result type. Consider
the assignment statementx+1 . This is not a a valid Balsa statement because potentially the
result is one bit wider than the width of the variablelf the potential carry-out from the addition is

to be ignored, the user must explicitly force the truncation by means of a cast.

If the variable x was declared as 32 bits, the correct form of the assignment above is:
X = (X + 1 as 32 hits)

The keywordas indicates the cast operation. The parentheses are a necessary part of the syntax to
make the precedence af more obvious. If the carry out of the addition of two 32-bit numbers is
required, a record type can be used to hold the composite result:

type AddResult is record
Result : 32 bits;
Carry : bit;

end

variable r : AddResult

r:=(a+ b as AddResult)

The expressionCarry  accesses the required carry bResult  yields the 32-bit addition result.
Casts are required when extracting bit fields. Here is an example from the instruction decoder of a

32
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simple microprocessor. The bottom 5 bits of 16-bit instruction word contain an 5-bit signed
immediate. It is required to extract the immediate field and sign-extend it to 16 bits:

type Word is 16 signed bits
type Imm5 is 5 signed bits

variable Instr : 16 bits -- bottom 5 bits contain an immediate
variable Imm16 : Word

Imm16 := (((Instr as array 16 of bit) [0..4] as Imm5) as Word)

First, the instruction wordpstr , is cast into an array of bits from which an arbitrary subrange can
be extracted:

(Instr as array 16 of hit)
Next the bottom (least significant) 5 bits must be extracted:
(Instr as array 16 of bit) [0..4]
The extracted 5 bits must now be cast back into a 5-bit signed number:
((Instr as array 16 of bit) [0..4] as Imm5)
The 5-bit signed number is then signed extended to the 16-bit immediate value:
((Instr as array 16 of bit) [0..4] as Imm5) as Word)

The double cast is required because a straight forward cast from 5 bits to the \ramablef type

Word would have merely zero filled the topmost bit positions even thougth is a signed type.
However, a cast from a signed numeric type to another (wider) signed numeric type will sign extend
the narrower value into the width of the wider target type.

Extracting bits from a field is a fairly common operation in many hardware designs. In general, the
original datatype has to be cast into an array of bits first before bitfield extractiorsniedsh
operator provides a convenient shorthand for casting an object into an array of bits. Thus the sign
extension example above is more simply written

((#Instr [0..4] as Immb5) as Word)

Whilst anonymous array types are allowed, it is not always possible for the compiler to be able to
deduce the appropriate type of an array constructor during a cast operation:

type Word32 is 32 hits
variable a, b, ¢, d : byte
variable Imm32: Word32
Imm32 := ({a, b, c, d} as Word32) - canOt determine type of array
The compiler has to be given a hint by specifying the type of the array constructor:

type A4_tis array 4 of byte
Imm32 := (A4 _t{a, b, c, d} as Word32)

Here,A4 t indicates the type of the array constructor. Note that a previously declared type must be
used: the following statement results in (many) compile time errors:

Imm32 := (array 4 of byte {a, b, ¢, d} as Word32) -- error
Bit ordering The following snippets illustrate the relationship between the bit ordering in array constructors and
and paddingin their numeric values represented by those arrays:

arrays constant x = (2 as 4 bits)
print"xis: ", x," ", #x;
x is defined a being a 4 bit value; printing it as an array of bits (using the # operator) gives:

xis: 2{0,1,0,0}
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The most-signifcant bit is the rightmost bit element of the array B note this is contary to the normal
representation of bits in a binary number where binary 0110 would represent decimal 4.
Concatenating x with another array of bits

y:=(#x @ {0,1} as 8 hits);
print"yis: ", y,"", #y;

gives:
yis: 34{0,1,0,0,0,1,0,0}

Auto- Statements of the form
assignment X =)
are allowed in Balsa. However, the implementation generates a temporary variable which is then
assigned back to the variable visible to the programmer B the variable is enclosed within a single
handshake and cannot be read from and written to simultaneously. Since auto-assignment generate:
twice as many variables as might be suspected, it is probably better practice to avoid the auto-
assignment, explicitly introduce the extra variable and then rewrite the program to hide the
sequential update thereby avoiding any time penalty. An example of this approach is given in
ORemoving auto-assignmentO on page 42.
3.3.  Control Flow and Commands
BalsaOs sparse command set is listed in Bablé more formal definition of the command syntax
is given in Section 11.3. on page 131.
command Notes
sync Control only (dataless) handshake
< handsha& data transfer from an expression to an output
port
-> handshake data transfer to a variable from an input port
= assigns a value to a variable
; sequence operator
Il parallel composition operator
continue a null command
halt causes deadlock
loop E end repeat forever
loop E while E then E also . . . i
oop conditional loop with optional initial command.
E end
for E in E then E end structural (not temporal) iteration
it E then E else E end conditional eecution, may hae multiple guarded
commands
case E of E end conditional execution based on constant expressions
select E end non-arbitrated choice operator
Table 3.1:Balsa Commands
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Sync

Channel
assignment

Variable
assignment

Sequence
operator

Parallel
composition

Continue and
Halt

command Notes

arbitrate E end arbitrated choice operator

if 1st arg is one offatal, error, warning, report, print
subsequent args at compile time at the appropriate error
level. If 1st arg isruntime (the default) ealuate and print
args during a simulation

print <args>

allows inclusion of local debnitions around a command and
<block> the overriding of the precedence of command composition.

See Section 11.3. on page 131.

Table 3.1:Balsa Commands

sync <channel>  awaits a handshake on the named channel. Circuit action does not proceed until
the handshake is completed.

<channel_out>  <- <expression> The result of the expression (commonly,
the value of a variable) is transferred to the
named output channel.

<channel_in> > <variable> Data from the named input channel is
transferred to a variable.

<channel_in> ->  <channel_out> Data from the named input channel is
transferred to the named output channel.

<channel_in> ->  then <command> end The handshake on the named input channel
encloses the command block. Thus the data
remains valid until the command block
terminates. Data on the input channel can be
read more than once or assigned to multiple
channels.

<variable> := <expression > transfers the result of an expression into a variable. The result type
of the expression and that of the variable must agree.

O;Gseparating two commands is not merely a syntactic operator, it explicitly denotes sequentiality.
Because a semicolon connects two sequenced statements of a block, it is an error to place a
semicolon after the last statement in a block. Doing so is a common beginnerOs error and may resul
the error message:

expected one of tokens Oident [ { sync local begin continue halt loop while if
case for select arbitrate print O

O||® composes two commands such that they operate concurrently and independently. Bott
commands must complete before the circuit action proceeds. Beware of inadvertently introducing
dependencies between the two commands so that neither can proceed until the other has completec
The OJ|O operator binds tighter than O;O. If that is not what is intended, then commands may &
grouped in blocks as shown below

[CmdSeql ; CmdSeqg2] || CmdParl
Note the use of square brackets to group commands rather than parentheses. Alternatively, the
keywordsbeginEend may be used.

continue is effectively a null command. It has no effect, but may be required for syntactic
correctness in some instances. The comnhaind causes a process thread to deadlock.
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Looping The loop command causes an infinite repetition of a block of code. An example, summarised
constructs below, was given in the description OA single-place bufferO on page 9.
loopi->x;o0<-xend
Finite loops may be constructed using it while construct. An example of its use with a
single guard is:
loop while x < 10 then
X = (Xx+1 as byte)
end
Multiple guards are allowed in as shown below:
loop while
x<10thenx:=(x + 1 as byte)
|x>=10thenx:=0
end
A variation on thewhile construct uses thaso keyword to allow a final command which is
executed at the end of each loop iteration if any of the guards is satisfied:
loop while
x < 10 then x := (x+1 as byte)
|x>=10thenx:=0
also print "Value of x is ", x
end -- loop
Loops with an initial command before the guard test B similatidcEa while  loop found in other
languages b are supported. The example below illustrates such a repetitive loop using both multiple
guards and thelso statement. Both are optional as in the previous while loops
loop
i>x
while
x <10 then print x, " is less than 10"
| x<100 then printx, " is > 10 and < 100"
also print "about to read another value”
end;
print “exiting loop - value of x is: ", X
The example above also illustrates the ordering in the evaluation of the guards. For valiess of
than 10, both guards are satisfied, however the language guarantees that only the command
associated with the first in the list of guards will be executed. Note that the loop exits when a value
greater or equal to 100 is read from the input channel
The equivalent of epeat E untl or ado E while loop can be specibed as a simpler form of the
construct above, thus:
loop
print "value of x is: ", X;
X = (X + 1 as 4 hits)
while x <= 10
end
Structural Balsa has dor loop construct.Beware in many programming languages it is a matter of
iteration convenience or style as to whether a loop is written in termsoof Bbop or awhile loop. This is
not so in Balsa. Thér loop is similar to VHDLO®r E generate command and is used for
iteratively laying out repetitive structures. An example of its use was given earlier [see OPlacing
multiple structuresO on pai@. An illustration of the inappropriate use of the command is
1. Note that previous releases of Balsa used a different syntax for the while command; descrip-
tions that used while loops will no longer compile correctly
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Conditional
execution

if statements

case statements

given in OThe danger of OforO loopsO on4padiructures may be iteratively instantiated to
operate either sequentially or concurrently with one another.

Balsa hasf andcase constructs to achieve conditional execution. Fhé then E else
statement allows conditional execution based on the evaluation of expressions at run-time. Its syntax
is somewhat similar to that of thaile loop.

if conditionl then command
|  condition2 then command

|  condition3 then command

else CmdD

end

If more than guard (condition) is satisfied, then just as fehila loop, the command associated
with the first mentioned guard is the one chosen.€ldee clause is optional.

The case statement is a multi-way decision maker that tests whether an expression matches one o
more possible values.

BalsaOsase statement is similar to that in a conventional programming language. A single guard
may match more than one value of the guard expression.

case x+y of
1.4 then o <-x
|5..10theno<-y
else o<-z
end

Case guards may be generated by meangoof atatement case guard generator.

case s of
forjin1..3then
off <-i
| 0 then
print "Handling port O specially" ||
o[0] <-i-1
end

The code above is equivalent to:

case s of
1theno[l] <-i

| 2 then o[2] <-1i

| 3then o[3] <-1i

| 0 then
print "Handling port O specially” ||
0[0] <-i-1

end

The case matches in the loop can be any general expressions resolvable at compile time. Only
one for iteration variable is allowed per guard and the case matches must be disjoint from one
another.

The form of case expansion illustrated in the example above is not particularly useful. It finds more
application in defining the behaviour of parameterised components.

Implicants (or donOt care conditions) [see OConstantsO on page 31 ] may be used in case statemer

procedure implis
begin
for;iin1..15then
case i of
Obx1x then print OdonOt care guard: O, i
else
print Ocovering case: O, i
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File structure

end
end
end

3.4. Binary/Unary Operators

BalsaOs binary operators are shown in order of decreasing preference in Table 3.2

, Valid
Symbol Operation Notes
types
record indexing record
takes value from any type and
# smash any . y yp
reduces it to an array of bits
0 arrav indexin arra non-const index possible, can
y g y generate lots of hardware
A exponentiation numeric only constants
log only works on constants,
not, returns the ceiling: e.g. log 15
log, unary operators numeric returns 4
b (unary) D returns a result 1 bit wider than
the argument
multiply, divide, . .
* [, % py numeric only applicable to constants
remainder
. results are one or 2 bits longer than
+,- add, subtract numeric g
the largest argument
@ concatenation arrays
. " numeric
<, >, <=,>= | inequalities .
enumerations
- = equals, all comparison is by signx&ended
' not equals value for signed numeric types
Balsa uses typa bits  for iff
and bitwise and numeric while  guards so bitwise and
logical operators are the same.
or, xor bitwise or numeric

Table 3.2:Balsa binary/unary operators

3.5.  Description Structure

A typical design will consist of several files containing procedure/type/constant declarations which
come together in a a top-level procedure that composes the overall design. This top-level procedure
would typically be at the end of a file which imports all the other relevant design files. This
importing feature forms a simple but effective way of allowing component reuse and maps simply
onto the notion of the imported procedures being either pre-compiled handshake circuits or existing
(possibly hand crafted) library components. Declarations have a syntactically defined order (left to
right, top to bottom) with each declaration having its scope defined from the point of declaration to

38
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the end of the current (or importing) file. Thus Balsa has the same simple Odeclare before useO rult
of C and Modula, though without any facility for prototypes. Each Balsa design file has the

following simplified structure of Tabla.3!. A complete syntax for the Balsa language is given in
Section 11.3. on page 131.

alen = (import [ &otted-pathii] )* douter-declarationsfi
&lotted-pathfi = &dentiperfii(. &dentipef)*
duter-declarationsii ::=  (duter-declarationfi)*

douter-declarationfi type &dentiberfiis &ype-declarationfi

| constant  Adentipefi= &expressionfi(: &ypefi)?
| procedure &dentipefiis ddentiperfi( ( &rocedure-formalsfi) )?

| procedure ddentipei( ( drocedure-formalsii) )?is
(local )?é&nner-declarationsfibegin &ommandfiend

| function  ddentipefi( ( &unction-formalsil) )?=
dexpressionfi(: &ypefi)?

| if &xpressionfithen &uter-declarationsfi
(| &xpressionfithen &uter-declarationsfi)*
(else &uter-declarationsfi)?
end

Table 3.3:Balsa File Structure

Declarations Declarations, shown in Tab83, introduce new type, constant or procedure names into the global
namespaces from the point of declaration until the end of the enclosing block (or file in the case of
top-level declarations). There are three disjoint namespaces: one for types, one for procedures and ¢
third for all other declarations. At the top level, only constants are this last category, however,
variables and channels are included in procedure local declarations. Where a declaration within an
enclosed/inner block has the same name as one previously made in an outer/enclosing context, the
local declaration will hide the outer declaration for the remainder of that inner block.

Procedure names may be aliased. This feature is useful when instantiating particular instances of
parameterised procedure definitions [see OA variable width buffer definitionO on page 49].

Procedures Procedures form the bulk of the a Balsa description. Each procedure has a name, a set of ports anc
an accompanying behavioural description. Procedure declarations follow the pattern &4 &ble

drocedure-formalsfi ::=  dormal-parametersfi
| dormal-portsfi

| dormal-parametersii; &ormal-portsfi

parameter &dentiperdi: aypefi
(; parameter &dentiperdi: aypefi)*

dormal-parametersii ::

dormal-portsii = &ormal-portii(; &ormal-portfi)*

Table 3.4:Procedure Port Declarations

1. Anextended form of BNF is used to describe the syntax. A tearh {lenotes zero or more
repetitions of the terra and (a )? indicates that the teranis optional
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Shared
procedures

Functions

Conditional
ports and
declarations

&ormal-portfi = (array &angefiof )? (input |output ) &dentiPerdi: &ypefi
| (array é&angefiof )?sync é&dentipersi

| if &expressionfithen &ormal-portsfi
(| &expressionfithen &ormal-portsfi)*
(else &ormal-portsfi)?
end

aangefl = &expressionfi
| &expressionfl.. &xpressionii

| over &ypefi
dnner-declarationsii ::=  ( dnner-declarationfi)*

dnner-declarationil ;=  &uter-declarationfi

variable  &dentibersi: &ypefi

&han-optsii(array &angefiof )?channel ddentipersi: &ypef
&han-optsii( array &angefiof )?sync ddentipersi

shared &dentiperfiis (local )?&nner-declarationsi
begin &ommandfiend

| if &xpressionfithen dnner-declarationsfi
(| &xpressionfithen &nner-declarationsfi)*
(else @&nner-declarationsfi)?
end

Table 3.4:Procedure Port Declarations

complete syntax for the Balsa language is given in Section 11.3. oi®Bg&ach procedure may

have a number of ports each of which can be connected to a channel. The sync keyword introduces
nonput (dataless) channels. Both nonput and data bearing channels can be members of Qarraye
channelsO. Arrayed channels allow numeric/enumerated indexing of otherwise functionally separate
channels. Examples of their use can be found in OPipelines of variable width and depth®®n page

Procedures can also carry a list of local declarations which may include other procedures, type and
constants. The keywotdcal is optional for declarations which immediately follow the procedure
declaration since the semantics of the Balsa language ensure that they must be local to the procedur
in question.

Normally each call to a procedure generates separate hardware to instantiate that procedure. A
procedure may be shared, in which case calls to that procedure access common hardware thereb
avoiding duplication of the circuit at the cost of some multiplexing to allow sharing to occur. An
example of the use of a shared procedure is given in OSharing hardwareO on page 44.

In many programming languages, functions can be thought of as procedures without side affects
returning a result. However, in Balsa there is a fundamental difference between functions and

procedures. Parameters to a procedure define handshaking channels that interface to the circuit
block defined by the procedure. Function parameters on the other hand are merely typed identifiers.
BalsaOs functions return results in a manner similar to functions in other programming languages.

Declarations, including procedure and port declarations may be conditional. Examples are shown
below.

constant debug = true

if debug then

40
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Conditional
ports

Variable ports

procedure plis
begin
print "this is the debug version of procedure p1"
end
else
procedure plis
begin
print "this is the production version of procedure p1"
end
end

Two definitions ofpl are provided: the actual definition used depends on the value of the constant
debug .

Port declarations and variables may also may be conditional. The next example is a the 2-place
buffer described in OParallel composition and module reuseO at2phgernal channels such as

that connecting the two 1-place buffers are not visible. It is occasionally necessary for debugging
purposes to make an internal channel visible. It must therefore be included as a port in the procedure
declaration. A conditional port declaration allows a single procedure definition to be used for both
debugging and production purposes.

constant debug = true

procedure bufl (input i : byte ; output o : byte) is
variable x : byte

begin

loop
i>X;0<-X
end - loop

end -- procedure bufl

procedure buf2 (
inputi : byte;
if debug then output c : byte end;
output o : byte
)is
if not debug then channel ¢ : byte end
begin
bufl(i,c) || bufl(c,0)
end -- procedure buf2

The guard expressions must in all cases be constant at compile time/parameterised procedure
expansion time.

Ports to procedures can be connected directly to variables to allow communications on the
procedureOs ports to perform reads and writes to the variable.

procedure write_zero( output o : byte) is
begino<-0end

variable v : byte
write_zero( -> V)

In this example, zero is written into the variable Variable read/writes can be used as an
abbreviated way of passing expressions to a procedure. For example:

cl<-exprl||
c2<-expr2 ||
c3->varl Il
procl(cl, c2, c3)

can be replaced by
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procl( <- exprl, <-expr2, ->var)

One advantage of this form of port connection is the ability for the value of the expression to be read
an arbitrary (including zero number of times) number of times. For example:

¢ <- expr || proc(c)

If proc attempts to read more than once, deadlock will occur (because of course the write to
channek fromexpr will only occur once). A way round the problem is the description:

loop ¢ <- expr end || proc(c)

However the resulting composition is permanent everdf itself is non-permanent. A permanent
circuit is one that never returns B the consequence being that sequential compositions of such
circuits are liable to deadlock, thus the following form may be preferred:

proc( <- expr)

This form of description is more efficient because of pull-style of Balsa implementations.

3.6. Examples

In this section various designs of counter are described in Balsa. In flavour, they resemble the

specifications of conventional synchronous counters, since these designs are more familiar to

newcomers to asynchronous systems. More sophisticated systolic counters, better suited to an
asynchronous approach are described in OSystolic countersO 55 pageis example below, the

role of the clock which updates the state of the counter is taken by a dataless sync channel, namec
aclk. The counter issues a handshake request over the sync channel., the environment responds witl
an acknowledge completing the handshake and the counter state is updated.

Modulo-16 -- countl6a.balsa: modulo 16 counter
counter import [balsa.types.basic]
procedure count16 (sync aclk; output count : nibble) is
variable count_reg : nibble
begin
loop
sync aclk ;
count <- count_reg ;
count_reg := (count_reg + 1 as nibble)
end
end
This counter interfaces to its environment by means of two channels: the dayaledsannel and
the channetountwhich outputs the current value of the counter. The internal register implied by the
variable count_regand the output channel are of typibble (4 bits) which is predefined in
balsa.types.basidfter count_reg is incremented, the result must be cast back to type nibble. Note
that issues of initialisation/reset have been ignored. The Balsa simulator gives a warning when
uninitialised variables are accessed.
Removing The auto-assignment statement in the example above, although concise and expressive, hides thi
auto- fact that in most back-ends, a temporary variable is created so that the update can be carried out in ¢
assignment race-free manner. By making this temporary variable explicit, advantage may be taken of its
visibility to overlap its update with other activity as shown in the example below.
-- countl6b.balsa: write-back overlaps output assignment
import [balsa.types.basic]
procedure count16 (sync aclk; output count : nibble) is
variable count_reg, tmp : nibble
begin
loop
42 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06



3.6. Examples

Modulo-10
counter

A loadable up/
down counter

sync aclk;
tmp = (count_reg + 1 as nibble)||
count <- count_reg;
count_reg :=tmp
end
end

In this example, the transfer of the count register to the output channel is overlapped with the
incrementing of the temporary shadow register. There is some slight area overhead involved in
parallelisation and any potential speed-up may be minimal in this case, but the principal of making
trade-offs at the level of the source code is illustrated.

The basic counter description above can be easily modified to produce a modulo-10 counter. A
simple test is required to detect when the internal register reaches its maximum value and then to
reset it to zero.

-- countl0a.balsa: an asynchronous decade counter
import [balsa.types.basic]

type C_size is nibble
constant max_count=9

procedure count10(sync aclk; output count: C_size) is
variable count _reg : C_size
variable tmp : C_size
begin
loop
sync aclk;
if count_reg /= max_count then
tmp := (count_reg + 1 as C_size)
else
tmp:=0
end || count <- count reg ;
count_reg :=tmp
end - loop
end --begin

This example describes a loadable up/down decade counter. It introduces many of the language
features discussed earlier in the chapter. The counter requires 2 control bits, one to determine the
direction of count, and the other to determine whether the counter should load or inc(dec)rement on
the next operation. The are several valid design options; in this exacopletl0bbelow, the

control bits and the data to be loaded are bundled together in a single cimasigs,

-- count10b.balsa: an asynchronous up/down decade counter
import [balsa.types.basic]

type C_size is nibble
constant max_count =9

type dir is enumeration down, up end
type mode is enumeration load, count end

type In_bundle is record
data: C _size;
mode : mode;
dir : dir

end

procedure updown10 (input in_sigs: In_bundle; output count: C_size) is
variable count_reg : C_size
variable tmp : In_bundle
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begin
loop
in_sigs ->tmp; -- read control+data bundle
if tmp.mode = count then
case tmp.dir of
down then -- counting down

if count_reg /=0then
tmp.data := (count_reg - 1 as C_size)

else
tmp.data := max_count
end
| up then -- counting up

if count_reg /= max_count then
tmp.data := (count_reg + 1 as C_size)

else
tmp.data :=0
end
end -- case tmp.dir
end;
count <- tmp.data || count_reg:=tmp.data
end
end
The example above illustrates the usi&tohen E else andcase control constructs as well the

use of record structures and enumerated types. The use of symbolic values within enumerated types
makes the code more readable. Test harnesses which can be automatically generated by the Bals
system [see OSimulation.O on d&jean also read the symbolic enumerated values. For example,
here is a test file which initialises the counter to 8, counts up, testing that the counter wraps round to
zero, counts down checking that the counter correctly wraps to 9.

{8, load, up} load counter with 8
{0, count, up} countto 9
{0, count, up} count & wrap to 0
{0, count, up} countto 1
{0, count, down} countdown to O
{0, count, down} countdown to 9
{0, count, down} count down to 9
{1, load, down} load counter with 1
{0, count, down} countdown to O
{0, count, down} count down & wrap to 9
Sharing In Balsa, every statement instantiates hardware in the resulting circuit. It is therefore worth
hardware examining descriptions to see if there any repeated constructs that could either be moved to a
common point in the code or replaced by shared proceduresuhtlObabove, the description
instantiates two adders: one used for incrementing and the other for decrementing. Since these two
units are not used concurrently, area can be saved by sharing a single adder (which adds either +1 o
-1 depending in the direction of count) described by a shared procedure. The code below illustrates
how count10bcan be rewritten to use a shared procedure. The shared proggédusebcomputes
the next count value by adding the current count value to a vaiiahleshich can take values of +1
or -1. Note that to accommodate these valinesnust be declared asigned bits.
The area advantage of the approach is shown by running breezeetwgt.0bhas a cost of 2141
units, whereas the shared procedure version has a cost of only 1760. The relative advantage become
more pronounced as the size of the counter increases.
-- count10c.balsa: introducing shared procedures
import [balsa.types.basic]
type C_size is nibble
constant max_count =9
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type dir is enumeration down, up end
type mode is enumeration load, count end
type inc is 2 signed bits

type In_bundle is record
data: C size;
mode : mode;
dir : dir
end
procedure updown10 (input in_sigs: In_bundle; output count: C_size) is
variable count_reg : C_size

variable tmp : In_bundle
variable inc : inc

shared add_sub is

begin
tmp.data:= (count_reg + inc as C_size)
end - begin
begin
loop
in_sigs -> tmp; -- read control+data bundle

if tmp.mode = count then
case tmp.dir of
down then -- counting down
if count_reg /= 0then
inc:=-1;
add_sub()
else
tmp.data := max_count
end --if
| up then -- counting up
if count_reg /= max_count then
inc:=+1;
add_sub()
else
tmp.data =0
end --if
end -- case tmp.dir
end; - if
count <- tmp.data || count_reg:=tmp.data
end - loop
end --begin

In order to guarantee the correctness of implementations, there are a number of minor restrictions on
the use of shared procedures

¥ shared procedures can not have any arguments

¥ shared procedures can not use local channels

¥ if a shared procedure uses elements of the channel referencegktty astatement [see
OHandshake EnclosureO on page 55], the procedure must be declared as local within the

body of thatelect block.
A OwhileOloop An alternative description of the basic modulo-10 counter employghtlee construct:
description -- count10d.balsa: modulo 10 counter alternative implementation
import [balsa.types.basic]

type C_size is nibble
constant max_count =10
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procedure count10(sync aclk; output count: C_size) is
variable count_reg : C_size
begin
loop
loop while count_reg < max_count then
sync aclk;
count <- count_reg;
count_reg:= (count_reg + 1 as C_size)
end; -- loop while
count_reg:=0
end --loop
end --begin

Pitfalls in loop Users should be be vigilant in specifying loop termination conditions correctly. The finite bit length
terminations of variables inherent in Balsa descriptions can cause problems for the unwary. Consider the
following code that iterates around the loop 10 times witiking values from 0 E 9.

variable x: 4 bits
begin
loop while x <=9 then
print "value of x is: ", X;
X:=(x+ 1 as 4 hits)
end
end

Suppose it is now required to loop round all values,dfe. from OE 15. Simply changing the
comaprison constant causes the code never to terminate:

variable x: 4 bits
begin
loop while x <= 15 then -- never terminates
print "value of x is: ", X;
X = (X + 1 as 4 hits)
end
end

The condition is always satisfied becawszn only be in the range 0 E 15 wrapping round back to
0. There are two solutions:

variable x: 4 bits

begin
loop

print "value of x is: ", X

while x < 15 then continue
also x := (x + 1 as 4 hits)
end

end

A more elegant solution that relies on recognizing and exploiting the wrapping back to 0 is:

variable x: 4 bits
begin
loop
print "value of x is: ", X;
X:= (X +1as 4 bits)

while x/=0

end

end
The danger of In many programming languageshile loops andor loops can be used interchangeably. This is
OforO loops not the case in Balsa:fa@ loop implements structural iteration, in other words, separate hardware

is instantiated for each pass through the loop. The following description, which superficially appears
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very similar to the while loop example obuntlOdpreviously, appears to be correct: it compiles
without problems and simulation appears to give the correct behaviour. However, breeze-cost
reveals an area cost of 11577, a factor 10 increase. It is important to understand why this is the case
Thefor loop is unrolled at compile time and 10 instances of the circuit to increment the counter are
created. Each instance of the loop is activated sequentially. The handshake circuit graph that be
produced is rather unreadable; settireg_count to 3 will be produce a more readable plot.

-- count10e.balsa: beware the OforO construct
import [balsa.types.basic]

type C_size is nibble
constant max_count =10

procedure count10(sync aclk; output count: C_size) is
variable count_reg : C_size

begin
loop
for;iin 1 .. max_countthen
sync aclk;

count <- count_reg;
count_reg:= (count_reg + 1 as C_size)
end; -for ;i
count_reg:=0
end --loop
end --begin

If, instead of using the sequentia construct, the parallér construct or|| ... ) is used, the
compiler will give error message complaining about read/write conflicts from parallel threads. In
this case, all instances of the counter circuits would attempt to update the counter register at the
same time leading to possible conflicts. If you understand the resulting potential handshake circuit,
then you are well on the way to a good understanding of the methodology.

Selecting The asynchronous circuit described below merges two input channels into a single output channel, it

channels may be thought of a self selecting multiplexer. $#lect statement chooses between the two input
channels andb by waiting for data on either channel to arrive. When a handshake onasithier
commences, data is held valid on the input and the handshake not completed until the end of the
select ¥ end block. This is an example of handshakelosureand avoids the need for an internal
latch to be created to store the data from the input channel; a possible disadvantage is that because ¢
the delayed completion of the handshake, the input is not released immediately to continue
processing independently. In this example, data is transferred to the output channel and the input
handshake will complete as soon as data has been removed from the output channel. An example o
a more extended enclosure can be found in the code for the population counter [see OA Populatior
CounterO on page 65].

-- mergel.balsa: unbuffered Merge
import [balsa.types.basic]

procedure merge (input a, b : byte; output ¢ : byte) is
begin
loop
selectathenc<-a -- channel behaves like a variable
| bthenc<-b --ditto
end --selecta
end --loop
end -- procedure merge

The system designer must ensure that inpuaadb never arrive simultaneously. In many cases,
this is not a difficult obligation to satisfy. Howeveraifandb are truly independent, the possibility

of metastability failure arises just as in a synchronous system. In thisaege, can be replaced

by arbitrate which allows an arbitrated choice to be made. In this case, in contrast to a
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synchronous implementation, there is no possibility of failure, the delay-insensitive handshake
circuit paradigm ensures that no matter how long the arbiter takes to resolve, the circuit will still
operate correctly. Arbiters are relatively expensive both in area and speed and may not be possible
in some gate array technologies and so should not employed unnecessarily.

-- merge2.balsa: unbuffered arbitrated MUX.
import [balsa.types.basic]
procedure merge2 (input a, b :byte; output ¢ :byte) is
begin
loop
arbitrate athenc <-a -- channel behaves like a variable
[ bthenc<-b -- ditto
end -- arbitrate
end - loop
end --begin

48
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Parameterised & Recursively
Debned Circuits

4.1. Summary

Parameterised procedures allow designers to develop a library of commonly used components and
then to instantiate those structures later with varying parameters. A simple example is the
specification of a buffer as a library part without knowing the width of the buffer. Similarly, a
pipeline of buffers can be defined in the library without requiring any knowledge of the depth of the
pipeline when it is instantiated.

4.2. Parameterised descriptions

A variable The examplgbufferlbelowdefines a single place buffer with a parameterised width:
width buffer

debnition -- pbufferl.balsa - parameterised buffer example

import [balsa.types.basic]

-- single-place, parameterised-width buffer definition
procedure Buffer (
parameter X : type ;
inputi: X;
outputo : X
)is
variable x : X
begin
loop
i>x;
0<-X
end - loop
end -- procedure Buffer

-- now define a byte-wide buffer
procedure Buffer8 is Buffer(byte)
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Pipelines of
variable width
and depth

-- now use the definition
procedure testl(input a : byte; output b : byte) is
begin
Buffer8(a,b)
end -- procedure testl

-- alternatively
procedure test2(input a : byte; output b : byte) is
begin
Buffer(byte, a,b)
end -- procedure test2

The definition of the single place buffer given previously [see OA single-place bufferO 6hipage
modified by the addition of the parameter declaration which defirniesbe of typaype . In other

wordsX is identified as being a type to be refined later. Once an abstract parameter type has been
declared, it can be used in later declarations and statements: for example, inputiclsadef@hed

as being of typ&. No hardware is generated for the parameterised procedure definition itself.

Having defined the procedure, it can be used in other procedure defirifas. defines a byte

wide buffer that can be instantiated as required as shown, for example, in proesdure
Alternatively, a concrete realisation of the parameterised procedure can be used directly as shown in
procedureest2 . Note that a test harness can be attached directly to the defiutie’8 with

implied ports ando.

The next example illustrates how multiple parameters to a procedure may be specified. The
parameterised buffer element is included in a pipeline whose depth is also parameterised.

-- pbuffer2.balsa - parameterised pipeline example
import [balsa.types.basic]
import [pbufferl]

-- BufferN: a n-place parameterised, variable width buffer
procedure BufferN (

parameter n : cardinal ;

parameter X : type ;

inputi: X;

output o : X
)is

procedure buffer is Buffer(X)
begin
ifn=1then -- single place pipeline
buffer(i, o)
| n>=2then -- parallel evaluation
local array 1 .. n-1 of channel ¢ : X
begin
buffer(i, c[1]) || -~ first buffer
buffer(c[n-1], o) || -- last buffer
for||iin1..n-2 then
buffer(cfi], c[i+1])
end
end
else print error, "zero length pipeline specified"
end
end

-- Now define a 4 deep, byte wide pipeline.
procedure Buffer4 is BufferN (4, byte)

Bufferis the single place parameterised width buffer of the previous example and this is reused by
means of the library statememport[pbufferl] . In this codeBufferNis defined which in a very
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An n-way
multiplexer

similar manner to the example described in OPlacing multiple structuresO b8 pagept that the
number of stages in the pipeline, n, is not a constant but is a parameter to the definition of type
cardinal. Note that this definition includes some error checking. If an attempt is made to build a zero
length pipeline during a definition, an error message is printed.

4.3. Recursive debnitions

Balsa allows a form of recursion in definitions (as long as the resulting structures can be statically
determined at compile time). Many structures can be elegantly described using this technique which
forms a natural extension to the powerful parameterisation mechanism. The remainder of this
chapter illustrates recursive parameterisation, OBalsa Design ExamplesO & ghage other
interesting examples.

An n-way multiplexer can be constructed from a tree of 2-way multiplexers. A recursive definition
suggests itself as the natural specification technique: an n-way multiplexer can be split into two n/2-
way multiplexers connected by internal channels to a 2-way multiplexer.

NPy — I —
LN — |
1 outy
i out "Pri2-1 |:> out
3 n
: P2 |::>
1 ;
|npn_2 |::> !
"oy ) L —
Before Decomposition After Decompostion

Figure 4.1: Decompostion of an n-way Multiplexer

--- Pmux1.balsa: A recursive parameterised MUX definition
import [balsa.types.basic]

procedure PMux (
parameter X : type;
parameter n : cardinal;
array n of inputinp : X;
outputout : X)is
begin
if n = 0 then print error,"Parameter n should not be zero"
| n=1then
loop
select inp[0] then
out <- inp[0]
end -- select
end -- loop
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Commentary
on the code

A balsa test
harness

Handshake
multiplier

| n=2then
loop
select inp[0] then
out <- inp[0]
| inp[1] then
out <- inp[1]
end -- select
end -- loop
else
local
channel outO, outl : X
constant mid = n/2
begin
PMux (X, mid, inp[0..mid-1], outO) ||
PMux (X, n-mid, inp[mid..n-1], outl) ||
PMux (X, 2, {out0,out1}, out)

end -- begin
end - if
end --begin

-- Here is a 5-way multiplexer
procedure PMux5Byte is PMux(byte, 5)

The multiplexer is parameterised in terms of typee of the inputs and the number of channels

The code is straightforward. A multiplexer of size greater than 2 is decomposed into two
multiplexers half the size connected by internal channels to a 2-1 multiplexer. Notice how the
arrayed channelgutO andoutl are specified as a tuple. The recursive decomposition stops when

the number of inputs is 2 or 1 (specification of a multiplexer with zero inputs generates an error).

The code below illustrates how a simple Balsa program can be used as a test harness to generate te
values for the multiplexer. The test program is actually rather naive.

-- test_pmux.balsa - A test-harness for Pmux1
import [balsa.types.basic]
import [pmux1]

procedure test (output out : byte) is
type ttype is sizeof byte + 1 bits
array 5 of channel inp : byte
variable i : ttype
begin
begin
i=1;
loop while i <= 0x80 then
inp[0] <- (i as byte);
inp[1] <- (i+1 as byte);
inp[2] <- (i+2 as byte);
inp[3] <- (i+3 as byte);
inp[4] <- (i+4 as byte);
i:= (i +ias ttype)
end
end || PMux5Byte(inp, out)
end

Consider a procedure that for each handshake on an input port generates n handshakes on an outp!
port. A simple solution would use tHer construct, but a more elegant (and less expensive)
approach is to use the recursive approach.

If n is even, the repeater can be composed from two n/2 repeaters. If n is odd, the repeater can be
composed from two n/2 repeaters together with an additional extra handshake.

52
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-- GenHS. A recursive procedure generating n Handshakes for each call
import [balsa.types.basic]

procedure repeat (parameter n : cardinal; synco)is
begin
if n =0 then
print error, "Repeat n must not be 0"
| n=1then
sync o
else
local
shared doNext is begin repeat(n/2, o) end
begin
if (n as bit) then - nis odd
sync o
end;
doNext () ; doNext ()
end
end
end

procedure Genll is repeat(11)

procedure test (sync i, 0) is
begin
loop
synci;
Genll(o) -- Generate 11 Handshakes
end -- loop
end

A shared procedurdoNext is responsible for the recursive call of repeat with half the repetiton
count. Note thatloNext is local to the mairepeat procedure.

4.4, Pitfalls with Parameterised Procedures.

A parameterised procedure often contains a choice in its body to instantiate one of several options
depending on parameters that are defined in its call. It is possible that compile time errors in the
parameterised procedures will not be revealed until particular parts of the code are required. Thus, in
the following example, ifproc is compiled as library component no error is reported; further if it is
instantiated with n=1, the code is also compiled without error. However, if the procedure is called
with n=2 as in procedurg2, a compile error will be reported. The code is a precis of code that
existed in an example in previous editions of the Balsa Manual. The point is that errors in the
descriptions of parameterised procedures may not reveal themselves immediately.

procedure pproc(
parameter n : cardinal ;
parameter w: cardinal ;
output o : w bits
)is
begin
if n=1then
0<- (1 asw bits)
else
0<-(2asw) -- Note this should give a compile time error
end
end
-- procedure pl is pproc(1, 8) -- this will compile
-- procedure p2 is pproc(2, 8) -- this will not compile
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Handshake Enclosure

5.1.  Summary

Normally handshakes are points of synchronisation for assignments between channels or

assignments between channels and variables. A transfer is requested and when all parties to the
transaction are ready, the transfer completes. After completion of the handshake, the data provider is
free to remove the data. If the data on a channel is required more than once, it must be stored in a
variable. Balsa has two language constructs that allow the handshake on a channel to be held oper
whilst a sequence of actions completes. The handshake is said to enclose the other commands.

There are several implications of handshake enclosure:

¥ since data is not remed until the end of the handshake enclosure, intermediate storage of
the data is not required

¥ data does not ke to be read once and only one: it may be read many times or inadreed ne
at all without causing deadlock.

¥ the enclosing handshake does not complete until all its enclosed commands complete: this
has performance implications since the tree of handshakes connected to the enclosing
handshake cannot themselves complete.

Handshake enclosure can be achieved by use eélthe command or by assigning channels into

a command using the syntagthannels> -> then command end . An example of the use of

select was illustrated in the description of a merge circuit in OSelecting channelsO 4 page

this example, the fact that the handshake on the chosen input channel is held open allows a buffer-
free description to be used B a more natural description of the mux-like structure than one which
includes a storage element. One side effect afdlhet command is that a subcircuit with passive

ports is generated B Balsa normally generates active ported circuits.

5.2.  Systolic counters

A more complex example illustrating handshake enclosure is a description of systolic counters
originally described by Kees van Berkdl].[ These elegant counters possess the properties of
constant response time and a constant upper bound on power consumption regardless of the lengtt
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of the counter. The basic idea is to recursively divide a modulo-n counter into a head counter and a
tail n/2 counter as shown in Figure 5.1.

counter n

L arg ht

counter n/2
- b_right

Figure 5.1: Counter Decomposition

The dervation of the cells is gen in van Berkel. The head cell is eitheZ@unt-Oddcell (CO) for
odd n or aCount-Evencell (CE) for @en n. For CE cells, the head celteetively doubles each
a_right  communication of the n/2 countewves its left-handa_left channel then passing
b _right overb _left after the n communications aloag left A Count-Oddcell issues anxé¢ra
handshag& to its left prior to handshake from right to b_left A special base casmunt-1cell
initiates a handshake on dsleftport followed by a handshake on litsleft port.

Note that ports_leftandb_leftare actre ports whereaa rightandb_rightare passie ports.The

counter is OprimedO by handshak®siriy from right to left from theount-1cell. The head cell
chooses between handshakes arrivingaoright and b_right The sequencing implicit in the
description guarantees mutuallxctusive use of the channels so that a non-arbitrated select
construct may be used to implement the choice. The architecture of the counter is somewhat similar
to that described in Section, OHandshake multiplier,© on page 52.

The descriptions of the basic cells are:

-- count-even cell
procedure ce(sync a_left, a_right, b_left, b_right) is
begin
loop
select a_right then
sync a_left ; sync a_left
| b_right then
sync b_left
end
end
end

-- count-odd cell
procedure co(sync a_left, a_right, b_left, b_right) is
begin
loop
select a_right then
sync a_left ; sync a_left
|  b_right then
sync a_left ; sync b_left
end
end
end

-- count-1 cell
procedure cl(sync a, b) is
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begin
loop
sync a; syncb
end
end

A systolic

modulo-11 11=1+25 =1+ 251 + 2+2) = 1 + 21 + 22*1))
counter

Consider the case of a modulo-11 counter. It can be decomposed as:

The composition of the basic cells is shown in Figure Bhi2. description of the counter is simple:

a0 al a2 a3

CO CE C1
b0 €O bl b2 b3

Figure 5.2: Modulo-11 Systolic Counter

procedure countl1(sync a0, b0 ) is
sync al, bl, a2, b2, a3, b3
begin
co(ao, a1, b0, b1)||
co(al, a2, b1, b2) ||
ce(az, a3, b2, b3) ||
c1(a3, b3)
end

The behaviour of the circuit is shown in the trace of Fi@ﬁé An intriguing feature of this
description is that there appears to be no state-holding variables defining the current state of the

counter. The answer to this paradox is that the state of the counter is distributed over the control
logic defined by the circuit description.

i N GTKWave

i From:iD 3 To: |434 ns Primary fparker: 326 ns Cursor: 287 ns
Slgnals.

Time

| count11.a0:2=
|zount11.a1:12=
| count?l.a2:3=
| countl1.a36=
| countl1.h0:3=
|zount1.b1:11=
| countl1.h2:8=
| count1hi3:5=

TR |

Figure 5.3: Behaviour of a Modulo-11 Systolic Counter

All even cells The enclosed, nondfffered, semantics of the Balsa select statement may leads to interesting patterns

of behaiour. This is not obvious from the previous modulo-11 counter examphleevdy it is

1. The traces have been rearranged vertically to make the behaviour clearer.
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All odd cells

exposed by a modulo-8 counter composed entirely from cougmt-stages (plus a count-1 stage).
EachCEmodule avaits a handshake on its right-hamgort. Upon initiation of this handshake, the
module issues a handshake to its left-hangbrt. Havever this handshake cannot immediately
complete because the left-hand receiving port handshake encloses a command to issue & handshal
to its left. Thus the operation proceeds from the count-1 cell at the extreme right issuing a leandshak
which ripples through to the interfaagort on he extreme left. The acknowledgement ripples back

to the count-1 cell whereupon the handshake oib ttfeannel ripples from right to left. As can be

seen in Figure 5.4, the result is a highly sequential mode of operation.

8086 Y [X] GTKWave

‘ From: ]D § To: | 367 ns Primary marker: 276 ns Cursor: 45 ns
E-Signals----------- |

Time

| countd.al:z=
| countd.al:2l=
| countd.az:d=
| countd.ad’=
| countdho:3=
| countg.b1:20=
| counts.bzi13=
| countd b6 =

= T

Figure 5.4: Behaviour of a Modulo-8 Systolic Counter

A modulo-15 counter composed entirely from count-odd stages exhibits similar behaviour as shown
in Figure5.5. However, it is possible to rewrite the description of the count-odd stage to introduce
extra concurrency:

f 8086 [%] CTKWave

1 From: iD H To: {535 ns Primary marker: 448 ns Cursor: 388 ns

ETime
| counti5.an:z
| count15.a1:12
| count15.22:9
| count15.a3:6
| count15.b0:3
| count15h1:11
| count15.h2:3
| count15b3:5

Figure 5.5: Behaviour of a Modulo-15 Systolic Counter

procedure coDec(sync a_left, a_right, b_left, b_right) is
begin
loop
sync a_left;
select a_right then
sync a_left
|  b_right then
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sync b_left
end
end

Here the extra handshake to the left has been taken outside of the select command. All stages cat
simultaneously issue a handshake to their left and then await the incoming handshake which just
been initiated on its right. As can be seen from Fi§uethere is a significant ichange in the

pattern of behaviour. Whetehr or not this translates to a change in performance depends on the

relative speeds of the handshake components in the synthesised circuits..

X/ GTKWave

‘ From: 10 § To: |423 ns Primary marker: 352 ns Cursor: 358 ns

Slgnals. .........
Time

|ountl 5v2.a0:2
unt15%z.a1:12
|:ount1 52 a2:9
|:ount15¥2.a3:6
:ount15Ye b0:3
| unt1 3%z 111
:ount1 5V e bz:g
:ount1 5V e bas

Figure 5.6: Behaviour of a Modulo-15 Systolic Counter

A decoupled The effects of the enclosed behaviour ofdgdlect command may be mitigated by decoupling the

all even cell reading of the selected channel from subsequent actions. It is necessary to record which of the two
channelsa or b the handshake actually arrived on. This may be done by identifying the channel in a
single bit register as shown below:

procedure ceVar(sync a_left, a_right, b_left, b_right) is
variable x : bit
begin
loop
select a_right then
x:=0
| b_rightthen
x=1
end;
case x of
Othensync a_left; sync a_left
| 1then sync b_left
end
end
end

Substituting this new version of the count-even cell in the modulo-8 counter results in the behaviour
of Figure5.7. As can be seen, the channel activity has an entirely different characteristic from the
counter of Figure 5.4.

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 59



5.3. Active enclosure

X GTKWave

>
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| countiveh

I

Figure 5.7: Behaviour of Non-Enclosed Modulo-8 counter

Parameterised  The previous examples explicitly enumerated the constituent modules to emphasise how the

version counters were composed. A more generic approach is to define a parameterised counter. The
example below also uses a conditional declaration to choose between a count-even module with
enclosed behaviour and one with a decoupled behaviour. It also offers a choice between decoupled
and non-decoupled implementations.

-- parameterised systolic counter with choice of decoupled modules.
procedure countN (

parameter isDecoupled : bit ;

parameter n : cardinal ;

synca, b
)is

sync a_int, b_int
begin

if n = 0 then print error, OParameter n should not be zeroO

| n=1thencl(a, b)

else

if (n as bit) then --odd
if isDecoupled then
coDec(a, a_int, b, b_int)

else
co(a, a_int, b, b_int)
end -- if isDecoupled
else

if isDecoupled then
ceDec(a, a_int, b, b_int)

else
ce(a, a_int, b, b_int)

end -- ifisDecoupled

end || countN(isDecoupled, n/2, a_int, b_int)
end -ifn=0
end -- procedure countN

procedure Count11PND is countN(true,11)
procedure Count11PD is countN(false,11)

5.3.  Active enclosure

Theselect command provides a means of choosing between a number of input channels. It also
has two significant side effects

60 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06



5.4. Use of enclosed channels.

¥ aninput port attached te@eect command is a passive rather than an active port. The
ability to coerce a port to be passirather than aete) should normally be of little concern
to users except when interfacing to external circuits.

¥ the handshake behaviour, as discussed earlier, has enclosing semantics bringing the
advantages of uniffered channel access and the ability to read a channel multiple times as
well as the disadvantages illustrated in the previous examples.

Since selection can be applied to any number channels (including a single channel), users trying to
exploit the advantages of enclosed selection may be tempted to use select promiscuously. Resist the
temptation, there are some disadvantages: constructs such as:

select a then cmd1 ; select a then cmd2

results in non delay-insensitive behaviour. Furthermore there are inefficiencies associated with the
use of passive-ported structures within the generally pull-driven circuits generated by Balsa. Better
is to use active enclosure and to reserve the useleaf for those occasions when choice is
genuinely required.

Active enclosure D so called because it generates an active-ported structure B is of the form:
<channels> -> then <command> end

As example, consider a channel bearing the flags from the ALU of a processor. The conditions
corresponding to various conditional branches can be computed as shown below.

type Flags is record
V,C, Z,N: bit
end

type Conditions is record
LowerOrSame, CarrySet, Zero, Overflow, Plus, LessThan : bit
end

procedure SetConditions (
input flags : Flags;
output conditions : Conditions
)is
begin
loop
flags -> then
conditions <- {
flags.N or flags.Z,
flags.C,
flags.zZ,
flags.V,
not flags.N,
(not flags.N and flags.V) or (flags.N or not flags.V)
}
end
end
end

54. Use of enclosed channels.

Enclosed channels act rather like variables; there are pitfalls in their use: they may be assigned to
other channels

procedure ex2 (
inputi : byte ;
output 0l : byte ;
output 02 : byte
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)is
variable x1, X2 : byte
begin
loop
select i then
ol<-i;
02 <-i
end
end
end

When copying the value on an enclosed channel to a variable, an assigment operator must be used:

procedure ex3 (
input i : byte
)is
variable x1, X2 : byte
begin
loop
select i then
x1:=i;
X2 =i
print "vars are: ", x1, " ", x2
end
end
end

Because enclosed channels act like variables, the following description is not correct:

-- this example illustrates incorrect of channels
-- variables can't read them in the normal way
-- see example ex3.balsa for the correct method.
procedure ex4 (
inputi : byte
)is
variable x1, x2 : byte
begin
loop
selectithen
i->x1; -- incorrect
i->x2; -- incorrect
print "vars are: ", x1," ", x2
end
end
end

Channels within an active enclosed block also act like variables:

procedure ex6 (
inputi : byte
)is
variable x1, X2 : byte
begin
loop
i ->then
x1:=i;
X2 :=1i;
print "vars are: ", x1, " ", x2
end
end
end
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Balsa Design Examples

6.1. Summary

In this chapter, several moderate size examples are presented that illustrate many of the language
features that have been discussed previously. Many of these descriptions are taken from larger
examples that have been fabricated.

6.2. A Population Counter

This design counts the number of bits set in a word. It comes from the requirement in an AMULET
processor to know the number of registers to be restored/saved during LDM/STM (Load/Store
Multiple) instructions.

The approach taken is to partition the problem into two parts as shown in &iguhaitially,

adjacent bits are added together to form an arrray of 2-bit channels representing the numbers of bits
that are set in each of the adjacent pairs. The array of 2-bit numbers are then added in a recursively
defined tree of adders

-- popcount: count the number of bits set in a word
import [balsa.types.basic]

procedure AddTree (
parameter inputCount : cardinal;
parameter inputSize : cardinal;
parameter outputSize : cardinal;
array inputCount of input i : inputSize bits;
output o : outputSize bits
)is
begin
if inputCount = 1 then
i[0] -> then o <- (i[0] as outputSize bits) end
-- or one of the following (since i & o channels are the same width)
--i[0] -> then o <-i[0] end
-i[0] >0
| inputCount = 2 then
i[0], i[1] -> then
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. AddTree

Figure 6.1: Structure of a bit-population counter

0 <- (i[0] + i[1] as outputSize bits)
end
else
local
constant lowHalfinputCount = inputCount / 2
constant highHalflnputCount = inputCount - lowHalflnputCount

channel lowO, highO : outputSize - 1 bits
begin
AddTree (lowHalflnputCount, inputSize, outputSize - 1,
i[0..lowHalflnputCount-1], lowO) ||
AddTree (highHalfinputCount, inputSize, outputSize - 1,
iflowHalflnputCount..inputCount-1], highO) ||
AddTree (2, outputSize - 1, outputSize, {lowO, highO}, o)
end
end
end

procedure PopulationCount (
parameter n : cardinal;
inputi : n bits;
output o : log (n+1) bits
)is
begin
ifn% 2 =1then
print error, "number of bits must be even"
end; - if
loop
i ->then
ifn=1then
0<-i
| n=2then
0 <- (#[0] + #[1]) --add bits0and 1
else
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Commentary
on the code

Enclosed
Selection

Avoiding
deadlock:

local
constant pairCount=n- (n/2)
array pairCount of channel addedPairs : 2 bits
begin
for || ¢ in O..pairCount-1 then
-- add bits c*2 and c*2 +1
addedPairs[c] <- (#i[c*2] + #i[(c*2)+1])
end ||
AddTree (pairCount, 2, log (n+1), addedPairs, 0)
end -- begin
end - if
end - select
end --loop
end -- begin

procedure PopCount16 is PopulationCount (16)
procedure PopCount2 is PopulationCount (2)

procedure PopCount14 is PopulationCount (14)
-- procedure PopCount3 is PopulationCount (3)

ProceduresddTree andPopulationCount  are parameteriseBopulatonCount  can used to count
the number of bits set in any sized wokddTree is parameterised to allow a recursively defined
adder of any number of arbitrary width vectors.

The semantics of the enclosed handshakeledt allow the contents of the inputto be referred
to several times in the body of thelect  block without the need for an internal latch. An in-depth
discussion of the implications of enclosed selection is given in OHandshake EnclosureO on page 55.

Note that the formation of the sum of adjacent bits is specified by a panallielop.

for || ¢ in O..pairCount-1 then
addedPairsc] <- (#[c*2] + #i[(c*2)+1])

It might be thought that a seriat; loop could be used at, perhaps, the expense of speed. This is
not the case: the system will deadlock illustrating why designing asynchronous circuits requires
some real understanding of the methodology. In this case the adder to which the atdayirsf

is connected requires pairs of inputs to be ready before it can complete the addition and release its
inputs. However, if the sum of adjacent bits is computed serially, the next pair will not be computed
until the handshake for the previous pair has been completed -- which is not possible because
AddTree is awaiting all pairs to become valid: result deadlock!

6.3. A Balsa shifter

General shifters are an essential element of all microprocessors including the AMULET processors.
The following description forms the basis of such a shifter. It implements only a rotate right
function, but it is easily extensible to other shift functions. The main work of the shifter is local
proceduregorBodywhich recursively creates sub-shifters capable of optionally rotating 1, 2, 4, 8 etc
bits. The structure of the shifter is shown in

import [balsa.types.basic]

procedure ror (
parameter X : type;
input d : sizeof X bits;
inputi: X;
output o : X

)is

begin
loop
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Figure 6.2:
select d then
local

constant typeWidth = sizeof X

procedure rorBody (
parameter distance : cardinal;
inputi: X;
)is
outputo : X
)is
)is
local
procedure rorStage (
outputo : X
)is
begin
selectithen
if #d[log distance] then
0 <- (#itypeWidth-1..distance] @
#i[distance-1..0] as X)
else
0<-i
end - if
end -- select
end -- begin
channelc: X
begin
if distance > 1 then
rorStage () ||
rorBody (distance / 2, ¢, 0)
else
rorStage (0)
end - if
end -- begin
begin
rorBody (typeWidth / 2, i, 0)
end -- begin
end -- select
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Testing the
shifter

end - loop
end --begin

procedure ror32 is ror (32 bits)

Another small Balsa test routine for exercising the shifter:

import [balsa.types.basic]
import [ror]

--test ror32
procedure test_ror32(output o : 32 hits)
is
variable i : 5 bits
channel shiftchan : 32 bits
channel distchan : 5 bits
begin
begin
i=1;
loop
shiftchan <- 7 || distchan <-i;
i:= (i+1 as 5 hits)
while i< 31 end
end || ror32(distchan, shiftchan, o)
end --begin

6.4. An Arbiter Tree

This example builds a parameterised arbiter. This circuit forms part of a simple DMA controller
described by Bardsleys]. The architecture of an 8-input arbiter is showmbFunnelis a
parameterisable tree composed of two elemektsHead and ArbTree Pairs of incoming sync
requests are arbitrated and combined into single bit decisioAsbbleadelements. These single

bit channels are then arbitrated betweenAbgTree elements. ArArbTree takes a number of
decision bits from each of a number of inputs (oni therts) and produces a rank of 2-input arbiters

to reduce the problem to half as many inputs each with 1 extra decision bit. Recursive calls to
ArbTree reduce the number of input channels to one (whose final value is returned an port

-- ArbHead: 2 way arbcall: with channel id. output
procedure ArbHead (
syncio, i1;
output o : bit
) is begin loop
arbitrate i0 then o <- 0
| iltheno<-1
end end end

-- ArbTree: a tree arbcall which outputs a channel number
-- prepended onto the input channel's data. (invokes itself
-- recursively to make the tree)
procedure ArbTree (
parameter inputCount : cardinal;
parameter depth : cardinal; -- bits to carry from inputs
array inputCount of input i : depth bits;
output o : (log inputCount) + depth bits
)is
begin
case inputCount of
0, 1 then print error, "can't build an ArbTree with fewer than 2 inputs
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i[o] i[1] i2] i3] i4] if5] if6] if7]

el s ot s
\Arbl—||ead / \Arleead /\Arbl—:ead / \Arbl—llead/

Figure 6.3: 8-input arbiter

| 2then loop
arbitrate i[0] then o <- (#(i[0]) @ #0 as depth + 1 bits)
| i[1]then o <- (#([1]) @ #1 as depth + 1 bits)
end
end
else local
constant halfCount = inputCount / 2
constant halfBits = depth + log halfCount
channel |, r : halfBits bits
begin
ArbTree (halfCount, depth, i[0 .. halfCount-1], 1) ||
ArbTree (inputCount - halfCount, depth,
ifhalfCount .. inputCount-1], 1) ||
ArbTree (2, halfBits, {1}, 0)
end -- local
end --case inputCount
end -- procedure ArbTree

-- ArbFunnel: build a tree arbcall
procedure ArbFunnel (
parameter inputCount : cardinal;
array inputCount of sync i;
output o0 : log inputCount bits
)is
constant halfCount = inputCount / 2
begin
if (2~ log(inputCount)) /= inputCount then
print fatal , "No of Inputs (", inputCount, ") must be a power of 2"
end; - if (log (inputCount) 2 ) /= inputcount
if inputCount < 2 then
print error, “can't build an ArbFunnel with fewer than 2 inputs"
| inputCount = 2 then
ArbHead (i[0], i[1], 0)
| inputCount > 2 then
local

70 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06



6.5. A Stack Description

array halfCount + 1 of channel li : bit
begin
for || jin O .. halfCount - 1 then
ArbHead (i[j*2], i[j*2+1], li[i])

end ||
ArbTree (halfCount, 1, li[0 .. halfCount-1], 0)
end -- local

end - ifinputCount<2
end -- procedure ArbFunnel

A description allowing arbitrary sized arbiters can be founé&umtberEx/ArbTree/arbgen.bala

6.5. A Stack Description

An n-place stack can be decomposed into a single place buffer at the head of the stack together with
a n-1 stack as shown Figure 6.4

i (pushData) nexl — MM
— 00
0 (popData) nexto
Y o
¢ J< @
k(n)-1
oo nextPop > stack(n)
stack(n)

Figure 6.4: A Recurslively DebPned Stack

Operations on the stack consist of either pushing daa on ctaomgbpping data on channelThe
operations are assumed to be sequenced, so no arbitration is required between a push and a pop.
first sight, it appears as ifsalect command choosing between requests on the push channel, i, and
the pop channel, o, is what is needed. Unfortunately, Balsa does not support output selection, that
the ability to choose between ouput channels. It is therefore necessary to supply an extra sync
channel to indicate that a pop is required. The stack therefore waits for either a push request implicit
in the pushData channel, or a pop request on the sync channel OpopO. In the latter case, data is
transferred to the popData chanmelfrom the top of stack buffer and the pop request is propogated
down the stack.

import [balsa.types.basic]

-- The stack description
procedure stack (
parameter depth : cardinal ;
inputi : byte ;
output o : byte ;
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Commentary
on the code

sync pop
)is
variable x : byte
begin
if depth = 1 then
loop
select i then
X =i
| pop then
0<-X
end --selecti
end -- loop
else local
channel nextl, nextO : byte
sync nextPop
begin
stack (depth - 1, nextl, nextO, nextPop) ||
loop
selectithen
nextl <- X ;
X =i
| pop then
0<-X;
sync nextPop || nextO -> x
end -- select i
end --loop
end --local
end --ifdepth=1
end -- procedure stack

procedure stack8 is stack(8)

A single-place stack is just a simple buffer and this case is tested first, otherwise the stack is
decomposed into the parallel composition of a single buffer and a stack of depth n-1. The
decomposition stops when a single-place stack is reached. The top of stack buffer and the internal
stack are connected by local channels nextl, nextO and nextPop. Notice that in the case of a pop
request, the request is forwarded to the internal styok ifextPop ) in parallel with reading the

output of that internal stackdxtO >x ).

6.6. A Simple Processor B The Manchester SSEM (The Baby)

This example describes a simple processor b the SSEM.

The Small-Scale Experimental Machine, known as SSEM, or the "Baby", was designed and built at
the University of Manchester, and made its first successful run of a program on June 21st 1948. It
was the first machine that had all the components now classically regarded as characteristic of the
basic computer. Most importantly it was the first computer that could store not only data but any
(short!) user program in electronic memory and process it at electronic speed. (Also, the electronic
memory was a true Random Access Memory (RAM). A photograph of a reconstruction of the
original machine is shown in Figuées. More details of the history of the machine can be found in
<www.computer50.org>.

The machine is a 32 bit processor with 20s complement number representation allowing up to 256
banks of a 32 word memory .Each memory bank was in the form of a CRT, there being only one
bank in the original implementation. The machine possessed a single register accumulator, a
program counter (referred to in the original design as Cl, although the description below uses the
more usual of name of PC) and an instruction register IR which went under the name of PI in the
original design.
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Figure 6.5: A rebuild of the orginal SSEM

The original machine had only 7 instructions:

JMP ; PC := M[Addr] indirect jump
JRP ; PC := PC + M[Addr] relative jump
LDN ; ACC = -M[Addr] load negative
STO ; M[Addr] .= ACC store result
SuB ; ACC := ACC - M[Addr] subtract
TEST ; if ACC<0 then PC :=PC +1 ; skip

STOP ; halt

The format of the instruction word is shown in Figure 6.6:

Figure 6.6: SSEM instruction format

The CRT address referes to the CRT bank and is always 0 in this description. The line address is the
memory address. The operation of the machine is as follows:

PC:=PC+1
R :=IR[PC]
Decode and execute instruction
B memory operand fetch if required
Repeat until STOP instruction

Note that the first instruction is at address 1.

SSEM types -- Basic types
type word is 32 bits
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Channel and
Variable
Declarations

Useful
functions and
shared
procedures

type LineAddress is 5 hits
type CRTAddress is 8 bits

-- SSEM function types

type SSEMFunc is enumeration
JMP, JRP, -- Abs. and rel. jumps
LDN, STO, -- Load negative and store
SUB, SUB_alt, -- Two encodings for subtract
TEST, STOP -- Skip and stop ;)

end

-- Complete instruction encoding
type SSEMinst is record

LineNo : LineAddress;

CRTNo : CRTAddress;

Func : SSEMFunc
over word

procedure SSEM (
-- Memory interface, MemA MemRNW,MemR,MemW
output MemA : LineAddress;
output MemRNW : bit;
input MemR : word;
output MemW : word ;
-- Signal halt state
sync halted
)is

variable ACC, ACC_slave : word
variable IR : word

variable PC, PC_step : LineAddress
variable MDR : word

variable Stopped : bit

-- Extract an address from a word
function ExtractAddress (wordVal : word) =
(wordVal as SSEMInst).LineNo

shared WriteExtractedAddress is begin
MemaA <- ExtractAddress (IR) end

-- Memory operations, shared procedures

shared MemoryWrite is

begin MemRNW <- 0 || WriteExtractedAddress ()
|| MemW <- ACC_slave end

shared MemoryRead is
begin MemRNW <- 1 || WriteExtractedAddress ()
|| MemR -> MDR end

-- Fetch an instruction IR := M[PC]
procedure InstructionFetch is
begin MemRNW <- 1 || MemA <- PC || MemR -> IR end

shared ZeroACC is begin ACC :=0 end
shared ZeroPC is begin PC := 0 end
shared SUB is begin
MemoryRead (); ACC_slave := (ACC - MDR as word)
end

-- Modify the programme counter PC
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shared IncrementPC is begin
PC :=(PC + PC_step as LineAddress) end
shared AddMDRToPC is begin
PC_step := ExtractAddress (MDR); IncrementPC () end

Decode and --missing instrcution aliased to sub
excute procedure DecodeAndExecutelnstruction is
procedure begin

case (IR as SSEMInst).Func of

JMP then MemoryRead (); ZeroPC (); AddMDRToPC ()
| JRP then MemoryRead (); AddMDRTOoPC ()
| LDN then ZeroACC (); SUB ()
| STO then MemoryWrite ()
| SUB .. SUB_alt then SUB ()
| TEST then

if #ACC [31] - -ve?

then IncrementPC () end -- PC_step should already be 1
| STOP then Stopped := 1
end;
ACC :=ACC_slave
end

main body begin
ZeroACC () || ZeroPC () ||
Stopped := 0; -- reset initialisation
loop while not Stopped then
PC_step :=1;
IncrementPC ();
InstructionFetch ();
DecodeAndExecutelnstruction ()
end ; -- loop
sync halted
-- halt -- STOP instruction effect
end

Simulation The processor has to be coupled to a memory model containing a program for it to be simulated..
Section, OMemory models,O on &jexplains how this may be done and contains a test harness
for running the gcd program that was the first program to be executed on the original SSEM.
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Builtin types

Building test harnesses with Balsa

7.1. Overview

When simulating Balsa descriptions, a test harness is usually necessary to provide input stimuli and
to display output results. In previous versions of Balsa, these test harnesses have usually either beel
written in LARD (with the old LARD based simulation system) or been described in a test
description file for breeze-sim. Neither of these solutions has offered a seamless route for simulating
Balsa together with a realistically complicated test harness. To address this problem, additions have
been made to the Balsa language to allow test harnesses to be constructed entirely using Balsa. Th
simple test harness construction capabilities present in balsa-mgr have similarly been changed to
generate Balsa test harnesses (rather than LARD or .testdesc based test harnesses) using a ne
utility: balsa-make-test

In order to allow Balsa to be used to capture the kind of complicated test harnesses which were only
previously possible with LARD, two major additions have been made to the Balsa language and
simulation systems: builtin types and builtin functions.

A new class of types known bgiin ~ has been introduced to represent simulation objects such as
files and strings. For example, the declaration:

type File is builtin

can be found in the new library fifbalsa.sim.pleio] This declaration introduces a new tyfie

which represents a file access object in a similar way that the type FILE * represents a file in C.
Builtin functions can be declared which generate values of builtin types. These values can then be
passed around the Handshake Circuit generated by balsa-c as 64bit pointer values which, in
simulation, are pointers to a BalsaObject structure (described later). Builtin-typed values are
reference counted by the simulation system and so need not be explicitly deallocated by the user. In
most respects, builtin types and their values can be handled just like any other type or value in Balsa,
they can be used as parameters, as types of parameters, ports, and variables and also as the retu
type for functions. There are a few restrictions on the use of values of builtin types, however. Such
values can never be cast to another type or have any arithmetic operation performed on them. These
restrictions allow builtin values to never be interchanged with non-builtin values. Such an
interchange could have disastrous results for a simulation.
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Builtin
Functions

Strings

In order to manipulate builtin typed values, a new form of function declaration has been introduced
to allow Balsa language functions to have underlying C language implementations for the purposes
of simulation. The mechanism for calling these C functions allows the same compiled C description
to be used by both breeze-sim and by netlist simulation tools which support compiled plugin
modules. So far, interfaces (using the new Balsahalsla-sim-veriloy to the Verilog simulators

Icarus Verilog, Verilog-XL, NC Verilog, Modelsim and Synopsys VCS have been implemented.

Each builtin function must have a declaration in Balsa as well as a definition in C. In Balsa, a typical
builtin function declaration looks like this:

function FileOpen (fileName : String; mode : FileMode) is builtin : File

This function is provided by thipalsa.sim.pbleioland is the sole function responsible for creating
File type objects. A typical use of File and FileOpen might be:

variable f : File
E begin E

f:= FileOpen (Omy_fileO, read)
Notice that there is now a OtrueO string type in Balsa, and that a value of this type is used as the
fileName argument to FileOpen. Redefinition of strings as builtin typed-values allows them to be
much more useful in Balsa than their previous role of literal arguments to the OprintO statement. The
type FileMode used for the argument mode is just a simple Balsa enumeration type, showing that
both builtin and simple bitwise types values can be passed into builtin functions.

In the Balsa distribution, the filghare/balsa/sim/Pleiojgrovides the implementation for FileOpen
(and the other file manipulation functions). The HelloWorld example later in this section will
explain the structure of such a C file. Balsa-mgr can be used to produce Makefiles which can
compile both the Balsa and the C, this is demonstrated in a later section.

Builtin functions can also have parameters in the same way as parameterised procedures to allow the
typing of their ports to be varied between instanced of the function. The simulation system handles
these parameters by passing C language representations of Balsa values and types to the simulatio
C code. In this way it is possible to define builtin functions which can process arbitrarily
complicated aggregate types. This feature is used by the function ToString provided by
[balsa.types.builtin]

The String type is unusual in that the user can insert literal strings into a Balsa description without
explicitly calling a function. For example:

variable s : String
E begin E

s:=0AA0
must create a string containing the text OAAO and then assign that String-typed object into the
variable s. To create the string, a call to a builtin function is necessary as the simulation system must
create an object to hold the string. To allow this close coupling of the String type with the compiler,
String is defined in the library [balsa.types.builtin] which is implicitly imported into all Balsa
descriptions. String typed values are created by a call to the OStringO function (notice that this name
is distinct from the type String as Balsa has separate name-spaces for types and function names)
The print statement in Balsa has also been modified to make use of builtin functions rather than
specialised simulation handshake components. A statement such as:

print OHelloO, v
is now implemented as (not showing the calls to String, the OsinkO keyword is explained elsewhere):
sink WriteMessage (StringAppend (OHelloO, ToString (vs_type, V)))

The functions OWriteMessageO, OStringAppend® and OToStringd are all defined it
[balsa.types.builtinfand can be also be explicitly called by the user. Other String functions, which
balsa-c does not rely on, are definedbialsa.sim.string]
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7.2.  Summary of Library Functions.

A number of libraries are supplied in the standard Balsa library set to help with test harness
construction. These (listed by their import path declaration) include:

[balsa.types.builtin]: Functions and type necessary for balsa-c functionality.

[balsa.types.type]: Type comprehension functions.

[balsa.sim.string]: Other String handling functions.

[balsa.sim.pleio]: File I/O.

[balsa.sim.memory]: Functions and types to implement memory models.

[balsa.sim.portio]: Port file/console 1/O used by balsa-make-test.

[balsa.sim.sim]: Simulator specific operations such as time and command line argument access.

Guidance for using these libraries can be found in the comments in the appropriate .balsa files in the
Balsa source distributioshare/balsa/typeandshare/balsa/sindirectories. A summary of some of
those library functions that are most useful to users are given below.

types.builtin -- create a string object from a string
function String (parameter string : String) is builtin : String

-- append str2 to strl returning a string object
function StringAppend (strl, str2 : String) is builtin : String

-- Convert a value of (nearly) any type to a default formatted string
-- used by the compiler to implement runtime printing

function ToString (parameter X : type; value : X) is builtin : String

-- write a runtime printing message string, returning 1
function WriteMessage (str : String) is builtin : bit

sim.string -- StringLength : returns the length of the given string
-- (0 for an empty or uninitialised string)

function StringLength (string : String) is builtin : cardinal

-- SubString : returns a sub-string of the given string between
- character indices “indexd and “index + length - 10
-- If length = 0 or index >= StringLength (string) then
-- returns an empty string,
— If “index + length® > StringLength (string) then returns a
- sub-string of “stringd between indices “indexd and StringLenth (string) - 1
function SubString (
string : String;
index : cardinal;
length : cardinal
) is builtin : String

-- StringEqual : returns 1 if two strings or equal.
function StringEqual (strl, str2 : String) is builtin : bit

-- FromString : parse a value of the given type (in the default formatting)

- from the given “sourceQ string and return the remainder of the string in

- remainder®. Note that the most common way of calling this function will be
-- with the same string as source and remainder. To discard the remainder,
-- just pass a constant (or unused) string as remainder.

function FromString (
parameter X : type;
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source : String;
remainder : String
) is builtin : X

- RepeatString : make a string with “nO occurences of source string “strQ
function RepeatString (str : String; n : cardinal) is builtin : String

-- FitStringToWidth : pad or clip a given string to create a string which is
— exactly 'width® characters long. “justification® chooses whether strings
- shorter than “widthO should be packed at the start (left) or end (right) of
-- the result string
type StringJustification is enumeration left, right end
function FitStringToWidth (
str : String;
width : cardinal;
justification : StringJustification
) is builtin : String

-- NumberFromString : parse a humber of the given radix (assuming there will
-- be no radix prefixes) from the given string. Radix is an element of [2,36]
function NumberFromString (
parameter X : type;
source : String;
radix : 6 bits
) is builtin : X

-- NumberToString: make a string representation of the given number in the
-- given radix. Insert underscores at the specified distance apart (except
-- where underscoreSpacing is 0)

function NumberToString (
parameter X : type;
value : X; radix : 6 bits;
underscoreSpacing : 8 bits;
showLeadingZeroes : bit

) is builtin : String

-- TokenFromString : parse a whitespace delimited string token from the start
- of “string® and return that token as the return value and the remains of the
- string in “remainder®. Note that this is not the same as FromString
-- (String, ...) as that would require quotes around the string to be parsed.
function TokenFromString (

string : String;

remainder : String

) is builtin : String

-- Chr : convert the given 8b value into a single character string
function Chr (value : byte) is builtin : String

-- Ord : returns the character value of the first character in the given
-- string. If the string is empty, returns O

function Ord (char : String) is builtin : byte

sim.Pleio type File is builtin
type FileMode is enumeration
read, write,
writeUnbuffered, -- unbuffered file writing
writeLineBuffered -- flushes after each line
over 3 bits

-- FileOpen : open a file in the appropriate mode
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function FileOpen (fileName : String; mode : FileMode) is builtin : File

-- FileReadLine : read upto an end of line and return a string without that
-- trailing NL
function FileReadLine (file : File) is builtin : String

-- FileWrite : write a string to a file, returns the file object
function FileWrite (file : File; string : String) is builtin : File

-- FileEOF : returns 1 if file is at the end of a file
function FileEOF (file : File) is builtin : bit

-- FileClose : close the file stream
function FileClose (file : File) is builtin : File

sim.memory type BalsaMemory is builtin

-- BalsaMemoryParams : parameters bundle, can add others
type BalsaMemoryParams is record

addressWidth, datawidth : cardinal
end

-- BalsaMemoryNew : make a new memory object, this is separate from the

-- procedure BalsaMemory so we can, for example have a dump-memory routine
-- external to that procedure. You could can BalsaMemory with:

-- BalsaMemory (16, 32, <- BalsaMemoryNew (), ...)

function BalsaMemoryNew is builtin : BalsaMemory

-- BalsaMemory{Read,Write} : simple access functions

function BalsaMemoryRead (
parameter params : BalsaMemoryParams;
memory : BalsaMemory;
address : params.addressWidth bits
) is builtin : params.dataWidth bits

function BalsaMemoryWrite (parameter params : BalsaMemoryParams;
memory : BalsaMemory; address : params.addressWidth bits;
data : params.dataWidth bits) is builtin : BalsaMemory

-- BalsaMemory : a single read port memory component, reads a BalsaMemory
-- object as it is initialised and then waits for an incoming address and
-- Nw indication

procedure BalsaMemory (
parameter params : BalsaMemoryParams;
input memory : BalsaMemory;
input address : params.addressWidth bits;
input rNw : bit;
input write : params.dataWidth bits;
output read : params.dataWidth bits
)is
variable memory_v : BalsaMemory
begin
memory -> memory_V;
loop
address, rNw -> then
if rNw then -- read
read <- BalsaMemoryRead (params, memory_v, address)
else  --write
write -> then
sink BalsaMemoryWrite (params, memory_v, address, write)

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 81



7.2. Summary of Library Functions.

end
end
end
end
end

procedure B1632 is BalsaMemory ({16, 32})

sim.portio - BalsaPrintSyncPortActivity : O O O
procedure BalsaPrintSyncPortActivity (
parameter portName : String;
syncs
)is
begin
loop
syncs;
print BalsaSimulationTime (), O: sync "0, portName
end
end

-- BalsaWriteLogLine : write a log line for some channel activity

procedure BalsaWriteLogLine (
parameter portName,
activity : String;
input message : String
)is
begin
message -> then
print BalsaSimulationTime (), ": chan ™, portName, ™ ", activity, " ",
message
end
end

-- BalsaOutputPortTolLog : print activity on the output port of some
-- component in the default format

procedure BalsaOutputPortToLog (
parameter X : type;
parameter portName : String;
inputi: X
)is
begin
loop
i ->then
BalsaWriteLogLine (portName, "reading", <- ToString (X, i))
end
end
end

-- BalsaOutputPortToLogWithFormat : print activity on the output port of some
-- component in the specified format
procedure BalsaOutputPortToLogWithFormat (
parameter X : type;
parameter portName : String;
parameter radix : 6 bits;
parameter underscoreSpacing : 8 bits;
parameter showlLeadingZeroes : bit;
inputi: X
)is
begin
loop
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i ->then
BalsaWriteLogLine (portName, "reading",
<- NumberToString (X, i, radix, underscoreSpacing, showlLeadingZeroes))
end
end
end

-- BalsaOutputPortToFile : print activity on the output port of some
-- component in the default format

procedure BalsaOutputPortToFile (
parameter X : type;
parameter portName : String;
input file : File;
inputi: X
)is
variable line : String
begin
file -> then
loop
i ->then
line := ToString (X, i);
sink FileWrite (file, line);
sink FileWrite (file, "\n");
BalsaWriteLogLine (portName, "reading", <- line)
end
end
end
end

- BalsaPrintinputPortFromValue : supply the given value to the port OoO each
-- time an input happens on that port

procedure BalsalnputPortFromValue (
parameter X : type;
parameter portName : String;
input value : X;
output 0 : X
)is
begin
value ->then
loop
0 <-value;
BalsaWriteLogLine (portName, "writing", <- ToString (X, value))
end
end
end

-- BalsalnputPortFromFile : source values for port o from the given file

procedure BalsalnputPortFromFile (
parameter X : type;
parameter portName : String;
input file : File;
output o : X
)is
variable line : String
variable value : X
begin
file -> then
loop while not FileEOF (file) then
line := FileReadLine (file);
value := FromString (X, line, line);
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0 <-value;
if StringLength (line) /= 0 then
BalsaWriteLogLine (portName, "comment", <- line)
end;
BalsaWriteLogLine (portName, "writing", <- ToString (X, value))
end
end
end

-- BalsaSimulationTime : get the current simulation time as a string.
-- This function must be provided genuinely builtin by any simulation system

function BalsaSimulationTime is builtin : String

-- BalsaGetCommandLineArg : get the value of a keyed command line argument
-- from the simulator based on the key
-- This function must be provided genuinely builtin by any simulation system

function BalsaGetCommandLineArg (key : String) is builtin : String

7.3.  Writing your own builtin functions

To show the stages necessary to use a user-written builtin function, we will present a small example
function, HelloWorld, written in a blockello.balsawith a C implementation ihello.c The code

for this example can be found @xamples/simulationirectory of the distribution. The example

below is described stage by stage in order to highlight the Balsa tools used, but the process is greatly
simplified by using balsa-mgr described in OUsing balsa-mgrO on page 86.

Every builtin function must have both a Balsa declaration and a C language definition. In writing
your own builtin functions it is best to write the Balsa declaration first. For example:

function HelloWorld is builtin : bit

declared a builtin function with no arguments and a single bit return value. Note that fumeigins

have return values (to operate correctly in the Balsa type system) even when the implementation of
the function may be considered to have a OvoidO return type. It is usual to use the returmtype

return the value 1 when the return value is not important. In Balsainkhekeyword can then be

used to call such a function and discard the return value. In some functions, one of the arguments
could make a useful return value to allow function calls to be enclosed within each other. The Write
function in[balsa.sim.bleio]s an example of such a function, it returns the File object passed to it

to allow chains of Writes to be formed as a single expression.

Each function must have a C implementation of the form (continuing the HelloWorld example with
a very simple body):

static void HelloWorld (BuiltinFunction *function,
BuiltinFunctioninstanceData *instance)

{

}

The two arguments, OfunctionO and OinstanceO, pass to the builtin function information about th
port structure, instance parameter values and per-call argument values of the Balsa function.
OfunctionO contains information common to all instances of the function and OinstanceO contain:
instance specific data. Note that as builtin functions can have parameters, and that port typing can be
influenced by typing, port structure information should be read from the OinstanceO argument rather
than the OfunctionO argument.

fprintf (stderr, OHello, Balsa usernO);

To register a builtin  function with the simulation system, a call to
BalsaSim_RegisterBuiltinFunction is necessary. Each shared library which contains C
implementations of builtin  functions should declare a function with the name
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BalsaSim_BuiltinLibrary_<libraryname> (where<libraryname>  is the last component of the
dotted path to that libraries Balsa/Breeze file) to call this function and to perform any other
initialisation necessary for that library. A macro, BALSA_SIM_REGISTER_BUILTIN_LIB, is
provided to insert the head of this initialisation function. The complete C file for the HelloWorld
example is:

#include <stdio.h>

#include <balsasim/builtin.n>

static void HelloWorld (BuiltinFunction *function,
BuiltinFunctioninstanceData *instance)

fprintf (stderr, OHello, Balsa user\nO);
instance->result->words[0] = 1; /* Ignore this for now */ }
BALSA SIM_REGISTER_BUILTIN_LIB (hello)

{
BalsaSim_RegisterBuiltinFunction (OHelloWorldO, 0, 0,

HelloWorld, 1, NULL, 0);
}

The header filebalsasim/builtin.hprovides the definitions of the types used in the file and the
prototype for BalsaSim_RegisterBuiltinFunction. This file (which can be found irsrtikbs/
balsasimdirectory of the Balsa distribution aridclude/balsasimof a Balsa installation) also
includes the filesbalsasim/object.hbalsasim/parameter.tand (throughparameter.h balsasim/
types.h These three files provide declarations for types and functions for manipulating BalsaObject
objects, C descriptions of Balsa parameters and C descriptions of Balsa types respectively.

This example only registers one function usBaisaSim_RegisterBuiltinFunction : namely
HelloWorld. The seven arguments passed to cause that registration are (in order):

name: Balsa name of the function being registered (OHelloworldO).

parameterCount: number of parameters taken by the Balsa function (in this example, 0).
arity: argument count of the Balsa function (again, 0).

function: pointer to the C function containing the top level of the implementation.

resultWidth: pumber of bits in'the result value of the function, or 0 if the width varies by instance
(see Section, OReturn values,O on page 90).

argumentWidths: an array of OarityO unsigned ints, one per argument in order, which specify the
widths in bits of their respective arguments. Each of these can be 0, as with resultWidth, to indicate
that the widths are resolved on an instance-by-instance basis. This can be set to NULL (as in this
example) when their are no arguments to the function.

quectCount: number of Bals'aObject objects created by a call to this function.Sseton,
OObject Reference Counting,O on page 91).
With the C implementation in file hello.c and the Balsa declaration inh&léo.balsa The C
implementation can be compiled with:

balsa-make-builtin-lib hello hello.c

This should creatbello.la, hello.g hello.aand eithehello.so.. orhello.dylih.. files depending on
your machine architecture. The Balsa declaration file can be compiled with:

balsa-c hello

Note that the C and Balsa descriptions are not checked against each other when being compiled. Fol
this reason it is important that the parameters passed to BalsaSim_RegisterBuiltinFunction are
correct to ensure correct operation of the builtin functions in simulation.

With both the shared library and the Breeze file for the HelloWorld function, that function is ready
to be used.
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A short Balsa description such as:

import [hello]
procedure try is
begin

sink HelloWorld ()
end

can be used to test HelloWorld. The description can be compiled, a Balsa top-level test harness
generated, and the resulting test harness run. If the test description listed above is found in the file
SimDemo.balsathe folllowing commands generate a default test harness.

balsa-c SimDemo
balsa-make-test -d SimDemo try

The last command generates a Balsa test hatees§imDemo _trigalsawith a top leel precedure

name ofbalsa . Although not strictly necessary for this example, it is a good habit to get into to
always generate such a test harness. The next two commands compile the balsa test harness file ar
then run the simulation.

balsa-c test-SimDemo_try
breeze-sim test-SimDemo_try

Breeze-sim will pick up the shared library for the block [hello] by noting that theeile.lawas in

the same directory as the Breeze filelo.breezeFiles with the extension .la are GNU libtool
library information files. They contain the path of the shared library which bears the same name as
the .la file.

It is possible to use a Verilog simulator as shown below: A

BALSATECH=example

export BALSATECH

# Use Osetenv BALSATECH exampleO in cshitcsh
balsa-netlist -s -d -f -i helper test-SimDemao_try
balsa-make-impl-test -0 Vtest test-SimDemo_try balsa
balsa-sim-impl -B test-SimDemo_try Vtest

The BALSATECH environment variable specifies a Verilog target implementation. Particular
implementation styles, as well as the Verilog simulator to be used, can be specified..

If the balsa test harness file has not been generated, the corbazardtest-SimDemo_try
must be run first..

balsa-netlist produces a Verilog netlist for the test harnésst-SimDemo_try.v.

balsa-make-impl-test produces a top-level Verilog fiktest.v.

balsa-sim-impl runs the Verilog simulation.

Balsa-mgr can be used to perform all the steps of the HelloWorld example and considerably
simplifes the process. In the description that follows, it is assumed that théndlledalsa

(containing the builtin balsa declaratiohgllo.c (containing the builtin C language definition) and
SimDemo.balsécontaining the Balsa test example) already exist.

1. Add the .balsa bles to the project as shown in Figure 7.1.

2. Inthe ble pane of balsa-mgr, right-click on tedo.balsablename and select the Add Builtin
Library option. In the resulting popup dialogue shown in FiguPeaddhello.cto the list of
source bles using tmew button. The library should then be visible in the ble pane as shown in
Figure 7.3.

3. Inthe ble pane of balsa-mgr, right-click on theprocedure irSimDemo.balsand select the
the OAdd Test FixtureO option. Accept the defaults in the resulting dialogue box.
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Figure 7.1: The simulation balsa Ples.
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Figure 7.2: Adding the C language description Ple.

4. Click on the MakHe tab to switch to the Malide pane and clicking on threin button for
sim-testl in theTests subpane will build the library and run the simulation as shown in
Figure 7.4

Verilog simulation can be achieved within the framework of basla-mgr. To do this, an
implementation has to be attached to the test harness (rather than to the procedure itself).

5. In the ble pane of balsa-mgr, right-click on tlestltest Pxture name attached to thge
procedure and select OAdd ImplementationOVetilg implenetation is added to the testl
test harness

6. Click on the MakHe tab in the left-hand pane in the balsa-mgr wimd® new test action has
been added to testl in the Tests subpane.

7.  Click on theRun button for sim-test1-impl: the test harness will be run\&sridog simulation.

7.4.  Builtin functions with arguments

Builtin functions, like other Balsa functions, are passed per-call arguments. These arguments can be
of builtin types or normal Balsa bitwise data values. In both cases, values are passed into C as multi-
precision integer values packed into FormatData structures. The FormatData type contains two
elements:
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Figure 7.4:Running the simulation.

wordCount : the length of the value in multiples of the size of the typ@ned int inC

words: an array of unsigned ints containing the value, with the least significant word of the value
in words[O].

Signed bitwise values are passed as though they were unsigned values with the same bitwise
representation as the original signed value anaeatrsign extended to the end of a word or to the

end of the bitwise length of the value. Result values from builtin functions are passed back to Balsa
from C in a FormatData structure also. A simple function to add 15 to a 16b number looks like this
in C:
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Figure 7.5: A test verilog test harness added.

static void Add15 (BuiltinFunction *function,
BuiltinFunctioninstanceData *instance)

{

FormatData *i = instance->arguments[0]->words|[0];
instance->result->words[0] = i + 15;

}

for a function with a Balsa description of:
function Add15 (i : 16 bits) is builtin : 16 bits

and is equivalent to the OpureO Balsa function:
function Add15 (i : 16 bits) = (i + 15 as 16 bits) : 16 bits

As can be seen in this example, the result and argument FormatData structures can be accessed ¢
elements OresultO and OargumentsO of the BuiltinFunctionlnstanceData passed to the C function. T
arguments element is an array of lenigtiation->arity (which will be the same value as passed

to the BalsaSim_RegisterBuiltinFunction function as the OarityO argument), with the first argument
at index 0. The FormatData structures for arguments and results values are pre-allocated by the
simulation system and so should only ever be read or modifedr replaced by a different
FormatData. Note that the above example passed its return value back and processed its argument
by directly accessing the first word of tlratance->result and instance->arguments[0]

FormatData structures. This is a perfectly valid way of approaching FormatData handling. The
definition of the type FormatData and a library of functions to act on that type can be found in the
header filesrc/libs/format/data.hin the Balsa distribution anohclude/format/data.nn a Balsa

installation.
Builtin typed Builtin types can have any simulator-internal representation that the author of builtin functions
arguments which process that type desires. For example, the File type defined in the hedddsddan/bble.h
and used by bloclalsa.simfileio] is defined as:
typedef struct
{
FILE *file;

char *filename;
BalsaFileMode mode;
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BalsaFile;

Values of builtin types are passed around in Balsa, and to and from C, as pointers to BalsaObject
structures. Using BalsaObject to encapsulate a pointer to a real value allows all builtin typed values
to be handled consistently with respect to memory allocation management.

Builtin typed values are packed into argument and result FormatData structures as a 64 bit pointer
value to the BalsaObject structure which encapsulates the pointer to that valueOs real data. The
BalsaObject pointer can be extracted from a FormatData structure using the function
FormatDataGetBalsaObject. The pointer to that valueOs real data can then be extracted as the Oda
element of that BalsaObject. For example, the FileEOF functifsalea.sim.pleiolextracts a File

object from index 0 of its first argument and places the pointer to the BalsaFile structure into OfileO
(OBALSA_FILEQ is just a C preprocessor macro for a cast to type BalsaFile; this macro is defined in
balsasim/bble.h

static void Fileio_FileEOF (BuiltinFunction *function,
BuiltinFunctioninstanceData *instance)

{
BalsaObject *fileObject =

FormatDataGetBalsaObject (instance->arguments[0], 0);
BalsaFile *file = BALSA FILE (fileObject->data);
E

}

Builtin typed values can similarly be returned by packing the pointer to a BalsaObject into a
FormatData using FormatDataSetBalsaObject. FileOppfralsa.sim.pleiofdoes this like so:

FormatDataSetBalsaObject (instance->result, instance->objects[0], 0);

Notice that the object packed intstance->result is also an element of the instance structure.

This is necessary because Balsa must track the location of builtin typed values at all times in order
for the reference counting system used to deallocate unused objects to work correctly. To make the
reference counting work effectively, the user must only use the BalsaObject structures contained in
the instanceb>objects array (whose size is selected by the objectCount argument to
BalsaSim_RegisterBuiltinFunction) and never any BalsaObject which is manually allocated. The
simulation system monitors the reference counts of each objesthiteD>objects for each call

of each builtin function, and will handle the deallocation/reassignment of objects without the user
having to worry about explicit reference counting. As the BalsaObject structure only contains a
pointer to the OrealO data associated with a builtin typed value, calls to FormatDataSetBalsaObjec
are usually preceeded with a function call to pack that real data pointer into the BalsaObject and to
nominate a function to be used to deallocate that data if the object ceases to be useful. In FileOpen,
this call looks like:

SetBalsaObject (instance->objects[0], balsaFile,
(BalsaDestructor) DeleteBalsaFile);

On deallocation of the object instanceb>objects[0] , DeleteBalsaFile will the called on the
pointer “balsaFile® (which will become storeidstanceD>objects[0] ), in order to deallocate it.

If NULL is passed to SetBalsaObject as destructor for this object, deallocation of that object will
result in a call to free(3) on the real data pointer.

Parameters passed to a builtin function can be used to parameterise the types of arguments passed
calls of those functions. For example, the ToString function, used to render string representations of
Balsa values of any type, has as a parameter the expected type of the argument to the function.
ToStringOs declaration in Balsa (which can be foufizhlea.type.builtin) is:

function ToString (parameter X : type; value : X) is builtin : String

As previously explained, théstance->parameters array can be used to comprehend the
parameter passed to a builtin function in C. For builtin functions with arguments which are not fixed
in the Balsa declaration, this array must be used to determine the correct argument and result widths.
To allow this to happen, simulation systems using the Balsa builtin function system must make an
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initialisingO call to the builtin functionOs C function in order to resolve any uncertain argument and
result widths. This function call is initiated by the simulation system noticing that the user has
passed a width of O as the resultWidth argument, or 0 as any element of the argumentWidths
argument to BalsaSim_RegisterBuiltinFunction. ToStringOs registration looks like this (notice the
{0} passed as argumentWidths):

BalsaSim_RegisterBuiltinFunction (OToStringO, 1, 1, Builtin_ToString,
64, (unsigned []) {0}, 1);

In order to distinguish the initialising call to the C function (here this function is called
Builtin_ToString) from OgenuineO calls, tianceb>portwidthsAreResolved will be false
during the initialising call. This leads to a generalised form of C implementation of a builtin function
with an enclosing if statement around itOs b@dgting  resolves its port width with this code
(with error checking removed):

static void Builtin_ToString (BuiltinFunction *function,
BuiltinFunctionInstanceData *instance)

{
if (! instance->portWidthsAreResolved)
{

instance->argumentWidths[0] =
ABS(instance->parameters[0]->info.type->size);
}else {
E
}
}

Note that thergumentWidths ~ array which is modified is the array within the instance structure and
not the one within the function structure which must be invarient across instances of the builtin
function. A function which has its result width changed during an initialising call must similarly
change thenstanceD>resultWidth value rather than any element of function. Any remaining
argument or result widths which remain 0 after the initialising call are flagged as error by the
simulation system and will cause the simulation to terminate.

7.5. Object Reference Counting

Allocation of BalsaObjects in simulation is done by counting the number of times an object
becomes assigned to either a Balsa variable or an element inftdheeb>objects array in a
function. The reference counting scheme used to implement this assignment counting is very
conservative and only deallocates an object when that objectOs place in a variable or
instance- >objects  array must be overwritten. For a variable, this occurs on each assignment and
for a functionOs objects array this occurs each time the function is called.

Objects are always held in a special variable handshake component, BuiltinVariable, inside a Breeze
description. This special component is similar to a normal Variable handshake component but
includes simulation mechanisms to hand the reference counting of stored and incoming data. Each
time an assignment occurs on a BuiltinVariable, two events occur: Firstly, the object already
residing in the variable (if any) is to be discarded and so has its reference count decremented and the
object (and its OP>dataO payload) is deallocated if the reference count reaches 0. Secondly, th
pointer to the new object being assigned is loaded into the variableOs latches and its reference cour
is incremented to indicate that it has been successfully stored.

The objects array in each functionOs OinstanceO data is used to store objects which have not yet be
assigned to variables or which will never end up in a variable (such as intermediate Strings in a
chained StringAppend operation, for example). Each object is initialised with a reference count of 1
indicating that it is stored in exactly one place. As objects are passed out of the function as return
values, those objects may have their reference counts increased to indicate that they have beer
stored elsewhere. On the next call to the function, each of the objects previously allocated must be
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replaced by a new object for the current call. A loop decrements each of the reference counts of the
instanceb>objects elements and then checks the decremented reference count against 0. Objec
with a O reference count then have their Ob>dataO payload deallocated using the appropriat:
destructor function and the BalsaObject structure is reused (with a new reference count of 1) for the
current callOs object. Objects with a reference count greater than 0 are stored elsewhere in the systel
and so should not be deallocated. Those objectsO elementsnistathe>objects array are
therefore overwritten by pointers to newly allocated BalsaObject structures (with initial reference
counts of 1 again) and the task of deallocating the original object then falls to the last
BuiltinVariable or other builtin function to hold a reference to the object.

7.6. Predebned types

As previously stated, the OdataO element of a BalsaObject can be used as a pointer to any valu
which the user wishes to use as the basis of a builtin-typed value in Balsa simulation. The builtin
libraries which are provided with Balsa for string and file manipulation make use of the C
BalsaString and BalsaFile types to represent those values. It is very likely that user-defined builtin
functions will need to work with those predefined functions, and so it is important to understand the
mode of operation of those types.

Strings are represented in Balsa simulation as char arrays encapsulated in dynamically allocated
instances of the BalsaString struct definedafsasim/bstring.hEach instance of a String in Balsa

is represented by a unique BalsaString in C. It is, however, possible for different String values to
share their underlying char arrays in order to make sub-string operations (which are common when
parsing files) more efficient. The BalsaString structure contains 4 elements:

char *allocatedString: a pointer to the first element of the allocated char array which represents
this string. Note that this pointer refers to the malloced array for the string, which may be shared
with other BalsaStrings, and may not point to the first character of this partistiag.
BalsaStrings sharing a common char amast have the same value of allocatedString.

char *string: a pointer to the character in allocatedString which corresponds to the first character
of this BalsaStringOs OrealO string. For example, when tokenising the line OHello, worldO from a file
a BalsaString may be created which is a sub-string of the whole line and so has its allocatedString
element pointing to the OHO in OHelloO and its string element pointing to the OwO in Oworld
indicating that that BalsaString represents part of the string starting with the OwO.

unsigned length: the number of significant characters (between string[0] €tridg[length-1])

which comprise the string being represented. BalsaString strings are not required to be NUL
terminated (although for safety it is good practice to make allocatedString one char longacand

a NUL in the final character) and so when passing the ->string element of a BalsaString to a C
function, it is advisable to make a temporary copy of the string. int *refCount: a (pointer to the)
count of the number of BalsaStrings which share the same allocatedString as this one. When
deallocating a BalsaString, care must be taken to avoid mistakenly deallocaing the allocatedString
when other BalsaStrings may depend on it. The refCount is a single malloced int, initially set to 1
indicating a single BalsaString owns this allocatedString, which can be incremented for each sub-
string creation and decremented for each sub-string deallocation. The functions BalsaStringRef and
BalsaStringUnref are used to maintain this count and handle the deallocation of BalsaStrings.

Besides BalsaStringRef and BalsaStringUnref, the balsasim/bstring.h package only contains two
other functions, both used to create new BalsaString objects:

NewBalsaString: creates a BalsaString from an existing char array by copying OlengthO character
from the source string into a newly allocated allocatedString. NewBalsaString can be called with a
NULL strings, which causes it to allocate only the BalsaString object rather than the underlying char
array. This can be useful when the required array is to be constructed by hand rather than copied.
Note that after calling NewBalsaString this way, both allocatedString and string elements of the
resulting BalsaString must be correctly initialised by the user. Passing -1 as the “lengthO argument tc
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NewBalsaString results in the creation of a BalsaString containing all of the source C string up to
the first NUL character in that string.

NewBalsaSubString: creates a BalsaString which shares its allocatedString withgithen
BalsaString between start[0] and start[length-1]. The mechanism for sharing sub-strings is described
above.

Better understanding of the common uses of the BalsaString type and its associated functions can be
gained by reading the builtin function code in thmal§a.types.builtih and palsa.sim.string
libraries.

File access is performed in Balsa using the File type. The is defined in the Idabsy.$im.pleip

using the underlying C type BalsaFile definedbatsasim/bble.rBalsaFile is a simple wrapper for

the C standard library type FILE * and has 3 elements: FILE *file: the open file handle or NULL
indicating that the file is not open. char *filename: a copy of the filename used to open the file. This
is used for error reporting. BalsaFileMode mode: an enumeration indicating how the file was
opened. Currently four options exist for this element: read, write, writeUnbuffered and
writeLineBuffered. The options read and write correspond to the fopen file modes OrO and OwO. Th
buffered write options correspond to mode OwO with a subsequent call to setvbuf to select the
appropriate file buffering mode.

The BalsaFileMode type is defined in Balsa (as type FileMode) and C as it is used as the argument
to the FileOpen function. The C header Bisasim/bble.defines only two functions of interest to

users wanting create their own file handling functionBalsaFileReadable and
BalsaFileWritable . These functions can be used to check if a BalsaFile corresponds to an open
file and if that file is readable/writable through the ->file element of that BalsaFile. Examples of the
use of these functions can be found in the C implementation dfatea[sim.pleiplibrary.

7.7. Example Custom Test Harnesses

Actually this example is now obsolete as the user can set the format of displayed data when
configuring the test harness in balsa-mgr. However, since the example illustrates use of some of the
builtin functions, the description is still included in the manual.

By default, numbers are witten in decimal. The exampt&inmulation/Formaillustrates the use of

the builtin functions. The example is actually the shifter example OA Balsa shifter,O 6n ffhge

test proceduréest_ror.balsashifts a bit pattern of 3 consecutive 010s around a 32 bit word The
default output produced is:

230: chan Qo0 reading 14

727: chan 000 reading 7

1245: chan 000 reading 2147483651
1749: chan 000 reading 3221225473
2267: chan 000 reading 3758096384
2785: chan 000 reading 1879048192
3326: chan 000 reading 939524096
3839: chan 000 reading 469762048
4357: chan 000 reading 234881024
4875: chan 000 reading 117440512
5416: chan 000 reading 58720256
5943: chan 000 reading 29360128
6484: chan 000 reading 14680064
7025: chan 000 reading 7340032
7589: chan 000 reading 3670016
8111: chan 000 reading 1835008
8629: chan 000 reading 917504
9147: chan 000 reading 458752
9688: chan 000 reading 229376
10215: chan ©o0 reading 114688
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10756: chan Oo0 reading 57344
11297: chan o0 reading 28672
11861: chan o0 reading 14336
12397: chan 000 reading 7168
12938: chan 000 reading 3584
13479: chan 000 reading 1792
14043: chan o0 reading 896
14593: chan 00 reading 448
15157: chan 000 reading 224
15721: chan 000 reading 112
Ended test

It is not easy to spot that this is the correct behaviour. The procedure in the test harness produced by
balsa-mgr that writes the output is:

procedure balsa
is
channel o : 32 bits
begin
test_ror32 (0) ||
BalsaOutputPortToLog (32 bits, 000, 0)
end

The ouput can be produced in binary format by rewriting the builtin procedure repsonsible for
displaying the outputBalsaOutputPortToLog. The procedure has as to be renamed to prevent a
name clash.

procedure BalsaOutputPortToLogX (parameter X : type;
parameter portName : String; input i : X) is
begin
loop
i ->then
-- original line in BalsaOutputPortToLog
— BalsaWriteLogLine (portName, OreadingO, <- ToString (X, i))
BalsaWriteLogLine (portName, OreadingO,
<- NumberToString (X, i, 2, 4, 1))
end
end
end -- procedure BalsaOutputPortToLogX

This produces the output in binary with leading zeros with each 4 bit field separated by an
underscore.

230: chan ©o0 reading 0000_0000_0000_0000_0000_0000_0000_1110
727: chan 000 reading 0000_0000_0000_0000_0000_0000_0000_0111
1245: chan Go0 reading 1000_0000_0000_0000_0000_0000_0000_0011
1749: chan ©o0 reading 1100_0000_0000_0000_0000_0000_0000_0001
2267: chan 000 reading 1110_0000_0000_0000_0000_0000_0000_0000
2785: chan 000 reading 0111_0000_0000_0000_0000_0000_0000_0000
3326: chan 000 reading 0011_1000_0000_0000_0000_0000_0000_0000
3839: chan 000 reading 0001_1100_0000_0000_0000_0000_0000_0000
4357: chan 000 reading 0000_1110_0000_0000_0000_0000_0000_0000
4875: chan 000 reading 0000_0111_0000_0000_0000_0000_0000_0000
5416: chan 000 reading 0000_0011_1000_0000_0000_0000_0000_0000
5943: chan 000 reading 0000_0001_1100_0000_0000_0000_0000_0000
6484: chan 000 reading 0000_0000_1110_0000_0000_0000_0000_0000
7025: chan Oo0 reading 0000_0000_0111_0000_0000_0000_0000_0000
7589: chan Oo0 reading 0000_0000_0011_1000_0000_0000_0000_0000
8111: chan 000 reading 0000_0000_0001_1100_0000_0000_0000_0000
8629: chan 000 reading 0000_0000_0000_1110_0000_0000_0000_0000
9147: chan Oo0 reading 0000_0000_0000_0111_0000_0000_0000_0000
9688: chan 000 reading 0000_0000_0000_0011_1000_0000_0000_0000
10215: chan 000 reading 0000_0000_0000_0001_1100_0000_0000_0000
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10756: chan Oo0 reading 0000_0000_0000_0000_1110_0000_0000_0000
11297: chan 000 reading 0000_0000_0000_0000_0111_0000_0000_0000
11861: chan 000 reading 0000_0000_0000_0000_0011_1000_0000_0000
12397: chan o0 reading 0000_0000_0000_0000_0001_1100_0000_0000
12938: chan ©o0 reading 0000_0000_0000_0000_0000_1110_0000_0000
13479: chan Oo0 reading 0000_0000_0000_0000_0000_0111 0000_0000
14043: chan 000 reading 0000_0000_0000_0000_0000_0011_1000_0000
14593: chan 000 reading 0000_0000_0000_0000_0000_0001_1100_0000
15157: chan 000 reading 0000_0000_0000_0000_0000_0000_1110_0000
15721: chan o0 reading 0000_0000_0000_0000_0000_0000_0111_0000
Ended test

The rotation of the 3 O10s can now be clearly seen. If it is desired to produce the ouptut in
hexadecimal with no leading zeros and no underscore separat8glszallriteLogLine as:

BalsaWriteLogLine (portName, "reading”,
<- NumberToString (X, i, 16, 0, 0))

Further examples of conversions to and from strings can be found in OMemory modelsO on page 96

FilelO The examples irsimulation/FilelO illustrates some basic use of the File 1/O routines. These
procedures read the contents of a file whose name is a parameter of the procedure. Note that it is no
possible to test for the readability or existence of a file to open: if access is not allowed, the
FileOpen procedure will fail internally producing an error message.

import [balsa.types.basic]
import [balsa.sim.fileio]

procedure rd_filel (
parameter fname : String

)is
variable file : File

begin
file := FileOpen(fname, read);
print OOpened file: O , fname;
loop while not FileEOF(file) then

print Ocontent is: O, FileReadLine(file)

end

end

The rd_filel procedure is instantiated with the name of the file to be opened thus:
procedure rfl is rd_file1(OdataO)

where OdataO is the name of the file to be opened. A disadvantage of this approach is that what i
being generated is an instance of a parameterised procedure. Everytime the name of the file is
changed, a new instance has to be compiled. Another approach is shown below:

procedure rd_file2 (
input fname : String
)is
variable file: File
begin
fname -> then
file := FileOpen(fname, read);
print OOpened file: O, fname ;
loop while not FileEOF(file) then
print Ocontent is: O, FileReadLine(file)
end
end
end

The file name is passeditbfle2  from a top-level procedure using a variable port.:
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procedure rf2 is
begin

rd_file2(<- Odata®)
end

The example irBimulation/Memory/mem1.baststrates interfacing to BalsaOs memory model:

import [balsa.sim.memory]
import [balsa.sim.string]

procedure ex1 is
channel addr : 4 bits
channel read, write : 8 bits
channel rNw : bit
variable addrCount : 4 bits
begin
-- Read the BalsaMemory description in /share/balsa/sim/memory.balsa
-- for details. BalsaMemory is the name of a type that represents
-- simulation memories and also a procedure encapsulating a memory
-- model built from BalsaMemoryRead and BalsaMemoryWrite builtin function
-- calls. You can either use this module or make your own use of the
-- builtin functions directly.
BalsaMemory (
{4, -- address width
8}, -- data width
<- BalsaMemoryNew (), -- direct expression to port connection
addr, rNw, write, read) ||
begin
addrCount :=0;
print OWrite inverse address as dataO ;
loop
addr <- addrCount || Nw <-0 ||
write <- ( not addrCount as 8 hits);
addrCount := (addrCount + 1 as 4 hits)
while addrCount /=0
end;

-- Now dump the memory,
-- there really ought to be builtin functions for this
addrCount :=0;
loop
addr <- addrCount || INw <- 1 ||
read -> then
print OAddress: O, addrCount, O Data: O,
NumberToString (8 bits, read, 16, 4, 1)
end;
addrCount := (addrCount + 1 as 4 bits)
while addrCount /=0
end
end
end

This example uses separate procedure to load the memory and dump its contents. These procedure

memory are composed with a simple process that writes and read a few arbitrary locations. Notice the use of

composition the string to number conversions (and vice versa). If the numeric values in the data file are in the
default format (i.e. decimal values carry no prefix, hexadecimal numbers are prefixed with Ox etc.),
the appropriate conversion routine to userdsString . However, if the numbers are in a particular
format (say hexadecimal) and are not prefixed, thenberFromString  must be employed with the
appropriate radix passed in the function call.
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import [balsa.sim.memory]
import [balsa.sim.string]
import [balsa.sim.fileio]

constant addr_width =5
constant data_width =8
constant MemSize = 2~ addr_width

type AddrWidth is addr_width bits
type DataWidth is data_width bits

procedure load_mem (
input fname : String ;
output addr_bus : AddrWidth ;
output data_bus : DataWidth ;
output rNw : bit
)is
variable file : File
variable num : DataWidth
variable addr : Addrwidth
begin
fname -> then
print Oloading memory from: O, fname;
file := FileOpen(fname, read);
print OOpened file: O;
loop while FileEOF(file) /= 1 then
-- if data has no radix prefix use this conversion
-- see the effect with supplied data file which has prefix.
num := NumberFromString(DataWidth, FileReadLine(file) ,16);

-- if data has radix prefix use this form
-- this is probably what is required for supplied data
-- num := FromString(DataWidth, FileReadLine(file) , OO);
print num ;
addr_bus <- addr || data_bus <- num || rNw <- 0;
addr:= (addr + 1 as AddrWidth)
end
end
end

procedure proc (
output addr_bus : Addrwidth;
output write_bus : DataWidth;
input read_bus : DataWidth ;
output rNw : bit

)is
variable x : DataWidth

begin
-- poke the memory to show we can
addr_bus <- 0 || write_bus <- Oxff || rNw <- 0;
addr_bus <- 1 || write_bus <- Oxfe || rNw <- O;
-- read the memory to show we can
addr_bus <- 1 || read_bus ->x || INw <- 1;
print OValue from address 1is: O, x

end

procedure dump_mem (
output addr_bus : AddrWidth ;
input data_bus : DataWidth ;
output rNw : bit

)is
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variable data : DataWidth
variable addr : AddrWidth

begin
print Odumping memoryO;
addr:=0;
loop

addr_bus <- addr || data_bus -> data || rNw <- 1;
print O<0xO, NumberToString (AddrWidth, addr, 16, 0, 1), O> 0xO,
NumberToString (DataWidth, data, 16, 0,1) ;
addr := (addr + 1 as Addrwidth)
while addr /=0
end
end

procedure ex2 is
variable mem : BalsaMemory
channel datafile : String
channel addr_bus : Addrwidth
channel read_bus : DataWidth
channel write_bus : DataWidth
channel rNw : bit
begin
mem := BalsaMemoryNew ();
BalsaMemory ( {addr_width , data_width},
<-mem,
addr_bus,
rNw,
write_bus, read_bus) ||
begin
load_mem(<- "data", addr_bus, write_bus, rNw) ;
proc(addr_bus, write_bus, read_bus, rNw) ;
dump_mem(addr_bus, read_bus, rNw)
end
end

This example in Simulation/Processor ties together many of the previous examples of using the
builtin Balsa functions to create custom Balsa test harnesses. The ssem processor describec
previously (see OA Simple Processor B The Manchester SSEM (The Baby)O %h)p&ge
connected to a memory model which is loaded which the code corresponding to a program for
computing the gcd of two numbers. The source code can be found in gcd.s. The two numbers are
specified in locations 0x11 and 0x12 with the result, on termination, found in location Ox11. A
description of processor can be foundsgem.pdfAn assemblesasmis provided for users who

wish to write other programs.
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8.1. Introduction

Balsa provides means of describing and modelling asynchronous systems together with a means of
functionally simulating these systems. However, Balsa is primarily a synthesis system and in this
chapter the various implementation routes and options are described. In order to produce real silicon
or a real gate-array implementations, access to the design-kits of the silicon or gate-array vendor is
required B Balsa merely produces a netlist in format appropriate to a CAD system that supports the
technology.

When creating an implementation, users may choose a particular technology, different OstylesO
within a technology and for each style a variety of options may be available.

Currently Balsa supports the following technologies. Each technology has its own cell libraries, gate
fan-in restrictions, instance naming and pin mapping conventions. Different technologies may also
use different netlist formats. The technologies must be downloaded and installed as separate
packages. Only the

balsa-tech-ams: This technology supports the AMS 350nm design kit and produces a Verilog
netlist.

balsa-tech-amulet: This technology contains a set of custom cells designed within the Balsa group
based on the SGS-ST 180nm library and produces a Verilog netlist.

balsa-tech-sths018: This technology contains only standard cellsfrom the SGS-ST 180nm library.

balsa-tech-example: This technology produces a Verilog description based on example cells and
is intended as template for users who wish to create their own back-ends.

balsa-tech-xilinx: This technology produces a EDIF netlist suitable for Xilinx gate-arrays

Currently the Balsa release supports the following back-end protocols for use with each technology.:
four_b_rb: a bundled-data scheme using a four-phase-broad/reduced-broad signalling protocol.
dual_b: a delay-insensitive dual-rail encoding.

one_of 2 4: a delay-insensitive one-of-four encoding.
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The bundled-data back end should be faster and smaller, but needs more careful post-layout timing
validation. The two delay-insensitive schemes are larger and slower but should be more robust to

layout variations.

Each option is set/unset or takes a value as shown in Table 8.1 on page 100.

Option Values Notes
Handshak circuit descriptions allow for nodes in the circuit|to
suagest-bufferl  set/unset be identibPed as being points at whialffers may be inserted
99 because the node may be heavily loaded. Setting this option will
cause the buffers to be instantiated.
This option only makes sense for Xilinx technology. kEs
cadence balsa-netlist produce verilog netlists compatible with Cadence
implementations of Xilinx libraries.
cad
This option only makes sense for Xilinx technology. ks
ise balsa-netlist produce verilog netlists compatible with Xilinx ISE
implementations of Xilinx libraries.
Implements OhelperO cells b those cells composed from the basic
DIMS . .
cell library B in a DIMS style
Implements OhelperO cells B those cells composed from the basic
NCL cell library B using NCL style gates. In many circumstances
logic smaller implementations result.
Creates balanced circuits where the notional path delays thfough
Balanced the DIMS circuts are matched in an attenpt to defedei@iftial
Paver Analysis attacks in security applications such| as
smartcards
SR Variables stored in OstandardO SR latches
Each variable latch is reset to a NULL state before a writie
variable Spacer operation in an attenpt to defeat Differential Powealysis
attacks in security applications such as smartcards
Variables are stored in pipleline style latches. Mokeieht for
NCL
1-of-4 codes.
Enables general n-of-m mapping strategy for dual daiak_b)
n-of-m k
. set/unset styles. General users should accept the default option B the
mapping L L
option is included for historical reasons.
icarus : .
xl These option are onlyvailable for theexampletechnology
nev They are variousVerilog simulators known to work with the
sim ves Balsa system. Note thatalsa-sim-verilog must be
modelsim conkgured to locate a particular simulator (see the installgtion
over notes).icarus andcver are publicly available simulators.

Table 8.1:Style options
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Use conrentional implementation of the alseVariable
conv component with full enclosure of activity on the read chanpels
within the handshake upon the write channel.

FV Introduce concurrency within the passi enclosure of
False\ariable components byverlapping the return-to-zerp
phases of the OwriteO port and the OsignalO port which triggers
activity on the readports. This is the default option.

ovlp

Use corentional implementation of the Concur component with
conv full enclosure of activity on the output channels within the

handshake of the activate channels.
PAR

Introduce concurrency between the return-to-zero phases of the
ovip activation and output channels of Concur components. Thjs is
the default option.

Use corentional implementation of the Sequence component, a
conv full handshake is completed on each output channel before
initiating activity upon the next channel in the sequence.

SEQ Introduce concurrenye where safe, between the return-to-zero
phase of the an output channel and the processing phase |of the
ovip next channel in the sequence. The balsa-c compiler determines
within which components this optimisation can be safely
implemented. This is the default option.

Use the cowentional implementation of a3sivatorPush
ComponentsTo maintain the data-validity protocols across the
conv broad/reduced-broad interface in single-rail implementatipns,
this option implements enclosure of output channelvifet

within input channel activity in Fetch components.
PP

Use a ObroadO® implementation of single-ragsiatorPush
component. The broad implementation latches the data within
broad PassiatorPush components, solving the data-validity problems
caused by broad/reduced-broad protocol interfaces in Fetch
components. This is the default option.

Table 8.1:Style options

Many of the options offered are for use within specialist research projects; others depend on the
exact tool flow used when targetting particular silicon technologies and design kits.

8.2.  Creating an implementation

In balsa-mgr, select the top-level procedure. Right-click and choose OAdd ImplementationsO (as
shown in Figure8.1) causing a dialogue box to be spawned. The user can change the nakme of the
implementation and the defaiblalsa-netlistoptions (see Section, OBalsa Reference,O ol page
Clicking on the technology tab reveals the technology and style options. shown in Figure 8.2

Choose the technology desired, the implementation style and the style options. An icon for the

implementation should be displayed in the File pane under the chosen procedure. Changing to the
Makefile pane should reveal the new rule listed under the implementations subpane. Clicking on the
Make button will generate the appropriate netlist for the technology.
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8.2. Creating an implementation

Figure 8.1: Adding an implementation.

Figure 8.2: Choosing an implementation style.

All that remains is for the netlist to imported into the CAD framework for the chosen technology!
Future versions of this manual will give advice how to do this.
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8.2. Creating an implementation

Figure 8.3: Making the implemetation.
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Technologies
and Styles

Adding Technologies to Balsa

9.1. The Balsa backend

This chapter documents how multiple technologies and implementation styles (described in
Olmplementations,O0 on p&ge are handled. It describes how to add technologies and
implementation styles to the Balsa system.

A Balsa description of a circuit is initially compiled to an intermediated breeze format containing
references to generic, parameterised handshake components. To create a concrete implementatior
balsa-netlist creates instances of expanded handshake componentsnéhfarmat netlist,

from the parameterised breeze specifications by applying the parameters to a description of the
component.

The description used to generate the handshake component is composed from abstract gate
operators and customised cells and is dependant on the implementation style and, in a small numbel
of cases, the technology. The implementations are described in a special laigfage OThe abs
languageO on pa@&2) The .netfile is then mapped, according to specifications defined by the
technology, into the target netlist format which involves mapping the .net instance names into the
names of the technology cells and decomposing large gates that are incompatible with the
technology into smaller gates.

A knowledge (and love!) of the lisp-like languagehemeis helpful for understanding how to
construct a new backend

The Balsa backend system allows for implementations in different technologies and different
asynchronous styles. The technologies correspond to different cell libraries (either custom built or
vendor-supplied standard cell libraries) for silicon foundaries or libraries for programmable gate-
arrays such as Xilinx. Although each technology has its own cell libraries, gate fan-in restrictions,
instance naming and pin mapping conventions and netlist formats, most handshake component
descriptions are common across all technologies.

Balsa supports several different asynchronous implementation styles; the present release supports:
¥ abundled data scheme using a four-phase-broad/reduced-broad signalling protocol
¥ adual-rail delay insensitive scheme
¥ aone-of-four encodings delay-insensitive scheme.
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9.1. The Balsa backend

Directory
structure

example———— example
——— example-cells.net
——— balsa-cells.net
——— balsa-mgr.cfg
L components.abs
——— drive-table

L gate-mappings.scm

common—r——— components—————  Adapt.abs
——— common | Arbiter.abs
——— components.abs
— helper-cells.abs ——  While.abs
—— helper-mappings —— debPnitions.abs
— template-balsa-mgr.afg—  ctrl-broad—————  Arbiter.abs
L Synch.abs
—— data-single-broad———  Adapt.abs
L While.abs
—— data-dual———+—— Adapt.abs
L While.abs
—— dual-rail-depbnitions.abs
—— data-lof4 ——————— Adapt.abs
L While.abs
L one-of-four-depnitions.abs

Figure 9.1: Directory structure for the example technology and common components

Each implementation style may have several style options such as variations in the types of latches
or the style of logic used. In contrast to technologies, styles need different component descriptions
for each type of implementation.

There is much similarity between the requirements of different netlist formats which is reflected in
the directory structure. Information specific to a particular technology is held in a directory
corresponding to the technologyOs name. Other information which is common to all technologies is
held in the directorcommon As control components are generally determined by the signalling
protocol rather than by the data encoding, the descriptions for the implementation directories are
split up into various control and datapath implementations to reduce the number of directories. A
extract of the directory structure (rootedatsa/share/techis shown in Figure 9.1.
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9.2. The technology configuration file

common
directory

the <tech>
directory

Thecommordirectory contains the following files and directories.
common: this is an empty configuration file for the technology B not used.

components: this directory contains each component in a separate file. For each implementation
style there is a link to the directory and file of the relevant description. Also in the directory are
several definition filesdefinitions.abs, dual-rail-definitions.apene-of-four-definitions.abhgshese

files contain functions (in the abs language) used by many of the component descriptions.

components.abs: this file includes all the components in the component directory.

helper-cells .abs: this file is a set of descriptions of all the current helper-cells in abs b it allows
helper-cells to be generated in any technology by the progiiasnmake-helpers

helper-mappings: this is a 3-way mapping file format similar to gate-mappings to map from a
helper-cell-abs description to a cell name in balsa-cells.net and an entry in gate-mappings. e.g.

("c-element3" "c-element3" "c3")

Here the first argument is the name of the cell in helper-cells.abs the second the name of the cell the
abs HC component descriptions and the gate-mappings file, and the third the name of the cell in the
balsa-cell.net file to be generated.

template-balsa-mgr.cfg: a template for adding technologies, styles and style options to balsa-mgr.
In each technology directorytech>, the following files are found:

<technology>: essentially a configuration file for defining‘various files and component names
used by the technology. The file format is described in OThe technology configuration file,O on
page 107.

<technology>-cells.net: a file in .net format (see ONetlist,O on a2 containing lists of all the
cells in the library, together with their pin orderings and directions. The name of this file can be
changed in the technology configuration file.

balsa-cells.net: a file in .net format containing all the OhelperO cells required by the various Balsa
descriptions, such as adders, s-elements etc which are not resident as cells in the target technolog
library. The name of this file can be changed in the technology configuration file.

balsa-mgr.cfg: this file is necessary so that the technology and its options are known about by
balsa-mgr. A template for constructing the file can be fourmimmon/template-balsa-mgr.cfg

components.abs: contains descriptions of handshake components which are specific to that
technology; typically the last line of the file will import common descriptions fammmon/
componentindirectly viacommon/components.abs.

drive-table: not currently used.

gate-mappings: used to map between the abstract gate names and pin orderings of the .net output
and that required by the technology. This file also contains information about different cells to use

when driving large loads. The information required to Odrive-upO signals where necessary is
contained in the drive-table file. B however, at present, this feature is not available in this Balsa
release. For more details see ONetlists,O on page 117.

9.2. The technology conbguration ble

Each technology is controlled by a configuration file, named the same as the technology:

net-signature-for-netlist-format determines the netlist format to use for the technology,
either verilog, edif 1 The second argument, if true, sets the format as the default for that

1. OcompassO is also allowed for historical reasons , producing a netlist in that design systemOs
proprietry format.
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9.2. The technology configuration file

(net-signature-for-netlist-format Overilog #t)

(set! breeze-gates-net-files O("example-cells” "balsa-cells"))

(set! breeze-primitives-file (string-append breeze-tech-dir
"components.abs™))

(set! breeze-gates-mapping-file (string-append breeze-tech-dir "gate-
mappings"))

(set! breeze-gates-drive-file (string-append breeze-tech-dir "cadence-
drive-table™)

;»» max. no. of inputs for and/or/nand/nor gates and c-elements
(set! tech-gate-max-fan-in 3)

(set! tech-c-element-max-fan-in 3)

(set! tech-map-cell-name id) ;;; No mapping

(set! tech-netlist-test-includes '("example-cells.v"))

(set! tech-gnd-net-name "!gnd")

(set! tech-vece-net-name "lvec”)

(set! tech-gnd-component-name “"LOGICO")

(set! tech-vcc-component-name "LOGIC1")

Figure 9.2: A typical conbguration ble.

technology. The net-signature-for-netlist-format procedure is also used bhyalsa-

netist ~ with the -n option when producing new-netlists to allow different netlists to be produced
other than the default - if a default netlist signature was not set,btmetlist would
produce an error as no netlist could be produced. It is possible to have two different netlist-
signatures but their use is controlled by style-options

breeze-gates-net-files is a list of the cell description files used by the technology.
breeze-primitives-file is the path to the component.abs file of the technologgze-

tech-dir  is a global variable in the scheme code that defines the path to the technology directory.
breeze-gates-mapping-file is the path to the gate-mappings file

breeze-gates-drive-table is the path to the drive table, containing information about the
loading and drive strengths of each gate

tech-gate-max-fan-in sets the maximum fan-in for the logic gates (AND, OR, etc) in the
library.

tech-c-element-max-fan-in sets the maximum fan-in for c-elements in the library.

tech-map-cell-name sets the mapping function for the handshake component names, at present
only net-simple-cell-name-mapping function is available, which is a simple cropping
procedure taking a boolean argument stating whether uppercase or lowercase letters are prefered b
the technology. The length at which names are cropped is controlled tachieell-name-

max-length  variable. Thad function is used when no mapping is required, the function preserves
the original balsa names.

tech-netlist-test-includes is a list of HDL models of the cell library, used by balsa-mgr
when simulating implementations with CAD simulators.

The last four declarations set the power and ground net and component names for the technology.
balsa-netlist instantiates power and ground components for conections between gates and the rails
The name of the net used to connect to these components is determinedebly-dienet-

name and tech-vcc-net-name variables. If no power and ground component names are supplied
when specifying a verilog netlist, these nets are instantiateslpply0 and supplyl types
respectively. and no power or ground components are instantiated.

There are three variables not shown in Figure 9.2:
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9.3. Handshake component declarations

parameters

ports

symbol

implementa-
tion

tech-cell-name-max-length determines the maximum number of characters for instance
names in the netlist by default this is set at 1024 characters.

tech-map-cell-name-import , tech-map-cell-name-export allow balsa-netlist to import

and export any name mappings of cells to or from a mappings file in the local directory, allowing
different balsa-designs to keep consistently mapped cell names, if the tech-map-cell-name or tech-
cell-name-max-length options are used.

Each option takes the name of a simple import/export funatinsimple-cell-name-import
andnet-simple-cell-name-export respectively

9.3. Handshake component declarations

For convenience, the descriptions of common handshake components are separated into
implementation independent declarations and technology specific implementation descriptions.
Each HC declaration (found imommon/components/ ) consists of four parts as shown in
Figure 9.3:

(primitive-part "Bar"
(parameters
("guardCount" (named-type "cardinal))
)
(ports
(port "guard” passive output (numeric-type #f 1))
(sync-port "activate" passive)
(arrayed-port "guardinput” active input (numeric-type #f 1) 0
(param "guardCount"))
(arrayed-sync-port "activateOut" active 0 (param "guardCount"))

(symbol
(centre-string "[]")

(implementation
(style "four_b_rb" (include tech "common" "data-single-broad/Bar"))
(style "dual_b" (include tech "common" "data-dual/Bar"))
(style "one_of_2_4" (include tech "common" "data-10f4/Bar"))
)
)

Figure 9.3: Example of a component abs ble

Variable expressions used to customise the component.
Declaration of the ports of the component. There are four kinds of port:

sync-port
arrayed sync-port
data-port
arrayed data-port

The port declaration lists the ports OsenseO (whether passive or active), OdirectionO (input or outpur
type (if data port), and, if arrayed port, its low index and cardinality.

The two sections above both include a type declaration to specify the type of the expression. The
types allowed are defined in OTypes,O on page 122.

The symbol of the component as it would appear in an HC graph.

The implementation descriptions of the component for each implementation style B usually a link to
a description in the appropriate style directory although descriptions may also be inlined. The format
of these descriptions, their operators and operands is discussed below.
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9.4. Handshake component implementation descriptions

9.4. Handshake component implementation descriptions

Handshake component instances are generated from these descriptions according to the parametel
in the intermediate breeze file. The descriptions are a recipe writtenahsth@nguage which has
operators to create gates or arrays of gates, as well as operators to construct and destruct wire
vectors used by the component. Each HC impleaten description consists of four separate
sections:

defines Specifies an optional list of expressions, defined by the parameters of the component. Definitions
are of the form:
(identifier expression )
The complete grammar for expressions is given in OThe ABS Grammar,O b2Qmagkincludes
operators such as *, /, and, if etc. It also contains several builtin functions:
pop-count ;; the number of bits set in a binary representation
find-set-bit ;; the first set bit of a binary number
find-clear-bit ;; the first clear bit of a binary number
style-option ;; returns true if a particular style option is in B8LSATECHvariable
bit-length ;; the number of bit required to implement a binary number
bit-set ;; the boolean value of a given bit of a binary number
bit-xor ;; result of a boolean xor operation on two binary numbers
. ;; create an interger list between a pair of values
print ;; print a list of expression to current-port
note ;; print a list of expressions to error-port
The full range of schemeOs builtin functions are also available.
The expression language contains the facility to support user-defined lambdas (anonymous
functions). The lambdas are similar in style to lambdas insthemelanguage. Lambdas are
declared like any other expression and take the form:
(lambda (  params* )
( let-expression?)
( body-expression )
)
Whereparamsis a list of identifiers. The let expression is a list of local definitions, taking the form:
(let
(identifier expression )+
)
The body expression can be any valid expression in the expression language. Multiple expressions
can be executed by enclosing them isegin expression. Lambdas can be called from within the
definessection or throughout the other sections by providing values for its parameters:
(identifier params* )
The expression language also includes several control lambdas, defidedinitions.absfor
operating across lists etc:
map(func args) ;; Applies func to the list args, and return the resulting list
fold(func res args) ;; Applies func to the list args, accumulating the result in res.
for-each(func args) ;; As map but does not return the resulting list - used for side effects
nodes Defines a list of all the internal nodes in the circuit. Definitions are of the form:
( name width lowbitindex cardinality )
where width, lowbitindex and cardinality are valid abs language expressions.
gates Contains the implementation of the component written in the abs language.
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9.5. Adding a new technology

connections Lists the port to port connections of the component.
(defines
(guard-count (param "guardCount"))
)
(nodes
("bypass" (+ 1 guard-count) 0 1)
(gates
(c-element (ack "guard”) (ack (each "guardinput")))
(or (data "guard”) (data (each "guardinput")))
(or (ack "activate") (ack (each "activateOut"))
(slice guard-count 1 (node "bypass")))
(connect (req "activate”) (slice 0 1 (node "bypass")))
(demux2
(slice 0 guard-count (node "bypass"))
(slice 1 guard-count (node "bypass"))
(combine (req (each "activateOut")))
(combine (data (each "guardinput")))
)
)
(connections
(connect (req "guard") (req (each "guardinput")))
)

Figure 9.4: Example of component implementation description P the single rail ObarO

9.5. Adding a new technology

Adding new technologies is straight-forward. The whole process takes about an hour

1.

7.

Create a<technology>-cells.neble. Add entries for each cell in the new target cell library
This step may be automated.

Create agate-mappingsble for the abs-gate operators that available in the library
Mappings must be provided for anything that is used by the abs descriptions or any logic
required to generate helpers Imisa-make-helpers such asand, or, nor, inverter , xor ,

buffer , 2-1-mux, 1-2demux, transparent-laich, tristate-inverter , tristate-

buffer,  andkeeper inverters

If the cell library contains asynchronous cells such cagements , s-elements or

mutexs they should be be put here as well, otherwise léx3esit versions will be generated

by balsa-make-helpers out of standard cells.

Create acomponent.ab®le including a link to the common components.abgkedper-
inverters are not wailable add single rail implementations @riable , CalMux and
CaseFetch components.

Create a conbguration Ple.
Install the skeleton implementation (or copy ishare /tech

Set the environment variableABSATECH to the new technology. Rubalsa-make-

helpers to produce two Ples: a balsa-cells.net ble and a gate-mappings ble. THxese b
contain the descriptions and the mappings of the new cells thaitblean created hyalsa-
make-helpers  and must be concatenated to the original bles in the technologies.

Create a newalsa-mgr.cfgele using the template, in the common directory.

Adding more implementation styles is not easy: New descriptions must be made for each
component, and the backeschemecode must be updated to inform the system about the structure
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Bundles

Channels

of channels within the new style. A brief specification of the handshalge components can be found in
<balsa-home>/doc/components.tétn example description is given in OExample,O on page 115

9.6. The abs language

Each implementation consists of a list of gate operators or helper cells operating on individual wires

or wire vectors, these vectors are obtained by partitioning the port expressions into their constituent
components. The following is a discussion of the datatypes and operators present in the abs
language.

A bundle is an expression of the data/signalling wire bundle which can be connected to the port of a
handshake component. A bundle therefore may be take any of the forms of the port descriptions
(arrayed/sync/data), and several operators allow their manipulation:

hamé - the complete bundle, refers to the named port expression.

bundle hamedindex- used to extract a single channel from an arrayed port expression.

bundles hamedindex count used to extract a range of channels from a bundled array.

each hamé - used to apply an operation on each of the channels in a bundled array.

Channels are the individual communications primitives that constitute the bundles of a component.

Channels are composed from several logical groupings of wires called portions. The structure of a
channel and its portions depend on the implementation style, sense and direction of the channel.

Implementation Style Channel Sense Port Sense Portions
: req
Push Pa;swe Input ack
Active Output d
Four Phase Broad/ ata
Reduced Broad req
Active Input
Pull Passive Output ack
P data
: reqoO
Passive Input
Push Active Output reql
ack
Dual Rail
; req
Pul passive Output acko
P ackl
reqo
. reql
Passive Input
Push Active Output req2
req3
ack
One of Four
req
Active Input ack0
Pul Passive Output ackl
P ack2
ack3

These portions can be accessed from channels/bundles by the portioning operators:

(req bundle ) (ack bundle )(data bundle )
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Slices

Gate
Operators

(req0  bundle ) (reql bundle ) (ack bundle )...
Wherebundle,can be a single bundle expression or several bundled arguments:

(req OinpO OoutO) -> (req OinpO) (req OoutO)
(req (each QinpO) -> (req OinpO 0) (req OinpO 1)

These portioning operators return the relevant portion in the form of a slice (see next section), which
are needed to be used as input to the gate operators. In order to extract slices from internal nodes
with no logical grouping another portioning operator is used :

(node bundle )
where bundle takes the form of one or several internal node names.
Slices are the basic groups of wires that are manipulated by the gate operators of the system. Slices
are a means of constructing a single dimensional wire vector, so must consist of wires of the same

direction. Single slices are created by the portioning operatorsdck , node etc), but slices can
also be formed from other slices by usingdbrabine operator:

(combine abcd )
which combines, b, candd into one slice.

N.B. While most abstract gate operators will accept combinatorial slice as operands, some operators
(e.g. slice andfiter ) will only acceptsingle sliceoperands generated by the portioning
operators.

Theslice operator is used to extract bit fields from a single slice:
(slice low-bit-index cardinality single-slice )
returns a slice of the input single slice consistingastlinality wires starting albw-bit-index.
Thefiter ~ operator can be used to extract arbitrary bit patterns from a single slice:
(filter mask single-slice )
where mask is a decimal representation of the mask required to extract the desired bit pattern.
Slices can be reduced into a list of singleton slices bynthsh operator:
(smash single-slice )
this is useful for applying operations across the elements of a slice:
(and (node OoutO) (smash (data OinO)))
would AND all the elements of OinO together.
Slices can also be duplicated with tlup anddup-each operators.

(dup countslice)
(dup-each  count slicé

where slice can be an individual slice or a list of several slices.

The dup operator replicates the slioeunttimes, and can be used with ttwnbine operator to
make a combinatorial slice allowing the slice to be applied several times across another slice, eg:

(and (node OoutO) (data OinpO) (combine (dup width (req OinpO))))

The dup-each operator replicates each element of a slice or slice list, allowing different arrays of
individual wires to be applied across another slice.

(and (node OoutO) (data (each OinpO)) (combine (dup-each width (req
(each OinpO))))

The abs language has several gate operators for performing operations on slices. The gate operator
can operate on slices of any size as long as the cardinality of all the slices is equal, and are expandet
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to produce several operators acting on single width slices.For examplapdtigate operator
operating on two nodes, a and b, of width 2 producing a result on node c, also two bits wide:

(and (node c) (node a) (node b))
would produce twand gate operators:
(and (slice 0 1 (node c)) (slice 0 1 (node a)) (slice 0 1 (node b)))
(and (slice 11 (node c)) (slice 11 (node a)) (slice 1 1 (node b)))
which would be mapped into .net gates as:

(and2 (Oc_0nO 0) (Ga_0nO 0) (Ob_0nO 0))
(and2 (Oc_0nO 1) (Oa_0nO 1) (Ob_0nO 1))

and into a verilog netlist as:

(and2x1 ¢_0n[0],a_0n[0],b_0On[0])
(and2x1 c¢_On[1],a_On[1],b_On[1])

There are two types of gate operators, fixed or stretchable. Fixed input gates have a fixed number of
arguments.. Stretchable gates are a small set of basic gates which can take unlimited numbers of
input arguments allowing tree-like structures to be created out of these simple gates. If the input and
output slices are of plural cardinality, several of these tree structures will be created for each wire in
the slices. The size of the gates used to create these trees is determined by the maximum fan-in fol
gates of the target technology. The abs gate operators are presented in OThe ABS Grammar,O ¢
page 120.

The abs language also provides the facility to add customisable cells as illustrated below:
(cell Ocell-nameO singleton-slice E)

The cell can have any name, and is mapped to a CAD-specific cell in the technologyOs gate-
mappings file. The cell descriptions are stored in the technologyOs helper cell description file, and
must use technology specific instances. The only restrictions on these cells are that they must take
singleton slices as inputs.

There are several other gate operators for use in constructing component descriptions:
(constant  value output-slice )

creates a constant from the decimal value, by tying wires to VCC or GND circuits.
(print  args )

prints debugging messages that can be viewed when instances of the component are being
generated, takes unlimited number of arguments.

(macro identifier args )

The macro operator is a method for creating complex abs expressions dependent on some
parameters. A macro is lambda defined, as described, defifs  section. The lambda is called

using themacro operator. The macro returns a gate operator which is then evaluated b after the
execution of the original lambda. The macro is executed, and the resulting expression is evaluated as
an abs expression. The arguments to the macro are also not evaluated, allowing abs expressions c
shippets to be passed in without resulting in syntax errors.

The abs system also includes control structure to allow more complex customisable components to
be created. The format of these structures is similar to the Scheme programming language:

f expr
gate
gate

)

where,gateis a valid gate operator of the abs language.

114

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06



9.6. The abs language

Example

Either the consequent or the alternative is selected, depending on the value of expr. The syntax of
expr is given in the OThe ABS Grammar,O on page 120.

(cond
(condition-exprgate ..)
(condition-exprgate ..)

ese gate .)
)

Each condition-expr is evalutated in turn, if it evaluates to true then the gates section is executed,
and the cond statement is exited. If no expression evaluates to true, the else statement is executed

(case expr
(( test-value .). gate ..)
(( test-value .). gate ..)

ese gate .)
)

This is similar to cond statement except the expression is evaluated and then compared against the
constant test values of each statement.

(gate gate .)

allows several gates to be substituted into a single gate expression.

Several handshake components encode or decode binary values from/to one-hot wires describec
using decode/encode gate operators. Because the format of these encodings varies greatly, thes
components use a specification string to determine the encodings. The actual format of the string is
given in the appendix. Each string has at mdstms, one for each of tineone-hot-wires and asso-

ciated with each term is a value or set of values.

In the encoding string, this value represents the binary value to be output on receipt of activity on the
relevant input wire.

In the decoding string, this value represents the input value or range of values that will activate the
relevant output wire.

The decode/encode gate operators that are used to provide this logic are:
(encodeoption input-slices output slices
(decodeoption input-slices output slices

For both single and dual-rail implementations dual-rail QDI logic is employed. In single-rail this
simplifies the delay-assumptions for components and makes timing-enclosure simpler.The option
argument specifies whether to implement the logic in traditional a and/or realisation used for
bundled data implementations, or a c-element/or realisation for return-to-zero delay insensitive
implementations, or whether to use a m-of-n-mapping allow more complex codes such a 1-of-4 to
be handled. For complex codes a mapping-function is passed as an argument to the encode gate th:
transforms binary implicants into the relevant encoding.

This example in Figur8.5illustrates the description of the FalseVariable handshake component in
a dual-rail implementation style using the abs language.

The FalseVariable component is used to implement passive input enclosure, it allows values of
passive inputs to be read in several places without the need for explicit latching. The FalseVariable
has three ports:

¥ "write" - the passive input dataport,

¥ "signal" - sync port to enclose the "read" port activity within a handshake on the "write"
port.
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0 (primitive-part "FalseVariable"
1 (parameters
2 ("width" (named-type "cardinal”))
3 ("readPortCount" (named-type "cardinal"))
4 )
5 (ports
6 (port "write" passive input (numeric-type #f (param
"width")))
7 (sync-port "signal" active)
8 (arrayed-port "read" passive output
(numeric-type #f (param "width")) 0 (param
"readPortCount"))
9 )
10 (symbol
11 (centre-string "FV")
12 )
13 (implementation
14 (style "four_b_rb" (include tech "common™
"data-single-broad/FalseVariable"))

15 (style "dual_b"
16 (nodes
17 ("writeSig" 1 0 1)
18 (“writeSigPart" (param "width") 0 1)
19 )
20 (gates
21 (or (node "writeSigPart")(req0 "write")(reql "write"))
22 (c-element (node "writeSig")(smash (node
"writeSigPart")))
23 (s-element (node "writeSig") (ack "write")
(req "signal”)

(ack "signal))
23 ; data read ports
24 (and (combine (ackl (each "read")))
25 (combine (dup-each (param "width") (req (each
“read"))))
26 (combine (dup (param "readPortCount”) (req0 "write"))
27 )
28 (and (combine (ackO (each "read")))
29 (combine (dup-each (param "width") (req (each
“read"))))
30 (combine (dup (param "readPortCount") (reql “write")))
31 )
32 )
33 (connections)
34 )
35 )
36 )

Figure 9.5: Description of dual rail FalseVariable

¥ ‘"read" - an arrayed set of passive ports to allow the reading of data in multiple sources.
The component has two parameters:

¥ "width" - width of the read and write datapaths

¥ "readPortCount" - number of read-ports.
The passive read and write ports form pull and push channels respectively.

The behaviour of the FalseVariable is as follows. Once a request is received on the write port (in
single rail this is signalled by the request line; in dual-rail this requires completion detection to
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detect the arrival of valid data) a handshake is initiated on the signal port. This handshake will
enclose all of the reads to the set of read-ports. The read-ports are connected to pull-channels and s
upon receiving a request they acknowledge with valid-data.

In the dual-rail implementation shown above each channel has a different set of portions:

Push Channels: reqo, reql, ack . The request on dual-rail push-channels is encoded within
the data. Theeq0 andreql portions are each the width of the datapath (param "width") and
respectively contain the zero and one wires of each dual-rail code gekup;a single wire used to
acknowledge receipt of data on the channel.

Pull Channels: req, ack0, ackl . The data of pull-channels enclose the acknowledgement,
ack0 andackl are each the width of the datapath and contain the zero and one wires of each code
group.req is a single wire used to request data.

Sync Channels: reqg,ack  have single request and acknowledge wires.
The implementation comprises 3 parts:

1. Completion Detection (lines 21 22). The slice arguments afrtlgate-operator of line 21 are
each the widtlof the data-path (param "width") This has the affect of placing a single 2-input
or-gate for each binary bit of tliatapath, detecting the aml of data in each dual-rail code
group of the datapath. These signalscamabined to a single signal using the c-element of line
22, thesmash slice operator breaks down (node "write%igh into individual single-wire
slices, and so this operator instantiates a tree of C-elements the width of the datapath.

2.  An s-element is used to enclose the "signal" handshake between the completion-detection
signal and the ackmdedgement of the "write" channel. As each slice is a single wire only one
s-element is instantiated.

3. The read-ports to the read-channels are instantiated with thenéwaperators (lines 24-31),

an operator foeach ack0 ackl portion of the channels. Each operator results in the instantiation
of "readPortCount" arraye AND-gates each of width "width", each slice argument to the
and-gates is ("readPortCount” * "width") widehe bundling operatoeach on line 24 creates
a slice for each channel in the read-port array. Thienisbined to a single-slice with the
combine command, The input arguments to the and-gate highlight tieeetite between the
dup anddup-each commands. Theup command is used to duplicate the "write" request
portions foreachread-port, eachwire ofthe write portisduplicatedinturn, soeachread pestrecei
all the wires of the write port. Thdup-each command is used to ensure that each read-port
only receives theequest wires specibc to that read port. ddvd operator of line 29xg@ands
to "readPortCount" slices oéquest wires for the read-ports. These slices are then duplicated
in turn so as to produce:

(slice 0 1 (req (bundle "read" 0)) ... (slice width 1 (req (bundle "read"

0)) (slice 0 1 (req (bundle "read" 1)))
rather than:

(slice 0 1 (req (bundle "read" 0)) ... (slice 0 1 (req (bundle "read"
readPortCount)) (slice 1 1 (req (bundle "read" 0))

which would be produced by thiep command.

9.7. Netlists

balsa-netlist processes the breeze file by applying the specified parameters to the abs cell
descriptions: The gate operators are expanded into instances of abstract gates containing single slict
arguments. The stretchable gate operators are expanded into trees of gates of a size determined b
the maximum gate fan in of the technology. The channels are expanded into their constituent vector
components. The names are mapped to the target gate names, and their arguments re-ordered ¢
necessary. Balsa-netlist then produces a .net netlist which is an internal netlist format, technology
dependant, but independent of all CAD system netlist formats. Each technology has several files to
control this stage:
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ports:

nets

iinstances

gate-mappings.net - This file contains the library cells to use in place of abstract gates and
helper cells. Each entry contains the abstract gate name, the technology cell name foreach available
drive strength of the gate, and the pin mapping that takes place between the abstract gate pin
ordering and the actual gate ordering. Eg:

("and2" ("AND2" 1 2 0) (1 "AND2") (2 "AND22") (3 "AND23") (4 "AND24"))

Here an abstract 2-input and gate maps to the cell AND2, where the first pin (pin 0) of the absract
gate, in this case the output, maps to the last pin of the actual gate, the second (pin 1) to the first pin
etc. The customisable gate operators, helper cells, must also be declared in here to allow the same
helper cell to have different definitions in the various technologies.

<technology>-cells.net - This file contains a list of all the cells in the library and their
arguments.
balsa-cells.net - This file contains a list of all the helper cells and balsa primitives not

supported by the technology, e.g. c-elements, s-elements, arbiters etc.

The expansion process produces an intermediate netlist, based on the constraints of the targe!
technology, but independent of any established netlist format, allowing each technology to produce
netlists in various forms. The same format is used to declare the technology and helper cells in the
files mentioned above. A circuit declaration The format of a circuit declaration has 4 fields: ports,
nets, instances, attributes.

contains the channels of the input expanded into their constituent vectors. Each vector description is
of the form:

(name direction width)
The naming scheme for channel portions is:
<channelname>_<channum><portionid>
<channun® : the channel index. If the channel is unarrayed, this number is always zero.

<portionid >: the portion identifier. Each portion has a different identifier shown below:

r - request wire

a - acknowledge wire

d - data vector

rod, rid, r2d, r3d - req data vectors (dual-rail/one-of-four)
a0d, ald, a2d, a3d - ack data vectors (dual-rail/one-of-four)

contains all the internal nodes of the circuit with arrayed nodes expanded into their individual. A net
declaration takes the form:

(nethame width )
the naming scheme for nodes is:
<nodename>_<nodenum><nodeid> :
<nodenum>: the node index, zero if unarrayed node.
<nodeid>: O,

The above naming schemes apply to generated circuits only: Technology and user defined helper
cells are not restricted to this scheme, but must conform to target technology naming schemes.

lists of all the instances comprising the circuit. The format of instance declaration is:

(instance instancename ("connection" "connection™ ...))
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attributes

where,instancenamés the name of the instance as it appears in eithertéobrology>cells  or
balsa-cells files. The connections are either nets or ports of the circuit, and are ordered in the
ordering given in the .net files of the technology.

Attribute declarations are of the form:
(attributename value)
Attributes currently in use are:

cell-type: defines the circuit to be a helper cell or a balsa-generated component allowing netlists to
be created with helper cell descriptions removed.

global-ports: allows ports of a helper cell to be defined as global, which are then propagated
through the breeze netlist to the top level, this allows, for example, explicit reset signals on helper-
cells.

feedthrough: allows the insertion of assignment statements in components to avoid unnecessary
buffering in designs. The arguments are the port indices of the left and right handsides of the
assignment statement.

simulation-initialise:  currently only configured for verilog netlists, this option signals balsa-
netlist to insert verilog initialisation code into the final netlist to force certain signals into known
states. The arguments to the attribute are a list of Ensal-namevalué), only signal-bit signals

can be assigned. The resulting verilog code requires two defines to be set in the testbench
balsa_simulate , a boolean to determine when simulation code is being used, and
balsa_init_time , which determines the length of time the signals should be forced to their
designated value before being released.

Balsa-netlist takes the .net netlist and maps it to specific netlist formats, this includes changing the
instance declarations, channel naming schemes and node declarations. In formats where there is :
restriction on the length of circuit names, balsa-netlist creates a new abbreviated name, in order to
keep track of the original component it keeps track of this mapping in <technology>.map, in the
invocation directory. Then every time this name mapping needs to take place the .map file is
searched, and where possible the previous mapping is used.

9.8. The BALSATECH environment variable

<technologyname>/<stylename>/<styleoptions>*

The implementation style of a circuit is determined by the BALSATECH environment variable.
This sets the technology, implementation style and also any options available for the
implementation style.

e.g.
export BALSATECH=example/dualb/variable=spacer:logic=balanced

Sets the technology to tlexampletechnology, using the Dual-Rail backend. The last section sets
the style options. Each implementation style has its own style options, these options can be used to
change the resultant implementation from the default standard. Examples of style options include
changing the cell library or theriable  option which determines the cell to use for storage inside

the Balsa Variable components. Tihgic  option determines the style of logic to be used in the
Binary-Function components. The format of the options is shown above with options being colon
separated. Values can be assigned to options that may take multiple vaules, Boolean options just
need to be set to OtrueO.

Current stylenames (corresponding to implemetation styles) are:
¥ four b rb B bundled data four-phase, broad, reduced broad protocol
¥ dual b D dual rail delay insensitive encoding with return to zero signalling
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Components

gparameter-exprfi

dort-expri

dort-typefl

dort-sensei

&ort-directionf

a&ymbol-exprfi

dmplementation-
expri

Styles

Sstyle-descrfi

aepbne-expiii

anode-exprfi

&gate-expri

&onnection-expri

¥ one_of 2 4 D one-of-four delay insensitive encoding with return to zero signalling

9.9. The ABS Grammar

component description:

(primitive-part
darameter-exprii
dort-exprii
aymbol-exprii
dmplementation-exprfi

gartnamefi

)

(parameters
( ( G¥param-namefDé&ype-expr) )*

(ports
( ( &ort-typefid@portnameiéport-sensefidport-directionfidype-expri) )+
)

port

| sync-port

| arrayed-port

| arrayed-sync-port

passive
| active
input
| output

( symbol
(centre-string
)

(implementation
((style  (stylenamefOénclude-exprii| &tyle-descrf) )+

"&ymbolfl")

)
Descriptions of implementation styles
&ebne-expifi
anode-exprii
ayate-expril
(‘&onnection-exprfi )?
(defines
(dound-expri)*
)
(nodes
(( " &odenamefi" &vidthfidow-bit-indexfi&ardinalityi) )*
)
(gates
( ( &ate-operatorf) )*
)
(connections
((connect  é&nput-slicefi ( &utput-slicefl }) )*
)
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Gates

&gate-operatorii

&ixed Gatefi

&tretchable
Gatel

&ontrol Gatefi

af-gate-operatorfi

&ond-gate-
operatorfi

&ase-gate-
operatorfi

&yates-gate-
operatorfi

&Other Gatefi

anacro-argsfi

Descriptions of gates

&ixed Gatenl
&tretchable Gatefi
&ontrol Gatefi
&Other Gatefi

(constant  &aluefidoutput-slicef)

(s-element  &equest-in-slicefl ack-in-slicefi &quest-out-slice fi &ck-out-slicef)
(xor2 &utput-slicefi &put-sliceOfidnput-slice1f)

(mux2 dutput-slicefl &put-slice0f &put-slicelfi &elect-slicef)
(demux2 dnput-slicef &utput-slice0fi utput-slicelfi &elect-slicef)
(inv  dutput-slicefiénput-slice)

(keeper-inv doutput-slicef @put-slicef)

(latch &enablefi &put-slicefl autput-slicef)

(latch-n-enable &nable-slicefi @put-slicef autput-slicef)
(tri-buffer &nable-slicefi @put-slicef autput-slicef)

(tri-inv &enable-slicefi @put-slicef autput-slicef)

(mutex d&nput-sliceAn @put-sliceBi autput-sliceAR &utput-sliceB)

(gnd (Houtput-slicesfi)+)

(vcc (doutput-slicesii })

(connect  &nput-slicefi( doutput-slicesfi })
(and dutput-slicefi( dnput-slicesfi })

(nand &utput-slicefi( &nput-slicesfi ¥ )

(or &utput-slicefi( dnput-slicesfi ¥ )

(nor &utput-slicefi( &nput-slicesfi ¥ )
(c-element  dutput-slicefi ( &put-slicesi })

#-gate-operatorfi

&ond-gate-operatorfi
&ase-gate-operatorfi
dyate-gate-operatori

aexprfi
dyate-operatorfi
dyate-operatorfi

(cond

)

( ( &ondition-expri §ate-operator) ) +
((else &ate-operatorf) )?

(case &xprfi

((( (&est-valuefi ¥) &ate-operatorf) )+
((else &ate-operatorf) )?

)

(gates ( &ate-operatorfi ¥)
(constant  &aluefidoutput-slicefi)
(print  (&rgfi}y)

(macro &macro-namefi( &nacro-argsfi ¥)
(encode @ptionfi( ( &nput-slicesfi)+) autput slicef)

(decode @ptionfi @put-slicefi( ( doutput-slicesfi)+))
(cell  Gell-namefO @ingleton-slicefi ¥ )

( dentiperfi ¥

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

121



9.9. The ABS Grammar

doptionfi

Slices

Slicefi

&lice-operatorfi

gpartition-
operatorfi

ébundle-exprii

Include
anclude-stmti

&echnology-
descii

Types

aype-exprii

and-or
| c-or
| m-of-n-mapping &mapping-functionfi

Slices and slice operators
( ( &lice-operatorfi ¥ ( gpartition-operatorfi)? &undle-exprf)

(combine ( &licefi ¥)
| (dup &licef)
| (dup-each &licefi)
| (smash &ingle-slicef)
| (filter asingle-slicef)
| (slice  dow-bit-indexfi &ardinalityfi &ingle-slicef)

The last 3 operators takéingle-slicefi arguments, these arguments must be the result of a
partitioning operator only and cannot be preceeded by any other slice operator.

(req &undle-exprf)
(req0  &undle-exprf)
(reql &undle-exprf)
(req2 &undle-exprf)
(req3 &undle-exprf)
(ack &undle-exprf)
(ackO &undle-exprf)
(ackl &undle-exprf)
(ack2 &undle-exprf)
(ack3 &undle-exprf)
(data &undle-exprf)
(node &undle-exprf)

GnamefD
| bundle @Gnameiéndexii
| bundles @Gnamefiéndexii&ountii
| each Gnamei®d

description of include statements
(include ( &echnology-descfi| @subdirectoryi)? @plenamef)
tech Gtech-namef®

The include statement allows the contents of other .abs files to be inserted into this file. Included
.abs files must be present in t@mponentslirectory (or any sub-directory) of one of the valid
Balsa technologies. For example:

(include Octrl-broad/SequenceO)
will include the contents of the fieomponents/ctrl-broad/Sequence.ashe current technology.
(include tech OcommonO Octrl-broad/SequenceO)
will include the same file but from thetrl-broad sub-directory of theomponentslirectory of the
commortechnology.
type definitions

Aamed-type-exprfi
anumeric-type-exprfi
aalias-type-expri
aarray-type-exprii
&numeration-type-exprii
&ecord-type-exprfi
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| &tring-type-exprii

&named-type- ( named-type &amef)

exprh The type identified by named-type are useful predeclared typdsaiga/types/basiand balsa/

types/synthesiguch as cardinality or boolean..

aumeric-type- ( numeric-type  &ignednessfiawidthf)

exprfi

dalias-type-exprfi (alias-type aewnamef éldnamef)

array-type-exprfi (array-type dype-exprfi &wIndexfi &lementCountf)
&numeration- (enumeration-type asignednessfiavidthfigenum-listf)
type-exprfi

a&ecord-type- (record-type awidthfidbelds)

exprfi

astring-type-exprii &ase-specii(; &ase-specfi)*

This type is only used a parameters to a select few gates which take a specification string

&num-listA ( ( @amen galuef) )+
ébeldd ( ( @amef&ype-exprf) )+
&ase-specfi gangefi(, aangefi)*
aangefi [0-9] (.. [0-9] )*
asignednessii #t
| #f

Expressions expression types
&exprfi fambda-dec-exprii

dambda-call-exprfi

af-exprfi

aarith-expri

&n-expri

a&cheme-exprfi
&ncoding-exprii
daram-exprfi
dind-namefi
drimitive-exprfi

dambda-dec- (lambda ddentiperfi( dparam-list) ébody-exprf)
exprii
dambda-call- ( dentiperf ( &xprfi )¥
exprfi
af-exprii (if  &expriidexprifigexpr2f) ;;é&exprfiis consequengexprfiis alternative.
aarith-exprfi (@arith-opfi( &xpri ¥)
&n-exprfi (pop-count  &xprf)
(find-set-bit aexprf)
(find-clear-bit aexprf)
(style-option aexprf)

(bit-length aexprf)
(bit-set? aexprii éxpri)
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(bit-xor aexprii éxprf)
(..  &xprh éxpri)

(print (‘&xprii )®
(note  (&xprii )

&cheme-expril (expt &xponent-exprfi éxprf)
(mod é&xpriiéexprf)

(min  &xprii( &xprfi ¥)

(max &xprii( &xprfi ¥)

(quotient  &expriidexpri)

(and &xprii( &xprii })

(not  &xpri)

(or &xprAi( &xprii ¥)

(assoc &xpriéexpri)

(cons &xpriigexprf)

(car &xpri)

(cdr  &xpri)

(cadr &xprf)

(caar &xprf)

(let  &et-exprii &xprf)

(list  (&xpril ¥)

(length  &xprf)

(reverse!  &xpri)

(append (&xprfi’Y)

(null?  &xprh)

(odd? &xprf)

(pair?  &xprh)

(string?  &xpri)
(string-append (&xprfi })
(make-string &exprii( &xprii P)
(substring aexprii é&xprii( &exprii )
(string-set! aexpriigexprii é&xprf)
(string-length &exprf)
(number->string &xprf)

&ncoding-exprii (complete-encoding &xprf)

The argument to complete encoding is type specification string. It is used to make sure the decode/
encode gate specifications are correct.

gparam-exprfi (param GOéparam-namef®)
dorimitive-exprfi #t
| #f
| ([0-9])
garam-listfi (‘&dentibeffi ¥
det-exprfi ( ®ound-exprfi)+ )
&ound-exprfi (‘&dentiberf &xprf)
garam-listfi (‘&exprfi ¥
arith-opfi + - |* | = = > |< |>= |<=

9.10. Netlist Format

Netlist format of .net netlists
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anetlistA
anet-circuit-declfi
anet-portsfi
anet-portfi
éortnamei

gortidf

&net-directionfi

anet-netsi
anet-netfi
anet-instanceshfi
anet-instancefi

aet-instance-
connectionsfi

aet-instance-
connectionn

&net-vectorfi
anet-optionalf
&net-attributefi

attributesii

&ort-indicesi
&imulation-
signalfi
&imulation-
valuefi

(( &et-circuit-decl) )*

(circuit anamefiénet-portsi &et-netsfi &et-instancesfi &net-optionalfi)

(ports  ( &et-portfi ¥)

( dortnamefianet-directionfi&ardinalityfi)
&hannelnamefi &ardinalityfi@ortidfi

rlajd
rod | rid | r2d | r3d
a0d | ald | a2d | a3d

input
output
inout
hiz

(nets ( &et-nethi ¥)

( &amefi &ardinalityfi)
(instances  ( @net-instancen) *)

(instance  &amefdet-instance-connectionsf ( &et-instance-namen )

( (‘&et-instance-connectionfi ¥)

( &amefi &dexn)

( damefidndexfi&ardinalityfi)
anamen

anet-vectorfi

unconnected
(vector  ( &et-instance-connectionfi ¥)
(attributes ( @et-attributefi )*)
( &et-attribute-namefi &aluef)

&ell-namefi

global-ports gortnamef
feedthrough  &ort-indicesfi
simulation-reset dimulation-signalfi

([0-9] )+ (([0-9] )+)*

( ( @et-instance-connectionfi &imulation-valuef) )+

cell-type

0]1|x]|z
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O Balsa Reference

10.1. Summary
This chapter documents the command line interface to some of the more important components of

the Balsa system. Balsa-mgr is a GUI to these programs, but the expert user may wish to build their
own design flow by calling these programs directly.

10.2. Balsa programs

balsa-c {<switch>}* <block/file-name>

The switches are:

-l <path> append <path> to import ble patinport)

-e discard import path-discard-impor}

-0 <directory> directory for output intermediate Ples(itpu)
-0 DON'T optimise generated HC'sr{o-optimisg
-b inhibit banner{no-banney

tabs indent by <distance> placegab)

-t <distance> Used for identifying correctly column numbers in the source code when error
reporting.

-V be verbose-{verbosg
compilation option{compile-optiof
<option> can be:
allow-sequential-selectiort allow the generation of the non-delay-
insensitive BrzCallDemuxPush and BrzActive components

-c  <option> Deprecatedcode generation features:
var-read-split-- split variables on read bitbelds as well as writes
no-wire-forks-- don't use the WireFork component as a replacement for
permanent Forks
use-masks- use Mask components instead of slice

-- accept no more switches

-B don't generate a Breeze blen-breezg
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-P <type>

generate a Bat Breeze biddatten-bles

suppress import [balsa.types.synthesis] line in output
(--no-imports-in-outpyt

suppress Oimport [balsa.types.synthesis]O line in output
(--no-imports-in-outpyt

decorate error/warning messages with balsa-c source position
(--error-positiong

report a list of imported blocks on which this ble depends (-
(--dependy

used by balsa-md for its dependency analysis

default print command behaviour.

Type can be: (runtime | report | error | warning | fatal)
(--print-type

balsa-netlist {<switch>}* <block/file-name>

The switches are:

-h, -2

-n <format>

- <type>

-X  <cellname>

-l <directory>

¢ <component>
<args>
-l <blename>
-a
-S

-L  <blename>

Display this messagehelp)

Don't print the balsa-netlist bannem-banney

Be verbose, print cell names as they are produeegriyoség

Don't try to make a CAD system native netlish@-cad-netlist

Don't read in old cell name mappings from the .map+te{old-cell-
name$

Dump a netlist in the given format (edif, verilog, compass ...) as well as
any other scheduled netlist writes, several -n can be useake-other-
netlisy.

NB. Name mapping/mangling occurs when the internal netlist is
generated, all of these additional netlists will contain names mapped to
work with the default format.

Don't print prototypes for undebned cells (where appropriate).
(--no-prototypep

Do print prototypes for undebned cells (where appropriate)
(--prototype$

Add cell type <type> to the list of cell types to netlist. If no additional cell
types are given, then only the netlist debnitions for Balsa cells are emitted
(--include-cell-typg

Exclude the cell <cellname> from the generated netlist. No debnition or
prototype will be emitted-{exclude-ce)l

Add named directory to the Breeze import patimport)
create test componenttest-componeint

Make a list of generated bles in ble <blenasriete-(is)

Emit dePnitions for all parts founden if the top lgel block doesn't need
them ¢-all-parts)
Insert simulation initialisation code in netlist formats which support this
option ¢-simulation-initialisg

write a log of balsa-netlist messages to ble <blenatiogy (

Replace feedthrough cells with netlist appropriate aliases
(--replace-feedthroughs

Propagate global ports on cellpfopagate-globals
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Produce encounter compatible netlist. This option buffers the ports of
-e  <procedureNameprocedure <procedureName> and propagates power and ground
connections through sub-procedures to top leveh¢ountey
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1 The Balsa Language Debnition

11.1. Summary

The syntax of the balsa language is given in this chapter. An extended form of BNF is used to
describe the syntax. A terma()* denotes zero or more repetitions of the tegnthe term (@ )+
denotes one or more repetitionsacdnd (a )? indicates that the teranis optional (i.e. zero or one
repetitions of the terna). Terminal symbols are shown bold face non terminal symbols are
enclosed by angle brackéis.

11.2. Reserved words

The following are reserved words. Most (but not all) correspond to current keywords in the Balsa
language, others are reserved for future releases of the Balsa system.

active, also, and, arbitrate, array, as, begin, bits, case,
channel, constant, continue, else, end, enumeration, for function,
halt, if, import, in, input, is, let, local, log, loop, multicast,

new, not, of, or, output, over, parameter, passive, print,
procedure, pull, push, record, select, shared, signed, sizeof,
sync, then, type, val, variable, while, xor

11.3. Balsa Language DePnition

doin-digitf = (0]1)

aoct-digitfi = (0..7)

alec-digitfi = (0..9)

&nex-digitfi = (0..9]a..f [A..F)
detterfi = (a..z]A..Z)
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ddentipe

diteralil

astring-charfi

astringi

&lei

alotted-pathfi
douter-declarationsfi

douter-declarationfi

aype-declarationfi

&dentibersi

aypefi

(&etterfl| _ ) (detterfi| &lec-digitA| _ )*
(1..9) (&ec-digitii| _)*

0 ( &oct-digitfi| _ )*

(0b |0OB) (&in-digitii| _ |x | X|? )+
(0x |OX) (&nex-digith| _ |x | X|? )+
s

(detterfi| dec-digitii] |! |[#|$[%|&]" 1C ) |* |+, |- |. |/
Sho<i=EI@n e )

" ( &tring-charfi)* "

(import [ &lotted-pathii] )* douter-declarationsfi

ddentiperfi( . AdentiPer)*

( @uter-declarationfi)*

type ddentiberiis &ype-declarationfi

constant  Adentipefi= &xpressionfi(: &ypefi)?

procedure ddentipeiis &dentiPerfi( ( drocedure-formalsfi) )?

procedure ddentipei( ( drocedure-formalsii) )?is
(local )?é&nner-declarationsfibegin &ommandfiend

function  ddentiperi( ( &unction-formalsfi) )?=
aexpressionfi( : &ypefi)?

function  adentiperfi( ( douiltin-function-formalsfi) )?is
builtin

. &ypefi
if &expressionfithen &uter-declarationsfi

(] &xpressionfithen &uter-declarationsfi)*

(else &uter-declarationsfi)?

end

aypefi

new aypefi

record ddentiperdi; &ypefi
(; ddentiperdi: &ypefi)*
(end | (over &ypefl))

enumeration  &dentiperfi( = &xpressionfi)?
(, &dentiperi( = &xpressionfi)? )*
(end | (over &ypef))

builtin

ddentiperfi(; ddentibe)*
ddentiperf

&expressionfi( signed )?bits

array &angefof aypefi
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&unction-formalsfii ;=  &dentipersi: &ypefi(; &dentibPersi: &ypef)*
douiltin-function- = &ormal-parametersii
formalsii

| &unction-formalsfi

| dormal-parametersii; &unction-formalsfi
drocedure-formalsfi ::=  &ormal-parametersii

| dormal-portsfi

| dormal-parametersii; &ormal-portsfi

dormal-parametersii ::= parameter &dentiperdi: &ypefi
(; parameter ddentipersi: &ypef)*
dormal-portsfi = &ormal-portfi(; &ormal-portfi)*
&ormal-portfi = (array &angefiof )? (input |output ) &dentiPerdi: &ypefi

| (array aangefiof )?sync &dentiperdi

| if &xpressionfithen &ormal-portsfi
(| &expressionfithen &ormal-portsfi)*
(else &ormal-portsfi)?
end
aangefi = &xpressionfi

| &expressionfi.. &xpressionii

| over aypefl
dnner-declarationsii ::=  ( dnner-declarationfi)*
dnner-declarationfi ::=  douter-declarationfi

| variable  &dentibersi: &ypefi

| &hannel-optionsfi(array &angefiof )?channel &dentipersi:
aypef
| &hannel-optionsfi(array aangefiof )?sync &dentipersi

| shared ddentiperiis (local )?d&nner-declarationsfi
begin &ommandfiend

| if &xpressionfithen dnner-declarationsfi
(| &xpressionfithen d&nner-declarationsfi)*
(else &nner-declarationsfi)?

end
a&hannel-optionsfi ;1=  (multicast )?
&expressionfi = d&dentibeffi
| diteralfi
| astringfl

| (édentiberf)?{ dxpressionsfi}
| ddentiperi' ddentiperi

| aunary-operatorfidexpressionii
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dexpressionsh
aunary-operatorfi
dinary-operatorfi

&ommandn

sizeof &dentiperfi
&expressionfidinary-operatorfidexpressionfi
&expressionii. ddentiperfi

&expressionfi[ &angefi]

( &xpressionfias aypefi)

# &expressionfi

( &xpressionfi)

ddentipefi( ( é&xpressionsfi)?)
&expressionfi(, dxpressionfi)*

(- [+ [not |log |#)

(+1- 1" 1/ |%|™ |=]/= |<|>|<=|>=|and |or |xor |@)
continue

halt

&hannelfi-> dvaluefi

&hannelfi-> &hannelf

&hannelsfi-> then &ommandfiend
&hannelsfi->! then &ommandfiend
&hannelfi<- &xpressionfi

sync &hannelfi

dvaluefi;:= &xpressionfi

&lockfi

&ommandii; &ommandn

aommandfi|| &ommandfi

aommandi||! &ommandi

loop &ommandfiend

loop &ommandfiwhile &xpressionfiend
loop (&ommandi)?while &uardsfi(also &ommandii)?end
if &uardsfi( else &ommandii)?end

case é&xpressioniiof &ase-guardii
(| &ase-guardfi)*
(else &ommandfi)?
end

for (]| |; )@dentiperfiin &angefithen &ommandfiend
select &hannel-guardfi(| &hannel-guardfi)* end
select!  &hannel-guardfi(| &hannel-guardfi)* end

arbitrate &hannel-guardfi| &hannel-guardfiend
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| print  &xpressionsfi
| ddentiperfi( ( dprocedure-actualsfi)?)
&hannelsfi = &hannelii(, &hannelfi)*
&hannelfi = d&dentibefi
| ddentiperfi[ &expressionfi]
dvaluefi = &dentiperi
| dvaluef. &dentiperfi
| dvaluefi[ &xpressionfi]
dlocki = (local @&nner-declarationsfi)?begin &ommandfiend
| [ &ommandfi]

&uardsii = &xpressionfithen &ommandfi
(| &xpressionfithen &ommandfi)*

&ase-guardfi =  &ase-matchesiithen &ommandfi

| for dadentipefiin &ase-matchesfithen &ommandf
&ase-matchfi = &xpressionf

| &expressionfi.. &xpressionfi
&ase-matchesfi = &ase-matchfi(, &ase-matchfi)*

&hannel-guardfi = &hannelsfithen &ommandfi
(] &hannelsiithen &ommandfi)*

drocedure-actualsfi ;=  aactual-parametersfi
| aactual-channelsf

| &ctual-parametersfl, dactual-channelsfi

dactual-parametersii ;=  &actual-parameterfi(, &actual-parameterfi)*
dactual-parameterii  ;:=  &expressionfi

| (type )?aypefi
dctual-channelsii ~ ::=  &ctual-channelfi(, &ctual-channelfi)*
&ctual-channelfi = d&dentipefi

| aactual-channelfi] &angefi]

| <- &xpressionii

| -> dvaluefi

| dlockfi

| { @ctual-channelfi(, &ctual-channelfi)* }

| &ctual-channeli @aactual-channelfi
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2 The Breeze Language Debnition

12.1. Summary

Breeze is the intermediate language used for compiled Balsa prgrams. It serves as a repository for
libraries and is the level at which all tools in the Balsa system interact. Users who wish to use
components described outside of Balsa need to provide a Breeze wrapper for those components sc
that they may be used within the Balsa system.

12.2. Breeze Language Debnition

Lexical
alec-digitfi = (0..9)
dc-letterfi = (a..z)
detterfi = (a..z]A..Z)
Jositivefi m= (1..9) (&ec-digiti)*
anaturalfi = (0 | Hositived)
dntegerfi = (@aturalfi| - Hositiverl)
ddentiperfi n= " (detteri| _ ) (detteri| &lec-digitfi| _ )* "
&lotted-identipei = " (detterfi| _|. ) (@&etterfi| &lec-digitii| _|. )* "
dooleanfi D= (#t|#)
asymbolfi = dc-letterfi( Ac-letterfi| &lec-digitA| _ |: )*
&tring-charfi = (detterfi| &ec-digitil| |! |# (S [%|&]" 1C]) |* [+, |- 1] |/ |
S N A e e I L I O o O I R I R ol AN A
&uoted-symbolfi = " &ymbolfi"
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Main Breeze

language
doreeze-blefi
dmportfi
&lebnitionf

&onstant-defnii
&ype-defnfi

aypefi

gart-defnfi

&alsa-defnii

dart-portfi

&ort-sensefi
&ort-directionfi

dpart-attributefi

(@mportf)* ( &epnitionf)*

( import  &lotted-identiPerf)
&onstant-defnfi

&ype-defnii

&art-defni

dalsa-defnii

anetlist-defnfi

&omposition-defnii

( constant ddentiperfidntegerfidypefi)
( type ddentiperfidypefi)

( numeric-type  éooleanfidositivefi)

( enumeration-type dooleanfidositivefi
( ( ddentiperidntegerfl) )+)

( record-type  Hositivefi( ( ddentipefdypefi) )+)
( array-type  &ypefidntegerfigpositivefidypefi)

( breeze-part  ddentiperfi
( ports ( &oart-portfi)*)
( attributes ( Gart-attributefi)* )
( channels (‘&hannelfi)* )
( components ( &omponentfi)* ) )

( sync-port  ddentiPefidort-sensefigositionii ( &optionfi)* )

( port ddentiPefidort-sensefigort-directionfidypefigositionfi(
doptionfi)* )

( arrayed-port ddentiPefigort-sensefigort-directionfidypefi
antegerfigositivefi&ypefidositionfi( optionfi)* )

( arrayed-sync-port ddentiperf&ort-sensefi
dntegerfigpositivefidypefigpositionfi( doptionfi)* )

(active |passive )
(input |output )
( is-procedure )

(' is-function )

( is-permanent )
aiew-attributefi

&ositionfi
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( at &aturalfignaturalfiadotted-identipefidnaturalfi)

| doptionfi
dositionA =
doptionfi = ( &ymbolfi( &aluef)* )
aaluefi = dntegerfi

| ddentiperf

| &ooleanii

| &ymbolfi

| ( (&aluefi)*)
&hannelfi =

( sync &ositionfi( doptionfi)* )

| ( &hannel-sensefigositivefigositionfi( doptionfi)* )

a&hannel-sensefi = (push |pull )
&omponentfi = ( component &dentiberi

( darameterfi
darameterfi = (é&ntegerfi| 4dentiperi)
&hannel-nofi = Positivefi

| ( (%ositivefi)+)

Breeze
extensions

&iew-attributefi
&iew-specfi (' lines-spec
| ( list-spec

anetlist-defnfi ( breeze-netl

( attribute

anet-portfi
anet-directionfi (input
anet-netfi

&et-instancefi ( instance

aet-instance-
connectionf

| ( vector

anet-single-instance- :: ddentiberi

connectionf

( view d&dentiberfidview-specfidoptionsii)

( ports (‘éet-portfi)* )

( nets (éet-netfi)*)

( instances
( &dentiperfi&net-directionfigositivefi)
| output

( &dentiperfigositivefi)

(' (&et-instance-connectionii)* ) ( &ptionfi)* )

&net-single-instance-connectionfi

( &et-instance-connectionfi)+)

( Gstringfi)+)
ayuoted-symbolfidsaluefl)

ist ddentiberf

S ( @oreeze-net-attributefl)* )

(‘&et-instancefi)* ) )
| inout

lhiz )

ddentipem
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&reeze-net-
attributefy

&omposition-defnfi

&omp-instancefi

&omp-instance-
connectionii

&omp-single-
instance-
connectionf

&omp-portion-
connectionii

&omp-attributefi

gortionfi

dortion-namefi

( &dentibpefidnaturalfi)
( dentipefi&naturalfidpositivefi)
unconnected

&iiew-attributefi

éoptionfi
( breeze-composition ddentiperfi
( ports ( &oart-portfi)*)
( attributes (‘&omp-attributefi)* )
( nets (é&et-neti)* )
( instances  (&omp-instancefi)* ) )

( instance  &dentiperfi
(' (&omp-instance-connectionii)* ) ( &ptionfi)* )

anet-single-instance-connectionfi

&omp-single-instance-connectionfi
( vector (&omp-instance-connectionfi)+ )

(' &omp-portion-connectionfidnaturalfi)

( &omp-portion-connectionfidnaturalfigositiveri)
&omp-portion-connectionfi

4ddentiber

( dortionfiddentiPerfi)

( dortionfiddentiPerfianaturalfi)
aiew-attributefi

&ositionfi

doptionfi

&ortion-namefi

( &ortion-namefidnaturalfi)

(req |ack |data )
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3 The Breeze Components

13.1. Summary

Each of the handshake components described in this section is accompanied by a description of thal
componentOs behaviour. This behaviour is expressed in a notation invented by Efrostégh
is a modified form of van Berkel@andshake circuit calculud].

13.2. Activation driven control components

The control components provide the events used by other components to sequence their activities.
Each control component has a passive sativationport and optionally a number of active sync
output activatiorports. Connecting the output activation port of a component to the activation port

of another allows control trees to be constructed in which activity at the leaf ports is controlled by a
single collective activation port on the root component. Activity on the output activations is
enclosed within handshakes on the activation port and so leaf activity is enclosed within handshakes
on the root componentOs activation. These components are used primarily to implement commanc
composition in handshake circuit HDLs through activation triggered sub circuits connected to
control componentsO output activation channels. The Balsa control components are: Loop,
SequenceOptimised (replacing the deprecated Sequence component), Concur, Fork and WireFork.

13.3. Channel termination components

These components are: Continue, ContinuePush, Halt and HaltPush.

13.4. Control to datapath interface components

A small number of components allow control sync channels to interact with data transactions. The
transferreris the most common of these components, it controls the transfer of data from an active
input port to an active output port under the control (and enclosure) of a passive activation port.
Components with activations implementing looping and condition control operations as well as the
Case component (which translates data values on a passive input activation port into activity on one
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of a number of active sync ports) also fall in this component class. The complete set of components
is: While, Bar, Fetch, FalseVariable, Case, NullAdapt, Encode.

13.5. Pull datapath components

Compiled data operations (+, -, ...) in Balsa consist of a sync channel meeting a transferrer causing a
result to be requested from a tree of pull datapath components implementing the required function
and pushing that result onto an output channel or into a variable (variables are the components
which implement HDL level variables as latches). The pull datapath components form an activation
driven tree in the same way as control components but with variables or input channels at the leaves.
The activations of these components are pull ports with the incoming request flowing (and forking)
towards the leaves of the tree with the result flowing (and joining) back to the root forming the result
acknowledgement. The datapath components are: Adapt, Slice, Constant, Combine, CombineEqual,
CaseFetch, UnaryFunc, BinaryFunc and BinaryFuncConstR.

13.6. Connection components

This class includes components used to connect together channels of the same sense, provide
synchronisation between multiple channels and combine the activity of a number of channels to
allow multiplexing and resource sharing. This class also includes variables as they occupy the same
positions in a handshake circuit as other types of channel connection component. Other than
variables, the connection components in a handshake circuit are the only components whose
presence isnOt explicitly described in the HDL source for that handshake circuit. This is because they
are usually present as glue to implement HDL level channels and in particular, the multicast nature
of Balsa channels. The greater part of connection components implementations consist of just port-
to-port wire connections. For this reason, optimising and combining connection components gives
us better control of the location of troublesome wire forks which can cause wire load and drive
strength management problems in implementation.

The collection of synchronising and resource sharing connection components is mostly borrowed
from the Tangram component set with the addition of parameterised arrayed ports. The connection
components are: ForkPush, Call, CallMux, CallDemux, Passivator, PassivatorPush, Synch,
SynchPull, SynchPush, DecisionWait, Split, Arbiter and Variable.

13.7. Non-delay-insensitive components

These are unsafe components whose behaviour can break due to race conditions. They are generate
by the Balsa compiler when sequenced select/arbitrate statements on the same channel are used. Tt
activation of their input leads to the activation of all their outputs, but only one output
acknowledgement is expected in return. Other outputs will be Returned-To-Zero (if 4-phase
protocol) even without a proper acknowledgement. These components are: CallActive and
CallDemuxPush.

13.8. Simulation-only components

These components are only used for simulation. They cannot be synthesised. Currently, only one
component fits in this category: BuiltinVariable.

13.9. Breeze components ordered by name
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ActiveEagerFalseVariable

( parameter width : cardinal;

read(] parameter readPortCount : cardinal;
parameter specification : string;

specifcation passivesyncactivate;

active input write : widthbits;

active syncsignal;

array readPortCounf passive outputread )

; ,
activate ! ‘\#readPonCount

#[ activate: write ?[ signal ;v :=write] ] || #[ reaq !° v]|| ... || #[ readagrortcouna !° V1]
Adapt
— N ( parameter outputWidth : cardinal,
inputwich outputwidth parameter inputWidth : cardinal,
inp 3= @Adapt O out parameter outputlsSigned, inputlsSigned :
boolean;

passiveoutput out : outputWidthbits;
activeinput inp : inputWidthbits )

#[ out ° inp ? adapf{outputWidth inputWidth outputlsSignednputlsSignedinp) ]

Arbiter
('syncinpA, inpB, outA, outB)

inpA O OUtA
inpB O outB

#[ [ InpA : inpB | inpB : outB ] ]

Bar
guardinputl] —r> ( parameter guardCount : cardinal,
S guard passiveoutput guard : 1bits;
passivesyncactivate;
array guardCounbf active input guardinput
1 1 bits;
array guardCounof active syncactivateOut )

activateOut[] activate

#guardCount '’

#[ guard f (c :=[guardinpyg 7 ... ? guardinpUyardcounts 7
choosgguardinpdy, ..., guardinpugyardcount) 1) '=-1) 1|
#[ activate : activateOpi

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 143



13.9. Breeze components ordered by name

BinaryFunc
oussined S ( parameter outputWidth : cardinal,
iNpA -/ outputWich parameter inputAWidth : cardinal;

inputBIsSigned
inputBWidth .
inpB

out

parameter inputBWidth : cardinal;
parameter op : BinaryOperator;
parameter outputlsSigned : boolean;
parameter inputAlsSigned : boolean;
parameter inputBlsSigned : boolean;
passiveoutput out : outputWidthbits;
activeinput inpA : inputAWidthbits;
active input inpB : inputBWidthbits )

type BinaryOperator is enumeration (op symbol between brackets)

end

#[ out ° inpA ? inpB ? op(outputWidth outputlsSignednputAlsSigned

Add (+), Subtract (-), ReverseSubtract (\\-), Equals (==), NotEquals (!=), LessThan (<
GreaterThan (>), LessOrEquals (<=), GreaterOrEquals (>=), And (&), Or ()

inputBlsSigneap, inpA, inpB) ]

BinaryFuncConstR
( parameter outputWidth : cardinal;

inputlsSigned

inputwih outputwidh parameter inputWidth : cardinal;
inp = O out parameter constWidth : cardinal;
comstant parameter op : BinaryOperator;
constlsSigned parameter outputlsSigned : boolean;

parameter inputlsSigned : boolean;
parameter constlsSigned : boolean;
parameter constant : constWidthits;
passiveoutput out : outputWidthits;
active input inp : inputWidthbits)

#[ out * inp ? op(outputWidth outputlsSignednputisSigned

constlsSignedp, constant, inp]

BuiltinVariable

( parameter readPortCount : cardinal;
parameter name : string;
passiveinput write : 64bits;
array readPortCoundf output read : 64bits)

#readPortCount ” \
\

#[ write ? v :=write ] ||
#lreagy! V]|l ... || # readagrortcount '° V1

144

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06



13.9. Breeze components ordered by name

N #inputCount Cal I
- ( parameter inputCount : cardinal;
array inputCountof passive synénp;

el active syncout )

#[[inpg : out | ... | iINRputcounts - OUt] ]

J—— CallMux
’ ( parameter width : cardinal;
parameter inputCount : cardinal;
array inputCountof passive inputinp : width
bits;
active output out : widthbits )

#[[out! inpy | ... | outinpPinputcountt ] ]

 oupuCount CallDemux

‘ ( parameter width : cardinal;
parameter outputCount : cardinal;
array outputCounbf passive outputout :
width bits;
active input inp : widthbits )

#[ [outy!°inp ? inp | ... | OWyputcouna !° INP ? inp] ]

CallActive

( parameter outputCount : cardinal;
passive synanp;
array outputCounbf active syncout )

#outputCount
I

#[inp: [oup, ..., OUSyputcount-4 ] Ut non-DI: RTZ to all outputs when first ack received.

CallDemuxPush

( parameter width, outputCount : cardinal;
passiveinput inp : widthbits;
array outputCounbf active outputout :
width bits )

#outputCount ” \
\

#[inp: [oup, ..., OUSyputcount-4 ] Put non-DI: RTZ to all outputs when first ack received.
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Case

( parameter inputWidth : cardinal;
parameter outputCount : cardinal;
parameter specification : string;
passiveinput inp : inputWidthbits;
array outputCounbf active syncactivateOut

)

#[ inp ? [ decodéoutputCountspecificationinp) !=- 1 ->
activateOytcodéoutputCountspecificationinp) 1= - 11 1

#outputCount |

inputWidth
activateOut([]

specification

CaseFetch
( parameter width, indexWidth : cardinal;
parameter inputCount : cardinal;
parameter specification : string;
passive outputout : widthbits;
activeinput index : indexWidthbits;
array inputCountof active inputinp : widthbits )

s\ #inputCount
\

indexWidth

index —/

inp(]

#[ out ° index ? iNPingex? INPindex]

Combine
LSnputWicth ( parameter outputWidth : cardinal,
LSinp - outputwidth parameter LSInputWidth : cardinal,
Msﬁnw out parameter MSInputWidth : cardinal;
passiveoutput out : outputWidthoits;

active input LSInp : LSInputWidthbits;
active input MSInp : MSInputWidthbits )

#[ out ° LSInp ? MSInp ? combin€LSInp MSInp ]
CombineEqual

#inputCount ,,

— ( parameter outputWidth : cardinal,
S outputWicth parameter inputWidth : cardinal;
—- O out parameter inputCount : cardinal;
inputWidth _:‘_(»

passiveoutput out : outputWidthoits;
array inputCountof active inputinp : inputWidth
bits)

#out inpy 7 ... ? iNPinputcounts 7 combineEqudinpy, ..., iNAnputcountt)
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#outputCount Concur
— 0 ( parameter outputCount : cardinal;
passivesyncactivate;

activate 7 activateOuf] array outputCounbf active syncactivateOut
)
# [ activate : [ activateOg| ... || activateOpftyoutcouna 11
Constant

( parameter width : cardinal;

width parameter value : widthbits;
O out passiveoutput out : widthbits )

#[ out ° value]

Continue
( passive syndnp )

ContinuePush
( parameter width cardinal;

< > vidh passiveinput inp : widthbits )
inp

#inp ]
activate N DGCISIOHW&It
- ( parameter portCount : cardinal,
e : passivesyncactivate;
el out array portCountof passive synénp;
array portCountof active syncout )
#portCount ' ' #portCount

#[ activate : [ing: oup | ... | INRortcount1 : OUbortcount1 ] ]
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" #inputCount

T outputWidth
inpl] T
[

Encode

( parameter outputWidth : cardinal,
parameter inputCount : cardinal;
parameter specification : string;
array inputCountof passive synénp;
active output out : outputWidthbits )

#[ [ inpg : out I' encodéoutputWidth inputCount specification 0) | ... | iNgyputcounts : OUt !
encodéoutputWidthinputCount specificationinputCounj ] ]

#readPortCount / \\
'

width
write

read[]

11 specification

signal

FalseVariable
( parameter width : cardinal;
parameter readPortCount : cardinal;
parameter specification : string;
passiveinput write : widthbits;
active syncsignal;
array readPortCounf passive outputread )

#[ write ? [ v :=write ; signal ] ] || #[ reagl!° v] || ... || #[ readadrortcounn !° V]

activate

Fetch

(parameter width : cardinal;
parameter outBroad: boolean;
passive syn@ctivate;
activeinput inp : widthbits;
active output out : widthbits )

#[ activate : out’linp ? inp ]

#outputCount

T
— out[]
|

Fork

( parameter outputCount : cardinal;
passive synanp;
array outputCounbf active syncout )

# activate : [0, .. , OUpuicountdl ]
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ForkPush

( parameter width, outputCount : cardinal;
passiveinput inp : widthbits;
array outputCounbf active outputout :
width bits )

#outputCount ” \
\

#[inp ? [out0 I inp, ..., OUytputcouna ! NPT ]

Halt

( passive syndnp )

HaltPush

( parameter width cardinal;

@. with passiveinput inp : widthbits )
inp

stop
#readPortCount /1 |n|tva'riab|e
3 ( parameter width, readPortCount : cardinal,
. read] parameter name : string;
e parameter initValue: widthbits;
initvalue passiveinput write : widthbits;
array readPortCourf output read : width
bits )
v :=initValue;
#[ write 7 v :=write ] ||
#reagy! V]| ... || #[ readadportcount !° V1
Loop

( passive syna@activate;

( > active syncactivateOut )
activate activateOut

activate : #[ activateOut ]
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NullAdapt
( parameter inputWidth : cardinal;
 inpuwictn passivesyncout;
P O out active input inp : inputWidthbits )
#[ inp : out]
Passivator

( parameter count : cardinal,

i array countof passive synanp )
inpll —

#[inp0 : ... T iNRoyne1 ]

PassivatorPush
2 ( parameter width, outputCount : cardinal;
_ array outputCountof passive outputout :
P width bits;
passiveinput inp : widthbits )

#[ out0 P ... I° ouyytputcouna ! INP 7 inp ]

PassiveEagerFalseVariable
( parameter width : cardinal;

activate l/ \\#readPonCount

~ widh - read]] parameter readPortCount : cardinal,
e O By parameter specification : string;
_ specifcation passivesyncactivate;

signal

passiveinput write : widthbits;
active syncsignal;
array readPortCoumf passive outputread )

#[ activate: write ?[ signal ;v :=write] ] || #[ reag !° v]1|| ... || #[ readagprortcouna !° V]

PassiveSyncEagerFalseVariable
passivesyncactivate;
passivesyncwrite;
active syncactivateOut;

activate

activateOut

#[ activate: (activateOut ; write ) |
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oot SequenceOptimised

0 ( parameter outputCount : cardinal;
parameter specification : string;
passivesyncactivate;

array outputCounbf active syncactivateOut

)

# [ activate : [ activateOyt ... ; activateOWfputcount 1]

activate — activateOut[]
|

Slice

( parameter outputWidth : cardinal,
~ inpuwidh outputwidih parameter inputWidth : cardinal,
inp e. out parameter lowIndex : cardinal;

passiveoutput out : outputWidthbits;
active input inp : inputWidthbits )

lowIndex

#[ out  inp ? sliceg(outputWidth lowIndex inp) ]

Split
- ( parameter inputWidth : cardinal;
LSOut inputicth parameter LSOutputWidth : cardinal,
| Jisoupuiat Ot parameter MSOutputWidth : cardinal;

passiveinput inp : inputWidthbits;
active output LSOut : LSOutputWidtbits;
active output MSOut : MSOutputWidtlbits )

#[ inp ? [ LSOut !' bitfield(0, LSOutputWidtkL, inp) ||
MSOut ! bitfield(LSOutputWidthinputWidth 1, inp) ] ]

SplitEqual
( parameter inputWidth : cardinal;

_ parameter outputWidth : cardinal,

P parameter outputCount : cardinal;
passiveinput inp : inputWidthbits;
array outputCounbf active output out :
outputWidthbits )

#outputCount ,,
|

inputWidth

out[]

outputWidth

#inp ? [oufp ! bitfield(0, outputWidth-1inp) || ... ||
OUbytputcouny ! bitfield(inputWidth-outputWidthinputWidth1, inp) ] ]
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N #inputCount SynCh
- ( parameter inputCount : cardinal;
array inputCountof passive synénp;

el active syncout )

#[inpg © ... T INBnputcount1 © OUt |

Jr——— SynchPull

‘ ( parameter width, outputCount : cardinal;
array outputCounbf passive outputpout :
width bits;
activeinput inp : widthbits )

#[ poup !° ... I° poubytputcouna !° INP 2 INp |

 oupuCount SynchPush

‘ ( parameter width, outputCount : cardinal;
passiveinput inp : widthbits;
array outputCounbf passiveoutput pout :
width bits;
active output aout : widthbits )

#[ poup !° ... I° poubyputcouna !° iNP 7 aout ! inp]

UnaryFunc
— ( parameter outputWidth : cardinal,
inputwidth ourputwidth parameter inputWidth : cardinal,
inp =7 O out parameter op : UnaryOperator;

parameter inputlsSigned : boolean;
passiveoutput out : outputWidthits;
active input inp : inputWidthbits )

type UnaryOperator is enumeration (op symbol between brackets)
Negate (~), Invert (-)
end

#[ out P inp ? op(outputWidthinputlsSignedop, inp) ]
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Variable
( parameter width, readPortCount : cardinal,
parameter name : string;
parameter specification : string;
passiveinput write : widthbits;
array readPortCoundf output read : width

#readPortCount i
|

bits )
#[ write 7 v :=write ] ||
#reagy ! v]|| ... || #[ readagportcount !° V1
_ While
e L ( passivesyncactivate;

1 _ activeinput guard : Ibits;
guard - activateOut active syncactivateOut )

#[ activate : [ guard @ ; [ g -> activateOut ] ] ]

WireFork

( parameter outputCount : cardinal;
passive syn@ctivate;
array outputCounbf active syncout )

#outputCount

# activate : [ o, .. , OUpuicountdl ]
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Reporting Bugs

We are currently using Bugzilla as a bug tracking system.

The current URL isttp://bluu.cs.man.ac.uk Should it change, you will always find an updated
link on the main Balsa web pagehdtp://www.cs.manchester.ac.uk/apt/projects/tools/balsa/

Figure 14.1:Balsa0s bug tracking system

You have found a bug? Here are 5 steps to getting it fixed!

Check your Before you begin, make sure you are using the latest version of Balsa. Balsa might have already
Balsa version been fixed!
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Searching for
Bugs

Check to see if the bug has already been reported. This step is very important! If you find that

someone has filed your bug already, pleqse go to the next step anyway, but instead of filing a new
bug, vote for or comment on the one youOve found. If you canOt find your bug in Bugzilla, go to the
next step.

Create a You will need to create a Bugzilla account to be able to report bugs (and to vote or comment on
Bugzilla them). Once you have an account you can report bugs on any product. Balsa is declared as ar
account individual product in Bugzilla, and all of our bugs can be classified in various components under the
Balsa product. If you have registered, proceed to the next step.
Note: We are currently experimenting with a guest account avoiding the need to create an account
for reporting bugs. However, we might suppress it if people abuse it (it is possible for guests to edit
other guestsO bug reports).
File the bug! Now you are ready to file your bug. Balsa is divided into 11 components:
¥ balsa-c: for bugs in the Balsa compiler
¥ breeze-sim: for bugs in the Breeze simulator
¥ breeze-sim-ctrl: for bugs in the GUI for breeze-sim
¥ balsa-mgr: for bugs in Balsa Manager, the graphical frontend
¥ Dbalsa-tech-amulet: for bugs in the AmuST technology backend
¥ Dbalsa-tech-example: for bugs in the Example technology backend
¥ balsa-tech-xilinx: for bugs in the Xilinx technology backend
¥ Balsa - all technologies: for bugs involving more than one balsa technology
¥ Balsa-all: for bugs involving multiple components of the Balsa system
¥ Dbalsa-sim-verilog: for bugs in the wrapper scripts for Verilog simulators
¥ Balsa manual: for reporting errors found this manual
Click on OEnter a new bug reportO, select which component is affected, and write a summary (bug®
title) and description of your bug. Try to give enough information for us to be able to reproduce your
bug. You can even attach files if needed.
What happens  Once your bug is filed, you will receive an email when it is updated at each stage in the bug life
next? cycle. After the bug is considered fixed, you might want to ask us for the updated Balsa distribution.
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