

Version V3.5 Ð Printed: 19/5/06

Balsa:
A Tutorial Guide.

Doug Edw ards, Andre w Bardsley,
Lilian Janin, Luis Plana & Will Toms

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 i

Contents

1

Introduction

.. 1

1.1. Introducing Balsa

...1
What is Balsa? ...1
Basic concepts ...1

1.2. Tool set and design flow

..3

1.3. Changes in releases

..5
Performance Enhancement. ...5
Experimental features ..5
Bug Fixes ...6
Other Changes ...6
Deprecated or eliminated constructs/files ..7
New constructs ..7
Changed behaviour ..7
Balsa-mgr ...8
Cost Estimator ...8
Simulation environment ..8
Channel viewer ..8
Back-end technologies ...8
The Manual ..8

2

Getting Started

... 9

2.1. A single-place buffer

...9
Description ...9
Commentary on the code ...9
Reserved words ..10
Compiling the circuit ...10
The synthesised circuit. ...10

2.2. Two-place buffers

..11
1st design ...11
2nd design ..12

ii Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

2.3. Parallel composition and module reuse

...12
Commentary on the code ...12

2.4. Placing multiple structures

..13
Commentary on the code ...13

2.5. Using balsa-mgr

..13
Creating a new project ...13
Compiling a description ...15
Compilation errors ...16
Handshake circuit graph ..17
Circuit cost ...17
Saving Window Contents ..18

2.6. Simulation.

...18
Adding a test fixture ..19
Text-only simulation ..21
Graphical Simulation Tools ...22

3

The Balsa Language

... 29

3.1. Data Types

..29
Numeric types ..29
Enumerated types ..30
Record types ..30
Array types ..31
Constants ...31
Arrayed channels ...32

3.2. Data Typing Issues

...32
Casts ...32
Bit ordering and padding in arrays ..33
Auto-assignment ..34

3.3. Control Flow and Commands

...34
Sync ...35
Channel assignment ...35
Variable assignment ...35
Sequence operator ..35
Parallel composition ..35
Continue and Halt ..35
Looping constructs ..36
Structural iteration ...36
Conditional execution ..37

3.4. Binary/Unary Operators

...38

3.5. Description Structure

...38
File structure ..38
Declarations ...39
Procedures ...39
Shared procedures ..40
Functions ...40
Conditional ports and declarations ..40
Conditional ports ...41
Variable ports ..41

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 iii

3.6. Examples

...42
Modulo-16 counter ..42
Removing auto-assignment ...42
Modulo-10 counter ..43
A loadable up/down counter ..43
Sharing hardware ...44
A ÒwhileÓ loop description ..45
Pitfalls in loop terminations ...46
The danger of ÒforÓ loops ..46
Selecting channels ...47

4

Parameterised & Recursively Defined Circuits

......... 49

4.1. Summary

...49

4.2. Parameterised descriptions

..49
A variable width buffer definition ...49
Pipelines of variable width and depth ..50

4.3. Recursive definitions

...51
An n-way multiplexer ..51
Commentary on the code ...52
A balsa test harness ..52
Handshake multiplier ...52

4.4. Pitfalls with Parameterised Procedures.

..53

5

Handshake Enclosure

.. 55

5.1. Summary

...55

5.2. Systolic counters

...55
A systolic modulo-11 counter ..57
All even cells ...57
All odd cells ...58
A decoupled all even cell ...59
Parameterised version ..60

5.3. Active enclosure

...60

5.4. Use of enclosed channels.

..61

6

Balsa Design Examples

.. 65

6.1. Summary

...65

6.2. A Population Counter

..65
Commentary on the code ...67
Enclosed Selection ...67
Avoiding deadlock: ..67

6.3. A Balsa shifter

...67
Testing the shifter ..69

iv Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

6.4. An Arbiter Tree

...69

6.5. A Stack Description

...71
Commentary on the code ...72

6.6. A Simple Processor Ð The Manchester SSEM (The Baby)

.....................72
SSEM types ...73
Channel and Variable Declarations ...74
Useful functions and shared procedures ..74
Decode and excute procedure ..75
main body ..75
Simulation ..75

7

Building test harnesses with Balsa

............................. 77

7.1. Overview

...77
Builtin types ...77
Builtin Functions ...78
Strings ..78

7.2. Summary of Library Functions.

...79
types.builtin ...79
sim.string ...79
sim.fileio ..80
sim.memory ...81
sim.portio ...82
sim.sim ...84

7.3. Writing your own builtin functions

...84
The Balsa and C code ..84
Registering the function ...84
Compiling HelloWorld ..85
Invoking HelloWorld ...86
HelloWorld in Verilog ...86
Using balsa-mgr ...86

7.4. Builtin functions with arguments

..87
Builtin typed arguments ...89
Return values ...90
Functions with parameterised arguments ..90

7.5. Object Reference Counting

...91
Variable assignment ...91
Function objects array ..91

7.6. Predefined types

..92
BalsaString ...92
BalsaFile ..93

7.7. Example Custom Test Harnesses

..93
Data Formatting ...93
FileIO ...95
Memory models ...96
A Processor Test Harness ..98

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 v

8

Implementations

... 99

8.1. Introduction

..99
Technologies ..99
Styles ...99
Options ...100

8.2. Creating an implementation

..101

9

Adding Technologies to Balsa

.................................. 105

9.1. The Balsa backend

...105
Technologies and Styles ..105
Directory structure ...106

9.2. The technology configuration file

...107

9.3. Handshake component declarations

...109

9.4. Handshake component implementation descriptions

..............................110

9.5. Adding a new technology

..111

9.6. The abs language

..112
Bundles ..112
Channels ..112
Slices ..113
Gate Operators ...113
Example ...115

9.7. Netlists

...117
ports: ..118
nets ...118
iinstances ...118
attributes ..119

9.8. The BALSATECH environment variable

...119

9.9. The ABS Grammar

..120
Components ...120
Styles ...120
Gates ..121
Slices ..122
Include ...122
Types ...122
Expressions ..123

9.10. Netlist Format

..124
Netlist ...124

10

Balsa Reference

.. 127

10.1. Summary

...127

10.2. Balsa programs

..127

vi Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

11

The Balsa Language Definition

............................... 131

11.1. Summary

...131

11.2. Reserved words

...131

11.3. Balsa Language Definition

..131

12

The Breeze Language Definition

.............................. 137

12.1. Summary

...137

12.2. Breeze Language Definition

...137
Lexical ...137
Main Breeze language ...138
Breeze extensions ..139

13

The Breeze Components

... 141
13.1. Summary...141

13.2. Activation driven control components...141

13.3. Channel termination components..141

13.4. Control to datapath interface components..141

13.5. Pull datapath components..142

13.6. Connection components...142

13.7. Non-delay-insensitive components...142

13.8. Simulation-only components..142

13.9. Breeze components ordered by name...142

14 Reporting Bugs... 155
Check your Balsa version ..155
Searching for Bugs ..156
Create a Bugzilla account ..156
File the bug! ...156
What happens next? ...156

15 References.. 157

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 1

1 Introduction

1.1. Introducing Balsa

This document describes version 3.5 of the Balsa system and introduces significant performance
enhancements. All users should recompile their Balsa source code descriptions after upgrading to
this release. See ÒChanges in releasesÓ on page 5 for further details. An online bug reporting
mechanism has been introduced: see ÒReporting BugsÓ on page 155.

The tools described here can be run on any POSIX environment with X11 and at least 32bit integers
(Linux, FreeBSD, MacOS X, Solaris). However, in order to produce a concrete implementation in
either silicon or FPGA form, vendor specific tools are required: for example Xilinx design software,
or the Cadence design framework with an appropriate cell library technology.

What is Balsa? Balsa is the name of both the framework for synthesising asynchronous (clockless) hardware
systems and the language for describing such systems. The approach adopted is that of syntax-
directed compilation into communicating Handshaking Components and closely follows the
Tangram [1] system of Philips. The advantage of this approach is that the compilation is transparent:
there is a one-to-one mapping between the language constructs in the specification and the
intermediate handshake circuits that are produced. It is relatively easy for an experienced user to
envisage the architecture of the circuit that results from the original description. Incremental
changes made at the language level result in predictable changes at the circuit implementation level.
This is important if optimisations and design-tradeoffs are to be made easily at teh source level and
contrasts with a VHDL description in which small changes in the specification may make radical
alterations to the resulting circuit.

Basic
concepts

A circuit described in Balsa is compiled into a communicating network composed from a small set
of Handshake components (~45 components, listed in Section ÒThe Breeze ComponentsÓ on
page 141). The components are connected by channels over which communications or handshakes
take place. Channels may have datapaths associated with them (in which case a handshake involves
the transfer of data), or may be purely control (in which case the handshake acts as a synchronisation
or rendez-vous point).

Each channel connects exactly one passive port of a handshake component to to one active port of
another handshake component. An active port is a port which initiates a communication. A passive
port responds (when it is ready) to the request from the active port by an acknowledge signal

1.1. Introducing Balsa

2 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

Data channels may be push channels or pull channels. In a push channel, the direction of the data
flow is from the active port to the passive port, corresponding to a micropipeline style of
communication. Data validity is signalled by request and released on acknowledge. In a pull
channel, the direction of data flow is from the passive port to the active port. The active port
requests a transfer, data validity is signalled by an acknowledge from the passive port. An example
of a circuit composed from handshake components is shown in Fig. 1.1.

Here a Fetch component, also known as a Transferrer, (denoted by Ò® Ó) and a Case component
(denoted by Ò@Ó) are connected by an internal data-bearing channel. Circuit action is activated by a
request to the Fetch component which in turn isues a request to its environment (on the left of the
diagram). The environment supplies the demanded data, indicating its validity by the
acknowledgement signal. The Fetch component presents a handshake requests and data to the Case
component using an active port (shown as a filled circle) which the Case component receives on its
passive port (shown as an unfilled circle). Depending on the data value, the Case component issues
a handshake to its environment on either the top right or bottom right port. Finally, when the
acknowledgement is received by the case component, an acknowledgement is returned along the
original channel and terminating this handshake. The circuit is ready to operate once more.

Data follows the direction of the request in this example and the acknowledgement to that request
flows in the opposite direction. In this figure, individual physical request, acknowledgement and
data wires are explicitly shown. Data is carried on separate wires from the signalling (it is ÒbundledÓ
with the control although this is not necessary with other data/signalling encoding schemes.

The bundled data scheme illustrated in Fig. 1.1 is not the only implementation possible.
Methodologies exist (DI codes, dual rail encoding, NULL Convention Logic [2]) to implement
channel connections with delay-insensitive signalling where timing relationships between individual
wires of an implemented channel do not affect the functionality of the circuit. Handshake circuits
can be implemented using these methodologies which are robust to naive realisations, process
variations and interconnect delay properties. Version 3.5 of Balsa supports bundled data, and DI
dual rail and 1-of-4 back-ends.

Normally, handshake circuits diagrams are not shown at the level of detail of Fig. 1.1, a channel
being shown as a single arc with the direction of data being denoted by an arrow head on the arc and
control only channels, comprising only request/acknowledge wires, being indicated by an arc
without an arrowhead.

The circuit complexity of handshake circuits is often low: for example, a Fetch component may be
implemented using only wires. An example of a handshake circcuit for a modulo-10 counter [see
ÒRemoving auto-assignmentÓ on page 42] is shown in Fig. 1.2. The corresponding gate level
implementation is shown in Fig. 1.3.

Note that the compilation function results in circuit fragments in which both input and output ports
are active. Since passive ports can only connect to active ports and vice-versa, circuits constructed
from compositions of compiled circuit fragments must have their interconnecting ports connected
by passivator components. A passivator synchronises requests from input and output ports and

Figure 1.1: Two connected handshake components

acknowledge

request
acknowledge

request

acknowledge

bundled data

acknowledgerequest

request request

acknowledge

@

"0;1"

0

1

®

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 3

1.2. Tool set and design flow

arranges the overlapping of the two handshakes (one push, one pull) such that the data-valid phases
of the two data-validity protocols overlap.

1.2. Tool set and design ßow

Balsa comprises a collection of tools, some of the more important are listed below.

¥ balsa-c: the compiler for the Balsa language. The ouput of the compiler is an intermediate
language breeze.

¥ balsa-netlist: produces a netlist appropriate to the target technology/CAD framework from
a Breeze description.

¥ breeze2ps: a tool which produces a postscript Þle of the handshake circuit graph.

¥ breeze-cost: a tool which gives an area cost estimate of the circuit.

¥ balsa-md: a tool for generating makeÞles

Figure 1.2: Handshake circuit of a modulo-10 counter

Figure 1.3: Gate level circuit of a modulo-10 counter

aclk

activate

count

0
4

4

4

|
4

x /= 9
4 count

_reg

®

®

®

4
tmp ®

44

x + 1

14

DW ;

*

44

®

@

"0;1"

1
0

1

(no ack)

aclk

activate

count

0
4

4

4

|
4 4

tmpx /= 9
4 count

_reg @

"0;1"

1
0

1

®

®

®

®

®

44

x + 1

14

;

*

44

DW

Control sequencing components (3 gates each)

R

S

latch x4

r

S

S

a

0

1

C

r a

Compare r

a

/= 9?

Incrementer
r

latch

a

1.2. Tool set and design flow

4 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

¥ balsa-mgr: a graphical front-end to balsa-md with project management facilities.

¥ balsa-make-test: automatically generates test harness for a Balsa description.

¥ breeze-sim: the preferred simualtor working at the handshake component level

¥ breeze-sim-control: a graphical front-end to the simulation and visualisation environment

Obtainable in separate packages are:

¥ gtkwave: a waveform viewer

¥ balsa-verilog-sim: a package which makes Verilog simulation of Balsa descriptions easier
by providing wrapper scripts for common simulators and by supporting user-written builtin
functions which can be called from Balsa

A balsa-mode is also available for xemacs providing automatic syntax-based indentation of Balsa
descriptions

An overview of the Balsa design flow is shown in Fig. 1.4

A Balsa description of a circuit is compiled using balsa-c to an intermediate breeze description.
Most of the Balsa tools are concerned with manipulatng the breeze handshake intermediate files.
Breeze files can be used by back-end tools implementations for Balsa descriptions, but also contain
procedure and type definitions passed on from Balsa source files allowing breeze to be used as the
package description format for Balsa.

Figure 1.4: Design Flow

re
us

e

sy
nt

he
si

s

Design refinement

Layout sim.

`balsa-netlist'
Simulation
results

Behavioural

Functional

Timing

`breeze-cost'

Object / File Object / File
`Balsa tool' / Automated process

Manual process

Key:

Commercial Si

Balsa behavioural

Balsa description

Breeze description
(HC netlist)

Gate-level netlist

`balsa-c'

simulation system

`breeze2ps'

Gate-level sim.

Layout / bitstream

or FPGA P&R

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 5

1.3. Changes in releases

Behavioural simulation is provided by breeze-sim. This simulator allows source level debugging,
visualisation of the channel activity at the handshake circuit level as well as producing conventional
waveform traces that can be viewed using the waveform viewer gtkwave. The target CAD system
may also be used to perform more accurate simulations and to validate the design. breeze-sim is still
under active development: the facilites and user interface provided may be differ in detail from that
described in this manual.

1.3. Changes in releases

Version 3.5

This release adds several changes aimed at achieving substantial performance improvements by the
introduction of new handshake components. A number of experimental features have been made
visible to the to the general user Ð use at your own peril Ð and there have been a number of minor
bug fixes. There may be timing issues in the Xilinx back-end with certain combinations of
handshake components. A future release will address these problems.

Performance
Enhancement.

¥ New FalseVariable, Concur and SequenceOptimised Handshake Component
implementations. These were described in a paper at ICCD05. These new implementations
overlap the RTZ phase of the command, resulting in better performance with no area
penalty. These are now the default implementations. The user can get the old,
ÒconventionalÓ implementations using the style options FV=conv, PAR=conv and
SEQ=conv respectively when setting the BALSATECH environment variable or from
balsa-mgr.
In the single-rail (bundled-data) backend, the new FalseVariable implementations are only
allowed if the new PassivatorPush implementation is used. If the PP=conv style option is
used, the FV style option is ignored. This is required for correct implementation of the
single-rail circuits.

¥ Variable and FalseVariable Handshake Components are now implemented with variable-
sized read ports. This results in better area and performance by eliminating the need to split
Variable and FalseVariable components (using the balsa-c option var-read-split)
introducing additional split and combine components. This makes the var-read-split balsa-c
option unnecessary.

¥ New average-case adder in DR. Previous releases only had a worst-case (time-balanced)
adder in DR. This release introduces an average-case DR adder, with a quick return-to-zero
phase. This results in better performance. The user can still get the balanced adder using the
style option LOGIC=balanced when setting the BALSATECH environment variable or
from balsa-mgr.

Experimental
features

Several experimental features are included in this release. As the name implies, they may not be
supported in future releases. They are believed to be correct at this time.

¥ ||!
this parallel operator instructs the compiler not to check for concurrent read and write
accesses to variables by the composed commands. The user should be careful when using
this operator: the circuit will fail if these access do exist. This operator should only be used
when the user knows that the environment will NOT produce the concurrent read and write
accesses.

¥ ->!
select!
These input operators modify the semantics of the input commands. The normal operators
(-> and select) wait for the input to arrive before activating the enclosed command. The
new operators will activate the command as soon as the control ßow reaches the input
operation, without waiting for the data to arrive. This gives the control a head start. The

1.3. Changes in releases

6 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

command will not operate on the wrong data since the data will identify its validity (with
the req/ack signals) but any operation that does not depend on the data may occur before
the data arrives. This may result in the wrong operation. The new operators still guarantee
that the command will not complete until data has also completed. For example:

a, b ->! then
o1 <- a + b

||
o2 <- 1

end

In this case, o1 always gets the value of a+b after a and b have arrived. However, o2 will
get the value 1 as soon as the control ßow reaches the input command, without waiting for
a and b.

a, b ->! then
o <- 1

end

In this case, o will get a 1 as soon as the control ßow reaches the input command without
waiting for a and b. It should be noted that the input command will not complete until the
inputs have arrived thus maintaining the overall ßow of control.

Clearly, the select! operator should only be used for passive inputs without choice.
Otherwise, all the alternative commands will be activated without waiting for the data to
make the choice. These will result in incorrect operation.

Bug Fixes ¥ Single-rail data validity protocol problem.
A new Fetch component is introduced. As an alternative, a new PassivatorPush with data
storage is introduced which also solves the problem resulting in better performance albeit at
the cost of larger area.
Explanation: The Fetch component has a reduced_broad input (pull channel) and a broad
output (push channel). This cannot be done with an "all-wires" implementation of the
Fetch. Most of the time we get away with it because the inputs come from Variable or
FalseVariable components that make those inputs broad. The problem is with active input
commands like i -> o , which get the input from a PassivatorPush. In this case, the new
Fetch or the new PassivatorPush is needed..
The new PassivatorPush component is the default, to target better performance. The user
can still get the old, "conventional" implementation of the PassivatorPush using the style
option PP=conv when setting the BALSATECH environment variable. This will
automatically introduce the new Fetch component implementation (resulting in better area
and reduced performance).

¥ added handling of global signals by balsa-make-impl-test

¥ dual-rail implementation of CaseFetch was not guaranteed QDI for certain speciÞcations

¥ insertion of suggest-buffers in Variable, FalseVariable and PassivatorPush components is
done in a better way in all design styles.

Other
Changes

¥ Support for builtin functions in verilog was added for the 1-of-4 style.

¥ balsa-make-helpers has been updated. It supports all design styles (single-rail, dual-rail, 1-
of-4). It generates a helpers-cells Þle and a gate-mappings Þle which include the new,
generated cells only. The user must concatenate these Þles with the original ones.

¥ The reference sections of the manual have been updated to correct errors and to reßect the
latest changes to the system.

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 7

1.3. Changes in releases

Version 3.4

This release adds ÒbuiltinÓ types [see ÒBuiltin typesÓ on page 77] Ð file I/O, string handling and
memory models are included adding significant changes in the capabilities of the simulation tools.

Interfaces to a number of Verilog simulators have been included.

Version 3.3

The changes listed here are the major changes since the first version of the Balsa manual. Some of
these changes have however appeared in various snapshots that were published on the Balsa website
and some were described a text book [3] produced to promote the European Low-Power Initiative
for Electronic System Design.

Deprecated or
eliminated
constructs/
Þles

¥ public and private keywords have been eliminated

¥ else clauses of while statement are no longer supported

¥ the keyword local is not required for declarations which immediately follow procedure
declarations.

¥ .sbreeze Þles are no longer generated as part of the compilation process. A modiÞed .breeze
format now replaces both .breeze and .sbreeze Þles.

New
constructs

¥ Ports to procedures can now be connected to variables to allow communications on the
procedureÕs ports to perform reads and writes to the variable [see ÒVariable portsÓ on
page 41].

¥ a multicast keyword has been added to preÞx channel/sync declarations to supress
warning about multicast channels. The Ò-c warn-multicastÓ option to balsa-c now does
nothing Ð it is enabled by default.

¥ implicants and donÕt care values may be used more widely in expressions; see ÒimplicantsÓ
on page 32, and Òcase statementsÓ on page 37.

¥ ports, local and global declarations may be conditional [see ÒConditional portsÓ on
page 41].

¥ new loop constructs have been added [see ÒLooping constructsÓ on page 36].

¥ case statements may be parameterised [see ÒConditional executionÓ on page 37]

¥ simulation time printing is now supported by the print command [see ÒControl Flow and
CommandsÓ on page 34]

¥ a bit-array-cast operator, #, has been added as syntactic sugar to simplify array slicing and
casting.

¥ active input enclosure commands have been added

¥ the syntax of parameterised procedure calls has changed

Changed
behaviour

¥ the syntax of the while command has been changed. Existing programs may no longer
compile [see ÒLooping constructsÓ on page 36] for more details.

¥ should multiple guards be true (in if and while) commands, the earliest command in the
guard list is executed Ð previously the command chosen was undeÞned.

¥ if commands, ports and declarations now correctly fail to evaluate subsequent commands
if an earlier guard is true.

¥ breeze Þles must be regenerated Ð they are no compatible with the latest version, sbreeze
Þles are obsolete.

1.3. Changes in releases

8 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

Balsa-mgr The GUI to the Balsa system, balsa-mgr, is now stable and is the recommended way of driving the
tool set.

Cost Estimator The cost estimator now handles hierarchical circuits correctly.

Simulation
environment

LARD is no longer the recommended functional simulation route. A new simulation engine operating
on the breeze description of circuits simulates directly and gives a speed improvement of 25,000
times. Co-simulation with existing lard test harnesses is still possible, but with reduced
performance. Lard support for Balsa is no longer part of the main distribution, but is available as a
separate package, balsa-lard.

Channel
viewer

The LARD channel viewer is no longer used for a graphical representation of channel activity.
Although impressive for small demonstration purposes, it was very slow, it was difficult to restrict
the view to ÒimportantÓ channels, snapshots could not be saved and restarted etc. The new
simulation viewer is based on a conventional waveform viewer derived from GTKWave.

Back-end
technologies

A wide range of backend technologies and styles are supported and easily controlled via balsa-mgr.
Users can select between single rail (bundled data), dual rail, 1-of-4 and NCL styles each with
different latch implementations. A Xilinx technology and a generic Verilog netlist are distibuted.
For users with appropriate licensing arrangements, a number of silicon technologies, e.g. AMS
0.35mm and ST 01.8mm are available.

The Manual The format of the manual has changed. A more complete definition of the language is included.
There is now a section on how to create different back-end technologies and styles. The example
descriptions have been extended. The emphasis of the manual has changed: the previous version
over-emphasised passive enclosed selection. Many users were misled into believing that this
descriptive style was good practice. It is hoped that this version separates the issue of passive versus
active ports from that of enclosed handshakes and encourages a more natural style of description.

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 9

2 Getting Started

Summary In this chapter, simple buffer circuits are described in Balsa introducing the basic elements of a
Balsa description. The GUI to the Balsa system, balsa-mgr, is used to hide the complexity of the
underlying command line tools. All the examples illustrated here can be found in the Examples
directory of this documentation.

To install the Basla system, either from a binary distribution, or from a build of the source
distribution, follow the instructions in the INSTALL file.

2.1. A single-place buffer

Description A Balsa description, in buffer1a.balsa, of a byte-wide, single place buffer is:

buffer1a.balsa (-- Balsa program defining an 8 bit wide single place buffer
 This is an example of a multi-line (-- nested --) comment
--)

-- Single line comments are also allowed
import [balsa.types.basic]

procedure buffer1 (input i : byte; output o : byte) is
 variable x : byte
begin
 loop
 i -> x -- Input communication
 ; -- Sequence operator
 o <- x -- Output communication
 end
end

Commentary
on the code

This Balsa description builds a single-place buffer, 8 bits wide. The circuit requests a byte from the
environment which, when ready, transfers the data to the register. The circuit signals to the
environment on its output channel that data is available and the environment reads it when it
chooses. The description introduces:

comments: Balsa supports both multi-line and single line comments; both types may be nested.

2.1. A single-place buffer

10 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

modular compilation: Balsa supports modular compilation. The import statement in this

example includes the definition of some standard data types such as byte , nibble , etc.1. A full list
of the current definitions is given in <BalsaInstallDir>/share/balsa/types/basic.breeze. The search
path given in the import statement is a dot separated directory path similar to that of Java except
multi-file packages are not implemented. The import statement may be used to include other pre-
compiled balsa programs thereby acting as a library mechanism. The import statements must
precede other declarations in the files. The import statement is included in this example for
completeness only. None of the types defined in basic.breeze are actually used this example so the
import statement could have been omitted.

procedures: The procedure declaration introduces an object that looks similar to a procedure
definition in a conventional programming language. In Balsa, a procedure is compiled to handshake
circuit comprising a network of handshake components. The parameters of the procedure define the
interface to the environment outside of the circuit block. In this case, the module has an 8-bit input
datapath and an 8-bit output datapath. The body of the procedure definition defines an algorithmic
behaviour for the circuit; it also implies a structural implementation. In this example, a variable
x (of type byte and therefore 8 bits wide) is declared implying that a 8-bit wide storage element
will be appear in the synthesised circuit.

The behaviour of the circuit is obvious from the code: 8-bit values are transferred from the
environment to the storage variable, x, and then sequential output from the variable to the
environment. This sequence of events is continually repeated (loop É end).

channel assignment: the operators Ò-> Ó and Ò<- Ó are channel input and output assignments and
imply a communication or handshake over the channel. Because of the sequencing explicit in the
description, the variable x will only accept a new value when it is ready; the value will only be
passed out to the environment when requested. Note that the channel is always on the left-hand side
of the expression and the corresponding variable on the right-hand side.

sequencing: The Ò;Ó symbol separating the two assignments is not merely a syntactic statement
separator, it explicitly denotes sequentiality. The program has been formatted somewhat artificially
to emphasise the point. The contents of x are transferred to the output port after the input transfer has
completed. Because a Ò;Ó connects two sequenced statements or blocks, it is an error to place a Ò;Ó
after the last statement in a block.

Reserved
words

Care must be take to avoid using BalsaÕs keywords as variable or procedure names. Usually, this is
not a difficult restriction to remember, but a common mistake, especially for beginners
experimenting with the language, is to name an input channel in . Unfortunately, in is a reserved
word and will generate a Balsa compile error.

Compiling the
circuit

balsa-c buffer1a

The description in buffer1a is compiled producing an output file buffer1a.breeze. This is a file in an
intermediate format which can be imported back into other balsa source files (thereby providing a
simple library mechanism). The file extension (.balsa) of the source filename is optional and
contains no special significance to the compilation system. However, if a different file extension is
used, the file name including the extension must be given as the argument to the balsa-c command.
The file extension .breeze is of significance to the compilation system

Breeze is a textual format file designed for ease of parsing and therefore somewhat opaque. A
primitive graphical representation of the compiled circuit in terms of handshake components can be
produced (in buffer1a.ps) by:

breeze2ps buffer1a

The
synthesised
circuit.

The resulting handshake circuit is shown in Figure 2.1. Note that this is not actually taken from the
output of breeze2ps, but has been redrawn to make the diagram more readable. Although it is not
necessary to understand the exact operation of the compiled circuit, a knowledge of the structure is

1. there is, of course, no predeÞned type word

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 11

2.2. Two-place buffers

helpful for an understanding of how to describe circuits which can be efficiently synthesised using
Balsa. A brief description of the operation of the circuit is given below. The circuit has been
annotated with the names of the various handshake elements.

The port at the top of the Loop (Ò#Ó) component is an activation port which encloses (see
ÒHandshake EnclosureÓ on page 55) the behaviour of the circuit. It can be thought of as a reset
signal which, when released, initiates the operation of the circuit. All compiled Balsa programs
contain an activation port.

The activation port starts the operation of the Loop which initiates a handshake with the Sequencer
(Ò;Ó). This component first issues a handshake to the left-hand Fetch component Ò® Ó causing data
to be moved to the storage element in the Variable element (marked ÒxÓ to match the variable
name). The Sequencer then handshakes with the right-hand Fetch component causing data to be read
from the Variable element. When these operations are complete, the Sequencer completes its
handshake with the repeater which start the cycle again.

2.2. Two-place buffers

1st design Having built a single place buffer, an obvious goal is a pipeline of single buffer stages. Initially
consider a two-place buffer; there are a number of ways we might describe this. An obvious way is
to define a circuit with two storage elements:

buffer2a.balsa -- buffer2a: Sequential 2-place buffer with assignment between variables
import [balsa.types.basic]

procedure buffer2 (input i : byte; output o : byte) is
 variable x1, x2 : byte
begin
 loop
 i -> x1; -- input communication
 x2 := x1; -- implied communication
 o <- x2 -- output communication
 end
end

In this example in we explicitly introduce two storage elements, x1 and x2 . The contents of the
variable x1 are caused to be transferred to the variable x2 by means of the assignment operator Ò:=Ó.

Figure 2.1: Handshake Circuit for a single place buffer

®®

Fetch FetchVariable

Sequence

Loop

i

ä

o

*

;
*

x

2.3. Parallel composition and module reuse

12 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

However, transfer is still effected by means of a handshaking communication channel. This
assignment operator is merely a way of concealing the channel for convenience.

2nd design The implicit channel can be made explicit as shown in buffer2b.balsa:

buffer2b.balsa -- buffer2b: Sequential version with an explicit internal channel
import [balsa.types.basic]

procedure buffer2 (input i : byte; output o : byte) is
 variable x1, x2 : byte
 channel chan : byte
begin
 loop
 i -> x1; -- input communication
 chan <- x1 || chan -> x2; -- transfer x1 to x2
 o <- x2 -- output communication
 end
end

The channel, which was in the previous example, concealed behind the use of the Ò:= Ó assignment
operator has been made explicit. The handshake circuit produced (after some simple optimisations)
is identical to buffer2a. The Ò||Ó operator is explained in the next example

It is important to understand the significance the operation of the circuits produced by buffer2a and
buffer2b. Remember the Ò;Ó is more than a syntactic separator: it is an operator denoting sequence.
Thus, first the input, i, is transferred to x1 . When this operation is complete, x1 is transferred to x2
and finally the contents of x2 are written to the environment. Only after this sequence of operations
is complete can new data from the environment be read into x1 again.

2.3. Parallel composition and module reuse

The operation above is unnecessarily constrained: there is no reason why the circuit cannot be
reading a new value into x1 at the same time that x2 is writing out its data to the environment. The
program in buffer2c achieves this optimisation.

-- buffer2c: a 2-place buffer using parallel composition
import [balsa.types.basic]
import [buffer1a]

procedure buffer2 (input i : byte; output o : byte) is
 channel c : byte
begin
 buffer1 (i, c) ||
 buffer1 (c, o)
end

Commentary
on the code

In the description above, a 2-place buffer is composed from 2 single-place buffers. The output of the
first buffer is connected to the input of the second buffer by their respective output and input ports.
However, apart from communications across the common channel, the operation of the two buffers
is independent

The deceptively simple program above illustrates a number of new features of the balsa language:

modular compilation: The import mechanism is used to include the buffer1a circuit described
earlier.

connectivity by naming: The output of the first buffer is connected to the input of the second
buffer because of the common channel name (c) in the parameter list in the instantiation of the
buffers.

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 13

2.4. Placing multiple structures

parallel composition: The Ò||Ó operator specifies that the two units which it connects should
operate in parallel. This does not mean that the two units may operate totally independently: in this
example the output of one buffer writes to the input of the other buffer creating a point of
synchronisation. Note also that the parallelism referred to is temporal parallelism. The two buffers
are physically connected in series.

2.4. Placing multiple structures

If we wish to extend the number of places in the buffer, the previous technique of explicitly
enumerating every buffer becomes tedious. What is required is a means of parameterising the buffer
length (although in any real hardware implementation the number of buffers cannot be variable and
must be known before-hand). The for construct together with compile-time constants may be used.

buffer_n.balsa -- buffer_n: an n-place parameterised buffer
import [balsa.types.basic]
import [buffer1a]
constant n = 8

procedure buffer_n (input i : byte; output o : byte) is
 array 1 .. n-1 of channel c : byte
begin
 buffer1 (i, c[1]) || -- first buffer
 buffer1 (c[n-1], o) || -- last buffer
 for || i in 1 .. n-2 then -- buffer i
 buffer1 (c[i], c[i+1])
 end
end

Commentary
on the code

constants: the value of an expression (of any type) may be bound to a name. The value of the
expression is evaluated at compile time and the type of the name when used will be the same as the
original expression in the constant declaration. Numbers can be given in decimal (starting with one
of 1É9), hexadecimal (0x prefix), octal (0 prefix) and binary (0b prefix).

arrayed channels: procedure ports and locally declared channels may be arrayed. Each channel
can be referred to by a numeric or enumerated index [see ÒArrayed channelsÓ on page 32], but from
the point of view of handshaking, each channel is distinct and no indexed channel has any
relationship with any other such channel other than the name they share.

for loops: a for loop allows iteration over the instantiation of a subcircuit. The composition of the
circuits may either be parallel composition Ð as in the example above Ð or sequential. In the latter
case, Ò;Ó should be substituted for Ò||Ó in the loop specifier. The iteration range of the loop must be
resolvable at compile time.

A more flexible approach uses parameterised procedures and is discussed later [see ÒParameterised
descriptionsÓ on page 49].

2.5. Using balsa-mgr

Balsa-mgr is project manager environment which acts as a front-end to the Balsa commands such
as balsa-c and breeze2ps. It hides much of the complexity of the various command-line options
that more complicated compilation and simulation scenarios demand. The use of the project
manager is best illustrated by using it to rerun the compilation of the single place buffer described in
buffer1a [Òbuffer1a.balsaÓ on page 9]

Creating a new
project

The command balsa-mgr invokes the project manager. Select ÒProject Þ NewÓ from the pull-
down menu as shown in Figure 2.2 to display the dialogue box shown in Figure 2.3. A default name
for the project is generated; this may be over-ridden to something more meaningful. The ÒProject

2.5. Using balsa-mgr

14 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

DirectoryÓ text box specifies the root directory: a file named ÒProjectÓ is created here containing
information about the project. The button to the right of the text box activates a file browser for
graphically selecting the required directory. The ÒFile Import PathÓ text box allows the directory in
which the source Balsa files reside to be specified. By default, this is the current directory (relative
to the root of the project) but may be changed either by directly typing in the text box or by using the
file browser activated by clicking on the button to the right of the text box. More directory import
paths can be added by means of the ÒNewÓ button.

Only one project is allowed per directory but each project may have several compilation targets. The
options in the other tabbed panes, ÒCompilation optionsÓ and ÒDefinitionsÓ are described later.

The source files to be compiled must be specified. Either select ÒFiles Þ Add Files into ProjectÓ
from the pull-down menu, or the keyboard accelerator Ctrl-A, or click on the icon as shown in
Figure 2.4. Pick buffer1a.balsa and click ÒOKÓ. The filename should appear in the left-hand pane of

Figure 2.2: Creating a new project.

Figure 2.3: The New Project Dialogue Box.

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 15

2.5. Using balsa-mgr

the project manager together with the name of any procedures listed in that file. Clicking on the file
or procedure name will cause the contents of the file to be listed in the right hand edit pane as shown
in Figure 2.5. The file may be edited in-situ in the pane or by an external editor (defined in the
environment options pane assessable by the ÒProject Þ NewÓ pull-down menu) which can be
invoked by clicking on the edit icon above the edit pane.

Compiling a
description

Files that have not been compiled will have a warning symbol against them. Users should be aware
that until the file has been compiled, the list of procedures displayed under any filename is the result
of a simplistic parsing of the source file and may occasionally be misleading: for example
procedures that have been commented out and parameterised procedure definitions (see
ÒParameterised descriptionsÓ on page 49) will be shown erroneously . Further, conditionally
declared procedures (see ÒConditional ports and declarationsÓ on page 40) are missing. Upon a
successful compilation, the procedures will be correctly displayed.

In order to compile the circuit, either middle click on the file name or click on the Makefile tab in
the left-hand pane. The new view, Figure 2.6, reveals the actions available. Click on the Compile
button to compile the description. If the project has been changed since the user last saved it, a save-
project dialogue box appears. A new window, the execution window, is spawned which records
various stages in the compilation process.

Behind the scenes, balsa-mgr analyses the dependencies in the sources files in the project, creates
a Makefile that reflects these dependencies and generates rules in the Makefile to invoke the various
Balsa commands. If the initial Balsa description is syntactically incorrect in such a way as to make
impossible the determination of dependencies, the Makefile will not be correctly generated.

Running Balsa from the command line allows more flexibility than from within balsa-mgr, however
balsa-mgr is much more convenient for the majority of tasks. Since describing a GUI is
exceptionally tedious, users are encouraged to browse the various icons and pull-down menus
themselves. Note that right-clicking in the various panes brings up various context sensitive menus.

Figure 2.4: Adding Files to the Project Manager.

2.5. Using balsa-mgr

16 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

Compilation
errors

If errors are found during the compilation of a circuit, the errors, together with the line number and
character position of the error, are reported in the output pane of the execution window. Clicking on
the displayed error message causes the offending code to be highlighted in red in the edit pane
window.

1. Start balsa-mgr and select the project deÞned previously for the circuit buffer1a

Figure 2.5: Displaying a Þle in the Edit Pane.

Figure 2.6: The MakeÞle Pane.

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 17

2.5. Using balsa-mgr

2. Add the Þle buffer2b to the project

3. Compile the circuit by clicking on the Compile button for buffer2b.breeze. The circuit should
compile OK

4. Change the parallel composition operator Ò||Ó to the sequential operator Ò;Ó.

5. Save the Þle and recompile buffer2b.breeze

6. An compile time error should now be reported in the execution window:
buffer2b.balsa:11:16: unbalanced channel usage; can't perform <write> ; <read> on channel
`chan'

7. Click on the message. The offending code should be highlighted in the edit-pane window on
line 11 starting at character position 16. If tabs are used in the source Þle, the tab size must be
known in order for the character position to be correctly reported. VI users may set the value in
their ~/.exrc Þle which is consulted by balsa-c. Alternative, -t <tabsize> may be passed as
an option to balsa-c from the Compilation Options pane from the Project Options menu.
Quite apart from illustrating the mechanics of error reporting within the balsa-mgr framework,
this example demonstrates why designing asynchronous circuits requires a deeper understand-
ing of the design process than does the design of synchronous circuits. It is important to realise
why the compiler objects to the circuit description. Line 11 contains two statements. In the
Þrst, data is output from variable x1 to the internal channel chan. The next statement, because
of the sequence operator Ò;Ó cannot start until the previous statement has completed which
requires data to be taken on the channel to be acknowledged. It is this second statement trans-
ferring data from the channel chan to the variable x2 which would cause the data transfer on to
the channel to be acknowledged. In other words, the Þrst statement is waiting for the second
statement, but the second statement can not start until the Þrst has terminated.

In this particular case, the compiler can spot the problem. However, conceptually similar dead-
lock situations can arise at higher levels of system speciÞcation. In such cases, the circuit will
compile satisfactorily, but will deadlock in operation.

8. Correct the error before proceeding further.

Handshake
circuit graph

Click on the View button opposite the label Òbuffer1a.psÓ. If necessary, the circuit will be compiled
and a PostScript viewer will appear displaying the handshake circuit graph just as it did when the
viewer was invoked via the command line.

Circuit cost The area cost of a circuit may be found by determined by clicking on the Run button opposite the
cost label. Doing so will cause the execution window (Figure 2.7) to display the area cost of the
circuit. This cost is only a guideline figure assuming a particular back-end implementation.
Nevertheless, the cost figure is useful for gaining quick feedback on how changing the description
of a circuit affects its size. The output from breeze-cost needs some interpretation: each handshake
circuit is listed together with its cost, name, data width, and the internal channel identifiers to which
the component is connected. Note that the cost of the Fetch component is zero. This is because in the
back-end assumed for the cost function, a Fetch component is a wire only element.

2.6. Simulation.

18 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

Saving
Window
Contents

The ouputs logged in the StdErr or StdOut panes can be edited or saved to a file by right-clicking in
the pane. When editing, either the internal editor in the Balsa-mgr edit pane or an external editor as
defined in the environment options can be nominated.

2.6. Simulation.

Apart from the various simulation possibilities available once the design has been converted to a
silicon layout, there are three strategies for evaluating/simulating the design from Balsa.

1. Default test harness.
A default test harness can be generated. The default test harness exercises the target Balsa
block by repeatedly handshaking on all external channels; input data channels receive auser
defined value on each handshake, although it is possible to associate an input channel with a
data file. Data sent to output channels appears on the output pane of the execution window.
Note that if the interface to procedure under test is changed, a new test-harness must be gener-
ated. By default, the MakeÞle can not check this dependency: the test-harness Þle must either
be removed manually or by running make clean .

2. Balsa test harness
If a more sophisticated test sequence is required, Balsa is a sufÞciently ßexible language in its
own right to be able specify most test sequences. A default test harness can then be generated
to exercise the Balsa test harness: see ÒBuilding test harnesses with BalsaÓ on page 77.

Figure 2.7: Execution window, showing the cost of buffer1a

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 19

2.6. Simulation.

3. Custom LARD test harness.
For some applications, it may be necessary to write a custom test harness in a language such as
LARD. However, LARD is no longer supported as part of the Basla system.

Adding a test
Þxture

To simulate a circuit description. using BalsaÕs simulation facilities, a test fixture has to be added to
the design framework. The easiest way is to automatically generate a default test harness.

1. Start balsa-mgr and select the project deÞned previously for the circuit buffer1a

2. Delete the Þle buffer2b from the project by selecting it in the Þle pane and right clicking to
choose ÒDeleteÓ from the pop-up menu. This step isnÕt actually necessary but buffer2b is not
used again

3. Add the Þle buffer2c to the project.

4. In the MakeÞle tab, you can notice that a set of compilation actions for buffer2c has been added
to those for buffer1a (see Figure 2.8).

5. Back in the Files pane, make sure that buffer2 is selected.

6. Pick ÒSelected Item Þ Add Test FixtureÓ from the pull-down menu or right-click on Òbuffer2Ó
in the Files pane. A window for creating a text Þxture is spawned (Figure 2.9).

7. A Warning button warns you that the Breeze Þle has not been generated, meaning that the
Balsa Þle buffer2c.balsa has not been compiled. Compiling is necessary for the GUI to get a
knowledge of the procedureÕs input and ouput ports. Click on the warning button to compile
buffer2c.balsa.The ÒTest OptionsÓ dialog should change and show the procedureÕs port i and o.

8. Change the name of the test Þxture from the default (test1) to something more meaningful, e.g.
buff2c

9. Select the Port Name Òi Ó

10. Change the active radio button in the ÒComponent TypeÓ pane from Òinput valueÓ to Òinput
from ÞleÓ (see Figure 2.10).

Figure 2.8: Buffer2c actions added to MakeÞle pane

2.6. Simulation.

20 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

11. Some test values (in a variety of representations: decimal, hex and binary) have been provided
in the Þle th1.dat in the directory containing the example. Set the value of the Þlename in the
ÒPort Value/FilenameÓ text box to th1.dat either by typing directly into the text box or by
clicking on the Þle browser button immediately to the right of the text box.
Note that data values can be speciÞed in various notations (binary, octal, hexadecimal, deci-
mal). The format of data Þles is line based: Only one data items is allowed per line and com-

Figure 2.9: The test options dialog before Balsa compilation

Figure 2.10: The test option dialog after Balsa compilation

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 21

2.6. Simulation.

plex data types values should not be split across lines. Anything after a data item is treated as a
comment and is passed to the simulation.

12. Validate your test Þxture deÞnition by clicking OK.

Text-only
simulation

In order to run the test, click on the Makefile tab. The Makefile view shown in Figure 2.11 now

shows two actions added under the Tests section. Clicking on the Run button for sim-buff2c
generates the simulation output in the execution window (Figure 2.12). The numbers reported on the
left hand side of each channel activity are simulation times Ð either the time at which data is
presented at an input channel from the external environment or the time at which data is presented
on an output channel to the external environment. Note however that at the breeze level the
simulator has a very simplistic timing model, so these values should be treated with caution.

Figure 2.11: Test Harness added to MakeÞle pane

2.6. Simulation.

22 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

Capturing output The contents of the output window of the execution window can be captured by right-clicking in the
output pane; alternatively the output can be directed to a file when defining or editing the test
harness.

Graphical
Simulation
Tools

In the previous examples, the output of the simulation is textual appearing in the output pane of the
execution window. The simulation may also be viewed in a conventional style waveform viewer or
the channel activity can be viewed directly on a representation of the handshake circuit graph. To
activate the viewers, switch to the Makefile pane of Balsa-mgr and click on Run button for
sim-win-buff2c. This will generate any intermediate files required and bring up a window
breeze-sim-ctrl (Figure 2.13) which controls the simulations and animations.

The controller allows:

¥ a new simulation Þle for a design to be produced and displayed in a waveform viewer
(GTKWave).

Figure 2.12: The ouput from a text-only simulation

Figure 2.13: The Simulator Controller

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 23

2.6. Simulation.

¥ an existing simulation Þle to be viewed in the GTKWave viewer.

¥ the speed of the simulation to be varied.

¥ the handshake circuit graph to be displayed, animated and analysed.

¥ the source code to be displayed.

¥ the associations between handshake circuit channels and source code constructs to be
displayed.

Breeze-sim-
controller icons

¥ If an existing simulation Þle is detected when the controller is started, a warning triangle
icon is displayed to alert the user to the possibility that this Þle could be overwritten (the
Þle has the extension of .hhh).

¥ An existing simulation Þle may be viewed without it being regenerated by clicking on the
waveform viewer icon at the bottom of the controller window. If the waveform viewer is
active, clicking on the icon kills the viewer.

¥ The coloured button at the bottom left of the controller window indicates the status of the
simulation: red means the simulation is stopped, green that the simulation is running and
blue that the simulation is paused.

¥ A new simulation trace Þle can be generated and displayed by clicking on the simulation
run/pause button at top-left of the controller window. The simulation can be terminated by
means of the simulation stop button to the right of the run/pause button. The simulation is
displayed in the GTKWave viewer as the simulation Þle is produced. The speed of the
simulation can be slowed down by means of the speed slider control.

¥ The two icons at the bottom right of the window reveal further functionality: the left icon
reveals a graph of the handshake circuit and the right button opens a window onto the
source code.

Generating the
simulation trace

Although breeze-sim-ctrl can be used to view the static handshake circuit (in order, for example, to
analyse the associations between the handshake elements and the Balsa description), its aim is to
graphically control the simulation process and display the simulation events in various ways. Before
any visualisation, it is necessary to generate a simulation trace. The presence of a simulation trace is
indicated by the Duration indicator, showing the total length of the actual simulation. You can
generate a new simulation (.hhh) trace file by running the simulation with the Play button. The
simulation is generating events very quickly, and the trace file can quickly become very large. If
your simulation is too long, you may want to keep the simulation trace short by slowing the
simulation speed down with the slider control and by stopping the simulation with the Stop button
when it reaches the desired size (the Duration indicator of the simulation is updated in real time).

Which simulated events are saved in the trace file can be chosen from the Trace options menu, in the
Breeze-sim options section (Figure 2.14). The choice is between tracing all the channels or tracing
only the procedure ports. Tracing all the channels results in a large trace file containing all the
necessary information for any kind of visualisation or post-analysis. Tracing only the procedure
ports is useful for keeping the trace file small, while still being able to view in GTKWave the events
happening at the interface of your procedures. This is often enough for checking that high-level
communications are behaving as expected without going into the details of the implementation.

2.6. Simulation.

24 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

GTKWave, the
Waveform Viewer

Clicking on the waveform viewer icon or the simulation run button will start the GTKWave viewer
(this automatic launch of GTKWave when a simulation is runned is the default behaviour, and can
be overriden by placing an empty file named nogtkwave in the project directory). A list of channels
is displayed in the right-hand pane as shown in Figure 2.15. Request signals are shown in red and

acknowledge signals are shown in green. Data bearing channels have the data value displayed under
the request/acknowledge signals. Clicking in this pane will display a vertical timeline cursor in the
window.

Which channels are viewed at the launch of GTKWave can be chosen from the Trace options menu,
in the GTKWave options section (Figure 2.14). The four possible choices are View all traced
channels, View procedure ports only, View named ports only and View none. They are self-
explanatory, except perhaps the third one: Named ports correspond to all the procedure ports but the
activation signals associated to every procedure (these signals do not have any name in the breeze
file).

Figure 2.14: Trace options menu

Figure 2.15: Channel viewer window.

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 25

2.6. Simulation.

The left-hand pane shows the channel names and the state of the request/acknowledge signals and
data values at the cursor point. It is necessary to click in the waveform display pane to get the
channel names to display correctly in the first instance. GTKWave is highly configurable: a detailed
description of its operation is not given here, rather a summary of its capabilities is provided below.

¥ The display of the traces passed to the viewer from the simulation controller can be
conÞgurable by use of the add or add all buttons. The former allows signals to be chosen
from a pick-list or by a regular expression description together with range speciÞers Ð
useful for specifying buses.

¥ Traces can be removed or repositioned by means of the cut and paste buttons.

¥ Traces can be sorted in a number of different ways.

¥ The traces can be zoomed in or out at the mid point of the display window by means of the
zoom buttons.

¥ SpeciÞc areas of the display can be zoomed by right-click, drag in the display window.

¥ The display can be stepped by a Þxed number of nsecs at a time or by the width of the
display window.

¥ Data may be displayed in a number of formats.

¥ Markers can be added to the display.

¥ The various menubars and toolbars can be hidden by means of the icons at the bottom right
of the window.

¥ The various menubars and tool bars are detachable. Click and drag on the gripper at the
left-hand end of the bar to detach it. To return it to the window, drag it back to its correct
place in the window or, more simply, double click on the gripper.

Viewing and
animating the
handshake circuit
graph.

Note: the features described in this section are experimental and are likely to change in future
releases. Not all buttons/controls are described Ð in the main this is because they are for
internal developer use only.

If the handshake circuit graph icon (at the bottom-right corner of the controller window) is clicked,
the controller window changes to that shown in Figure 2.16. It shows a graph representation of the
handshake circuit compiled, and is intended to display the activity (events) happening on the various
channels during the simulation.

First, you might want to change the layout style, especially if your graph does not appear nicely
when using the default layout. This is done by selecting the check box entitled ÒLayout uses control
flowÓ, near the bottom left corner of the window. When this check box is selected, the layout
hanshake circuit graph is laid out with the control flows going from top to bottom. When the check
box is unselected, the graph is laid out based on data flows, with data flowing from top to bottom.
The default style (data flow-based) gives a good visualisation of large circuit, especially when
associated with the ÒControl: GrayÓ button (located above the check box). However, for small
circuits, organising the data flow vertically does not always result in a nice layout.

Then, you might want to customise the appearance of the graph. For this, you can:

¥ drag&drop components or groups.

¥ resize groups with Shift+drag&drop.

¥ pan the display by dragging the background.

¥ zoom in/out by using the zoom icons.

¥ toggle the channel names and their values by using the next toggle icons.

¥ reduce/develop groups to show their components and sub-groups with middle-click and
right-click (Right-clicking on a group reduces/develops its sub-groups; Middle-clicking on
a group hides/shows its handshake components. You typically need to use right-click to
fully develop groups and middle click to fully reduce them).

2.6. Simulation.

26 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

¥ make a group become the main viewed group by using Ctrl+Left click. Ctrl+Shift+click
sets the parent of the selected group to be the main viewed group, and you can use
successive Ctrl+Shift+clicks on successive parents to go back to a higher level view of the
circuit.

On the left, a group of controls offer you to gray some parts of the circuit out, in order to visualise
more effectively either the control flow or the data flow. The Max Dev button recursively develops
every group in the circuit.

Pressing the empty icon button under the graph view develops a new button bar for accessing
developpersÕ functionalities. The first button, ÒScreen ShotÓ, may be useful to you, as it generates a
screenshot.ps file in the current directory, containing a postscript version of the viewed graph
(however, the graph is usually not centered on the page and needs post-processing).

The circuit is then animated by clicking on the Animate button. The speed of the animation can be
modified by means of the slider control next to the button. The animation may be stepped by means
of the up/down arrows next to the current time value. As a short-cut, right-clicking on the arrows
will take the simulation to the start/end of the animation. This feature is useful for rerunning the
animation. The two buttons next to the time-controlling up/down arrows are stepping the animation
to the next/previous viewable event.

Clicking on a channel selects it for a list of action available in the left-hand pane entitled
ÒSelectionÓ:

¥ ÒDeleteÓ unselects a channel(s).

¥ ÒDilateÓ expands the selection to the surrounding channels.

¥ ÒRunÕtilÓ runs the simulation until some activity appears on the selected channel(s).

¥ ÒFollowÓ runs until some activity on the channel and then looks for activity on the
surrounding channels and expand the selection to those newly activated surrounding
channels.

Figure 2.16: Channel tree and handshake circuit graph revealed.

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 27

2.6. Simulation.

When ÒCaptureÓ is pressed, hovering the mouse over a handshake channel automatically selects it.
Associated with the source code viewer, one can quickly see what source code corresponds to each
channel.

Finally, the text box next to the Capture button is a search box that selects/unselects all the channels
whose name contain the entered string (the search is run when the user presses the Return key). This
search box is useful, for example, when dealing with Verilog files generated from the Balsa
description: The channel numbers being the same in Verilog and in Breeze, specific Verilog channel
numbers can be searched and viewed on the handshake circuit graph (or in the source code viewer,
in order to link Verilog back to the original Balsa description).

Debugging a
deadlock

If your simulation ends up in an unexpected deadlock, you can try our Òdeadlock debugging helperÓ,
currently in development (i.e. if it does not work for you, it is kind of normal). Select the channel
corresponding to the latest event that happened during your simulation and run the deadlock
analysis by selecting ÒHighlight DeadlockÓ in the Debug menu. It should highlight (and add in the
Selection box) a list of channels which are thought to be related to the deadlock. The most useful
channels for debugging the deadlock are those where a change of channel activity happens, for
example when the string of highlighted channels passes from a channel where no event happened to
a channel blocked with a ÒRequest UpÓ event pending. You can follow this string of highlighted
channels and use the source code view to locate the position of some of them, as explained below.

Source Code
Viewer

Clicking the source code viewer icon brings up a separate (initially empty) window. It is advised to
click on ÒShow All Channel PositionsÓ, in order to load every file and colorise keywords according
to the handshake channels that are referred to in the compiled circuit. Once the source code window
is open, any channel selection from the main window is reported at the bottom of the source code
window. A subsequent click on the ÒGoto SourceÓ button highlights the source code that correspond
to the selected channel. In the other way around, it is possible to select channels that correspond to a
keyword from the source code by right-clicking after the first letter of the desired keyword and
choosing ÒSelect ChannelsÓ in the contextual menu (the algorithm searches backwards from the
selected character until it finds a matching channel).When the checkbox next to the ÒGoto SourceÓ
button is selected, any newly selected channel will be automatically reported inside the source code,
as if the user pressed the ÒGoto SourceÓ button after selecting the channel. Unselecting ÒNotebook
styleÓ displays every opened file simultaneously, next to each other.

2.6. Simulation.

28 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 29

3 The Balsa Language

Summary The previous chapter introduced Balsa, but was mostly concerned with the auxiliary tools that
support the Balsa environment. The language itself is small and in this section most of its major
features and constructs are introduced. Later chapters discuss more advanced topics such as
parameterisation and recursively defined structures (ÒParameterised & Recursively Defined
CircuitsÓ on page 49) and the enclosed semantics of the choice operator (ÒHandshake EnclosureÓ on
page 55). A more formal and complete, BNF style, language description can be found in
Section 11.3. on page 131.

3.1. Data Types

Balsa is strongly typed with data types based on bit vectors. Results of expressions must be
guaranteed to fit within the range of the underlying bit vector representation. There are two classes
of anonymous types: numeric types which are declared with the bits keyword and arrays of other
types. Numeric types can be either signed or unsigned. Signedness has an effect on expression
operators and casting. Only numeric types and arrays of other types may be used without first
binding a name to those types. Balsa has three separate namespaces: one for procedure and function
names, a second for variable and channel names and a third for type declarations.

Numeric types Numeric types incorporate numbers over the range [0, 2n - 1] or [-2n-1, 2n-1 - 1] depending on
whether they represent either unsigned or signed and where n Î [1, INT_MAX]; on a 32-bit machine

n Î [1, 232 - 1]. Named numeric types are just aliases of the same range. An example of a numeric
type declaration is:

type word is 16 bits

This defines a new type word which is unsigned (there is no unsigned keyword) covering the range

[0, 216 - 1]. Alternatively, a signed type could have been declared as:

type sword is 16 signed bits

which defines a new type sword covering the range [-215, 215 -1].

Some predefined types are available in <BalsaInstallDir>/share/balsa/types/basic.balsa. including
byte , nibble , boolean and cardinal as well as the constants true and false. Other predefined

3.1. Data Types

30 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

types may be added from time to time. Users are advised to consult the contents of the file in their
particular release of the Balsa system.

Enumerated
types

Enumerated types consist of named numeric values. The named values are given values starting at
zero and incrementing by one from left to right. Elements with explicit values reset the counter and
many names can be given to the same value, for example:

type Colour is enumeration
 Black, Brown, Red, Orange, Yellow, Green, Blue, Violet
 Purple=Violet, Grey, Gray=Grey, White
end

The value of the Violet element of Colour is 7, as is Purple. Both Grey and Gray have value 8.
The total number of elements is 12. An enumeration can be padded to a fixed size by use of the over
keyword:

type SillyExample is enumeration
 e1=1, e2
over 4 bits

Here 2 bits are sufficient to specify the 3 possible values of the enumeration (0 is not bound to a
name, e1 has the value 1 and e2 has the value 2). The over keyword ensures that the representation
of the enumerated type is actually 4 bits.

Occasionally, it is necessary when referring to an element of an enumeration to indicate the type to
which that element belongs. The notation ColourÕPurple specifically indicates the identifier
Purple as being a member of Colour . Most users will never need this notation; about the only time
it is required is when using elements of enumerations within casts and even in that case there are
more transparent ways of achieving the same effect.

Enumeration types must be bound to names by a type declaration before use.

Record types Records are bitwise compositions of named elements of possibly different (pre-declared) types with
the first element occupying the least significant bit positions, e.g.:

type Resistor is record
 FirstBand, SecondBand, Multiplier : Colour;
 Tolerance : ToleranceColour
end

Resistor has four elements: FirstBand , SecondBand , Multiplier of type Colour and Tolerance
of type ToleranceColour (both types must have been previously declared). FirstBand is the first
element and so represents the least significant portion of the bitwise value of a type Resistor.
Selection of elements within the record structure is accomplished with the usual dot notation. Thus
if R15 is a variable of type Resistor , the value of its SecondBand can extracted by
R15.SecondBand .

A record can be constructed by listing its fields as a list within braces. Thus if R4K7 is a record
variable of type Resistor, its value may be set:

R4K7 := {Yellow, Violet, Red, Gold}

As with enumerations, record types can be padded:

type Flags is record
 carry, overflow, zero, negative, int_en : bit
over byte

The 5-bit record is padded to 8 bits by use of the over keyword. Even in those cases where padding
is not required such as in the example below, specification of the data-type required is useful
because the compiler will enforce error checking to ensure that the structure is in fact what it is
believed to be.

type Flags is record

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 31

3.1. Data Types

 carry, overflow, zero, negative : bit
over 4 bits

Array types Arrays are numerically indexed compositions of same-typed values. An example of the declaration
of an array type is:

type RegBank_t : array 0..7 of byte

This introduces a new type RegBank_t which is an array type of 8 elements indexed across the range
[0, 7], each element being of type byte . The ordering of the range specifier is irrelevant array 0..7
is equivalent to array 7..0 . In general a single expression, expr , can be used to specify the array
size: this is equivalent of a range of 0..expr-1 . Anonymous array types are allowed in Balsa, so
that variables can be declared as an array without first defining the array type:

variable RegBank : array 0..7 of byte

Arbitrary bit-fields within an array can be accessed by an array slicing mechanism e.g. a[5..7]
extracts elements a5, a6, and a7. As with all range specifiers, the ordering of the range is irrelevant.
In general Balsa packs all composite typed structures in a least significant to most significant, left to
right manner. Array slices always return values which are based at index 0.

Arrays can be constructed by means of a list constructor or by concatenation of other arrays of the
same base type:

variable a, b, c, d, e ,f: byte
variable z2 : array 2 of byte
variable z4 : array 4 of byte
variable z6 : array 6 of byte

z4:= {a,b,c,d} -- array constructio n
z6:= z4 @ {e, f} -- array concatenation
z2:= (z4 @ {e, f}) [3..4] -- element extraction by array slicing

In the last example, the first element of z2 is set to d and the second element is set to e. The
parentheses are necessary to satisfy the precedence rules. Note that array slices always return values
which are based at index 0. Thus in the following rather bizarre example, the first element of z2 is
assigned to c and the second element to d:

z2:= (({a, b, c, d} @ {e, f}) [1..4])[1..2] -- returns {c,d}

Array slicing is useful to allow arbitrary bitfields to be extracted from other datatypes. In general,
the original datatype has to be cast into an array first before bitfield extract and then cast back again
into the correct datatype. See ÒCastsÓ on page 32 for concrete examples.

Constants Constant values can be defined in terms of an expression resolvable at compile time. Constants may
be declared in terms of a predefined type otherwise they default to a numeric type. However, sting
constants are not allowed. Valid examples are:

constant minx = 5
constant maxx = minx + 10
constant hue = Red : Colour
constant colour = ColourÕGreen

Complex data type (array and record) constants may be defined:

constant InitArray = {1, 2, 3, 4} : MyArrayType
constant R4K7 = {Yellow, Violet, Red, Gold} : Resistor

The two examples above may also be written:

constant InitArray = MyArrayType {1, 2, 3, 4}
constant R4K7 = Resistor {Yellow, Violet, Red, Gold}

3.2. Data Typing Issues

32 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

Integer constants may be specified in decimal (e.g. 42), binary (e.g. 0b00101010) octal (e.g. 052) or
hexadecimal (e.g. 0x2a). Note that leading zero signifies an octal constant. The underscore character
Ò_Ó is allowed within numbers to improve readability (e.g. 0b_0010_1010).

implicants Implicants Ð values containing donÕt caresÐ are allowed as normal expression types and be used to
define both simple numeric constants and complex data type constants. The symbol ÒxÓ denotes a
single donÕt care digit, and the value Ò?Ó yields an implicant matching all values of the expected
type. Not all operators may be used with such implicants, working operators include as , array and
record construction and #. Examples of the use of implicants are:

constant OddNum = 0bx1
constant DataProcInst = {?, 0b00x, ?, ?} : InstructionFormat

The latter could be used in decoding an instruction formatted into four fields in which it is known
that data-processing type instructions are uniquely identified by the value 000 or 001 in the second
field.

The main use of implicants is in matching case guards [see Òcase statementsÓ on page 37].

Arrayed
channels

Channels may arrayed, that is they may consist of several distinct channels which can be referred to
by a numeric or enumerated index. This is similar to the to the way in which variables can have an
array type but in the case of arrayed channels, each channel is distinct for the purposes of
handshaking and each indexed channel has no relationship to the other channels in the array other
than the single name they share. The syntax for arrayed channels is different to that of array typed
variables making it easier to disambiguate arrays from arrayed channels. As an example:

array 4 of channel XYZ : array 4 of byte

declares 4 channels, XYZ[0] to XYZ[3] , each channel is a 32-bit wide type array 0..3 of byte .
An example of the use of arrayed channels was shown previously when discussing the placement of
multiple structures [see ÒPlacing multiple structuresÓ on page 13].

3.2. Data Typing Issues

As stated previously, Balsa is strongly typed: both left-hand and right side of assignments are
expected to have the same type. The only form of implicit type-casting is the promotion of numeric
literals and constants to a wider numeric type. In particular care must be taken to ensure that he
result of an arithmetic operation will always be compatible with the declared result type. Consider
the assignment statement x := x + 1 . This is not a a valid Balsa statement because potentially the
result is one bit wider than the width of the variable x. If the potential carry-out from the addition is
to be ignored, the user must explicitly force the truncation by means of a cast.

Casts If the variable x was declared as 32 bits, the correct form of the assignment above is:

x := (x + 1 as 32 bits)

The keyword as indicates the cast operation. The parentheses are a necessary part of the syntax to
make the precedence of as more obvious. If the carry out of the addition of two 32-bit numbers is
required, a record type can be used to hold the composite result:

type AddResult is record
 Result : 32 bits;
 Carry : bit;
end
variable r : AddResult

r := (a + b as AddResult)

The expression r.Carry accesses the required carry bit, r.Result yields the 32-bit addition result.
Casts are required when extracting bit fields. Here is an example from the instruction decoder of a

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 33

3.2. Data Typing Issues

simple microprocessor. The bottom 5 bits of 16-bit instruction word contain an 5-bit signed
immediate. It is required to extract the immediate field and sign-extend it to 16 bits:

type Word is 16 signed bits
type Imm5 is 5 signed bits

variable Instr : 16 bits -- bottom 5 bits contain an immediate
variable Imm16 : Word

Imm16 := (((Instr as array 16 of bit) [0..4] as Imm5) as Word)

First, the instruction word, Instr , is cast into an array of bits from which an arbitrary subrange can
be extracted:

(Instr as array 16 of bit)

Next the bottom (least significant) 5 bits must be extracted:

(Instr as array 16 of bit) [0..4]

The extracted 5 bits must now be cast back into a 5-bit signed number:

((Instr as array 16 of bit) [0..4] as Imm5)

The 5-bit signed number is then signed extended to the 16-bit immediate value:

(((Instr as array 16 of bit) [0..4] as Imm5) as Word)

The double cast is required because a straight forward cast from 5 bits to the variable Imm16 of type
Word would have merely zero filled the topmost bit positions even though Word is a signed type.
However, a cast from a signed numeric type to another (wider) signed numeric type will sign extend
the narrower value into the width of the wider target type.

Extracting bits from a field is a fairly common operation in many hardware designs. In general, the
original datatype has to be cast into an array of bits first before bitfield extraction. The smash
operator # provides a convenient shorthand for casting an object into an array of bits. Thus the sign
extension example above is more simply written

((#Instr [0..4] as Imm5) as Word)

Whilst anonymous array types are allowed, it is not always possible for the compiler to be able to
deduce the appropriate type of an array constructor during a cast operation:

type Word32 is 32 bits
variable a, b, c, d : byte
variable Imm32: Word32

Imm32 := ({a, b, c, d} as Word32) -- canÕt determine type of array

The compiler has to be given a hint by specifying the type of the array constructor:

type A4_t is array 4 of byte
Imm32 := (A4_t {a, b, c, d} as Word32)

Here, A4_t indicates the type of the array constructor. Note that a previously declared type must be
used: the following statement results in (many) compile time errors:

Imm32 := (array 4 of byte {a, b, c, d} as Word32) -- error

Bit ordering
and padding in
arrays

The following snippets illustrate the relationship between the bit ordering in array constructors and
their numeric values represented by those arrays:

constant x = (2 as 4 bits)
print "x is: ", x, " ", #x ;

x is defined a being a 4 bit value; printing it as an array of bits (using the # operator) gives:

x is: 2 {0,1,0,0}

3.3. Control Flow and Commands

34 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

The most-signifcant bit is the rightmost bit element of the array Ð note this is contary to the normal
representation of bits in a binary number where binary 0110 would represent decimal 4.
Concatenating x with another array of bits

y:= (#x @ {0,1} as 8 bits);
print "y is: ", y , " ", #y;

gives:

y is: 34 {0,1,0,0,0,1,0,0}

Auto-
assignment

Statements of the form

x := f(x)

are allowed in Balsa. However, the implementation generates a temporary variable which is then
assigned back to the variable visible to the programmer Ð the variable is enclosed within a single
handshake and cannot be read from and written to simultaneously. Since auto-assignment generates
twice as many variables as might be suspected, it is probably better practice to avoid the auto-
assignment, explicitly introduce the extra variable and then rewrite the program to hide the
sequential update thereby avoiding any time penalty. An example of this approach is given in
ÒRemoving auto-assignmentÓ on page 42.

3.3. Control Flow and Commands

BalsaÕs sparse command set is listed in Table 3.1. A more formal definition of the command syntax
is given in Section 11.3. on page 131.

command Notes

sync Control only (dataless) handshake

<-
handshake data transfer from an expression to an output
port

-> handshake data transfer to a variable from an input port

:= assigns a value to a variable

; sequence operator

|| parallel composition operator

continue a null command

halt causes deadlock

loop É end repeat forever

loop É while É then É also
É end

conditional loop with optional initial command.

for É in É then É end structural (not temporal) iteration

if É then É else É end
conditional execution, may have multiple guarded
commands

case É of É end conditional execution based on constant expressions

select É end non-arbitrated choice operator

Table 3.1: Balsa Commands

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 35

3.3. Control Flow and Commands

Sync sync <channel> awaits a handshake on the named channel. Circuit action does not proceed until
the handshake is completed.

Channel
assignment

Variable
assignment

<variable> := <expression > transfers the result of an expression into a variable. The result type
of the expression and that of the variable must agree.

Sequence
operator

Ò;Ó separating two commands is not merely a syntactic operator, it explicitly denotes sequentiality.
Because a semicolon connects two sequenced statements of a block, it is an error to place a
semicolon after the last statement in a block. Doing so is a common beginnerÕs error and may result
the error message:

expected one of tokens Ôident [{ sync local begin continue halt loop while if
case for select arbitrate print Õ

Parallel
composition

Ò||Ó composes two commands such that they operate concurrently and independently. Both
commands must complete before the circuit action proceeds. Beware of inadvertently introducing
dependencies between the two commands so that neither can proceed until the other has completed.
The Ò||Ó operator binds tighter than Ò;Ó. If that is not what is intended, then commands may be
grouped in blocks as shown below

[CmdSeq1 ; CmdSeq2] || CmdPar1

Note the use of square brackets to group commands rather than parentheses. Alternatively, the
keywords begin É end may be used.

Continue and
Halt

continue is effectively a null command. It has no effect, but may be required for syntactic
correctness in some instances. The command halt causes a process thread to deadlock.

arbitrate É end arbitrated choice operator

print <args>

if 1st arg is one of fatal, error, warning, report, print
subsequent args at compile time at the appropriate error
level. If 1st arg is runtime (the default) evaluate and print
args during a simulation

<block>
allows inclusion of local deÞnitions around a command and
the overriding of the precedence of command composition.
See Section 11.3. on page 131.

command Notes

Table 3.1: Balsa Commands

<channel_out> <- <expression> The result of the expression (commonly,
the value of a variable) is transferred to the
named output channel.

<channel_in> -> <variable> Data from the named input channel is
transferred to a variable.

<channel_in> -> <channel_out> Data from the named input channel is
transferred to the named output channel.

<channel_in> -> then <command> end The handshake on the named input channel
encloses the command block. Thus the data
remains valid until the command block
terminates. Data on the input channel can be
read more than once or assigned to multiple
channels.

3.3. Control Flow and Commands

36 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

Looping
constructs

The loop command causes an infinite repetition of a block of code. An example, summarised
below, was given in the description ÒA single-place bufferÓ on page 9.

loop i -> x ; o <- x end

Finite loops may be constructed using the loop while construct1. An example of its use with a
single guard is:

loop while x < 10 then
 x := (x+1 as byte)
end

Multiple guards are allowed in as shown below:

loop while
 x < 10 then x := (x + 1 as byte)
| x >= 10 then x := 0
end

A variation on the while construct uses the also keyword to allow a final command which is
executed at the end of each loop iteration if any of the guards is satisfied:

loop while
 x < 10 then x := (x+1 as byte)
 | x >= 10 then x := 0
 also print "Value of x is ", x
 end -- loop

Loops with an initial command before the guard test Ð similar to a do É while loop found in other
languages Ð are supported. The example below illustrates such a repetitive loop using both multiple
guards and the also statement. Both are optional as in the previous while loops

loop
 i -> x
while
 x < 10 then print x, " is less than 10"
| x < 100 then print x, " is > 10 and < 100"
also print "about to read another value"
end;
print "exiting loop - value of x is: ", x

The example above also illustrates the ordering in the evaluation of the guards. For values of x less
than 10, both guards are satisfied, however the language guarantees that only the command
associated with the first in the list of guards will be executed. Note that the loop exits when a value
greater or equal to 100 is read from the input channel i .

The equivalent of a repeat É until or a do É while loop can be speciÞed as a simpler form of the
construct above, thus:

loop
 print "value of x is: ", x;
 x := (x + 1 as 4 bits)
 while x <= 10
end

Structural
iteration

Balsa has a for loop construct. Beware, in many programming languages it is a matter of
convenience or style as to whether a loop is written in terms of a for loop or a while loop. This is
not so in Balsa. The for loop is similar to VHDLÕs for É generate command and is used for
iteratively laying out repetitive structures. An example of its use was given earlier [see ÒPlacing
multiple structuresÓ on page 13]. An illustration of the inappropriate use of the for command is

1. Note that previous releases of Balsa used a different syntax for the while command; descrip-
tions that used while loops will no longer compile correctly

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 37

3.3. Control Flow and Commands

given in ÒThe danger of ÒforÓ loopsÓ on page 46. Structures may be iteratively instantiated to
operate either sequentially or concurrently with one another.

Conditional
execution

Balsa has if and case constructs to achieve conditional execution. The if É then É else
statement allows conditional execution based on the evaluation of expressions at run-time. Its syntax
is somewhat similar to that of the while loop.

if statements if condition1 then command
| condition2 then command
| condition3 then command
else CmdD
end

If more than guard (condition) is satisfied, then just as for a while loop, the command associated
with the first mentioned guard is the one chosen. The else clause is optional.

The case statement is a multi-way decision maker that tests whether an expression matches one or
more possible values.

case statements BalsaÕs case statement is similar to that in a conventional programming language. A single guard
may match more than one value of the guard expression.

case x+y of
 1 .. 4 then o <- x
| 5 .. 10 then o <- y
 else o <- z
end

Case guards may be generated by means of a for statement case guard generator.

case s of
 for j in 1 .. 3 then
 o[j] <- i
| 0 then
 print "Handling port 0 specially" ||
 o[0] <- i-1
end

The code above is equivalent to:

case s of
 1 then o[1] <- i
| 2 then o[2] <- i
| 3 then o[3] <- i
| 0 then
 print "Handling port 0 specially" ||
 o[0] <- i-1
end

The case matches in the for loop can be any general expressions resolvable at compile time. Only
one for iteration variable is allowed per guard and the case matches must be disjoint from one
another.

The form of case expansion illustrated in the example above is not particularly useful. It finds more
application in defining the behaviour of parameterised components.

Implicants (or donÕt care conditions) [see ÒConstantsÓ on page 31] may be used in case statements:

procedure imp1 is
begin
 for ; i in 1 .. 15 then
 case i of
 0bx1x then print ÒdonÕt care guard: Ò, i
 else
 print Òcovering case: Ò, i

3.4. Binary/Unary Operators

38 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

 end
 end
end

3.4. Binary/Unary Operators

BalsaÕs binary operators are shown in order of decreasing preference in Table 3.2

3.5. Description Structure

File structure A typical design will consist of several files containing procedure/type/constant declarations which
come together in a a top-level procedure that composes the overall design. This top-level procedure
would typically be at the end of a file which imports all the other relevant design files. This
importing feature forms a simple but effective way of allowing component reuse and maps simply
onto the notion of the imported procedures being either pre-compiled handshake circuits or existing
(possibly hand crafted) library components. Declarations have a syntactically defined order (left to
right, top to bottom) with each declaration having its scope defined from the point of declaration to

Symbol Operation
Valid
types

Notes

. record indexing record

smash any
takes value from any type and
reduces it to an array of bits

[] array indexing array
non-const index possible, can
generate lots of hardware

^ exponentiation numeric only constants

not,
log,
Ð (unary)

unary operators numeric

log only works on constants,
returns the ceiling: e.g. log 15
returns 4
Ð returns a result 1 bit wider than
the argument

*, /, %
multiply, divide,
remainder

numeric only applicable to constants

+,- add, subtract numeric
results are one or 2 bits longer than
the largest argument

@ concatenation arrays

<, >, <=, >= inequalities
numeric
enumerations

=, /=
equals,
not equals

all
comparison is by sign extended
value for signed numeric types

and bitwise and numeric
Balsa uses type 1 bits for if/
while guards so bitwise and
logical operators are the same.

or, xor bitwise or numeric

Table 3.2: Balsa binary/unary operators

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 39

3.5. Description Structure

the end of the current (or importing) file. Thus Balsa has the same simple Òdeclare before useÓ rule
of C and Modula, though without any facility for prototypes. Each Balsa design file has the

following simplified structure of Table 3.31. A complete syntax for the Balsa language is given in
Section 11.3. on page 131.

Declarations Declarations, shown in Table 3.3, introduce new type, constant or procedure names into the global
namespaces from the point of declaration until the end of the enclosing block (or file in the case of
top-level declarations). There are three disjoint namespaces: one for types, one for procedures and a
third for all other declarations. At the top level, only constants are this last category, however,
variables and channels are included in procedure local declarations. Where a declaration within an
enclosed/inner block has the same name as one previously made in an outer/enclosing context, the
local declaration will hide the outer declaration for the remainder of that inner block.

Procedure names may be aliased. This feature is useful when instantiating particular instances of
parameterised procedure definitions [see ÒA variable width buffer definitionÓ on page 49].

Procedures Procedures form the bulk of the a Balsa description. Each procedure has a name, a set of ports and
an accompanying behavioural description. Procedure declarations follow the pattern of Table 3.4 (a

1. An extended form of BNF is used to describe the syntax. A terms (a) * denotes zero or more
repetitions of the term a and (a)? indicates that the term a is optional

áÞleñ ::= (import [ádotted-pathñ])* áouter-declarationsñ

ádotted-pathñ ::= áidentiÞerñ (. áidentiÞerñ)*

áouter-declarationsñ ::= (áouter-declarationñ)*

áouter-declarationñ ::= type áidentiÞerñ is átype-declarationñ

| constant áidentiÞerñ = áexpressionñ (: átypeñ)?

| procedure áidentiÞerñ is áidentiÞerñ ((áprocedure-formalsñ))?

|

procedure áidentiÞerñ ((áprocedure-formalsñ))? is
(local)? áinner-declarationsñ begin ácommandñ end

|

function áidentiÞerñ ((áfunction-formalsñ))? =
áexpressionñ (: átypeñ)?

|

if áexpressionñ then áouter-declarationsñ
(| áexpressionñ then áouter-declarationsñ)*
(else áouter-declarationsñ)?
end

Table 3.3: Balsa File Structure

áprocedure-formalsñ ::= áformal-parametersñ

| áformal-portsñ

| áformal-parametersñ ; áformal-portsñ

áformal-parametersñ ::= parameter áidentiÞersñ : átypeñ
(; parameter áidentiÞersñ : átypeñ)*

áformal-portsñ ::= áformal-portñ (; áformal-portñ)*

Table 3.4: Procedure Port Declarations

3.5. Description Structure

40 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

complete syntax for the Balsa language is given in Section 11.3. on page 131). Each procedure may
have a number of ports each of which can be connected to a channel. The sync keyword introduces
nonput (dataless) channels. Both nonput and data bearing channels can be members of Òarrayed
channelsÓ. Arrayed channels allow numeric/enumerated indexing of otherwise functionally separate
channels. Examples of their use can be found in ÒPipelines of variable width and depthÓ on page 50.

Procedures can also carry a list of local declarations which may include other procedures, type and
constants. The keyword local is optional for declarations which immediately follow the procedure
declaration since the semantics of the Balsa language ensure that they must be local to the procedure
in question.

Shared
procedures

Normally each call to a procedure generates separate hardware to instantiate that procedure. A
procedure may be shared, in which case calls to that procedure access common hardware thereby
avoiding duplication of the circuit at the cost of some multiplexing to allow sharing to occur. An
example of the use of a shared procedure is given in ÒSharing hardwareÓ on page 44.

Functions In many programming languages, functions can be thought of as procedures without side affects
returning a result. However, in Balsa there is a fundamental difference between functions and
procedures. Parameters to a procedure define handshaking channels that interface to the circuit
block defined by the procedure. Function parameters on the other hand are merely typed identifiers.
BalsaÕs functions return results in a manner similar to functions in other programming languages.

Conditional
ports and
declarations

Declarations, including procedure and port declarations may be conditional. Examples are shown
below.

constant debug = true

if debug then

áformal-portñ ::= (array árangeñ of)? (input | output) áidentiÞersñ : átypeñ

| (array árangeñ of)? sync áidentiÞersñ

|

if áexpressionñ then áformal-portsñ
(| áexpressionñ then áformal-portsñ)*
(else áformal-portsñ)?
end

árangeñ ::= áexpressionñ

| áexpressionñ .. áexpressionñ

| over átypeñ

áinner-declarationsñ ::= (áinner-declarationñ)*

áinner-declarationñ ::= áouter-declarationñ

| variable áidentiÞersñ : átypeñ

| áchan-optsñ (array árangeñ of)? channel áidentiÞersñ : átypeñ

| áchan-optsñ (array árangeñ of)? sync áidentiÞersñ

|

shared áidentiÞerñ is (local)? áinner-declarationsñ
begin ácommandñ end

|

if áexpressionñ then áinner-declarationsñ
(| áexpressionñ then áinner-declarationsñ)*
(else áinner-declarationsñ)?
end

Table 3.4: Procedure Port Declarations

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 41

3.5. Description Structure

 procedure p1 is
 begin
 print "this is the debug version of procedure p1"
 end
else
 procedure p1 is
 begin
 print "this is the production version of procedure p1"
 end
end

Two definitions of p1 are provided: the actual definition used depends on the value of the constant
debug .

Conditional
ports

Port declarations and variables may also may be conditional. The next example is a the 2-place
buffer described in ÒParallel composition and module reuseÓ on page 12. Internal channels such as
that connecting the two 1-place buffers are not visible. It is occasionally necessary for debugging
purposes to make an internal channel visible. It must therefore be included as a port in the procedure
declaration. A conditional port declaration allows a single procedure definition to be used for both
debugging and production purposes.

constant debug = true

procedure buf1 (input i : byte ; output o : byte) is
 variable x : byte
begin
 loop
 i -> x ; o <- x
 end -- loop
end -- procedure buf1

procedure buf2 (
 input i : byte;
 if debug then output c : byte end;
 output o : byte
) is
 if not debug then channel c : byte end
begin
 buf1(i,c) || buf1(c,o)
end -- procedure buf2

The guard expressions must in all cases be constant at compile time/parameterised procedure
expansion time.

Variable ports Ports to procedures can be connected directly to variables to allow communications on the
procedureÕs ports to perform reads and writes to the variable.

procedure write_zero(output o : byte) is
begin o <- 0 end

variable v : byte
write_zero(-> v)

In this example, zero is written into the variable v. Variable read/writes can be used as an
abbreviated way of passing expressions to a procedure. For example:

c1 <- expr1 ||
c2 <- expr2 ||
c3 -> var1 ||
proc1(c1, c2, c3)

can be replaced by

3.6. Examples

42 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

proc1(<- expr1, <- expr2, -> var)

One advantage of this form of port connection is the ability for the value of the expression to be read
an arbitrary (including zero number of times) number of times. For example:

c <- expr || proc(c)

If proc attempts to read c more than once, deadlock will occur (because of course the write to
channel c from expr will only occur once). A way round the problem is the description:

loop c <- expr end || proc(c)

However the resulting composition is permanent even if proc itself is non-permanent. A permanent
circuit is one that never returns Ð the consequence being that sequential compositions of such
circuits are liable to deadlock, thus the following form may be preferred:

proc(<- expr)

This form of description is more efficient because of pull-style of Balsa implementations.

3.6. Examples

In this section various designs of counter are described in Balsa. In flavour, they resemble the
specifications of conventional synchronous counters, since these designs are more familiar to
newcomers to asynchronous systems. More sophisticated systolic counters, better suited to an
asynchronous approach are described in ÒSystolic countersÓ on page 55. In this example below, the
role of the clock which updates the state of the counter is taken by a dataless sync channel, named
aclk. The counter issues a handshake request over the sync channel., the environment responds with
an acknowledge completing the handshake and the counter state is updated.

Modulo-16
counter

-- count16a.balsa: modulo 16 counter
import [balsa.types.basic]

procedure count16 (sync aclk; output count : nibble) is
variable count_reg : nibble
begin
 loop
 sync aclk ;
 count <- count_reg ;
 count_reg := (count_reg + 1 as nibble)
 end
end

This counter interfaces to its environment by means of two channels: the dataless sync channel and
the channel count which outputs the current value of the counter. The internal register implied by the
variable count_reg and the output channel are of type nibble (4 bits) which is predefined in
balsa.types.basic. After count_reg is incremented, the result must be cast back to type nibble. Note
that issues of initialisation/reset have been ignored. The Balsa simulator gives a warning when
uninitialised variables are accessed.

Removing
auto-
assignment

The auto-assignment statement in the example above, although concise and expressive, hides the
fact that in most back-ends, a temporary variable is created so that the update can be carried out in a
race-free manner. By making this temporary variable explicit, advantage may be taken of its
visibility to overlap its update with other activity as shown in the example below.

-- count16b.balsa: write-back overlaps output assignment
import [balsa.types.basic]

procedure count16 (sync aclk; output count : nibble) is
variable count_reg, tmp : nibble
begin
 loop

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 43

3.6. Examples

 sync aclk;
 tmp := (count_reg + 1 as nibble)||
 count <- count_reg;
 count_reg := tmp
 end
end

In this example, the transfer of the count register to the output channel is overlapped with the
incrementing of the temporary shadow register. There is some slight area overhead involved in
parallelisation and any potential speed-up may be minimal in this case, but the principal of making
trade-offs at the level of the source code is illustrated.

Modulo-10
counter

The basic counter description above can be easily modified to produce a modulo-10 counter. A
simple test is required to detect when the internal register reaches its maximum value and then to
reset it to zero.

-- count10a.balsa: an asynchronous decade counter
import [balsa.types.basic]

type C_size is nibble
constant max_count = 9

procedure count10(sync aclk; output count: C_size) is
 variable count_reg : C_size
 variable tmp : C_size
begin
 loop
 sync aclk;
 if count_reg /= max_count then
 tmp := (count_reg + 1 as C_size)
 else
 tmp := 0
 end || count <- count_reg ;
 count_reg := tmp
 end -- loop
end -- begin

A loadable up/
down counter

This example describes a loadable up/down decade counter. It introduces many of the language
features discussed earlier in the chapter. The counter requires 2 control bits, one to determine the
direction of count, and the other to determine whether the counter should load or inc(dec)rement on
the next operation. The are several valid design options; in this example, count10b below, the
control bits and the data to be loaded are bundled together in a single channel, in_sigs.

-- count10b.balsa: an asynchronous up/down decade counter
import [balsa.types.basic]

type C_size is nibble
constant max_count = 9

type dir is enumeration down, up end
type mode is enumeration load, count end

type In_bundle is record
 data : C_size ;
 mode : mode;
 dir : dir
end

procedure updown10 (input in_sigs: In_bundle; output count: C_size) is
 variable count_reg : C_size
 variable tmp : In_bundle

3.6. Examples

44 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

begin
 loop
 in_sigs -> tmp; -- read control+data bundle
 if tmp.mode = count then
 case tmp.dir of
 down then -- counting down
 if count_reg /= 0 then
 tmp.data := (count_reg - 1 as C_size)
 else
 tmp.data := max_count
 end
 | up then -- counting up
 if count_reg /= max_count then
 tmp.data := (count_reg + 1 as C_size)
 else
 tmp.data := 0
 end
 end -- case tmp.dir
 end;
 count <- tmp.data || count_reg:= tmp.data
 end
end

The example above illustrates the use of if É then É else and case control constructs as well the
use of record structures and enumerated types. The use of symbolic values within enumerated types
makes the code more readable. Test harnesses which can be automatically generated by the Balsa
system [see ÒSimulation.Ó on page 18] can also read the symbolic enumerated values. For example,
here is a test file which initialises the counter to 8, counts up, testing that the counter wraps round to
zero, counts down checking that the counter correctly wraps to 9.

{8, load, up} load counter with 8
{0, count, up} count to 9
{0, count, up} count & wrap to 0
{0, count, up} count to 1
{0, count, down} count down to 0
{0, count, down} count down to 9
{0, count, down} count down to 9
{1, load, down} load counter with 1
{0, count, down} count down to 0
{0, count, down} count down & wrap to 9

Sharing
hardware

In Balsa, every statement instantiates hardware in the resulting circuit. It is therefore worth
examining descriptions to see if there any repeated constructs that could either be moved to a
common point in the code or replaced by shared procedures. In count10b above, the description
instantiates two adders: one used for incrementing and the other for decrementing. Since these two
units are not used concurrently, area can be saved by sharing a single adder (which adds either +1 or
-1 depending in the direction of count) described by a shared procedure. The code below illustrates
how count10b can be rewritten to use a shared procedure. The shared procedure add_sub computes
the next count value by adding the current count value to a variable, inc, which can take values of +1
or -1. Note that to accommodate these values, inc must be declared as 2 signed bits.

The area advantage of the approach is shown by running breeze-cost: count10b has a cost of 2141
units, whereas the shared procedure version has a cost of only 1760. The relative advantage becomes
more pronounced as the size of the counter increases.

-- count10c.balsa: introducing shared procedures
import [balsa.types.basic]

type C_size is nibble
constant max_count = 9

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 45

3.6. Examples

type dir is enumeration down, up end
type mode is enumeration load, count end
type inc is 2 signed bits

type In_bundle is record
 data : C_size ;
 mode : mode;
 dir : dir
end

procedure updown10 (input in_sigs: In_bundle; output count: C_size) is
 variable count_reg : C_size
 variable tmp : In_bundle
 variable inc : inc

 shared add_sub is
 begin
 tmp.data:= (count_reg + inc as C_size)
 end -- begin

begin
 loop
 in_sigs -> tmp; -- read control+data bundle
 if tmp.mode = count then
 case tmp.dir of

down then -- counting down
if count_reg /= 0 then
 inc:= -1;
 add_sub()
else
 tmp.data := max_count
end -- if

 | up then -- counting up
if count_reg /= max_count then
 inc := +1;
 add_sub()
else
 tmp.data := 0
end -- if

 end -- case tmp.dir
 end; -- if
 count <- tmp.data || count_reg:= tmp.data
 end -- loop
end -- begin

In order to guarantee the correctness of implementations, there are a number of minor restrictions on
the use of shared procedures

¥ shared procedures can not have any arguments

¥ shared procedures can not use local channels

¥ if a shared procedure uses elements of the channel referenced by a select statement [see
ÒHandshake EnclosureÓ on page 55], the procedure must be declared as local within the
body of that select block.

A ÒwhileÓ loop
description

An alternative description of the basic modulo-10 counter employs the while construct:

-- count10d.balsa: modulo 10 counter alternative implementation
import [balsa.types.basic]

type C_size is nibble
constant max_count = 10

3.6. Examples

46 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

procedure count10(sync aclk; output count: C_size) is
 variable count_reg : C_size
begin
 loop
 loop while count_reg < max_count then
 sync aclk;
 count <- count_reg;
 count_reg:= (count_reg + 1 as C_size)
 end; -- loop while
 count_reg:= 0
 end -- loop
end -- begin

Pitfalls in loop
terminations

Users should be be vigilant in specifying loop termination conditions correctly. The finite bit length
of variables inherent in Balsa descriptions can cause problems for the unwary. Consider the
following code that iterates around the loop 10 times with x taking values from 0 É 9.

variable x: 4 bits
begin
 loop while x <= 9 then
 print "value of x is: ", x;
 x := (x + 1 as 4 bits)
 end
end

Suppose it is now required to loop round all values of x, i.e. from 0 É 15. Simply changing the
comaprison constant causes the code never to terminate:

variable x: 4 bits
begin
 loop while x <= 15 then -- never terminates
 print "value of x is: ", x;
 x := (x + 1 as 4 bits)
 end
end

The condition is always satisfied because x can only be in the range 0 É 15 wrapping round back to
0. There are two solutions:

variable x: 4 bits
begin
 loop
 print "value of x is: ", x
 while x < 15 then continue
 also x := (x + 1 as 4 bits)
 end
end

A more elegant solution that relies on recognizing and exploiting the wrapping back to 0 is:

variable x: 4 bits
begin
 loop
 print "value of x is: ", x;
 x := (x + 1 as 4 bits)
 while x /= 0
 end
end

The danger of
ÒforÓ loops

In many programming languages, while loops and for loops can be used interchangeably. This is
not the case in Balsa: a for loop implements structural iteration, in other words, separate hardware
is instantiated for each pass through the loop. The following description, which superficially appears

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 47

3.6. Examples

very similar to the while loop example of count10d previously, appears to be correct: it compiles
without problems and simulation appears to give the correct behaviour. However, breeze-cost
reveals an area cost of 11577, a factor 10 increase. It is important to understand why this is the case.
The for loop is unrolled at compile time and 10 instances of the circuit to increment the counter are
created. Each instance of the loop is activated sequentially. The handshake circuit graph that be
produced is rather unreadable; setting max_count to 3 will be produce a more readable plot.

-- count10e.balsa: beware the ÒforÓ construct
import [balsa.types.basic]

type C_size is nibble
constant max_count = 10

procedure count10(sync aclk; output count: C_size) is
 variable count_reg : C_size
begin
 loop
 for ; i in 1 .. max_count then
 sync aclk;
 count <- count_reg;
 count_reg:= (count_reg + 1 as C_size)
 end; -- for ; i
 count_reg:= 0
 end -- loop
end -- begin

If, instead of using the sequential for construct, the parallel for construct (for || ...) is used, the
compiler will give error message complaining about read/write conflicts from parallel threads. In
this case, all instances of the counter circuits would attempt to update the counter register at the
same time leading to possible conflicts. If you understand the resulting potential handshake circuit,
then you are well on the way to a good understanding of the methodology.

Selecting
channels

The asynchronous circuit described below merges two input channels into a single output channel, it
may be thought of a self selecting multiplexer. The select statement chooses between the two input
channels a and b by waiting for data on either channel to arrive. When a handshake on either a or b
commences, data is held valid on the input and the handshake not completed until the end of the
select ¼ end block. This is an example of handshake enclosure and avoids the need for an internal
latch to be created to store the data from the input channel; a possible disadvantage is that because of
the delayed completion of the handshake, the input is not released immediately to continue
processing independently. In this example, data is transferred to the output channel and the input
handshake will complete as soon as data has been removed from the output channel. An example of
a more extended enclosure can be found in the code for the population counter [see ÒA Population
CounterÓ on page 65].

-- merge1.balsa: unbuffered Merge
import [balsa.types.basic]

procedure merge (input a, b : byte; output c : byte) is
begin
 loop
 select a then c <- a -- channel behaves like a variable
 | b then c <- b -- ditto
 end -- select a
 end -- loop
end -- procedure merge

The system designer must ensure that inputs a and b never arrive simultaneously. In many cases,
this is not a difficult obligation to satisfy. However, if a and b are truly independent, the possibility
of metastability failure arises just as in a synchronous system. In this case, select can be replaced
by arbitrate which allows an arbitrated choice to be made. In this case, in contrast to a

3.6. Examples

48 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

synchronous implementation, there is no possibility of failure, the delay-insensitive handshake
circuit paradigm ensures that no matter how long the arbiter takes to resolve, the circuit will still
operate correctly. Arbiters are relatively expensive both in area and speed and may not be possible
in some gate array technologies and so should not employed unnecessarily.

-- merge2.balsa: unbuffered arbitrated MUX.
import [balsa.types.basic]
procedure merge2 (input a, b :byte; output c :byte) is
begin
 loop
 arbitrate a then c <- a -- channel behaves like a variable
 | b then c <- b -- ditto
 end -- arbitrate
 end -- loop
end -- begin

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 49

4 Parameterised & Recursively
DeÞned Circuits

4.1. Summary

Parameterised procedures allow designers to develop a library of commonly used components and
then to instantiate those structures later with varying parameters. A simple example is the
specification of a buffer as a library part without knowing the width of the buffer. Similarly, a
pipeline of buffers can be defined in the library without requiring any knowledge of the depth of the
pipeline when it is instantiated.

4.2. Parameterised descriptions

A variable
width buffer
deÞnition

The example pbuffer1below defines a single place buffer with a parameterised width:

-- pbuffer1.balsa - parameterised buffer example
import [balsa.types.basic]

-- single-place, parameterised-width buffer definition
procedure Buffer (
 parameter X : type ;
 input i : X;
 output o : X
) is
 variable x : X
begin
 loop
 i -> x ;
 o <- x
 end -- loop
end -- procedure Buffer

-- now define a byte-wide buffer
procedure Buffer8 is Buffer(byte)

4.2. Parameterised descriptions

50 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

-- now use the definition
procedure test1(input a : byte; output b : byte) is
begin
 Buffer8(a,b)
end -- procedure test1

-- alternatively
procedure test2(input a : byte; output b : byte) is
begin
 Buffer(byte, a,b)
end -- procedure test2

The definition of the single place buffer given previously [see ÒA single-place bufferÓ on page 9] is
modified by the addition of the parameter declaration which defines X to be of type type . In other
words X is identified as being a type to be refined later. Once an abstract parameter type has been
declared, it can be used in later declarations and statements: for example, input channel i is defined
as being of type X. No hardware is generated for the parameterised procedure definition itself.

Having defined the procedure, it can be used in other procedure definitions. Buffer8 defines a byte
wide buffer that can be instantiated as required as shown, for example, in procedure test1 .
Alternatively, a concrete realisation of the parameterised procedure can be used directly as shown in
procedure test2 . Note that a test harness can be attached directly to the definition Buffer8 with
implied ports i and o.

Pipelines of
variable width
and depth

The next example illustrates how multiple parameters to a procedure may be specified. The
parameterised buffer element is included in a pipeline whose depth is also parameterised.

-- pbuffer2.balsa - parameterised pipeline example
import [balsa.types.basic]
import [pbuffer1]

-- BufferN: a n-place parameterised, variable width buffer
procedure BufferN (
 parameter n : cardinal ;
 parameter X : type ;
 input i : X ;
 output o : X
) is

 procedure buffer is Buffer(X)
begin
 if n = 1 then -- single place pipeline
 buffer(i, o)
 | n >= 2 then -- parallel evaluation
 local array 1 .. n-1 of channel c : X
 begin
 buffer(i, c[1]) || -- first buffer
 buffer(c[n-1], o) || -- last buffer
 for || i in 1 ..n-2 then
 buffer(c[i], c[i+1])
 end
 end
 else print error, "zero length pipeline specified"
 end
end

-- Now define a 4 deep, byte wide pipeline.
procedure Buffer4 is BufferN (4, byte)

Buffer is the single place parameterised width buffer of the previous example and this is reused by
means of the library statement import[pbuffer1] . In this code, BufferN is defined which in a very

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 51

4.3. Recursive definitions

similar manner to the example described in ÒPlacing multiple structuresÓ on page 13, except that the
number of stages in the pipeline, n, is not a constant but is a parameter to the definition of type
cardinal. Note that this definition includes some error checking. If an attempt is made to build a zero
length pipeline during a definition, an error message is printed.

4.3. Recursive deÞnitions

Balsa allows a form of recursion in definitions (as long as the resulting structures can be statically
determined at compile time). Many structures can be elegantly described using this technique which
forms a natural extension to the powerful parameterisation mechanism. The remainder of this
chapter illustrates recursive parameterisation, ÒBalsa Design ExamplesÓ on page 65 gives other
interesting examples.

An n-way
multiplexer

An n-way multiplexer can be constructed from a tree of 2-way multiplexers. A recursive definition
suggests itself as the natural specification technique: an n-way multiplexer can be split into two n/2-
way multiplexers connected by internal channels to a 2-way multiplexer.

--- Pmux1.balsa: A recursive parameterised MUX definition
import [balsa.types.basic]

procedure PMux (
 parameter X : type;
 parameter n : cardinal;
 array n of input inp : X;
 output out : X) is
begin
 if n = 0 then print error,"Parameter n should not be zero"
 | n = 1 then
 loop
 select inp[0] then
 out <- inp[0]
 end -- select
 end -- loop

Figure 4.1: Decompostion of an n-way Multiplexer

0
inp

n/2-1
inp

n/2
inp

n-1
inp

0out

1out

out

After Decompostion

0
inp

1
inp

n-1
inp

n-2
inp

Before Decomposition

out

4.3. Recursive definitions

52 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

 | n = 2 then
 loop
 select inp[0] then
 out <- inp[0]
 | inp[1] then
 out <- inp[1]
 end -- select
 end -- loop
 else
 local
 channel out0, out1 : X
 constant mid = n/2
 begin
 PMux (X, mid, inp[0..mid-1], out0) ||
 PMux (X, n-mid, inp[mid..n-1], out1) ||
 PMux (X, 2, {out0,out1}, out)
 end -- begin
 end -- if
end -- begin

-- Here is a 5-way multiplexer
procedure PMux5Byte is PMux(byte, 5)

Commentary
on the code

The multiplexer is parameterised in terms of the type of the inputs and the number of channels n.
The code is straightforward. A multiplexer of size greater than 2 is decomposed into two
multiplexers half the size connected by internal channels to a 2-1 multiplexer. Notice how the
arrayed channels, out0 and out1 are specified as a tuple. The recursive decomposition stops when
the number of inputs is 2 or 1 (specification of a multiplexer with zero inputs generates an error).

A balsa test
harness

The code below illustrates how a simple Balsa program can be used as a test harness to generate test
values for the multiplexer. The test program is actually rather naive.

-- test_pmux.balsa - A test-harness for Pmux1
import [balsa.types.basic]
import [pmux1]

procedure test (output out : byte) is
 type ttype is sizeof byte + 1 bits
 array 5 of channel inp : byte
 variable i : ttype
begin
 begin
 i:= 1;
 loop while i <= 0x80 then
 inp[0] <- (i as byte);
 inp[1] <- (i+1 as byte);
 inp[2] <- (i+2 as byte);
 inp[3] <- (i+3 as byte);
 inp[4] <- (i+4 as byte);
 i:= (i + i as ttype)
 end
 end || PMux5Byte(inp, out)
end

Handshake
multiplier

Consider a procedure that for each handshake on an input port generates n handshakes on an output
port. A simple solution would use the for construct, but a more elegant (and less expensive)
approach is to use the recursive approach.

If n is even, the repeater can be composed from two n/2 repeaters. If n is odd, the repeater can be
composed from two n/2 repeaters together with an additional extra handshake.

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 53

4.4. Pitfalls with Parameterised Procedures.

-- GenHS. A recursive procedure generating n Handshakes for each call
import [balsa.types.basic]

procedure repeat (parameter n : cardinal; sync o) is
begin
 if n = 0 then
 print error, "Repeat n must not be 0"
 | n = 1 then
 sync o
 else
 local
 shared doNext is begin repeat(n/2, o) end
 begin
 if (n as bit) then -- n is odd
 sync o
 end ;
 doNext () ; doNext ()
 end
 end
end

procedure Gen11 is repeat(11)

procedure test (sync i, o) is
begin
 loop
 sync i;
 Gen11(o) -- Generate 11 Handshakes
 end -- loop
end

A shared procedure doNext is responsible for the recursive call of repeat with half the repetiton
count. Note that doNext is local to the main repeat procedure.

4.4. Pitfalls with Parameterised Procedures.

A parameterised procedure often contains a choice in its body to instantiate one of several options
depending on parameters that are defined in its call. It is possible that compile time errors in the
parameterised procedures will not be revealed until particular parts of the code are required. Thus, in
the following example, if pproc is compiled as library component no error is reported; further if it is
instantiated with n=1, the code is also compiled without error. However, if the procedure is called
with n=2 as in procedure p2, a compile error will be reported. The code is a precis of code that
existed in an example in previous editions of the Balsa Manual. The point is that errors in the
descriptions of parameterised procedures may not reveal themselves immediately.

procedure pproc(
 parameter n : cardinal ;
 parameter w: cardinal ;
 output o : w bits
) is
begin
 if n = 1 then
 o <- (1 as w bits)
 else
 o <- (2 as w) -- Note this should give a compile time error
 end
end
-- procedure p1 is pproc(1, 8) -- this will compile
-- procedure p2 is pproc(2, 8) -- this will not compile

4.4. Pitfalls with Parameterised Procedures.

54 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 55

5 Handshake Enclosure

5.1. Summary

Normally handshakes are points of synchronisation for assignments between channels or
assignments between channels and variables. A transfer is requested and when all parties to the
transaction are ready, the transfer completes. After completion of the handshake, the data provider is
free to remove the data. If the data on a channel is required more than once, it must be stored in a
variable. Balsa has two language constructs that allow the handshake on a channel to be held open
whilst a sequence of actions completes. The handshake is said to enclose the other commands.

There are several implications of handshake enclosure:

¥ since data is not removed until the end of the handshake enclosure, intermediate storage of
the data is not required

¥ data does not have to be read once and only one: it may be read many times or indeed never
at all without causing deadlock.

¥ the enclosing handshake does not complete until all its enclosed commands complete: this
has performance implications since the tree of handshakes connected to the enclosing
handshake cannot themselves complete.

Handshake enclosure can be achieved by use of the select command or by assigning channels into
a command using the syntax: <channels> -> then command end . An example of the use of
select was illustrated in the description of a merge circuit in ÒSelecting channelsÓ on page 47. In
this example, the fact that the handshake on the chosen input channel is held open allows a buffer-
free description to be used Ð a more natural description of the mux-like structure than one which
includes a storage element. One side effect of the select command is that a subcircuit with passive
ports is generated Ð Balsa normally generates active ported circuits.

5.2. Systolic counters

A more complex example illustrating handshake enclosure is a description of systolic counters
originally described by Kees van Berkel [1]. These elegant counters possess the properties of
constant response time and a constant upper bound on power consumption regardless of the length

5.2. Systolic counters

56 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

of the counter. The basic idea is to recursively divide a modulo-n counter into a head counter and a
tail n/2 counter as shown in Figure 5.1.

The derivation of the cells is given in van Berkel. The head cell is either a Count-Odd cell (CO) for
odd n or a Count-Even cell (CE) for even n. For CE cells, the head cell effectively doubles each
a_right communication of the n/2 counter over its left-hand a_left channel then passing
b_right over b _left after the n communications along a._left A Count-Odd cell issues an extra
handshake to its left prior to handshake from b_right to b_left. A special base case count-1 cell
initiates a handshake on its a_left port followed by a handshake on its b_left port.

Note that ports a_left and b_left are active ports whereas a_right and b_right are passive ports. The
counter is ÒprimedÓ by handshakes ßowing from right to left from the count-1 cell. The head cell
chooses between handshakes arriving on a_right and b_right. The sequencing implicit in the
description guarantees mutually exclusive use of the channels so that a non-arbitrated select
construct may be used to implement the choice. The architecture of the counter is somewhat similar
to that described in Section, ÒHandshake multiplier,Ó on page 52.

The descriptions of the basic cells are:

-- count-even cell
procedure ce(sync a_left, a_right, b_left, b_right) is
begin
 loop
 select a_right then
 sync a_left ; sync a_left
 | b_right then
 sync b_left
 end
 end
end

-- count-odd cell
procedure co(sync a_left, a_right, b_left, b_right) is
begin
 loop
 select a_right then
 sync a_left ; sync a_left
 | b_right then
 sync a_left ; sync b_left
 end
 end
end

-- count-1 cell
procedure c1(sync a, b) is

Figure 5.1: Counter Decomposition

head:

a_left

b_left

a_right

b_right
co/ce

counter n

counter n/2

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 57

5.2. Systolic counters

begin
 loop
 sync a; sync b
 end
end

A systolic
modulo-11
counter

Consider the case of a modulo-11 counter. It can be decomposed as:

11 = 1 + 2*5 = 1 + 2*(1 + 2*2) = 1 + 2*(1 + 2*(2*1))

The composition of the basic cells is shown in Figure 5.2. The description of the counter is simple:

procedure count11(sync a0, b0) is
sync a1, b1, a2, b2, a3, b3
begin
 co(a0, a1, b0, b1)||
 co(a1, a2, b1, b2) ||
 ce(a2, a3, b2, b3) ||
 c1(a3, b3)
end

The behaviour of the circuit is shown in the trace of Figure 5.31. An intriguing feature of this
description is that there appears to be no state-holding variables defining the current state of the
counter. The answer to this paradox is that the state of the counter is distributed over the control
logic defined by the circuit description.

All even cells The enclosed, non-buffered, semantics of the Balsa select statement may leads to interesting patterns
of behaviour. This is not obvious from the previous modulo-11 counter example. However, it is

Figure 5.2: Modulo-11 Systolic Counter

1. The traces have been rearranged vertically to make the behaviour clearer.

Figure 5.3: Behaviour of a Modulo-11 Systolic Counter

CO CECO C1

a0 a1 a2 a3

b0 b1 b2 b3

5.2. Systolic counters

58 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

exposed by a modulo-8 counter composed entirely from count-even stages (plus a count-1 stage).
Each CE module awaits a handshake on its right-hand a port. Upon initiation of this handshake, the
module issues a handshake to its left-hand a port. However, this handshake cannot immediately
complete because the left-hand receiving port handshake encloses a command to issue a handshake
to its left. Thus the operation proceeds from the count-1 cell at the extreme right issuing a handshake
which ripples through to the interface a port on he extreme left. The acknowledgement ripples back
to the count-1 cell whereupon the handshake on the b channel ripples from right to left. As can be
seen in Figure 5.4, the result is a highly sequential mode of operation.

All odd cells A modulo-15 counter composed entirely from count-odd stages exhibits similar behaviour as shown
in Figure 5.5. However, it is possible to rewrite the description of the count-odd stage to introduce
extra concurrency:

procedure coDec(sync a_left, a_right, b_left, b_right) is
begin
 loop
 sync a_left;
 select a_right then
 sync a_left
 | b_right then

Figure 5.4: Behaviour of a Modulo-8 Systolic Counter

Figure 5.5: Behaviour of a Modulo-15 Systolic Counter

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 59

5.2. Systolic counters

 sync b_left
 end
 end

Here the extra handshake to the left has been taken outside of the select command. All stages can
simultaneously issue a handshake to their left and then await the incoming handshake which just
been initiated on its right. As can be seen from Figure 5.6, there is a significant ichange in the
pattern of behaviour. Whetehr or not this translates to a change in performance depends on the
relative speeds of the handshake components in the synthesised circuits..

A decoupled
all even cell

The effects of the enclosed behaviour of the select command may be mitigated by decoupling the
reading of the selected channel from subsequent actions. It is necessary to record which of the two
channels a or b the handshake actually arrived on. This may be done by identifying the channel in a
single bit register as shown below:

procedure ceVar(sync a_left, a_right, b_left, b_right) is
 variable x : bit
begin
 loop
 select a_right then
 x := 0
 | b_right then
 x := 1
 end ;
 case x of
 0 then sync a_left ; sync a_left
 | 1 then sync b_left
 end
 end
end

Substituting this new version of the count-even cell in the modulo-8 counter results in the behaviour
of Figure 5.7. As can be seen, the channel activity has an entirely different characteristic from the
counter of Figure 5.4.

Figure 5.6: Behaviour of a Modulo-15 Systolic Counter

5.3. Active enclosure

60 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

Parameterised
version

The previous examples explicitly enumerated the constituent modules to emphasise how the
counters were composed. A more generic approach is to define a parameterised counter. The
example below also uses a conditional declaration to choose between a count-even module with
enclosed behaviour and one with a decoupled behaviour. It also offers a choice between decoupled
and non-decoupled implementations.

-- parameterised systolic counter with choice of decoupled modules.
procedure countN (
 parameter isDecoupled : bit ;
 parameter n : cardinal ;
 sync a, b
) is
 sync a_int, b_int
begin
 if n = 0 then print error, ÒParameter n should not be zeroÓ
 | n = 1 then c1(a, b)
 else
 if (n as bit) then -- odd
 if isDecoupled then
 coDec(a, a_int, b, b_int)
 else
 co(a, a_int, b, b_int)
 end -- if isDecoupled
 else
 if isDecoupled then
 ceDec(a, a_int, b, b_int)
 else
 ce(a, a_int, b, b_int)
 end -- if isDecoupled
 end || countN(isDecoupled, n/2, a_int, b_int)
 end -- if n = 0
end -- procedure countN

procedure Count11PND is countN(true,11)
procedure Count11PD is countN(false,11)

5.3. Active enclosure

The select command provides a means of choosing between a number of input channels. It also
has two significant side effects

Figure 5.7: Behaviour of Non-Enclosed Modulo-8 counter

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 61

5.4. Use of enclosed channels.

¥ an input port attached to a select command is a passive rather than an active port. The
ability to coerce a port to be passive (rather than active) should normally be of little concern
to users except when interfacing to external circuits.

¥ the handshake behaviour, as discussed earlier, has enclosing semantics bringing the
advantages of unbuffered channel access and the ability to read a channel multiple times as
well as the disadvantages illustrated in the previous examples.

Since selection can be applied to any number channels (including a single channel), users trying to
exploit the advantages of enclosed selection may be tempted to use select promiscuously. Resist the
temptation, there are some disadvantages: constructs such as:

select a then cmd1 ; select a then cmd2

results in non delay-insensitive behaviour. Furthermore there are inefficiencies associated with the
use of passive-ported structures within the generally pull-driven circuits generated by Balsa. Better
is to use active enclosure and to reserve the use of select for those occasions when choice is
genuinely required.

Active enclosure Ð so called because it generates an active-ported structure Ð is of the form:

<channels> -> then <command> end

As example, consider a channel bearing the flags from the ALU of a processor. The conditions
corresponding to various conditional branches can be computed as shown below.

type Flags is record
 V, C, Z, N : bit
end

type Conditions is record
 LowerOrSame, CarrySet, Zero, Overflow, Plus, LessThan : bit
end

procedure SetConditions (
 input flags : Flags;
 output conditions : Conditions
) is
begin
 loop
 flags -> then
 conditions <- {
 flags.N or flags.Z,
 flags.C,
 flags.Z,
 flags.V,
 not flags.N,
 (not flags.N and flags.V) or (flags.N or not flags.V)
 }
 end
 end
end

5.4. Use of enclosed channels.

Enclosed channels act rather like variables; there are pitfalls in their use: they may be assigned to
other channels

procedure ex2 (
 input i : byte ;
 output o1 : byte ;
 output o2 : byte

5.4. Use of enclosed channels.

62 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

) is
 variable x1, x2 : byte
begin
 loop
 select i then
 o1 <- i;
 o2 <- i
 end
 end
end

When copying the value on an enclosed channel to a variable, an assigment operator must be used:

procedure ex3 (
 input i : byte
) is
 variable x1, x2 : byte
begin
 loop
 select i then
 x1 := i;
 x2 := i;
 print "vars are: ", x1, " ", x2
 end
 end
end

Because enclosed channels act like variables, the following description is not correct:

-- this example illustrates incorrect of channels
-- variables can't read them in the normal way
-- see example ex3.balsa for the correct method.
procedure ex4 (
 input i : byte
) is
 variable x1, x2 : byte
begin
 loop
 select i then
 i -> x1; -- incorrect
 i -> x2; -- incorrect
 print "vars are: ", x1, " ", x2
 end
 end
end

Channels within an active enclosed block also act like variables:

procedure ex6 (
 input i : byte
) is
 variable x1, x2 : byte
begin
 loop
 i -> then
 x1 := i;
 x2 := i;
 print "vars are: ", x1, " ", x2
 end
 end
end

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 63

5.4. Use of enclosed channels.

5.4. Use of enclosed channels.

64 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 65

6 Balsa Design Examples

6.1. Summary

In this chapter, several moderate size examples are presented that illustrate many of the language
features that have been discussed previously. Many of these descriptions are taken from larger
examples that have been fabricated.

6.2. A Population Counter

This design counts the number of bits set in a word. It comes from the requirement in an AMULET
processor to know the number of registers to be restored/saved during LDM/STM (Load/Store
Multiple) instructions.

The approach taken is to partition the problem into two parts as shown in Figure 6.1. Initially,
adjacent bits are added together to form an arrray of 2-bit channels representing the numbers of bits
that are set in each of the adjacent pairs. The array of 2-bit numbers are then added in a recursively
defined tree of adders

-- popcount: count the number of bits set in a word
import [balsa.types.basic]

procedure AddTree (
 parameter inputCount : cardinal;
 parameter inputSize : cardinal;
 parameter outputSize : cardinal;
 array inputCount of input i : inputSize bits;
 output o : outputSize bits
) is
begin
 if inputCount = 1 then
 i[0] -> then o <- (i[0] as outputSize bits) end
 -- or one of the following (since i & o channels are the same width)
 -- i[0] -> then o <- i[0] end
 -- i[0] -> o
 | inputCount = 2 then
 i[0], i[1] -> then

6.2. A Population Counter

66 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

 o <- (i[0] + i[1] as outputSize bits)
 end
 else
 local
 constant lowHalfInputCount = inputCount / 2
 constant highHalfInputCount = inputCount - lowHalfInputCount

 channel lowO, highO : outputSize - 1 bits
 begin
 AddTree (lowHalfInputCount, inputSize, outputSize - 1,
 i[0..lowHalfInputCount-1], lowO) ||
 AddTree (highHalfInputCount, inputSize, outputSize - 1,
 i[lowHalfInputCount..inputCount-1], highO) ||
 AddTree (2, outputSize - 1, outputSize, {lowO, highO}, o)
 end
 end
end

procedure PopulationCount (
 parameter n : cardinal;
 input i : n bits;
 output o : log (n+1) bits
) is
begin
 if n % 2 = 1 then
 print error, "number of bits must be even"
 end; -- if
 loop
 i -> then
 if n = 1 then
 o <- i
 | n = 2 then
 o <- (#i[0] + #i[1]) -- add bits 0 and 1
 else

Figure 6.1: Structure of a bit-population counter

AddTree

#i[0] #i[1] #i[2] #i[3] #i[4] #i[5] #i[6] #i[7]

+ : 2 bits + : 2 bits

+ : 3 bits

+ : bit + : bit + : bit+ : bit

o

PopulationCount (8)

(4,2,4)
AddTree

(2,3,4)AddTree

i

(2,2,3)AddTree (2,2,3)

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 67

6.3. A Balsa shifter

 local
 constant pairCount = n - (n / 2)
 array pairCount of channel addedPairs : 2 bits
 begin
 for || c in 0..pairCount-1 then
 -- add bits c*2 and c*2 +1
 addedPairs[c] <- (#i[c*2] + #i[(c*2)+1])
 end ||
 AddTree (pairCount, 2, log (n+1), addedPairs, o)
 end -- begin
 end -- if
 end -- select
 end -- loop
end -- begin

procedure PopCount16 is PopulationCount (16)
procedure PopCount2 is PopulationCount (2)
procedure PopCount14 is PopulationCount (14)
-- procedure PopCount3 is PopulationCount (3)

Commentary
on the code

Procedures AddTree and PopulationCount are parameterised. PopulationCount can used to count
the number of bits set in any sized word. AddTree is parameterised to allow a recursively defined
adder of any number of arbitrary width vectors.

Enclosed
Selection

The semantics of the enclosed handshake of select allow the contents of the input i to be referred
to several times in the body of the select block without the need for an internal latch. An in-depth
discussion of the implications of enclosed selection is given in ÒHandshake EnclosureÓ on page 55.

Avoiding
deadlock:

Note that the formation of the sum of adjacent bits is specified by a parallel for loop.

for || c in 0..pairCount-1 then
 addedPairs[c] <- (#i[c*2] + #i[(c*2)+1])

It might be thought that a serial for ; loop could be used at, perhaps, the expense of speed. This is
not the case: the system will deadlock illustrating why designing asynchronous circuits requires
some real understanding of the methodology. In this case the adder to which the array of addPairs
is connected requires pairs of inputs to be ready before it can complete the addition and release its
inputs. However, if the sum of adjacent bits is computed serially, the next pair will not be computed
until the handshake for the previous pair has been completed -- which is not possible because
AddTree is awaiting all pairs to become valid: result deadlock!

6.3. A Balsa shifter

General shifters are an essential element of all microprocessors including the AMULET processors.
The following description forms the basis of such a shifter. It implements only a rotate right
function, but it is easily extensible to other shift functions. The main work of the shifter is local
procedure rorBody which recursively creates sub-shifters capable of optionally rotating 1, 2, 4, 8 etc
bits. The structure of the shifter is shown in

import [balsa.types.basic]

procedure ror (
 parameter X : type;
 input d : sizeof X bits;
 input i : X;
 output o : X
) is
begin
 loop

6.3. A Balsa shifter

68 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

 select d then
 local
 constant typeWidth = sizeof X

 procedure rorBody (
 parameter distance : cardinal;
 input i : X;
) is
 output o : X
) is
) is
 local
 procedure rorStage (
 output o : X
) is
 begin
 select i then
 if #d[log distance] then
 o <- (#i[typeWidth-1..distance] @
 #i[distance-1..0] as X)
 else
 o <- i
 end -- if
 end -- select
 end -- begin
 channel c : X
 begin
 if distance > 1 then
 rorStage (c) ||
 rorBody (distance / 2, c, o)
 else
 rorStage (o)
 end -- if
 end -- begin
 begin
 rorBody (typeWidth / 2, i, o)
 end -- begin
 end -- select

Figure 6.2:

d

rorStage

rorStage

rorStage

mux

rotate

#d[log distance]

i d

o

rorStage

0 1

rorBody (1)

rorBody (2)

rorBody (4)

i

o

ror (8 bits)

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 69

6.4. An Arbiter Tree

 end -- loop
end -- begin

procedure ror32 is ror (32 bits)

Testing the
shifter

Another small Balsa test routine for exercising the shifter:

import [balsa.types.basic]
import [ror]

--test ror32
procedure test_ror32(output o : 32 bits)
is
 variable i : 5 bits
 channel shiftchan : 32 bits
 channel distchan : 5 bits
begin
 begin
 i:= 1;
 loop
 shiftchan <- 7 || distchan <- i;
 i:= (i+1 as 5 bits)
 while i < 31 end
 end || ror32(distchan, shiftchan, o)
end -- begin

6.4. An Arbiter Tree

This example builds a parameterised arbiter. This circuit forms part of a simple DMA controller
described by Bardsley [5]. The architecture of an 8-input arbiter is shown. ArbFunnel is a
parameterisable tree composed of two elements: ArbHead and ArbTree. Pairs of incoming sync
requests are arbitrated and combined into single bit decisions by ArbHead elements. These single
bit channels are then arbitrated between by ArbTree elements. An ArbTree takes a number of
decision bits from each of a number of inputs (on the i ports) and produces a rank of 2-input arbiters
to reduce the problem to half as many inputs each with 1 extra decision bit. Recursive calls to
ArbTree reduce the number of input channels to one (whose final value is returned on port o).

-- ArbHead: 2 way arbcall: with channel id. output
procedure ArbHead (
 sync i0, i1;
 output o : bit
) is begin loop
 arbitrate i0 then o <- 0
 | i1 then o <- 1
end end end

-- ArbTree: a tree arbcall which outputs a channel number
-- prepended onto the input channel's data. (invokes itself
-- recursively to make the tree)
procedure ArbTree (
 parameter inputCount : cardinal;
 parameter depth : cardinal; -- bits to carry from inputs
 array inputCount of input i : depth bits;
 output o : (log inputCount) + depth bits
) is
begin
 case inputCount of
 0, 1 then print error, "can't build an ArbTree with fewer than 2 inputs"

6.4. An Arbiter Tree

70 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

 | 2 then loop
 arbitrate i[0] then o <- (#(i[0]) @ #0 as depth + 1 bits)
 | i[1] then o <- (#(i[1]) @ #1 as depth + 1 bits)
 end
 end
 else local
 constant halfCount = inputCount / 2
 constant halfBits = depth + log halfCount
 channel l, r : halfBits bits
 begin
 ArbTree (halfCount, depth, i[0 .. halfCount-1], l) ||
 ArbTree (inputCount - halfCount, depth,
 i[halfCount .. inputCount-1], r) ||
 ArbTree (2, halfBits, {l,r}, o)
 end -- local
 end -- case inputCount
end -- procedure ArbTree

-- ArbFunnel: build a tree arbcall
procedure ArbFunnel (
 parameter inputCount : cardinal;
 array inputCount of sync i;
 output o : log inputCount bits
) is
 constant halfCount = inputCount / 2
begin
 if (2 ̂ log(inputCount)) /= inputCount then
 print fatal , "No of Inputs (", inputCount, ") must be a power of 2"
 end; -- if (log (inputCount) 2) /= inputcount
 if inputCount < 2 then
 print error, "can't build an ArbFunnel with fewer than 2 inputs"
 | inputCount = 2 then
 ArbHead (i[0], i[1], o)
 | inputCount > 2 then
 local

Figure 6.3: 8-input arbiter

i[7]

ARB.

ARB.

ARB.

ArbHead ArbHead

ArbTree(2,2)

ArbTree(4,1)

ArbFunnel(8)

o

ArbHead ArbHead

i[0] i[1] i[2] i[3] i[4] i[5] i[6]

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 71

6.5. A Stack Description

 array halfCount + 1 of channel li : bit
 begin
 for || j in 0 .. halfCount - 1 then
 ArbHead (i[j*2], i[j*2+1], li[j])
 end ||
 ArbTree (halfCount, 1, li[0 .. halfCount-1], o)
 end -- local
 end -- if inputCount < 2
end -- procedure ArbFunnel

A description allowing arbitrary sized arbiters can be found in (FurtherEx/ArbTree/arbgen.balsa).

6.5. A Stack Description

An n-place stack can be decomposed into a single place buffer at the head of the stack together with
a n-1 stack as shown Figure 6.4.

Operations on the stack consist of either pushing daa on channel i or popping data on channel o. The
operations are assumed to be sequenced, so no arbitration is required between a push and a pop. A
first sight, it appears as if a select command choosing between requests on the push channel, i, and
the pop channel, o, is what is needed. Unfortunately, Balsa does not support output selection, that
the ability to choose between ouput channels. It is therefore necessary to supply an extra sync
channel to indicate that a pop is required. The stack therefore waits for either a push request implicit
in the pushData channel, i , or a pop request on the sync channel ÒpopÓ. In the latter case, data is
transferred to the popData channel. o, from the top of stack buffer and the pop request is propogated
down the stack.

import [balsa.types.basic]

-- The stack description
procedure stack (
 parameter depth : cardinal ;
 input i : byte ;
 output o : byte ;

Figure 6.4: A Recurslively DeÞned Stack

stack(n)

stack(n)-1

i (pushData)

pop

o (popData)

nextI

nextO

nextPop

6.6. A Simple Processor Ð The Manchester SSEM (The Baby)

72 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

 sync pop
) is
 variable x : byte
begin
 if depth = 1 then
 loop
 select i then
 x := i
 | pop then
 o <- x
 end -- select i
 end -- loop
 else local
 channel nextI, nextO : byte
 sync nextPop
 begin
 stack (depth - 1, nextI, nextO, nextPop) ||
 loop
 select i then
 nextI <- x ;
 x := i
 | pop then
 o <- x ;
 sync nextPop || nextO -> x
 end -- select i
 end -- loop
 end -- local
 end -- if depth = 1
end -- procedure stack

procedure stack8 is stack(8)

Commentary
on the code

A single-place stack is just a simple buffer and this case is tested first, otherwise the stack is
decomposed into the parallel composition of a single buffer and a stack of depth n-1. The
decomposition stops when a single-place stack is reached. The top of stack buffer and the internal
stack are connected by local channels nextI, nextO and nextPop. Notice that in the case of a pop
request, the request is forwarded to the internal stack (sync nextPop) in parallel with reading the
output of that internal stack (nextO -> x).

6.6. A Simple Processor Ð The Manchester SSEM (The Baby)

This example describes a simple processor Ð the SSEM.

The Small-Scale Experimental Machine, known as SSEM, or the "Baby", was designed and built at
the University of Manchester, and made its first successful run of a program on June 21st 1948. It
was the first machine that had all the components now classically regarded as characteristic of the
basic computer. Most importantly it was the first computer that could store not only data but any
(short!) user program in electronic memory and process it at electronic speed. (Also, the electronic
memory was a true Random Access Memory (RAM). A photograph of a reconstruction of the
original machine is shown in Figure 6.5. More details of the history of the machine can be found in
<www.computer50.org>.

The machine is a 32 bit processor with 2Õs complement number representation allowing up to 256
banks of a 32 word memory .Each memory bank was in the form of a CRT, there being only one
bank in the original implementation. The machine possessed a single register accumulator, a
program counter (referred to in the original design as CI, although the description below uses the
more usual of name of PC) and an instruction register IR which went under the name of PI in the
original design.

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 73

6.6. A Simple Processor Ð The Manchester SSEM (The Baby)

The original machine had only 7 instructions:

JMP ; PC := M[Addr] indirect jump
JRP ; PC := PC + M[Addr] relative jump
LDN ; ACC := -M[Addr] load negative
STO ; M[Addr] := ACC store result
SUB ; ACC := ACC - M[Addr] subtract

TEST ; if ACC<0 then PC := PC +1 ; skip
STOP ; halt

The format of the instruction word is shown in Figure 6.6:

The CRT address referes to the CRT bank and is always 0 in this description. The line address is the
memory address. The operation of the machine is as follows:

PC := PC +1
IR := IR[PC]
Decode and execute instruction
 Ð memory operand fetch if required
Repeat until STOP instruction

Note that the first instruction is at address 1.

SSEM types -- Basic types
type word is 32 bits

Figure 6.5: A rebuild of the orginal SSEM

Figure 6.6: SSEM instruction format

6.6. A Simple Processor Ð The Manchester SSEM (The Baby)

74 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

type LineAddress is 5 bits
type CRTAddress is 8 bits

-- SSEM function types
type SSEMFunc is enumeration
 JMP, JRP, -- Abs. and rel. jumps
 LDN, STO, -- Load negative and store
 SUB, SUB_alt, -- Two encodings for subtract
 TEST, STOP -- Skip and stop ;)
end

-- Complete instruction encoding
type SSEMInst is record
 LineNo : LineAddress;
 CRTNo : CRTAddress;
 Func : SSEMFunc
over word

Channel and
Variable
Declarations

procedure SSEM (
 -- Memory interface, MemA,MemRNW,MemR,MemW
 output MemA : LineAddress;
 output MemRNW : bit;
 input MemR : word;
 output MemW : word ;
 -- Signal halt state
 sync halted
) is

 variable ACC, ACC_slave : word
 variable IR : word
 variable PC, PC_step : LineAddress
 variable MDR : word
 variable Stopped : bit

Useful
functions and
shared
procedures

-- Extract an address from a word
 function ExtractAddress (wordVal : word) =
 (wordVal as SSEMInst).LineNo

 shared WriteExtractedAddress is begin
 MemA <- ExtractAddress (IR) end

-- Memory operations, shared procedures
 shared MemoryWrite is
 begin MemRNW <- 0 || WriteExtractedAddress ()
 || MemW <- ACC_slave end

 shared MemoryRead is
 begin MemRNW <- 1 || WriteExtractedAddress ()
 || MemR -> MDR end

 -- Fetch an instruction IR := M[PC]
 procedure InstructionFetch is
 begin MemRNW <- 1 || MemA <- PC || MemR -> IR end

 shared ZeroACC is begin ACC := 0 end
 shared ZeroPC is begin PC := 0 end
 shared SUB is begin
 MemoryRead (); ACC_slave := (ACC - MDR as word)
 end

 -- Modify the programme counter PC

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 75

6.6. A Simple Processor Ð The Manchester SSEM (The Baby)

 shared IncrementPC is begin
 PC := (PC + PC_step as LineAddress) end
 shared AddMDRToPC is begin
 PC_step := ExtractAddress (MDR); IncrementPC () end

Decode and
excute
procedure

--missing instrcution aliased to sub
procedure DecodeAndExecuteInstruction is
 begin
 case (IR as SSEMInst).Func of
 JMP then MemoryRead (); ZeroPC (); AddMDRToPC ()
 | JRP then MemoryRead (); AddMDRToPC ()
 | LDN then ZeroACC (); SUB ()
 | STO then MemoryWrite ()
 | SUB .. SUB_alt then SUB ()
 | TEST then
 if #ACC [31] -- -ve?
 then IncrementPC () end -- PC_step should already be 1
 | STOP then Stopped := 1
 end ;
 ACC := ACC_slave
 end

main body begin
 ZeroACC () || ZeroPC () ||
 Stopped := 0; -- reset initialisation
 loop while not Stopped then
 PC_step := 1;
 IncrementPC ();
 InstructionFetch ();
 DecodeAndExecuteInstruction ()
 end ; -- loop
 sync halted
 -- halt -- STOP instruction effect
end

Simulation The processor has to be coupled to a memory model containing a program for it to be simulated..
Section, ÒMemory models,Ó on page 96 explains how this may be done and contains a test harness
for running the gcd program that was the first program to be executed on the original SSEM.

6.6. A Simple Processor Ð The Manchester SSEM (The Baby)

76 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 77

7 Building test harnesses with Balsa

7.1. Overview

When simulating Balsa descriptions, a test harness is usually necessary to provide input stimuli and
to display output results. In previous versions of Balsa, these test harnesses have usually either been
written in LARD (with the old LARD based simulation system) or been described in a test
description file for breeze-sim. Neither of these solutions has offered a seamless route for simulating
Balsa together with a realistically complicated test harness. To address this problem, additions have
been made to the Balsa language to allow test harnesses to be constructed entirely using Balsa. The
simple test harness construction capabilities present in balsa-mgr have similarly been changed to
generate Balsa test harnesses (rather than LARD or .testdesc based test harnesses) using a new
utility: balsa-make-test.

In order to allow Balsa to be used to capture the kind of complicated test harnesses which were only
previously possible with LARD, two major additions have been made to the Balsa language and
simulation systems: builtin types and builtin functions.

Builtin types A new class of types known as builtin has been introduced to represent simulation objects such as
files and strings. For example, the declaration:

type File is builtin

can be found in the new library file [balsa.sim.Þleio]. This declaration introduces a new type File
which represents a file access object in a similar way that the type FILE * represents a file in C.
Builtin functions can be declared which generate values of builtin types. These values can then be
passed around the Handshake Circuit generated by balsa-c as 64bit pointer values which, in
simulation, are pointers to a BalsaObject structure (described later). Builtin-typed values are
reference counted by the simulation system and so need not be explicitly deallocated by the user. In
most respects, builtin types and their values can be handled just like any other type or value in Balsa,
they can be used as parameters, as types of parameters, ports, and variables and also as the return
type for functions. There are a few restrictions on the use of values of builtin types, however. Such
values can never be cast to another type or have any arithmetic operation performed on them. These
restrictions allow builtin values to never be interchanged with non-builtin values. Such an
interchange could have disastrous results for a simulation.

7.1. Overview

78 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

Builtin
Functions

In order to manipulate builtin typed values, a new form of function declaration has been introduced
to allow Balsa language functions to have underlying C language implementations for the purposes
of simulation. The mechanism for calling these C functions allows the same compiled C description
to be used by both breeze-sim and by netlist simulation tools which support compiled plugin
modules. So far, interfaces (using the new Balsa tool balsa-sim-verilog) to the Verilog simulators
Icarus Verilog, Verilog-XL, NC Verilog, Modelsim and Synopsys VCS have been implemented.

Each builtin function must have a declaration in Balsa as well as a definition in C. In Balsa, a typical
builtin function declaration looks like this:

function FileOpen (fileName : String; mode : FileMode) is builtin : File

This function is provided by the [balsa.sim.Þleio] and is the sole function responsible for creating
File type objects. A typical use of File and FileOpen might be:

 variable f : File
É begin É
 f := FileOpen (Òmy_fileÓ, read)

Notice that there is now a ÒtrueÓ string type in Balsa, and that a value of this type is used as the
fileName argument to FileOpen. Redefinition of strings as builtin typed-values allows them to be
much more useful in Balsa than their previous role of literal arguments to the ÒprintÓ statement. The
type FileMode used for the argument mode is just a simple Balsa enumeration type, showing that
both builtin and simple bitwise types values can be passed into builtin functions.

In the Balsa distribution, the file share/balsa/sim/Þleio.c provides the implementation for FileOpen
(and the other file manipulation functions). The HelloWorld example later in this section will
explain the structure of such a C file. Balsa-mgr can be used to produce Makefiles which can
compile both the Balsa and the C, this is demonstrated in a later section.

Builtin functions can also have parameters in the same way as parameterised procedures to allow the
typing of their ports to be varied between instanced of the function. The simulation system handles
these parameters by passing C language representations of Balsa values and types to the simulation
C code. In this way it is possible to define builtin functions which can process arbitrarily
complicated aggregate types. This feature is used by the function ToString provided by
[balsa.types.builtin].

Strings The String type is unusual in that the user can insert literal strings into a Balsa description without
explicitly calling a function. For example:

 variable s : String
É begin É
 s := ÒAAÓ

must create a string containing the text ÒAAÓ and then assign that String-typed object into the
variable s. To create the string, a call to a builtin function is necessary as the simulation system must
create an object to hold the string. To allow this close coupling of the String type with the compiler,
String is defined in the library [balsa.types.builtin] which is implicitly imported into all Balsa
descriptions. String typed values are created by a call to the ÒStringÓ function (notice that this name
is distinct from the type String as Balsa has separate name-spaces for types and function names).
The print statement in Balsa has also been modified to make use of builtin functions rather than
specialised simulation handshake components. A statement such as:

print ÒHelloÓ, v

is now implemented as (not showing the calls to String, the ÒsinkÓ keyword is explained elsewhere):

sink WriteMessage (StringAppend (ÒHelloÓ, ToString (vs_type, v)))

The functions ÒWriteMessageÓ, ÒStringAppendÓ and ÒToStringÓ are all defined in
[balsa.types.builtin] and can be also be explicitly called by the user. Other String functions, which
balsa-c does not rely on, are defined in [balsa.sim.string].

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 79

7.2. Summary of Library Functions.

7.2. Summary of Library Functions.

A number of libraries are supplied in the standard Balsa library set to help with test harness
construction. These (listed by their import path declaration) include:

[balsa.types.builtin]: Functions and type necessary for balsa-c functionality.

[balsa.types.type]: Type comprehension functions.

[balsa.sim.string]: Other String handling functions.

[balsa.sim.Þleio]: File I/O.

[balsa.sim.memory]: Functions and types to implement memory models.

[balsa.sim.portio]: Port file/console I/O used by balsa-make-test.

[balsa.sim.sim]: Simulator specific operations such as time and command line argument access.

Guidance for using these libraries can be found in the comments in the appropriate .balsa files in the
Balsa source distribution share/balsa/types and share/balsa/sim directories. A summary of some of
those library functions that are most useful to users are given below.

types.builtin -- create a string object from a string
function String (parameter string : String) is builtin : String

-- append str2 to str1 returning a string object
function StringAppend (str1, str2 : String) is builtin : String

-- Convert a value of (nearly) any type to a default formatted string
-- used by the compiler to implement runtime printing
function ToString (parameter X : type; value : X) is builtin : String

-- write a runtime printing message string, returning 1
function WriteMessage (str : String) is builtin : bit

sim.string -- StringLength : returns the length of the given string
-- (0 for an empty or uninitialised string)
function StringLength (string : String) is builtin : cardinal

-- SubString : returns a sub-string of the given string between
-- character indices ̀ indexÕ and ̀ index + length - 1Õ
-- If length = 0 or index >= StringLength (string) then
-- returns an empty string,
-- If ̀ index + lengthÕ > StringLength (string) then returns a
-- sub-string of ̀ stringÕ between indices ̀ indexÕ and StringLenth (string) - 1
function SubString (
 string : String;
 index : cardinal;
 length : cardinal
) is builtin : String

-- StringEqual : returns 1 if two strings or equal.
function StringEqual (str1, str2 : String) is builtin : bit

-- FromString : parse a value of the given type (in the default formatting)
-- from the given ̀ sourceÕ string and return the remainder of the string in
-- ̀ remainderÕ. Note that the most common way of calling this function will be
-- with the same string as source and remainder. To discard the remainder,
-- just pass a constant (or unused) string as remainder.
function FromString (
 parameter X : type;

7.2. Summary of Library Functions.

80 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

 source : String;
 remainder : String
) is builtin : X

-- RepeatString : make a string with ̀ nÕ occurences of source string ̀ strÕ
function RepeatString (str : String; n : cardinal) is builtin : String

-- FitStringToWidth : pad or clip a given string to create a string which is
-- exactly ̀ widthÕ characters long. ̀ justificationÕ chooses whether strings
-- shorter than ̀ widthÕ should be packed at the start (left) or end (right) of
-- the result string
type StringJustification is enumeration left, right end
function FitStringToWidth (
 str : String;
 width : cardinal;
 justification : StringJustification
) is builtin : String

-- NumberFromString : parse a number of the given radix (assuming there will
-- be no radix prefixes) from the given string. Radix is an element of [2,36]
function NumberFromString (
 parameter X : type;
 source : String;
 radix : 6 bits
) is builtin : X

-- NumberToString: make a string representation of the given number in the
-- given radix. Insert underscores at the specified distance apart (except
-- where underscoreSpacing is 0)
function NumberToString (
 parameter X : type;
 value : X; radix : 6 bits;
 underscoreSpacing : 8 bits;
 showLeadingZeroes : bit
) is builtin : String

-- TokenFromString : parse a whitespace delimited string token from the start
-- of ̀ stringÕ and return that token as the return value and the remains of the
-- string in ̀ remainderÕ. Note that this is not the same as FromString
-- (String, ...) as that would require quotes around the string to be parsed.
function TokenFromString (
 string : String;
 remainder : String
) is builtin : String

-- Chr : convert the given 8b value into a single character string
function Chr (value : byte) is builtin : String

-- Ord : returns the character value of the first character in the given
-- string. If the string is empty, returns 0
function Ord (char : String) is builtin : byte

sim.Þleio type File is builtin
type FileMode is enumeration
 read, write,
 writeUnbuffered, -- unbuffered file writing
 writeLineBuffered -- flushes after each line
over 3 bits

-- FileOpen : open a file in the appropriate mode

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 81

7.2. Summary of Library Functions.

function FileOpen (fileName : String; mode : FileMode) is builtin : File

-- FileReadLine : read upto an end of line and return a string without that
-- trailing NL
function FileReadLine (file : File) is builtin : String

-- FileWrite : write a string to a file, returns the file object
function FileWrite (file : File; string : String) is builtin : File

-- FileEOF : returns 1 if file is at the end of a file
function FileEOF (file : File) is builtin : bit

-- FileClose : close the file stream
function FileClose (file : File) is builtin : File

sim.memory type BalsaMemory is builtin

-- BalsaMemoryParams : parameters bundle, can add others
type BalsaMemoryParams is record
 addressWidth, dataWidth : cardinal
end

-- BalsaMemoryNew : make a new memory object, this is separate from the
-- procedure BalsaMemory so we can, for example have a dump-memory routine
-- external to that procedure. You could can BalsaMemory with:
-- BalsaMemory (16, 32, <- BalsaMemoryNew (), ...)
function BalsaMemoryNew is builtin : BalsaMemory

-- BalsaMemory{Read,Write} : simple access functions
function BalsaMemoryRead (
 parameter params : BalsaMemoryParams;
 memory : BalsaMemory;
 address : params.addressWidth bits
) is builtin : params.dataWidth bits

function BalsaMemoryWrite (parameter params : BalsaMemoryParams;
 memory : BalsaMemory; address : params.addressWidth bits;
 data : params.dataWidth bits) is builtin : BalsaMemory

-- BalsaMemory : a single read port memory component, reads a BalsaMemory
-- object as it is initialised and then waits for an incoming address and
-- rNw indication
procedure BalsaMemory (
 parameter params : BalsaMemoryParams;
 input memory : BalsaMemory;
 input address : params.addressWidth bits;
 input rNw : bit;
 input write : params.dataWidth bits;
 output read : params.dataWidth bits
) is
 variable memory_v : BalsaMemory
begin
 memory -> memory_v;
 loop
 address, rNw -> then
 if rNw then -- read
 read <- BalsaMemoryRead (params, memory_v, address)
 else -- write
 write -> then
 sink BalsaMemoryWrite (params, memory_v, address, write)

7.2. Summary of Library Functions.

82 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

 end
 end
 end
 end
end

procedure B1632 is BalsaMemory ({16, 32})

sim.portio -- BalsaPrintSyncPortActivity : Ò Ò Ò
procedure BalsaPrintSyncPortActivity (
 parameter portName : String;
 sync s
) is
begin
 loop
 sync s;
 print BalsaSimulationTime (), Ò: sync ̀ Ó, portName
 end
end

-- BalsaWriteLogLine : write a log line for some channel activity
procedure BalsaWriteLogLine (
 parameter portName,
 activity : String;
 input message : String
) is
begin
 message -> then
 print BalsaSimulationTime (), ": chan ̀ ", portName, "' ", activity, " ",
 message
 end
end

-- BalsaOutputPortToLog : print activity on the output port of some
-- component in the default format
procedure BalsaOutputPortToLog (
 parameter X : type;
 parameter portName : String;
 input i : X
) is
begin
 loop
 i -> then
 BalsaWriteLogLine (portName, "reading", <- ToString (X, i))
 end
 end
end

-- BalsaOutputPortToLogWithFormat : print activity on the output port of some
-- component in the specified format
procedure BalsaOutputPortToLogWithFormat (
 parameter X : type;
 parameter portName : String;
 parameter radix : 6 bits;
 parameter underscoreSpacing : 8 bits;
 parameter showLeadingZeroes : bit;
 input i : X
) is
begin
 loop

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 83

7.2. Summary of Library Functions.

i -> then
 BalsaWriteLogLine (portName, "reading",

 <- NumberToString (X, i, radix, underscoreSpacing, showLeadingZeroes))
end

 end
end

-- BalsaOutputPortToFile : print activity on the output port of some
-- component in the default format
procedure BalsaOutputPortToFile (
 parameter X : type;
 parameter portName : String;
 input file : File;
 input i : X
) is
 variable line : String
begin
 file -> then
 loop
 i -> then
 line := ToString (X, i);
 sink FileWrite (file, line);
 sink FileWrite (file, "\n");
 BalsaWriteLogLine (portName, "reading", <- line)
 end
 end
 end
end

-- BalsaPrintInputPortFromValue : supply the given value to the port ÒoÓ each
-- time an input happens on that port
procedure BalsaInputPortFromValue (
 parameter X : type;
 parameter portName : String;
 input value : X;
 output o : X
) is
begin
 value -> then
 loop
 o <- value;
 BalsaWriteLogLine (portName, "writing", <- ToString (X, value))
 end
 end
end

-- BalsaInputPortFromFile : source values for port o from the given file
procedure BalsaInputPortFromFile (
 parameter X : type;
 parameter portName : String;
 input file : File;
 output o : X
) is
 variable line : String
 variable value : X
begin
 file -> then
 loop while not FileEOF (file) then
 line := FileReadLine (file);
 value := FromString (X, line, line);

7.3. Writing your own builtin functions

84 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

 o <- value;
 if StringLength (line) /= 0 then
 BalsaWriteLogLine (portName, "comment", <- line)
 end;
 BalsaWriteLogLine (portName, "writing", <- ToString (X, value))
 end
 end
end

sim.sim -- BalsaSimulationTime : get the current simulation time as a string.
-- This function must be provided genuinely builtin by any simulation system
function BalsaSimulationTime is builtin : String

-- BalsaGetCommandLineArg : get the value of a keyed command line argument
-- from the simulator based on the key
-- This function must be provided genuinely builtin by any simulation system
function BalsaGetCommandLineArg (key : String) is builtin : String

7.3. Writing your own builtin functions

To show the stages necessary to use a user-written builtin function, we will present a small example
function, HelloWorld, written in a block hello.balsa with a C implementation in hello.c. The code
for this example can be found in examples/simulation directory of the distribution. The example
below is described stage by stage in order to highlight the Balsa tools used, but the process is greatly
simplified by using balsa-mgr described in ÒUsing balsa-mgrÓ on page 86.

The Balsa and
C code

Every builtin function must have both a Balsa declaration and a C language definition. In writing
your own builtin functions it is best to write the Balsa declaration first. For example:

function HelloWorld is builtin : bit

declared a builtin function with no arguments and a single bit return value. Note that functions must
have return values (to operate correctly in the Balsa type system) even when the implementation of
the function may be considered to have a ÒvoidÓ return type. It is usual to use the return type bit and
return the value 1 when the return value is not important. In Balsa, the sink keyword can then be
used to call such a function and discard the return value. In some functions, one of the arguments
could make a useful return value to allow function calls to be enclosed within each other. The Write
function in [balsa.sim.Þleio] is an example of such a function, it returns the File object passed to it
to allow chains of Writes to be formed as a single expression.

Each function must have a C implementation of the form (continuing the HelloWorld example with
a very simple body):

static void HelloWorld (BuiltinFunction *function,
 BuiltinFunctionInstanceData *instance)
{
 fprintf (stderr, ÒHello, Balsa user\nÓ);
}

The two arguments, ÒfunctionÓ and ÒinstanceÓ, pass to the builtin function information about the
port structure, instance parameter values and per-call argument values of the Balsa function.
ÒfunctionÓ contains information common to all instances of the function and ÒinstanceÓ contains
instance specific data. Note that as builtin functions can have parameters, and that port typing can be
influenced by typing, port structure information should be read from the ÒinstanceÓ argument rather
than the ÒfunctionÓ argument.

Registering
the function

To register a builtin function with the simulation system, a call to
BalsaSim_RegisterBuiltinFunction is necessary. Each shared library which contains C
implementations of builtin functions should declare a function with the name

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 85

7.3. Writing your own builtin functions

BalsaSim_BuiltinLibrary_<libraryname> (where <libraryname> is the last component of the
dotted path to that libraries Balsa/Breeze file) to call this function and to perform any other
initialisation necessary for that library. A macro, BALSA_SIM_REGISTER_BUILTIN_LIB, is
provided to insert the head of this initialisation function. The complete C file for the HelloWorld
example is:

#include <stdio.h>
#include <balsasim/builtin.h>
static void HelloWorld (BuiltinFunction *function,
 BuiltinFunctionInstanceData *instance)
{
 fprintf (stderr, ÒHello, Balsa user\nÓ);
 instance->result->words[0] = 1; /* Ignore this for now */ }
 BALSA_SIM_REGISTER_BUILTIN_LIB (hello)
{
BalsaSim_RegisterBuiltinFunction (ÒHelloWorldÓ, 0, 0,
 HelloWorld, 1, NULL, 0);
}

The header file balsasim/builtin.h provides the definitions of the types used in the file and the
prototype for BalsaSim_RegisterBuiltinFunction. This file (which can be found in the src/libs/
balsasim directory of the Balsa distribution and include/balsasim of a Balsa installation) also
includes the files balsasim/object.h, balsasim/parameter.h and (through parameter.h) balsasim/
types.h. These three files provide declarations for types and functions for manipulating BalsaObject
objects, C descriptions of Balsa parameters and C descriptions of Balsa types respectively.

This example only registers one function using BalsaSim_RegisterBuiltinFunction : namely
HelloWorld. The seven arguments passed to cause that registration are (in order):

name: Balsa name of the function being registered (ÒHelloWorldÓ).

parameterCount: number of parameters taken by the Balsa function (in this example, 0).

arity: argument count of the Balsa function (again, 0).

function: pointer to the C function containing the top level of the implementation.

resultWidth: number of bits in the result value of the function, or 0 if the width varies by instance
(see Section, ÒReturn values,Ó on page 90).

argumentWidths: an array of ÒarityÓ unsigned ints, one per argument in order, which specify the
widths in bits of their respective arguments. Each of these can be 0, as with resultWidth, to indicate
that the widths are resolved on an instance-by-instance basis. This can be set to NULL (as in this
example) when their are no arguments to the function.

objectCount: number of BalsaObject objects created by a call to this function. (see Section,
ÒObject Reference Counting,Ó on page 91).

Compiling
HelloWorld

With the C implementation in file hello.c and the Balsa declaration in file hello.balsa. The C
implementation can be compiled with:

balsa-make-builtin-lib hello hello.c

This should create hello.la, hello.o, hello.a and either hello.so... or hello.dylib... files depending on
your machine architecture. The Balsa declaration file can be compiled with:

balsa-c hello

Note that the C and Balsa descriptions are not checked against each other when being compiled. For
this reason it is important that the parameters passed to BalsaSim_RegisterBuiltinFunction are
correct to ensure correct operation of the builtin functions in simulation.

With both the shared library and the Breeze file for the HelloWorld function, that function is ready
to be used.

7.3. Writing your own builtin functions

86 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

Invoking
HelloWorld

A short Balsa description such as:

import [hello]
procedure try is
begin
 sink HelloWorld ()
end

can be used to test HelloWorld. The description can be compiled, a Balsa top-level test harness
generated, and the resulting test harness run. If the test description listed above is found in the file
SimDemo.balsa, the folllowing commands generate a default test harness.

balsa-c SimDemo
balsa-make-test -d SimDemo try

The last command generates a Balsa test harness, test-SimDemo_try.balsa with a top level precedure
name of balsa . Although not strictly necessary for this example, it is a good habit to get into to
always generate such a test harness. The next two commands compile the balsa test harness file and
then run the simulation.

balsa-c test-SimDemo_try
breeze-sim test-SimDemo_try

Breeze-sim will pick up the shared library for the block [hello] by noting that the file hello.la was in
the same directory as the Breeze file hello.breeze. Files with the extension .la are GNU libtool
library information files. They contain the path of the shared library which bears the same name as
the .la file.

HelloWorld in
Verilog

It is possible to use a Verilog simulator as shown below: A

BALSATECH=example
export BALSATECH
Use Òsetenv BALSATECH exampleÓ in csh/tcsh
balsa-netlist -s -d -f -i helper test-SimDemo_try
balsa-make-impl-test -o Vtest test-SimDemo_try balsa
balsa-sim-impl -B test-SimDemo_try Vtest

The BALSATECH environment variable specifies a Verilog target implementation. Particular
implementation styles, as well as the Verilog simulator to be used, can be specified..

If the balsa test harness file has not been generated, the command balsa-c test-SimDemo_try
must be run first..

balsa-netlist produces a Verilog netlist for the test harness: test-SimDemo_try.v.

balsa-make-impl-test produces a top-level Verilog file Vtest.v.

balsa-sim-impl runs the Verilog simulation.

Using balsa-
mgr

Balsa-mgr can be used to perform all the steps of the HelloWorld example and considerably
simplifes the process. In the description that follows, it is assumed that the files hello.balsa
(containing the builtin balsa declaration), hello.c (containing the builtin C language definition) and
SimDemo.balsa (containing the Balsa test example) already exist.

1. Add the .balsa Þles to the project as shown in Figure 7.1.

2. In the Þle pane of balsa-mgr, right-click on the hello.balsa Þlename and select the Add Builtin
Library option. In the resulting popup dialogue shown in Figure 7.2, add hello.c to the list of
source Þles using the new button. The library should then be visible in the Þle pane as shown in
Figure 7.3.

3. In the Þle pane of balsa-mgr, right-click on the try procedure in SimDemo.balsa and select the
the ÒAdd Test FixtureÓ option. Accept the defaults in the resulting dialogue box.

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 87

7.4. Builtin functions with arguments

4. Click on the MakeÞle tab to switch to the MakeÞle pane and clicking on the run button for
sim-test1 in the Tests subpane will build the library and run the simulation as shown in
Figure 7.4

Verilog simulation can be achieved within the framework of basla-mgr. To do this, an
implementation has to be attached to the test harness (rather than to the procedure itself).

5. In the Þle pane of balsa-mgr, right-click on the test1 test Þxture name attached to the try
procedure and select ÒAdd ImplementationÓ. The Verilog implenetation is added to the test1
test harness.

6. Click on the MakeÞle tab in the left-hand pane in the balsa-mgr window. A new test action has
been added to test1 in the Tests subpane.

7. Click on the Run button for sim-test1-impl: the test harness will be run as a Verilog simulation.

7.4. Builtin functions with arguments

Builtin functions, like other Balsa functions, are passed per-call arguments. These arguments can be
of builtin types or normal Balsa bitwise data values. In both cases, values are passed into C as multi-
precision integer values packed into FormatData structures. The FormatData type contains two
elements:

Figure 7.1: The simulation balsa Þles.

Figure 7.2: Adding the C language description Þle.

7.4. Builtin functions with arguments

88 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

wordCount : the length of the value in multiples of the size of the type unsigned int in C

words: an array of unsigned ints containing the value, with the least significant word of the value
in words[0].

Signed bitwise values are passed as though they were unsigned values with the same bitwise
representation as the original signed value and are not sign extended to the end of a word or to the
end of the bitwise length of the value. Result values from builtin functions are passed back to Balsa
from C in a FormatData structure also. A simple function to add 15 to a 16b number looks like this
in C:

Figure 7.3: Project with library added

¤Þf

Figure 7.4: Running the simulation.

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 89

7.4. Builtin functions with arguments

static void Add15 (BuiltinFunction *function,
 BuiltinFunctionInstanceData *instance)
{
 FormatData *i = instance->arguments[0]->words[0];
 instance->result->words[0] = i + 15;
}

for a function with a Balsa description of:

function Add15 (i : 16 bits) is builtin : 16 bits

and is equivalent to the ÒpureÓ Balsa function:

function Add15 (i : 16 bits) = (i + 15 as 16 bits) : 16 bits

As can be seen in this example, the result and argument FormatData structures can be accessed as
elements ÒresultÓ and ÒargumentsÓ of the BuiltinFunctionInstanceData passed to the C function. The
arguments element is an array of length function->arity (which will be the same value as passed
to the BalsaSim_RegisterBuiltinFunction function as the ÒarityÓ argument), with the first argument
at index 0. The FormatData structures for arguments and results values are pre-allocated by the
simulation system and so should only ever be read or modified, never replaced by a different
FormatData. Note that the above example passed its return value back and processed its arguments
by directly accessing the first word of the instance->result and instance->arguments[0]
FormatData structures. This is a perfectly valid way of approaching FormatData handling. The
definition of the type FormatData and a library of functions to act on that type can be found in the
header file src/libs/format/data.h in the Balsa distribution and include/format/data.h in a Balsa
installation.

Builtin typed
arguments

Builtin types can have any simulator-internal representation that the author of builtin functions
which process that type desires. For example, the File type defined in the header file balsasim/bÞle.h
and used by block [balsa.sim.fileio] is defined as:

typedef struct
{
 FILE *file;
 char *filename;
 BalsaFileMode mode;
}

Figure 7.5: A test verilog test harness added.

7.4. Builtin functions with arguments

90 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

BalsaFile;

Values of builtin types are passed around in Balsa, and to and from C, as pointers to BalsaObject
structures. Using BalsaObject to encapsulate a pointer to a real value allows all builtin typed values
to be handled consistently with respect to memory allocation management.

Builtin typed values are packed into argument and result FormatData structures as a 64 bit pointer
value to the BalsaObject structure which encapsulates the pointer to that valueÕs real data. The
BalsaObject pointer can be extracted from a FormatData structure using the function
FormatDataGetBalsaObject. The pointer to that valueÕs real data can then be extracted as the ÒdataÓ
element of that BalsaObject. For example, the FileEOF function in [balsa.sim.Þleio] extracts a File
object from index 0 of its first argument and places the pointer to the BalsaFile structure into ÒfileÓ
(ÒBALSA_FILEÓ is just a C preprocessor macro for a cast to type BalsaFile; this macro is defined in
balsasim/bÞle.h

static void Fileio_FileEOF (BuiltinFunction *function,
BuiltinFunctionInstanceData *instance)
{
BalsaObject *fileObject =
 FormatDataGetBalsaObject (instance->arguments[0], 0);
BalsaFile *file = BALSA_FILE (fileObject->data);
É
}

Return values Builtin typed values can similarly be returned by packing the pointer to a BalsaObject into a
FormatData using FormatDataSetBalsaObject. FileOpen in [balsa.sim.Þleio] does this like so:

FormatDataSetBalsaObject (instance->result, instance->objects[0], 0);

Notice that the object packed into instance->result is also an element of the instance structure.
This is necessary because Balsa must track the location of builtin typed values at all times in order
for the reference counting system used to deallocate unused objects to work correctly. To make the
reference counting work effectively, the user must only use the BalsaObject structures contained in
the instanceÐ>objects array (whose size is selected by the objectCount argument to
BalsaSim_RegisterBuiltinFunction) and never any BalsaObject which is manually allocated. The
simulation system monitors the reference counts of each object in instanceÐ>objects for each call
of each builtin function, and will handle the deallocation/reassignment of objects without the user
having to worry about explicit reference counting. As the BalsaObject structure only contains a
pointer to the ÒrealÓ data associated with a builtin typed value, calls to FormatDataSetBalsaObject
are usually preceeded with a function call to pack that real data pointer into the BalsaObject and to
nominate a function to be used to deallocate that data if the object ceases to be useful. In FileOpen,
this call looks like:

SetBalsaObject (instance->objects[0], balsaFile,
 (BalsaDestructor) DeleteBalsaFile);

On deallocation of the object in instanceÐ>objects[0] , DeleteBalsaFile will the called on the
pointer `balsaFileÕ (which will become stored in instanceÐ>objects[0]), in order to deallocate it.
If NULL is passed to SetBalsaObject as destructor for this object, deallocation of that object will
result in a call to free(3) on the real data pointer.

Functions with
parameterised
arguments

Parameters passed to a builtin function can be used to parameterise the types of arguments passed to
calls of those functions. For example, the ToString function, used to render string representations of
Balsa values of any type, has as a parameter the expected type of the argument to the function.
ToStringÕs declaration in Balsa (which can be found in [balsa.type.builtin]) is:

function ToString (parameter X : type; value : X) is builtin : String

As previously explained, the instance->parameters array can be used to comprehend the
parameter passed to a builtin function in C. For builtin functions with arguments which are not fixed
in the Balsa declaration, this array must be used to determine the correct argument and result widths.
To allow this to happen, simulation systems using the Balsa builtin function system must make an

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 91

7.5. Object Reference Counting

`initialisingÕ call to the builtin functionÕs C function in order to resolve any uncertain argument and
result widths. This function call is initiated by the simulation system noticing that the user has
passed a width of 0 as the resultWidth argument, or 0 as any element of the argumentWidths
argument to BalsaSim_RegisterBuiltinFunction. ToStringÕs registration looks like this (notice the
{0} passed as argumentWidths):

BalsaSim_RegisterBuiltinFunction (ÒToStringÓ, 1, 1, Builtin_ToString,
 64, (unsigned []) {0}, 1);

In order to distinguish the initialising call to the C function (here this function is called
Builtin_ToString) from ÒgenuineÓ calls, the instanceÐ>portWidthsAreResolved will be false
during the initialising call. This leads to a generalised form of C implementation of a builtin function
with an enclosing if statement around itÕs body. ToString resolves its port width with this code
(with error checking removed):

static void Builtin_ToString (BuiltinFunction *function,
 BuiltinFunctionInstanceData *instance)
{
 if (! instance->portWidthsAreResolved)
 {
 instance->argumentWidths[0] =
 ABS(instance->parameters[0]->info.type->size);
 } else {
 É
 }
}

Note that the argumentWidths array which is modified is the array within the instance structure and
not the one within the function structure which must be invarient across instances of the builtin
function. A function which has its result width changed during an initialising call must similarly
change the instanceÐ>resultWidth value rather than any element of function. Any remaining
argument or result widths which remain 0 after the initialising call are flagged as error by the
simulation system and will cause the simulation to terminate.

7.5. Object Reference Counting

Allocation of BalsaObjects in simulation is done by counting the number of times an object
becomes assigned to either a Balsa variable or an element of the instanceÐ>objects array in a
function. The reference counting scheme used to implement this assignment counting is very
conservative and only deallocates an object when that objectÕs place in a variable or
instance- >objects array must be overwritten. For a variable, this occurs on each assignment and
for a functionÕs objects array this occurs each time the function is called.

Variable
assignment

Objects are always held in a special variable handshake component, BuiltinVariable, inside a Breeze
description. This special component is similar to a normal Variable handshake component but
includes simulation mechanisms to hand the reference counting of stored and incoming data. Each
time an assignment occurs on a BuiltinVariable, two events occur: Firstly, the object already
residing in the variable (if any) is to be discarded and so has its reference count decremented and the
object (and its ÒÐ>dataÓ payload) is deallocated if the reference count reaches 0. Secondly, the
pointer to the new object being assigned is loaded into the variableÕs latches and its reference count
is incremented to indicate that it has been successfully stored.

Function
objects array

The objects array in each functionÕs ÒinstanceÓ data is used to store objects which have not yet been
assigned to variables or which will never end up in a variable (such as intermediate Strings in a
chained StringAppend operation, for example). Each object is initialised with a reference count of 1
indicating that it is stored in exactly one place. As objects are passed out of the function as return
values, those objects may have their reference counts increased to indicate that they have been
stored elsewhere. On the next call to the function, each of the objects previously allocated must be

7.6. Predefined types

92 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

replaced by a new object for the current call. A loop decrements each of the reference counts of the
instanceÐ>objects elements and then checks the decremented reference count against 0. Objects
with a 0 reference count then have their ÒÐ>dataÓ payload deallocated using the appropriate
destructor function and the BalsaObject structure is reused (with a new reference count of 1) for the
current callÕs object. Objects with a reference count greater than 0 are stored elsewhere in the system
and so should not be deallocated. Those objectsÕ elements in the instance->objects array are
therefore overwritten by pointers to newly allocated BalsaObject structures (with initial reference
counts of 1 again) and the task of deallocating the original object then falls to the last
BuiltinVariable or other builtin function to hold a reference to the object.

7.6. PredeÞned types

As previously stated, the ÒdataÓ element of a BalsaObject can be used as a pointer to any value
which the user wishes to use as the basis of a builtin-typed value in Balsa simulation. The builtin
libraries which are provided with Balsa for string and file manipulation make use of the C
BalsaString and BalsaFile types to represent those values. It is very likely that user-defined builtin
functions will need to work with those predefined functions, and so it is important to understand the
mode of operation of those types.

BalsaString Strings are represented in Balsa simulation as char arrays encapsulated in dynamically allocated
instances of the BalsaString struct defined in balsasim/bstring.h. Each instance of a String in Balsa
is represented by a unique BalsaString in C. It is, however, possible for different String values to
share their underlying char arrays in order to make sub-string operations (which are common when
parsing files) more efficient. The BalsaString structure contains 4 elements:

char *allocatedString: a pointer to the first element of the allocated char array which represents
this string. Note that this pointer refers to the malloced array for the string, which may be shared
with other BalsaStrings, and may not point to the first character of this particular string.
BalsaStrings sharing a common char array must have the same value of allocatedString.

char *string: a pointer to the character in allocatedString which corresponds to the first character
of this BalsaStringÕs ÒrealÓ string. For example, when tokenising the line ÒHello, worldÓ from a file,
a BalsaString may be created which is a sub-string of the whole line and so has its allocatedString
element pointing to the ÒHÓ in ÒHelloÓ and its string element pointing to the ÒwÓ in ÒworldÓ
indicating that that BalsaString represents part of the string starting with the ÒwÓ.

unsigned length: the number of significant characters (between string[0] and string[length-1])
which comprise the string being represented. BalsaString strings are not required to be NUL
terminated (although for safety it is good practice to make allocatedString one char longer and place
a NUL in the final character) and so when passing the ->string element of a BalsaString to a C
function, it is advisable to make a temporary copy of the string. int *refCount: a (pointer to the)
count of the number of BalsaStrings which share the same allocatedString as this one. When
deallocating a BalsaString, care must be taken to avoid mistakenly deallocaing the allocatedString
when other BalsaStrings may depend on it. The refCount is a single malloced int, initially set to 1
indicating a single BalsaString owns this allocatedString, which can be incremented for each sub-
string creation and decremented for each sub-string deallocation. The functions BalsaStringRef and
BalsaStringUnref are used to maintain this count and handle the deallocation of BalsaStrings.

Besides BalsaStringRef and BalsaStringUnref, the balsasim/bstring.h package only contains two
other functions, both used to create new BalsaString objects:

NewBalsaString: creates a BalsaString from an existing char array by copying ÒlengthÓ character
from the source string into a newly allocated allocatedString. NewBalsaString can be called with a
NULL strings, which causes it to allocate only the BalsaString object rather than the underlying char
array. This can be useful when the required array is to be constructed by hand rather than copied.
Note that after calling NewBalsaString this way, both allocatedString and string elements of the
resulting BalsaString must be correctly initialised by the user. Passing -1 as the `lengthÕ argument to

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 93

7.7. Example Custom Test Harnesses

NewBalsaString results in the creation of a BalsaString containing all of the source C string up to
the first NUL character in that string.

NewBalsaSubString: creates a BalsaString which shares its allocatedString with the given
BalsaString between start[0] and start[length-1]. The mechanism for sharing sub-strings is described
above.

Better understanding of the common uses of the BalsaString type and its associated functions can be
gained by reading the builtin function code in the [balsa.types.builtin] and [balsa.sim.string]
libraries.

BalsaFile File access is performed in Balsa using the File type. The is defined in the library [balsa.sim.Þleio]
using the underlying C type BalsaFile defined in balsasim/bÞle.h. BalsaFile is a simple wrapper for
the C standard library type FILE * and has 3 elements: FILE *file: the open file handle or NULL
indicating that the file is not open. char *filename: a copy of the filename used to open the file. This
is used for error reporting. BalsaFileMode mode: an enumeration indicating how the file was
opened. Currently four options exist for this element: read, write, writeUnbuffered and
writeLineBuffered. The options read and write correspond to the fopen file modes ÒrÓ and ÒwÓ. The
buffered write options correspond to mode ÒwÓ with a subsequent call to setvbuf to select the
appropriate file buffering mode.

The BalsaFileMode type is defined in Balsa (as type FileMode) and C as it is used as the argument
to the FileOpen function. The C header file balsasim/bÞle.h defines only two functions of interest to
users wanting create their own file handling functions: BalsaFileReadable and
BalsaFileWritable . These functions can be used to check if a BalsaFile corresponds to an open
file and if that file is readable/writable through the ->file element of that BalsaFile. Examples of the
use of these functions can be found in the C implementation of the [balsa.sim.Þleio] library.

7.7. Example Custom Test Harnesses

Data
Formatting

Actually this example is now obsolete as the user can set the format of displayed data when
configuring the test harness in balsa-mgr. However, since the example illustrates use of some of the
builtin functions, the description is still included in the manual.

By default, numbers are witten in decimal. The example in Simulation/Format illustrates the use of
the builtin functions. The example is actually the shifter example ÒA Balsa shifter,Ó on page 67. The
test procedure test_ror.balsa shifts a bit pattern of 3 consecutive Ô1Õs around a 32 bit word The
default output produced is:

230: chan ÔoÕ reading 14
727: chan ÔoÕ reading 7
1245: chan ÔoÕ reading 2147483651
1749: chan ÔoÕ reading 3221225473
2267: chan ÔoÕ reading 3758096384
2785: chan ÔoÕ reading 1879048192
3326: chan ÔoÕ reading 939524096
3839: chan ÔoÕ reading 469762048
4357: chan ÔoÕ reading 234881024
4875: chan ÔoÕ reading 117440512
5416: chan ÔoÕ reading 58720256
5943: chan ÔoÕ reading 29360128
6484: chan ÔoÕ reading 14680064
7025: chan ÔoÕ reading 7340032
7589: chan ÔoÕ reading 3670016
8111: chan ÔoÕ reading 1835008
8629: chan ÔoÕ reading 917504
9147: chan ÔoÕ reading 458752
9688: chan ÔoÕ reading 229376
10215: chan ÔoÕ reading 114688

7.7. Example Custom Test Harnesses

94 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

10756: chan ÔoÕ reading 57344
11297: chan ÔoÕ reading 28672
11861: chan ÔoÕ reading 14336
12397: chan ÔoÕ reading 7168
12938: chan ÔoÕ reading 3584
13479: chan ÔoÕ reading 1792
14043: chan ÔoÕ reading 896
14593: chan ÔoÕ reading 448
15157: chan ÔoÕ reading 224
15721: chan ÔoÕ reading 112
Ended test

It is not easy to spot that this is the correct behaviour. The procedure in the test harness produced by
balsa-mgr that writes the output is:

procedure balsa
is
 channel o : 32 bits
begin
 test_ror32 (o) ||
 BalsaOutputPortToLog (32 bits, ÒoÓ, o)
end

The ouput can be produced in binary format by rewriting the builtin procedure repsonsible for
displaying the output: BalsaOutputPortToLog. The procedure has as to be renamed to prevent a
name clash.

procedure BalsaOutputPortToLogX (parameter X : type;
 parameter portName : String; input i : X) is
begin
 loop
 i -> then
-- original line in BalsaOutputPortToLog
-- BalsaWriteLogLine (portName, ÒreadingÓ, <- ToString (X, i))
 BalsaWriteLogLine (portName, ÒreadingÓ,
 <- NumberToString (X, i, 2, 4, 1))
 end
 end
end -- procedure BalsaOutputPortToLogX

This produces the output in binary with leading zeros with each 4 bit field separated by an
underscore.

230: chan ÔoÕ reading 0000_0000_0000_0000_0000_0000_0000_1110
727: chan ÔoÕ reading 0000_0000_0000_0000_0000_0000_0000_0111
1245: chan ÔoÕ reading 1000_0000_0000_0000_0000_0000_0000_0011
1749: chan ÔoÕ reading 1100_0000_0000_0000_0000_0000_0000_0001
2267: chan ÔoÕ reading 1110_0000_0000_0000_0000_0000_0000_0000
2785: chan ÔoÕ reading 0111_0000_0000_0000_0000_0000_0000_0000
3326: chan ÔoÕ reading 0011_1000_0000_0000_0000_0000_0000_0000
3839: chan ÔoÕ reading 0001_1100_0000_0000_0000_0000_0000_0000
4357: chan ÔoÕ reading 0000_1110_0000_0000_0000_0000_0000_0000
4875: chan ÔoÕ reading 0000_0111_0000_0000_0000_0000_0000_0000
5416: chan ÔoÕ reading 0000_0011_1000_0000_0000_0000_0000_0000
5943: chan ÔoÕ reading 0000_0001_1100_0000_0000_0000_0000_0000
6484: chan ÔoÕ reading 0000_0000_1110_0000_0000_0000_0000_0000
7025: chan ÔoÕ reading 0000_0000_0111_0000_0000_0000_0000_0000
7589: chan ÔoÕ reading 0000_0000_0011_1000_0000_0000_0000_0000
8111: chan ÔoÕ reading 0000_0000_0001_1100_0000_0000_0000_0000
8629: chan ÔoÕ reading 0000_0000_0000_1110_0000_0000_0000_0000
9147: chan ÔoÕ reading 0000_0000_0000_0111_0000_0000_0000_0000
9688: chan ÔoÕ reading 0000_0000_0000_0011_1000_0000_0000_0000
10215: chan ÔoÕ reading 0000_0000_0000_0001_1100_0000_0000_0000

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 95

7.7. Example Custom Test Harnesses

10756: chan ÔoÕ reading 0000_0000_0000_0000_1110_0000_0000_0000
11297: chan ÔoÕ reading 0000_0000_0000_0000_0111_0000_0000_0000
11861: chan ÔoÕ reading 0000_0000_0000_0000_0011_1000_0000_0000
12397: chan ÔoÕ reading 0000_0000_0000_0000_0001_1100_0000_0000
12938: chan ÔoÕ reading 0000_0000_0000_0000_0000_1110_0000_0000
13479: chan ÔoÕ reading 0000_0000_0000_0000_0000_0111_0000_0000
14043: chan ÔoÕ reading 0000_0000_0000_0000_0000_0011_1000_0000
14593: chan ÔoÕ reading 0000_0000_0000_0000_0000_0001_1100_0000
15157: chan ÔoÕ reading 0000_0000_0000_0000_0000_0000_1110_0000
15721: chan ÔoÕ reading 0000_0000_0000_0000_0000_0000_0111_0000
Ended test

The rotation of the 3 Ô1Õs can now be clearly seen. If it is desired to produce the ouptut in
hexadecimal with no leading zeros and no underscore separator, call BalsaWriteLogLine as:

BalsaWriteLogLine (portName, "reading",
 <- NumberToString (X, i, 16, 0, 0))

Further examples of conversions to and from strings can be found in ÒMemory modelsÓ on page 96.

FileIO The examples in simulation/FileIO illustrates some basic use of the File I/O routines. These
procedures read the contents of a file whose name is a parameter of the procedure. Note that it is not
possible to test for the readability or existence of a file to open: if access is not allowed, the
FileOpen procedure will fail internally producing an error message.

import [balsa.types.basic]
import [balsa.sim.fileio]

procedure rd_file1 (
 parameter fname : String
) is
 variable file : File
begin
 file := FileOpen(fname, read);
 print ÒOpened file: Ò , fname;
 loop while not FileEOF(file) then
 print Òcontent is: Ò, FileReadLine(file)
 end
end

 The rd_file1 procedure is instantiated with the name of the file to be opened thus:

procedure rf1 is rd_file1(ÒdataÓ)

where ÒdataÓ is the name of the file to be opened. A disadvantage of this approach is that what is
being generated is an instance of a parameterised procedure. Everytime the name of the file is
changed, a new instance has to be compiled. Another approach is shown below:

procedure rd_file2 (
 input fname : String
) is
 variable file: File
begin
 fname -> then
 file := FileOpen(fname, read);
 print ÒOpened file: Ò, fname ;
 loop while not FileEOF(file) then
 print Òcontent is: Ò, FileReadLine(file)
 end
 end
end

The file name is passed to rd_file2 from a top-level procedure using a variable port.:

7.7. Example Custom Test Harnesses

96 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

procedure rf2 is
begin
 rd_file2(<- ÒdataÓ)
end

Memory
models

The example in Simulation/Memory/mem1.basa illustrates interfacing to BalsaÕs memory model:

Simple memory
manipulation

import [balsa.sim.memory]
import [balsa.sim.string]

procedure ex1 is
 channel addr : 4 bits
 channel read, write : 8 bits
 channel rNw : bit
 variable addrCount : 4 bits
begin
 -- Read the BalsaMemory description in /share/balsa/sim/memory.balsa
 -- for details. BalsaMemory is the name of a type that represents
 -- simulation memories and also a procedure encapsulating a memory
 -- model built from BalsaMemoryRead and BalsaMemoryWrite builtin function
 -- calls. You can either use this module or make your own use of the
 -- builtin functions directly.
 BalsaMemory (
 {4, -- address width
 8}, -- data width
 <- BalsaMemoryNew (), -- direct expression to port connection
 addr, rNw, write, read) ||
 begin
 addrCount := 0;
 print ÒWrite inverse address as dataÓ ;
 loop
 addr <- addrCount || rNw <- 0 ||
 write <- (not addrCount as 8 bits);
 addrCount := (addrCount + 1 as 4 bits)
 while addrCount /= 0
 end;

 -- Now dump the memory,
 -- there really ought to be builtin functions for this
 addrCount := 0;
 loop
 addr <- addrCount || rNw <- 1 ||
 read -> then
 print ÒAddress: Ò, addrCount, Ò Data: Ò,
 NumberToString (8 bits, read, 16, 4, 1)
 end;
 addrCount := (addrCount + 1 as 4 bits)
 while addrCount /=0
 end
 end
end

More Complex
memory
composition

This example uses separate procedure to load the memory and dump its contents. These procedures
are composed with a simple process that writes and read a few arbitrary locations. Notice the use of
the string to number conversions (and vice versa). If the numeric values in the data file are in the
default format (i.e. decimal values carry no prefix, hexadecimal numbers are prefixed with 0x etc.),
the appropriate conversion routine to use is FromString . However, if the numbers are in a particular
format (say hexadecimal) and are not prefixed, then NumberFromString must be employed with the
appropriate radix passed in the function call.

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 97

7.7. Example Custom Test Harnesses

import [balsa.sim.memory]
import [balsa.sim.string]
import [balsa.sim.fileio]

constant addr_width = 5
constant data_width = 8
constant MemSize = 2 ̂ addr_width

type AddrWidth is addr_width bits
type DataWidth is data_width bits

procedure load_mem (
 input fname : String ;
 output addr_bus : AddrWidth ;
 output data_bus : DataWidth ;
 output rNw : bit
) is
 variable file : File
 variable num : DataWidth
 variable addr : AddrWidth
begin
 fname -> then
 print Òloading memory from: Ò, fname;
 file := FileOpen(fname, read);
 print ÒOpened file: Ò;
 loop while FileEOF(file) /= 1 then
 -- if data has no radix prefix use this conversion
 -- see the effect with supplied data file which has prefix.
 num := NumberFromString(DataWidth, FileReadLine(file) ,16);

 -- if data has radix prefix use this form
 -- this is probably what is required for supplied data
 -- num := FromString(DataWidth, FileReadLine(file) , ÒÒ);
 print num ;
 addr_bus <- addr || data_bus <- num || rNw <- 0;
 addr:= (addr + 1 as AddrWidth)
 end
 end
end

procedure proc (
 output addr_bus : AddrWidth;
 output write_bus : DataWidth;
 input read_bus : DataWidth ;
 output rNw : bit
) is
 variable x : DataWidth
begin
 -- poke the memory to show we can
 addr_bus <- 0 || write_bus <- 0xff || rNw <- 0;
 addr_bus <- 1 || write_bus <- 0xfe || rNw <- 0;
 -- read the memory to show we can
 addr_bus <- 1 || read_bus -> x || rNw <- 1;
 print ÒValue from address 1 is: Ò, x
end

procedure dump_mem (
 output addr_bus : AddrWidth ;
 input data_bus : DataWidth ;
 output rNw : bit
) is

7.7. Example Custom Test Harnesses

98 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

 variable data : DataWidth
 variable addr : AddrWidth
begin
 print Òdumping memoryÓ;
 addr := 0;
 loop
 addr_bus <- addr || data_bus -> data || rNw <- 1;
 print Ò<0xÒ, NumberToString (AddrWidth, addr, 16, 0, 1) , Ò> 0xÒ,
 NumberToString (DataWidth, data, 16, 0 ,1) ;
 addr := (addr + 1 as AddrWidth)
 while addr /= 0
 end
end

procedure ex2 is
 variable mem : BalsaMemory
 channel datafile : String
 channel addr_bus : AddrWidth
 channel read_bus : DataWidth
 channel write_bus : DataWidth
 channel rNw : bit
begin
 mem := BalsaMemoryNew ();
 BalsaMemory ({addr_width , data_width},
 <- mem,
 addr_bus,
 rNw,
 write_bus, read_bus) ||
 begin
 load_mem(<- "data", addr_bus, write_bus, rNw) ;
 proc(addr_bus, write_bus, read_bus, rNw) ;
 dump_mem(addr_bus, read_bus, rNw)
 end
end

A Processor
Test Harness

This example in Simulation/Processor ties together many of the previous examples of using the
builtin Balsa functions to create custom Balsa test harnesses. The ssem processor described
previously (see ÒA Simple Processor Ð The Manchester SSEM (The Baby)Ó on page 72) is
connected to a memory model which is loaded which the code corresponding to a program for
computing the gcd of two numbers. The source code can be found in gcd.s. The two numbers are
specified in locations 0x11 and 0x12 with the result, on termination, found in location 0x11. A
description of processor can be found in ssem.pdf. An assembler sasm is provided for users who
wish to write other programs.

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 99

8 Implementations

8.1. Introduction

Balsa provides means of describing and modelling asynchronous systems together with a means of
functionally simulating these systems. However, Balsa is primarily a synthesis system and in this
chapter the various implementation routes and options are described. In order to produce real silicon
or a real gate-array implementations, access to the design-kits of the silicon or gate-array vendor is
required Ð Balsa merely produces a netlist in format appropriate to a CAD system that supports the
technology.

When creating an implementation, users may choose a particular technology, different ÒstylesÓ
within a technology and for each style a variety of options may be available.

Technologies Currently Balsa supports the following technologies. Each technology has its own cell libraries, gate
fan-in restrictions, instance naming and pin mapping conventions. Different technologies may also
use different netlist formats. The technologies must be downloaded and installed as separate
packages. Only the

balsa-tech-ams: This technology supports the AMS 350nm design kit and produces a Verilog
netlist.

balsa-tech-amulet: This technology contains a set of custom cells designed within the Balsa group
based on the SGS-ST 180nm library and produces a Verilog netlist.

balsa-tech-sths018: This technology contains only standard cellsfrom the SGS-ST 180nm library.

balsa-tech-example: This technology produces a Verilog description based on example cells and
is intended as template for users who wish to create their own back-ends.

balsa-tech-xilinx: This technology produces a EDIF netlist suitable for Xilinx gate-arrays

Styles Currently the Balsa release supports the following back-end protocols for use with each technology.:

four_b_rb: a bundled-data scheme using a four-phase-broad/reduced-broad signalling protocol.

dual_b: a delay-insensitive dual-rail encoding.

one_of_2_4: a delay-insensitive one-of-four encoding.

8.1. Introduction

100 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

The bundled-data back end should be faster and smaller, but needs more careful post-layout timing
validation. The two delay-insensitive schemes are larger and slower but should be more robust to
layout variations.

Options Each option is set/unset or takes a value as shown in Table 8.1 on page 100.

Option Values Notes

suggest-buffer set/unset

Handshake circuit descriptions allow for nodes in the circuit to
be identiÞed as being points at which buffers may be inserted
because the node may be heavily loaded. Setting this option will
cause the buffers to be instantiated.

cad

cadence
This option only makes sense for Xilinx technology. Makes
balsa-netlist produce verilog netlists compatible with Cadence
implementations of Xilinx libraries.

ise
This option only makes sense for Xilinx technology. Makes
balsa-netlist produce verilog netlists compatible with Xilinx ISE
implementations of Xilinx libraries.

logic

DIMS
Implements ÒhelperÓ cells Ð those cells composed from the basic
cell library Ð in a DIMS style

NCL
Implements ÒhelperÓ cells Ð those cells composed from the basic
cell library Ð using NCL style gates. In many circumstances
smaller implementations result.

Balanced

Creates balanced circuits where the notional path delays through
the DIMS circuts are matched in an attenpt to defeat Differential
Power Analysis attacks in security applications such as
smartcards

variable

SR Variables stored in ÒstandardÓ SR latches

Spacer
Each variable latch is reset to a NULL state before a writie
operation in an attenpt to defeat Differential Power Analysis
attacks in security applications such as smartcards

NCL
Variables are stored in pipleline style latches. More efÞcient for
1-of-4 codes.

n-of-m
mapping

set/unset
Enables general n-of-m mapping strategy for dual rail (dual_b)
styles. General users should accept the default option Ð the
option is included for historical reasons.

sim

icarus
vxl
ncv
vcs
modelsim
cver

These option are only available for the example technology.
They are various Verilog simulators known to work with the
Balsa system. Note that balsa-sim-verilog must be
conÞgured to locate a particular simulator (see the installation
notes). icarus and cver are publicly available simulators.

Table 8.1: Style options

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 101

8.2. Creating an implementation

Many of the options offered are for use within specialist research projects; others depend on the
exact tool flow used when targetting particular silicon technologies and design kits.

8.2. Creating an implementation

In balsa-mgr, select the top-level procedure. Right-click and choose ÒAdd ImplementationsÓ (as
shown in Figure 8.1) causing a dialogue box to be spawned. The user can change the nakme of the
implementation and the default balsa-netlist options (see Section, ÒBalsa Reference,Ó on page 127).
Clicking on the technology tab reveals the technology and style options. shown in Figure 8.2

Choose the technology desired, the implementation style and the style options. An icon for the
implementation should be displayed in the File pane under the chosen procedure. Changing to the
Makefile pane should reveal the new rule listed under the implementations subpane. Clicking on the
Make button will generate the appropriate netlist for the technology.

FV

conv
Use conventional implementation of the FalseVariable
component with full enclosure of activity on the read channels
within the handshake upon the write channel.

ovlp

Introduce concurrency within the passive enclosure of
FalseVariable components by overlapping the return-to-zero
phases of the ÒwriteÓ port and the ÒsignalÓ port which triggers
activity on the readports. This is the default option.

PAR

conv
Use conventional implementation of the Concur component with
full enclosure of activity on the output channels within the
handshake of the activate channels.

ovlp
Introduce concurrency between the return-to-zero phases of the
activation and output channels of Concur components. This is
the default option.

SEQ

conv
Use conventional implementation of the Sequence component, a
full handshake is completed on each output channel before
initiating activity upon the next channel in the sequence.

ovlp

Introduce concurrency, where safe, between the return-to-zero
phase of the an output channel and the processing phase of the
next channel in the sequence. The balsa-c compiler determines
within which components this optimisation can be safely
implemented. This is the default option.

PP

conv

Use the conventional implementation of PassivatorPush
Components. To maintain the data-validity protocols across the
broad/reduced-broad interface in single-rail implementations,
this option implements enclosure of output channel activity
within input channel activity in Fetch components.

broad

Use a ÒbroadÓ implementation of single-rail PassivatorPush
component. The broad implementation latches the data within
PassivatorPush components, solving the data-validity problems
caused by broad/reduced-broad protocol interfaces in Fetch
components. This is the default option.

Table 8.1: Style options

8.2. Creating an implementation

102 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

All that remains is for the netlist to imported into the CAD framework for the chosen technology!
Future versions of this manual will give advice how to do this.

Figure 8.1: Adding an implementation.

Figure 8.2: Choosing an implementation style.

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 103

8.2. Creating an implementation

Figure 8.3: Making the implemetation.

8.2. Creating an implementation

104 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 105

9 Adding Technologies to Balsa

9.1. The Balsa backend

This chapter documents how multiple technologies and implementation styles (described in
ÒImplementations,Ó on page 99) are handled. It describes how to add technologies and
implementation styles to the Balsa system.

A Balsa description of a circuit is initially compiled to an intermediated breeze format containing
references to generic, parameterised handshake components. To create a concrete implementation,
balsa-netlist creates instances of expanded handshake components, in a .net format netlist,
from the parameterised breeze specifications by applying the parameters to a description of the
component.

The description used to generate the handshake component is composed from abstract gate
operators and customised cells and is dependant on the implementation style and, in a small number
of cases, the technology. The implementations are described in a special language abs (see ÒThe abs
languageÓ on page 112). The .net file is then mapped, according to specifications defined by the
technology, into the target netlist format which involves mapping the .net instance names into the
names of the technology cells and decomposing large gates that are incompatible with the
technology into smaller gates.

A knowledge (and love!) of the lisp-like language scheme is helpful for understanding how to
construct a new backend

Technologies
and Styles

The Balsa backend system allows for implementations in different technologies and different
asynchronous styles. The technologies correspond to different cell libraries (either custom built or
vendor-supplied standard cell libraries) for silicon foundaries or libraries for programmable gate-
arrays such as Xilinx. Although each technology has its own cell libraries, gate fan-in restrictions,
instance naming and pin mapping conventions and netlist formats, most handshake component
descriptions are common across all technologies.

Balsa supports several different asynchronous implementation styles; the present release supports:

¥ a bundled data scheme using a four-phase-broad/reduced-broad signalling protocol

¥ a dual-rail delay insensitive scheme

¥ a one-of-four encodings delay-insensitive scheme.

9.1. The Balsa backend

106 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

Each implementation style may have several style options such as variations in the types of latches
or the style of logic used. In contrast to technologies, styles need different component descriptions
for each type of implementation.

Directory
structure

There is much similarity between the requirements of different netlist formats which is reflected in
the directory structure. Information specific to a particular technology is held in a directory
corresponding to the technologyÕs name. Other information which is common to all technologies is
held in the directory common. As control components are generally determined by the signalling
protocol rather than by the data encoding, the descriptions for the implementation directories are
split up into various control and datapath implementations to reduce the number of directories. A
extract of the directory structure (rooted at balsa/share/tech) is shown in Figure 9.1.

example example

example-cells.net

balsa-cells.net

balsa-mgr.cfg

components.abs

drive-table

gate-mappings.scm

common components Adapt.abs

common Arbiter.abs

components.abs . . .

helper-cells.abs While.abs

helper-mappings deÞnitions.abs

template-balsa-mgr.cfg ctrl-broad Arbiter.abs

. . .

Synch.abs

data-single-broad Adapt.abs

. . .

While.abs

data-dual Adapt.abs

. . .

While.abs

dual-rail-deÞnitions.abs

data-1of4 Adapt.abs

. . .

While.abs

one-of-four-deÞnitions.abs

Figure 9.1: Directory structure for the example technology and common components

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 107

9.2. The technology configuration file

common
directory

The common directory contains the following files and directories.

common: this is an empty configuration file for the technology Ð not used.

components: this directory contains each component in a separate file. For each implementation
style there is a link to the directory and file of the relevant description. Also in the directory are
several definition files: definitions.abs, dual-rail-definitions.abs, one-of-four-definitions.abs; these
files contain functions (in the abs language) used by many of the component descriptions.

components.abs: this file includes all the components in the component directory.

helper-cells .abs: this file is a set of descriptions of all the current helper-cells in abs Ð it allows
helper-cells to be generated in any technology by the program balsa-make-helpers .

helper-mappings: this is a 3-way mapping file format similar to gate-mappings to map from a
helper-cell-abs description to a cell name in balsa-cells.net and an entry in gate-mappings. e.g.

("c-element3" "c-element3" "c3")

Here the first argument is the name of the cell in helper-cells.abs the second the name of the cell the
abs HC component descriptions and the gate-mappings file, and the third the name of the cell in the
balsa-cell.net file to be generated.

template-balsa-mgr.cfg: a template for adding technologies, styles and style options to balsa-mgr.

the <tech>
directory

In each technology directory, <tech>, the following files are found:

<technology>: essentially a configuration file for defining various files and component names
used by the technology. The file format is described in ÒThe technology configuration file,Ó on
page 107.

<technology>-cells.net: a file in .net format (see ÒNetlist,Ó on page 124) containing lists of all the
cells in the library, together with their pin orderings and directions. The name of this file can be
changed in the technology configuration file.

balsa-cells.net: a file in .net format containing all the ÒhelperÓ cells required by the various Balsa
descriptions, such as adders, s-elements etc which are not resident as cells in the target technology
library. The name of this file can be changed in the technology configuration file.

balsa-mgr.cfg: this file is necessary so that the technology and its options are known about by
balsa-mgr. A template for constructing the file can be found in common/template-balsa-mgr.cfg

components.abs: contains descriptions of handshake components which are specific to that
technology; typically the last line of the file will import common descriptions from common/
components indirectly via common/components.abs.

drive-table: not currently used.

gate-mappings: used to map between the abstract gate names and pin orderings of the .net output
and that required by the technology. This file also contains information about different cells to use
when driving large loads. The information required to Òdrive-upÓ signals where necessary is
contained in the drive-table file. Ð however, at present, this feature is not available in this Balsa
release. For more details see ÒNetlists,Ó on page 117.

9.2. The technology conÞguration Þle

Each technology is controlled by a configuration file, named the same as the technology:

net-signature-for-netlist-format determines the netlist format to use for the technology,

either verilog, edif 1. The second argument, if true, sets the format as the default for that

1. ÒcompassÓ is also allowed for historical reasons , producing a netlist in that design systemÕs
proprietry format.

9.2. The technology configuration file

108 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

technology. The net-signature-for-netlist-format procedure is also used by balsa-
netlist with the -n option when producing new-netlists to allow different netlists to be produced
other than the default - if a default netlist signature was not set, then balsa-netlist would
produce an error as no netlist could be produced. It is possible to have two different netlist-
signatures but their use is controlled by style-options

breeze-gates-net-files is a list of the cell description files used by the technology.

breeze-primitives-file is the path to the component.abs file of the technology, breeze-
tech-dir is a global variable in the scheme code that defines the path to the technology directory.

breeze-gates-mapping-file is the path to the gate-mappings file

breeze-gates-drive-table is the path to the drive table, containing information about the
loading and drive strengths of each gate

tech-gate-max-fan-in sets the maximum fan-in for the logic gates (AND, OR, etc) in the
library.

tech-c-element-max-fan-in sets the maximum fan-in for c-elements in the library.

tech-map-cell-name sets the mapping function for the handshake component names, at present
only net-simple-cell-name-mapping function is available, which is a simple cropping
procedure taking a boolean argument stating whether uppercase or lowercase letters are prefered by
the technology. The length at which names are cropped is controlled by the tech-cell-name-
max-length variable. The id function is used when no mapping is required, the function preserves
the original balsa names.

tech-netlist-test-includes is a list of HDL models of the cell library, used by balsa-mgr
when simulating implementations with CAD simulators.

The last four declarations set the power and ground net and component names for the technology.
balsa-netlist instantiates power and ground components for conections between gates and the rails.
The name of the net used to connect to these components is determined by the tech-gnd-net-
name and tech-vcc-net-name variables. If no power and ground component names are supplied
when specifying a verilog netlist, these nets are instantiated as supply0 and supply1 types
respectively. and no power or ground components are instantiated.

There are three variables not shown in Figure 9.2:

(net-signature-for-netlist-format Õverilog #t)
(set! breeze-gates-net-files Õ("example-cells" "balsa-cells"))
(set! breeze-primitives-file (string-append breeze-tech-dir
"components.abs"))
(set! breeze-gates-mapping-file (string-append breeze-tech-dir "gate-
mappings"))
(set! breeze-gates-drive-file (string-append breeze-tech-dir "cadence-
drive-table"))

;;; max. no. of inputs for and/or/nand/nor gates and c-elements
(set! tech-gate-max-fan-in 3)
(set! tech-c-element-max-fan-in 3)
(set! tech-map-cell-name id) ;;; No mapping
(set! tech-netlist-test-includes '("example-cells.v"))
(set! tech-gnd-net-name "!gnd")
(set! tech-vcc-net-name "!vcc")
(set! tech-gnd-component-name "LOGIC0")
(set! tech-vcc-component-name "LOGIC1")

Figure 9.2: A typical conÞguration Þle.

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 109

9.3. Handshake component declarations

tech-cell-name-max-length determines the maximum number of characters for instance
names in the netlist by default this is set at 1024 characters.

tech-map-cell-name-import , tech-map-cell-name-export allow balsa-netlist to import
and export any name mappings of cells to or from a mappings file in the local directory, allowing
different balsa-designs to keep consistently mapped cell names, if the tech-map-cell-name or tech-
cell-name-max-length options are used.

Each option takes the name of a simple import/export function: net-simple-cell-name-import
and net-simple-cell-name-export respectively

9.3. Handshake component declarations

For convenience, the descriptions of common handshake components are separated into
implementation independent declarations and technology specific implementation descriptions.
Each HC declaration (found in common/components/) consists of four parts as shown in
Figure 9.3:

parameters Variable expressions used to customise the component.

ports Declaration of the ports of the component. There are four kinds of port:

sync-port
arrayed sync-port
data-port
arrayed data-port

The port declaration lists the ports ÒsenseÓ (whether passive or active), ÒdirectionÓ (input or output),
type (if data port), and, if arrayed port, its low index and cardinality.

The two sections above both include a type declaration to specify the type of the expression. The
types allowed are defined in ÒTypes,Ó on page 122.

symbol The symbol of the component as it would appear in an HC graph.

implementa-
tion

The implementation descriptions of the component for each implementation style Ð usually a link to
a description in the appropriate style directory although descriptions may also be inlined. The format
of these descriptions, their operators and operands is discussed below.

(primitive-part "Bar"
(parameters

("guardCount" (named-type "cardinal"))
)
(ports

 (port "guard" passive output (numeric-type #f 1))
 (sync-port "activate" passive)
 (arrayed-port "guardInput" active input (numeric-type #f 1) 0

(param "guardCount"))
 (arrayed-sync-port "activateOut" active 0 (param "guardCount"))
)

(symbol
 (centre-string "[]")
)

(implementation
 (style "four_b_rb" (include tech "common" "data-single-broad/Bar"))
 (style "dual_b" (include tech "common" "data-dual/Bar"))
 (style "one_of_2_4" (include tech "common" "data-1of4/Bar"))

)
)

Figure 9.3: Example of a component abs Þle

9.4. Handshake component implementation descriptions

110 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

9.4. Handshake component implementation descriptions

Handshake component instances are generated from these descriptions according to the parameters
in the intermediate breeze file. The descriptions are a recipe written in the abs language which has
operators to create gates or arrays of gates, as well as operators to construct and destruct wire
vectors used by the component. Each HC implementation description consists of four separate
sections:

defines Specifies an optional list of expressions, defined by the parameters of the component. Definitions
are of the form:

(identifier expression)

The complete grammar for expressions is given in ÒThe ABS Grammar,Ó on page 120 and includes
operators such as *, /, and, if etc. It also contains several builtin functions:

The full range of schemeÕs builtin functions are also available.

The expression language contains the facility to support user-defined lambdas (anonymous
functions). The lambdas are similar in style to lambdas in the scheme language. Lambdas are
declared like any other expression and take the form:

(lambda (params*)
(let-expression?)
(body-expression)

)

Where params is a list of identifiers. The let expression is a list of local definitions, taking the form:

(let
(identifier expression)+

)

The body expression can be any valid expression in the expression language. Multiple expressions
can be executed by enclosing them in a begin expression. Lambdas can be called from within the
defines section or throughout the other sections by providing values for its parameters:

(identifier params*)

The expression language also includes several control lambdas, defined in definitions.abs for
operating across lists etc:

nodes Defines a list of all the internal nodes in the circuit. Definitions are of the form:

(name width lowbitIndex cardinality)

where width, lowbitIndex and cardinality are valid abs language expressions.

gates Contains the implementation of the component written in the abs language.

pop-count ;; the number of bits set in a binary representation
find-set-bit ;; the first set bit of a binary number
find-clear-bit ;; the first clear bit of a binary number
style-option ;; returns true if a particular style option is in the BALSATECH variable
bit-length ;; the number of bit required to implement a binary number
bit-set ;; the boolean value of a given bit of a binary number
bit-xor ;; result of a boolean xor operation on two binary numbers
.. ;; create an interger list between a pair of values
print ;; print a list of expression to current-port
note ;; print a list of expressions to error-port

map(func args) ;; Applies func to the list args, and return the resulting list
fold(func res args) ;; Applies func to the list args, accumulating the result in res.
for-each(func args) ;; As map but does not return the resulting list - used for side effects

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 111

9.5. Adding a new technology

connections Lists the port to port connections of the component.

9.5. Adding a new technology

Adding new technologies is straight-forward. The whole process takes about an hour

1. Create a <technology>-cells.net Þle. Add entries for each cell in the new target cell library.
This step may be automated.

2. Create a gate-mappings Þle for the abs-gate operators that are available in the library.
Mappings must be provided for anything that is used by the abs descriptions or any logic
required to generate helpers by balsa-make-helpers such as and, or , nor , inverter , xor ,
buffer , 2- 1-mux , 1-2demux , transparent-latch, tristate-inverter , tristate-
buffer, and keeper inverters .
If the cell library contains asynchronous cells such as c-elements , s-elements or
mutexs they should be be put here as well, otherwise less efÞcient versions will be generated
by balsa-make-helpers out of standard cells.

3. Create a component.abs Þle including a link to the common components.abs. If keeper-
inverters are not available add single rail implementations of Variable , CallMux and
CaseFetch components.

4. Create a conÞguration Þle.

5. Install the skeleton implementation (or copy it to share /tech)

6. Set the environment variable BALSATECH to the new technology. Run balsa-make-
helpers to produce two Þles: a balsa-cells.net Þle and a gate-mappings Þle. These Þles
contain the descriptions and the mappings of the new cells that have been created by balsa-
make-helpers and must be concatenated to the original Þles in the technologies.

7. Create a new balsa-mgr.cfg Þle using the template, in the common directory.

Adding more implementation styles is not easy: New descriptions must be made for each
component, and the backend scheme code must be updated to inform the system about the structure

(defines
(guard-count (param "guardCount"))

)
(nodes

("bypass" (+ 1 guard-count) 0 1)
)
(gates

(c-element (ack "guard") (ack (each "guardInput")))
(or (data "guard") (data (each "guardInput")))
(or (ack "activate") (ack (each "activateOut"))

(slice guard-count 1 (node "bypass")))
(connect (req "activate") (slice 0 1 (node "bypass")))
(demux2

(slice 0 guard-count (node "bypass"))
(slice 1 guard-count (node "bypass"))
(combine (req (each "activateOut")))
(combine (data (each "guardInput")))

)
)
(connections

(connect (req "guard") (req (each "guardInput")))
)

Figure 9.4: Example of component implementation description Ð the single rail ÒbarÓ

9.6. The abs language

112 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

of channels within the new style. A brief specification of the handshake components can be found in
<balsa-home>/doc/components.txt. An example description is given in ÒExample,Ó on page 115

9.6. The abs language

Each implementation consists of a list of gate operators or helper cells operating on individual wires
or wire vectors, these vectors are obtained by partitioning the port expressions into their constituent
components. The following is a discussion of the datatypes and operators present in the abs
language.

Bundles A bundle is an expression of the data/signalling wire bundle which can be connected to the port of a
handshake component. A bundle therefore may be take any of the forms of the port descriptions
(arrayed/sync/data), and several operators allow their manipulation:

ÒnameÓ - the complete bundle, refers to the named port expression.

bundle ÒnameÓ index - used to extract a single channel from an arrayed port expression.

bundles ÒnameÓ index count - used to extract a range of channels from a bundled array.

each ÒnameÓ - used to apply an operation on each of the channels in a bundled array.

Channels Channels are the individual communications primitives that constitute the bundles of a component.
Channels are composed from several logical groupings of wires called portions. The structure of a
channel and its portions depend on the implementation style, sense and direction of the channel.

These portions can be accessed from channels/bundles by the portioning operators:

(req bundle) (ack bundle) (data bundle)

Implementation Style Channel Sense Port Sense Portions

Four Phase Broad/
Reduced Broad

Push
Passive Input
Active Output

req
ack
data

Pull
Active Input

Passive Output

req
ack
data

Dual Rail

Push
Passive Input
Active Output

req0
req1
ack

Pull
Active Input

Passive Output

req
ack0
ack1

One of Four

Push
Passive Input
Active Output

req0
req1
req2
req3
ack

Pull
Active Input

Passive Output

req
ack0
ack1
ack2
ack3

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 113

9.6. The abs language

(req0 bundle) (req1 bundle) (ack bundle)...

Where bundle, can be a single bundle expression or several bundled arguments:

(req ÒinpÓ ÒoutÓ) -> (req ÒinpÓ) (req ÒoutÓ)
(req (each ÒinpÓ) -> (req ÒinpÓ 0) (req ÒinpÓ 1)

These portioning operators return the relevant portion in the form of a slice (see next section), which
are needed to be used as input to the gate operators. In order to extract slices from internal nodes
with no logical grouping another portioning operator is used :

(node bundle)

where bundle takes the form of one or several internal node names.

Slices Slices are the basic groups of wires that are manipulated by the gate operators of the system. Slices
are a means of constructing a single dimensional wire vector, so must consist of wires of the same
direction. Single slices are created by the portioning operators (req , ack , node etc), but slices can
also be formed from other slices by using the combine operator:

(combine a b c d)

which combines a, b, c and d into one slice.

N.B. While most abstract gate operators will accept combinatorial slice as operands, some operators
(e.g. slice and filter) will only accept single slice operands generated by the portioning
operators.

The slice operator is used to extract bit fields from a single slice:

(slice low-bit-index cardinality single-slice)

returns a slice of the input single slice consisting of cardinality wires starting at low-bit-index.

The filter operator can be used to extract arbitrary bit patterns from a single slice:

(filter mask single-slice)

where mask is a decimal representation of the mask required to extract the desired bit pattern.

Slices can be reduced into a list of singleton slices by the smash operator:

(smash single-slice)

this is useful for applying operations across the elements of a slice:

(and (node ÒoutÓ) (smash (data ÒinÓ)))

would AND all the elements of ÒinÓ together.

Slices can also be duplicated with the dup and dup-each operators.

(dup count slice)
(dup-each count slice)

where slice can be an individual slice or a list of several slices.

The dup operator replicates the slice count times, and can be used with the combine operator to
make a combinatorial slice allowing the slice to be applied several times across another slice, eg:

(and (node ÒoutÓ) (data ÒinpÓ) (combine (dup width (req ÒinpÓ))))

The dup-each operator replicates each element of a slice or slice list, allowing different arrays of
individual wires to be applied across another slice.

(and (node ÒoutÓ) (data (each ÒinpÓ)) (combine (dup-each width (req
(each ÒinpÓ)))))

Gate
Operators

The abs language has several gate operators for performing operations on slices. The gate operators
can operate on slices of any size as long as the cardinality of all the slices is equal, and are expanded

9.6. The abs language

114 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

to produce several operators acting on single width slices.For example, the and gate operator
operating on two nodes, a and b, of width 2 producing a result on node c, also two bits wide:

(and (node c) (node a) (node b))

would produce two and gate operators:

(and (slice 0 1 (node c)) (slice 0 1 (node a)) (slice 0 1 (node b)))

(and (slice 11 (node c)) (slice 11 (node a)) (slice 1 1 (node b)))

which would be mapped into .net gates as:

(and2 (Òc_0nÓ 0) (Òa_0nÓ 0) (Òb_0nÓ 0))
(and2 (Òc_0nÓ 1) (Òa_0nÓ 1) (Òb_0nÓ 1))

and into a verilog netlist as:

(and2x1 c_0n[0],a_0n[0],b_0n[0])
(and2x1 c_0n[1],a_0n[1],b_0n[1])

There are two types of gate operators, fixed or stretchable. Fixed input gates have a fixed number of
arguments.. Stretchable gates are a small set of basic gates which can take unlimited numbers of
input arguments allowing tree-like structures to be created out of these simple gates. If the input and
output slices are of plural cardinality, several of these tree structures will be created for each wire in
the slices. The size of the gates used to create these trees is determined by the maximum fan-in for
gates of the target technology. The abs gate operators are presented in ÒThe ABS Grammar,Ó on
page 120.

The abs language also provides the facility to add customisable cells as illustrated below:

(cell Òcell-nameÓ singleton-slice É)

The cell can have any name, and is mapped to a CAD-specific cell in the technologyÕs gate-
mappings file. The cell descriptions are stored in the technologyÕs helper cell description file, and
must use technology specific instances. The only restrictions on these cells are that they must take
singleton slices as inputs.

There are several other gate operators for use in constructing component descriptions:

(constant value output-slice)

creates a constant from the decimal value, by tying wires to VCC or GND circuits.

(print args)

prints debugging messages that can be viewed when instances of the component are being
generated, takes unlimited number of arguments.

(macro identifier args)

The macro operator is a method for creating complex abs expressions dependent on some
parameters. A macro is lambda defined, as described, in the defines section. The lambda is called
using the macro operator. The macro returns a gate operator which is then evaluated Ð after the
execution of the original lambda. The macro is executed, and the resulting expression is evaluated as
an abs expression. The arguments to the macro are also not evaluated, allowing abs expressions or
snippets to be passed in without resulting in syntax errors.

The abs system also includes control structure to allow more complex customisable components to
be created. The format of these structures is similar to the Scheme programming language:

(if expr
gate
gate
)

where, gate is a valid gate operator of the abs language.

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 115

9.6. The abs language

Either the consequent or the alternative is selected, depending on the value of expr. The syntax of
expr is given in the ÒThe ABS Grammar,Ó on page 120.

(cond
(condition-expr gate ...)
(condition-expr gate ...)
. . .
(else gate ...)
)

Each condition-expr is evalutated in turn, if it evaluates to true then the gates section is executed,
and the cond statement is exited. If no expression evaluates to true, the else statement is executed

(case expr
((test-value ...) gate ...)
((test-value ...) gate ...)
. . .
(else gate ...)
)

This is similar to cond statement except the expression is evaluated and then compared against the
constant test values of each statement.

(gate gate ...)

allows several gates to be substituted into a single gate expression.

Several handshake components encode or decode binary values from/to one-hot wires described
using decode/encode gate operators. Because the format of these encodings varies greatly, these
components use a specification string to determine the encodings. The actual format of the string is
given in the appendix. Each string has at most n terms, one for each of the n one-hot-wires and asso-
ciated with each term is a value or set of values.

In the encoding string, this value represents the binary value to be output on receipt of activity on the
relevant input wire.

In the decoding string, this value represents the input value or range of values that will activate the
relevant output wire.

The decode/encode gate operators that are used to provide this logic are:

(encode option input-slices output slices)

(decode option input-slices output slices)

For both single and dual-rail implementations dual-rail QDI logic is employed. In single-rail this
simplifies the delay-assumptions for components and makes timing-enclosure simpler.The option
argument specifies whether to implement the logic in traditional a and/or realisation used for
bundled data implementations, or a c-element/or realisation for return-to-zero delay insensitive
implementations, or whether to use a m-of-n-mapping allow more complex codes such a 1-of-4 to
be handled. For complex codes a mapping-function is passed as an argument to the encode gate that
transforms binary implicants into the relevant encoding.

Example This example in Figure 9.5 illustrates the description of the FalseVariable handshake component in
a dual-rail implementation style using the abs language.

The FalseVariable component is used to implement passive input enclosure, it allows values of
passive inputs to be read in several places without the need for explicit latching. The FalseVariable
has three ports:

¥ "write" - the passive input dataport,

¥ "signal" - sync port to enclose the "read" port activity within a handshake on the "write"
port.

9.6. The abs language

116 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

¥ "read" - an arrayed set of passive ports to allow the reading of data in multiple sources.

The component has two parameters:

¥ "width" - width of the read and write datapaths

¥ "readPortCount" - number of read-ports.

The passive read and write ports form pull and push channels respectively.

The behaviour of the FalseVariable is as follows. Once a request is received on the write port (in
single rail this is signalled by the request line; in dual-rail this requires completion detection to

0 (primitive-part "FalseVariable"
1 (parameters
2 ("width" (named-type "cardinal"))
3 ("readPortCount" (named-type "cardinal"))
4)
5 (ports
6 (port "write" passive input (numeric-type #f (param
"width")))
7 (sync-port "signal" active)
8 (arrayed-port "read" passive output
 (numeric-type #f (param "width")) 0 (param
"readPortCount"))
9)
10 (symbol
11 (centre-string "FV")
12)
13 (implementation
14 (style "four_b_rb" (include tech "common"
 "data-single-broad/FalseVariable"))
15 (style "dual_b"
16 (nodes
17 ("writeSig" 1 0 1)
18 ("writeSigPart" (param "width") 0 1)
19)
20 (gates
21 (or (node "writeSigPart")(req0 "write")(req1 "write"))
22 (c-element (node "writeSig")(smash (node
"writeSigPart")))
23 (s-element (node "writeSig") (ack "write")
(req "signal")
 (ack "signal"))
23 ; data read ports
24 (and (combine (ack1 (each "read")))
25 (combine (dup-each (param "width") (req (each
"read"))))
26 (combine (dup (param "readPortCount") (req0 "write"))
27)
28 (and (combine (ack0 (each "read")))
29 (combine (dup-each (param "width") (req (each
"read"))))
30 (combine (dup (param "readPortCount") (req1 "write")))
31)
32)
33 (connections)
34)
35)
36)

Figure 9.5: Description of dual rail FalseVariable

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 117

9.7. Netlists

detect the arrival of valid data) a handshake is initiated on the signal port. This handshake will
enclose all of the reads to the set of read-ports. The read-ports are connected to pull-channels and so
upon receiving a request they acknowledge with valid-data.

In the dual-rail implementation shown above each channel has a different set of portions:

Push Channels: req0, req1, ack . The request on dual-rail push-channels is encoded within
the data. The req0 and req1 portions are each the width of the datapath (param "width") and
respectively contain the zero and one wires of each dual-rail code group; ack is a single wire used to
acknowledge receipt of data on the channel.

Pull Channels: req, ack0, ack1 . The data of pull-channels enclose the acknowledgement,
ack0 and ack1 are each the width of the datapath and contain the zero and one wires of each code
group. req is a single wire used to request data.

Sync Channels: req, ack have single request and acknowledge wires.

The implementation comprises 3 parts:

1. Completion Detection (lines 21 22). The slice arguments of the or gate-operator of line 21 are
each the width of the data-path (param "width") This has the affect of placing a single 2-input
or-gate for each binary bit of the datapath, detecting the arrival of data in each dual-rail code
group of the datapath. These signals are combined to a single signal using the c-element of line
22, the smash slice operator breaks down (node "writeSigPart") into individual single-wire
slices, and so this operator instantiates a tree of C-elements the width of the datapath.

2. An s-element is used to enclose the "signal" handshake between the completion-detection
signal and the acknowledgement of the "write" channel. As each slice is a single wire only one
s-element is instantiated.

3. The read-ports to the read-channels are instantiated with the two and operators (lines 24-31),
an operator for each ack0 ack1 portion of the channels. Each operator results in the instantiation
of "readPortCount" arrays of AND-gates each of width "width", each slice argument to the
and-gates is ("readPortCount" * "width") wide. The bundling operator each on line 24 creates
a slice for each channel in the read-port array. This is combined to a single-slice with the
combine command, The input arguments to the and-gate highlight the difference between the
dup and dup-each commands. The dup command is used to duplicate the "write" request
portions for each read-port, each wire of the write port is duplicated in turn, so each read port receives
all the wires of the write port. The dup-each command is used to ensure that each read-port
only receives the request wires speciÞc to that read port. The each operator of line 29 expands
to "readPortCount" slices of request wires for the read-ports. These slices are then duplicated
in turn so as to produce:

(slice 0 1 (req (bundle "read" 0)) ... (slice width 1 (req (bundle "read"
0)) (slice 0 1 (req (bundle "read" 1)))

rather than:

(slice 0 1 (req (bundle "read" 0)) ... (slice 0 1 (req (bundle "read"
readPortCount)) (slice 1 1 (req (bundle "read" 0))

which would be produced by the dup command.

9.7. Netlists

balsa-netlist processes the breeze file by applying the specified parameters to the abs cell
descriptions: The gate operators are expanded into instances of abstract gates containing single slice
arguments. The stretchable gate operators are expanded into trees of gates of a size determined by
the maximum gate fan in of the technology. The channels are expanded into their constituent vector
components. The names are mapped to the target gate names, and their arguments re-ordered as
necessary. Balsa-netlist then produces a .net netlist which is an internal netlist format, technology
dependant, but independent of all CAD system netlist formats. Each technology has several files to
control this stage:

9.7. Netlists

118 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

gate-mappings.net - This file contains the library cells to use in place of abstract gates and
helper cells. Each entry contains the abstract gate name, the technology cell name foreach available
drive strength of the gate, and the pin mapping that takes place between the abstract gate pin
ordering and the actual gate ordering. Eg:

("and2" ("AND2" 1 2 0) (1 "AND2") (2 "AND22") (3 "AND23") (4 "AND24"))

Here an abstract 2-input and gate maps to the cell AND2, where the first pin (pin 0) of the absract
gate, in this case the output, maps to the last pin of the actual gate, the second (pin 1) to the first pin
etc. The customisable gate operators, helper cells, must also be declared in here to allow the same
helper cell to have different definitions in the various technologies.

<technology>-cells.net - This file contains a list of all the cells in the library and their
arguments.

balsa-cells.net - This file contains a list of all the helper cells and balsa primitives not
supported by the technology, e.g. c-elements, s-elements, arbiters etc.

The expansion process produces an intermediate netlist, based on the constraints of the target
technology, but independent of any established netlist format, allowing each technology to produce
netlists in various forms. The same format is used to declare the technology and helper cells in the
files mentioned above. A circuit declaration The format of a circuit declaration has 4 fields: ports,
nets, instances, attributes.

ports: contains the channels of the input expanded into their constituent vectors. Each vector description is
of the form:

(name direction width)

The naming scheme for channel portions is:

<channelname>_<channum><portionid>

<channum> : the channel index. If the channel is unarrayed, this number is always zero.

<portionid >: the portion identifier. Each portion has a different identifier shown below:

nets contains all the internal nodes of the circuit with arrayed nodes expanded into their individual. A net
declaration takes the form:

(netname width)

the naming scheme for nodes is:

<nodename>_<nodenum><nodeid> :

<nodenum>: the node index, zero if unarrayed node.

<nodeid> : ÒnÓ.

The above naming schemes apply to generated circuits only: Technology and user defined helper
cells are not restricted to this scheme, but must conform to target technology naming schemes.

iinstances lists of all the instances comprising the circuit. The format of instance declaration is:

(instance instancename ("connection" "connection" ...))

r - request wire
a - acknowledge wire
d - data vector
r0d, r1d, r2d, r3d - req data vectors (dual-rail/one-of-four)
a0d, a1d, a2d, a3d - ack data vectors (dual-rail/one-of-four)

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 119

9.8. The BALSATECH environment variable

where, instancename is the name of the instance as it appears in either the <technology>-cells or
balsa-cells files. The connections are either nets or ports of the circuit, and are ordered in the
ordering given in the .net files of the technology.

attributes Attribute declarations are of the form:

(attributename value)

Attributes currently in use are:

cell-type: defines the circuit to be a helper cell or a balsa-generated component allowing netlists to
be created with helper cell descriptions removed.

global-ports: allows ports of a helper cell to be defined as global, which are then propagated
through the breeze netlist to the top level, this allows, for example, explicit reset signals on helper-
cells.

feedthrough: allows the insertion of assignment statements in components to avoid unnecessary
buffering in designs. The arguments are the port indices of the left and right handsides of the
assignment statement.

simulation-initialise: currently only configured for verilog netlists, this option signals balsa-
netlist to insert verilog initialisation code into the final netlist to force certain signals into known
states. The arguments to the attribute are a list of pairs (signal-name value), only signal-bit signals
can be assigned. The resulting verilog code requires two defines to be set in the testbench
balsa_simulate , a boolean to determine when simulation code is being used, and
balsa_init_time , which determines the length of time the signals should be forced to their
designated value before being released.

Balsa-netlist takes the .net netlist and maps it to specific netlist formats, this includes changing the
instance declarations, channel naming schemes and node declarations. In formats where there is a
restriction on the length of circuit names, balsa-netlist creates a new abbreviated name, in order to
keep track of the original component it keeps track of this mapping in <technology>.map, in the
invocation directory. Then every time this name mapping needs to take place the .map file is
searched, and where possible the previous mapping is used.

9.8. The BALSATECH environment variable

<technologyname>/<stylename>/<styleoptions>*

The implementation style of a circuit is determined by the BALSATECH environment variable.
This sets the technology, implementation style and also any options available for the
implementation style.

e.g.

export BALSATECH=example/dualb/variable=spacer:logic=balanced

Sets the technology to the example technology, using the Dual-Rail backend. The last section sets
the style options. Each implementation style has its own style options, these options can be used to
change the resultant implementation from the default standard. Examples of style options include
changing the cell library or the variable option which determines the cell to use for storage inside
the Balsa Variable components. The logic option determines the style of logic to be used in the
Binary-Function components. The format of the options is shown above with options being colon
separated. Values can be assigned to options that may take multiple vaules, Boolean options just
need to be set to ÒtrueÓ.

Current stylenames (corresponding to implemetation styles) are:

¥ four_b_rb Ð bundled data four-phase, broad, reduced broad protocol

¥ dual_b Ð dual rail delay insensitive encoding with return to zero signalling

9.9. The ABS Grammar

120 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

¥ one_of_2_4 Ð one-of-four delay insensitive encoding with return to zero signalling

9.9. The ABS Grammar

Components component description:

(primitive-part ápartnameñ
 áparameter-exprñ
 áport-exprñ
 ásymbol-exprñ
 áimplementation-exprñ
)

áparameter-exprñ (parameters
 ((Òáparam-nameñÓ átype-exprñ))*
)

áport-exprñ (ports
 ((áport-typeñ ÒáportnameñÓ áport-senseñ áport-directionñ átype-exprñ))+
)

áport-typeñ port
| sync-port
| arrayed-port
| arrayed-sync-port

áport-senseñ passive
| active

áport-directionñ input
| output

ásymbol-exprñ (symbol
(centre-string "ásymbolñ")

)

áimplementation-
exprñ

(implementation
((style ÒástylenameñÓ áinclude-exprñ | ástyle-descrñ))+

)

Styles Descriptions of implementation styles

ástyle-descrñ ádeÞne-exprñ
ánode-exprñ
ágate-exprñ
(áconnection-exprñ)?

ádeÞne-exprñ (defines
 (ábound-exprñ)*
)

ánode-exprñ (nodes
 ((" ánodenameñ " áwidthñ álow-bit-indexñ ácardinalityñ))*
)

ágate-exprñ (gates
 ((ágate-operatorñ))*
)

áconnection-exprñ (connections
 ((connect áinput-sliceñ (áoutput-sliceñ)+))*
)

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 121

9.9. The ABS Grammar

Gates Descriptions of gates

ágate-operatorñ áFixed Gateñ
| áStretchable Gateñ
| áControl Gateñ
| áOther Gateñ

áFixed Gateñ (constant ávalueñ áoutput-sliceñ)
| (s-element árequest-in-sliceñ áack-in-sliceñ árequest-out-slice ñ áack-out-sliceñ)
| (xor2 áoutput-sliceñ áinput-slice0ñ áinput-slice1ñ)
| (mux2 áoutput-sliceñ áinput-slice0ñ áinput-slice1ñ áselect-sliceñ)
| (demux2 áinput-sliceñ áoutput-slice0ñ áoutput-slice1ñ áselect-sliceñ)
| (inv áoutput-sliceñ áinput-sliceñ)
| (keeper-inv áoutput-sliceñ áinput-sliceñ)
| (latch áenableñ áinput-sliceñ áoutput-sliceñ)
| (latch-n-enable áenable-sliceñ áinput-sliceñ áoutput-sliceñ)
| (tri-buffer áenable-sliceñ áinput-sliceñ áoutput-sliceñ)
| (tri-inv áenable-sliceñ áinput-sliceñ áoutput-sliceñ)
| (mutex áinput-sliceAñ áinput-sliceBñ áoutput-sliceAñ áoutput-sliceBñ)

áStretchable
Gateñ

(gnd (áoutput-slicesñ)+)
| (vcc (áoutput-slicesñ)+)
| (connect áinput-sliceñ (áoutput-slicesñ)+)
| (and áoutput-sliceñ (áinput-slicesñ)+)
| (nand áoutput-sliceñ (áinput-slicesñ)+)
| (or áoutput-sliceñ (áinput-slicesñ)+)
| (nor áoutput-sliceñ (áinput-slicesñ)+)
| (c-element áoutput-sliceñ (áinput-slicesñ)+)

áControl Gateñ áif-gate-operatorñ
| ácond-gate-operatorñ
| ácase-gate-operatorñ
| ágate-gate-operatorñ

áif-gate-operatorñ (if áexprñ
ágate-operatorñ
ágate-operatorñ

)

ácond-gate-
operatorñ

(cond
((ácondition-exprñ ágate-operator)) +
((else ágate-operatorñ))?

)

ácase-gate-
operatorñ

(case áexprñ
((((átest-valueñ)+) ágate-operatorñ))+
((else ágate-operatorñ))?

)

ágates-gate-
operatorñ

(gates (ágate-operatorñ)+)

áOther Gateñ (constant ávalueñ áoutput-sliceñ)
| (print (áargñ)*)
| (macro ámacro-nameñ (ámacro-argsñ)*)
| (encode áoptionñ ((áinput-slicesñ)+) áoutput sliceñ)
| (decode áoptionñ áinput-sliceñ ((áoutput-slicesñ)+))

| (cell Òácell-nameñÓ (ásingleton-sliceñ)*)

ámacro-argsñ (áidentiÞerñ)+

9.9. The ABS Grammar

122 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

áoptionñ and-or
| c-or
| m-of-n-mapping ámapping-functionñ

Slices Slices and slice operators

ásliceñ ((áslice-operatorñ)* (ápartition-operatorñ) ? ábundle-exprñ)

áslice-operatorñ (combine (ásliceñ)+)
| (dup ásliceñ)
| (dup-each ásliceñ)
| (smash ásingle-sliceñ)
| (filter ásingle-sliceñ)
| (slice álow-bit-indexñ ácardinalityñ ásingle-sliceñ)

The last 3 operators take ásingle-sliceñ arguments, these arguments must be the result of a
partitioning operator only and cannot be preceeded by any other slice operator.

ápartition-
operatorñ

(req ábundle-exprñ)
| (req0 ábundle-exprñ)
| (req1 ábundle-exprñ)
| (req2 ábundle-exprñ)
| (req3 ábundle-exprñ)
| (ack ábundle-exprñ)
| (ack0 ábundle-exprñ)
| (ack1 ábundle-exprñ)
| (ack2 ábundle-exprñ)
| (ack3 ábundle-exprñ)
| (data ábundle-exprñ)
| (node ábundle-exprñ)

ábundle-exprñ ÒánameñÓ
| bundle ÒánameñÓ áindexñ
| bundles ÒánameñÓ áindexñ ácountñ
| each ÒánameñÓ

Include description of include statements

áinclude-stmtñ (include (átechnology-descñ | ÒásubdirectoryñÓ)? ÒáÞlenameñÓ)

átechnology-
descñ

tech Òátech-nameñÓ

The include statement allows the contents of other .abs files to be inserted into this file. Included
.abs files must be present in the components directory (or any sub-directory) of one of the valid
Balsa technologies. For example:

(include Òctrl-broad/SequenceÓ)

will include the contents of the file components/ctrl-broad/Sequence.abs in the current technology.

(include tech ÒcommonÓ Òctrl-broad/SequenceÓ)

will include the same file but from the ctrl-broad sub-directory of the components directory of the
common technology.

Types type definitions

átype-exprñ ánamed-type-exprñ
| ánumeric-type-exprñ
| áalias-type-exprñ
| áarray-type-exprñ
| áenumeration-type-exprñ
| árecord-type-exprñ

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 123

9.9. The ABS Grammar

| ástring-type-exprñ

ánamed-type-
exprñ

(named-type ánameñ)

The type identified by named-type are useful predeclared types (in balsa/types/basic and balsa/
types/synthesis) such as cardinality or boolean..

ánumeric-type-
exprñ

(numeric-type ásignednessñ áwidthñ)

áalias-type-exprñ (alias-type ánewnameñ áoldnameñ)

áarray-type-exprñ (array-type átype-exprñ álowIndexñ áelementCountñ)

áenumeration-
type-exprñ

(enumeration-type ásignednessñ áwidthñ áenum-listñ)

árecord-type-
exprñ

(record-type áwidthñ áÞeldsñ)

ástring-type-exprñ ácase-specñ (; ácase-specñ)*

This type is only used a parameters to a select few gates which take a specification string

áenum-listñ: ((ánameñ ávalueñ))+

áÞeldsñ ((ánameñ átype-exprñ))+

ácase-specñ árangeñ (, árangeñ)*

árangeñ [0-9] (.. [0-9])*

ásignednessñ #t
| #f

Expressions expression types

áexprñ álambda-dec-exprñ
| álambda-call-exprñ
| áif-exprñ
| áarith-exprñ
| áfn-exprñ
| áscheme-exprñ
| áencoding-exprñ
| áparam-exprñ
| ábind-nameñ
| áprimitive-exprñ

álambda-dec-
exprñ

(lambda áidentiÞerñ (áparam-listñ) ábody-exprñ)

álambda-call-
exprñ

(áidentiÞerñ (áexprñ)*)

áif-exprñ (if áexprñ áexpr1ñ áexpr2ñ) ;;áexprñ is consequent, áexprñ is alternative.

áarith-exprñ (áarith-opñ (áexprñ)+)

áfn-exprñ (pop-count áexprñ)
| (find-set-bit áexprñ)
| (find-clear-bit áexprñ)
| (style-option áexprñ)
| (bit-length áexprñ)
| (bit-set? áexprñ áexprñ)

9.10. Netlist Format

124 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

| (bit-xor áexprñ áexprñ)
| (.. áexprñ áexprñ)
| (print (áexprñ)*)
| (note (áexprñ)*)

áscheme-exprñ (expt áexponent-exprñ áexprñ)
| (mod áexprñ áexprñ)
| (min áexprñ (áexprñ)*)
| (max áexprñ (áexprñ)*)
| (quotient áexprñ áexprñ)
| (and áexprñ (áexprñ)+)
| (not áexprñ)
| (or áexprñ (áexprñ)+)
| (assoc áexprñ áexprñ)
| (cons áexprñ áexprñ)
| (car áexprñ)
| (cdr áexprñ)
| (cadr áexprñ)
| (caar áexprñ)
| (let álet-exprñ áexprñ)
| (list (áexprñ)*)
| (length áexprñ)
| (reverse! áexprñ)
| (append (áexprñ)*)
| (null? áexprñ)
| (odd? áexprñ)
| (pair? áexprñ)
| (string? áexprñ)
| (string-append (áexprñ)*)
| (make-string áexprñ (áexprñ)?)
| (substring áexprñ áexprñ (áexprñ)?)
| (string-set! áexprñ áexprñ áexprñ)
| (string-length áexprñ)
| (number->string áexprñ)

áencoding-exprñ (complete-encoding áexprñ)

The argument to complete encoding is type specification string. It is used to make sure the decode/
encode gate specifications are correct.

áparam-exprñ (param Ò áparam-nameñÓ)

áprimitive-exprñ #t
| #f
| ([0-9])*

áparam-listñ (áidentiÞerñ)*

álet-exprñ (ábound-exprñ)+)

ábound-exprñ (áidentiÞerñ áexprñ)

áparam-listñ (áexprñ)*

áarith-opñ + | - | * | / | = | /= | > | < | >= | <=

9.10. Netlist Format

Netlist format of .net netlists

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 125

9.10. Netlist Format

ánetlistñ ((ánet-circuit-declñ))*

ánet-circuit-declñ (circuit ánameñ ánet-portsñ ánet-netsñ ánet-instancesñ á net-optionalñ)

ánet-portsñ (ports (ánet-portñ)*)

ánet-portñ (áportnameñ ánet-directionñ ácardinalityñ)

áportnameñ áchannelnameñ_ácardinalityñáportidñ

áportidñ | r | a | d
| r0d | r1d | r2d | r3d
| a0d | a1d | a2d | a3d

ánet-directionñ input
| output
| inout
| hiz

ánet-netsñ (nets (ánet-netñ)*)

ánet-netñ (ánameñ ácardinalityñ)

ánet-instancesñ (instances (ánet-instanceñ) *)

ánet-instanceñ (instance ánameñ ánet-instance-connectionsñ (ánet-instance-nameñ)?)

ánet-instance-
connectionsñ

((ánet-instance-connectionñ)*)

ánet-instance-
connectionñ

(ánameñ áindexñ)
| (ánameñ áindexñ ácardinalityñ)
| ánameñ
| ánet-vectorñ
| unconnected

ánet-vectorñ (vector (ánet-instance-connectionñ)*)

ánet-optionalñ (attributes (ánet-attributeñ) *)

ánet-attributeñ (ánet-attribute-nameñ ávalueñ)

áattributesñ cell-type ácell-nameñ
global-ports áportnameñ
feedthrough áport-indicesñ
simulation-reset ásimulation-signalñ

áport-indicesñ ([0-9])+ (([0-9])+)*

ásimulation-
signalñ

((ánet-instance-connectionñ ásimulation-valueñ))+

ásimulation-
valueñ

0 | 1 | x | z

9.10. Netlist Format

126 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 127

10 Balsa Reference

10.1. Summary

This chapter documents the command line interface to some of the more important components of
the Balsa system. Balsa-mgr is a GUI to these programs, but the expert user may wish to build their
own design flow by calling these programs directly.

10.2. Balsa programs

balsa-c {<switch>}* <block/file-name>

The switches are:

-I <path> append <path> to import Þle path (--import)
-e discard import path (--discard-import)
-o <directory> directory for output intermediate Þles (--output)
-O DON'T optimise generated HC's (--no-optimise)
-b inhibit banner (--no-banner)

-t <distance>
tabs indent by <distance> places (--tab)
Used for identifying correctly column numbers in the source code when error
reporting.

-v be verbose (--verbose)

-c <option>

compilation option (--compile-option)
<option> can be:
allow-sequential-selection -- allow the generation of the non-delay-
insensitive BrzCallDemuxPush and BrzActive components
Deprecated code generation features:
var-read-split -- split variables on read bitÞelds as well as writes
no-wire-forks -- don't use the WireFork component as a replacement for
permanent Forks
use-masks -- use Mask components instead of slice

-- accept no more switches
-B don't generate a Breeze Þle (--no-breeze)

10.2. Balsa programs

128 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

balsa-netlist {<switch>}* <block/file-name>

The switches are:

-F generate a ßat Breeze Þle (--ßatten-Þles)

-i
suppress import [balsa.types.synthesis] line in output
(--no-imports-in-output)

-j
suppress Ôimport [balsa.types.synthesis]Õ line in output
(--no-imports-in-output)

-p
decorate error/warning messages with balsa-c source position
(--error-positions)

-M
 report a list of imported blocks on which this Þle depends (-
(--depends)
used by balsa-md for its dependency analysis

-P <type>
default print command behaviour.
Type can be: (runtime | report | error | warning | fatal)
(--print-type)

-h, -? Display this message (--help)
-b Don't print the balsa-netlist banner (--no-banner)
-v Be verbose, print cell names as they are produced. (--verbose)
-c Don't try to make a CAD system native netlist (--no-cad-netlist)

-m
Don't read in old cell name mappings from the .map Þle (--no-old-cell-
names)

-n <format>

Dump a netlist in the given format (edif, verilog, compass ...) as well as
any other scheduled netlist writes, several -n can be used (--make-other-
netlist).
NB. Name mapping/mangling occurs when the internal netlist is
generated, all of these additional netlists will contain names mapped to
work with the default format.

-d
 Don't print prototypes for undeÞned cells (where appropriate).
(--no-prototypes)

-p
Do print prototypes for undeÞned cells (where appropriate)
(--prototypes)

-i <type>
Add cell type <type> to the list of cell types to netlist. If no additional cell
types are given, then only the netlist deÞnitions for Balsa cells are emitted
(--include-cell-type)

-x <cellname>
 Exclude the cell <cellname> from the generated netlist. No deÞnition or
prototype will be emitted (--exclude-cell)

-I <directory> Add named directory to the Breeze import path (--import)

-t
 <component>
<args>

create test component (--test-component)

-l <Þlename> Make a list of generated Þles in Þle <Þlename> (--Þle-list)

-a
Emit deÞnitions for all parts found even if the top level block doesn't need
them (--all-parts)

-s
Insert simulation initialisation code in netlist formats which support this
option (--simulation-initialise)

-L <Þlename> write a log of balsa-netlist messages to Þle <Þlename> (--log)

-f
 Replace feedthrough cells with netlist appropriate aliases
(--replace-feedthroughs)

-g Propagate global ports on cells (--propagate-globals)

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 129

10.2. Balsa programs

-e <procedureName>
Produce encounter compatible netlist. This option buffers the ports of
procedure <procedureName> and propagates power and ground
connections through sub-procedures to top level (--encounter)

10.2. Balsa programs

130 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 131

11 The Balsa Language DeÞnition

11.1. Summary

The syntax of the balsa language is given in this chapter. An extended form of BNF is used to
describe the syntax. A term (a)* denotes zero or more repetitions of the term a, the term (a)+
denotes one or more repetitions of a and (a)? indicates that the term a is optional (i.e. zero or one
repetitions of the term a). Terminal symbols are shown in bold face, non terminal symbols are
enclosed by angle brackets áñ.

11.2. Reserved words

The following are reserved words. Most (but not all) correspond to current keywords in the Balsa
language, others are reserved for future releases of the Balsa system.

active, also, and, arbitrate, array, as, begin, bits, case,
channel, constant, continue, else, end, enumeration, for function,
halt, if, import, in, input, is, let, local, log, loop, multicast,
new, not, of, or, output, over, parameter, passive, print,
procedure, pull, push, record, select, shared, signed, sizeof,
sync, then, type, val, variable, while, xor .

11.3. Balsa Language DeÞnition

ábin-digitñ ::= (0 | 1)

áoct-digitñ ::= (0 ... 7)

ádec-digitñ ::= (0 ... 9)

áhex-digitñ ::= (0 ... 9 | a ... f | A ... F)

áletterñ ::= (a ... z | A ... Z)

11.3. Balsa Language Definition

132 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

áidentiÞerñ ::= (áletterñ | _) (áletterñ | ádec-digitñ | _)*

áliteralñ ::= (1 ... 9) (ádec-digitñ | _)*

| 0 (áoct-digitñ | _)*

| (0b | 0B) (ábin-digitñ | _ | x | X | ?)+

| (0x | 0X) (áhex-digitñ | _ | x | X | ?)+

| ?

ástring-charñ ::= (áletterñ | ádec-digitñ | | ! | # | $ | % | & | ' | (|) | * | + | , | - | . | / |
: | ; | < | = | > | ? | @ | [|] | ̂ | _ | ̀ | { | | | } | ~)

ástringñ ::= " (ástring-charñ)* "

áÞleñ ::= (import [ádotted-pathñ])* áouter-declarationsñ

ádotted-pathñ ::= áidentiÞerñ (. áidentiÞerñ)*

áouter-declarationsñ ::= (áouter-declarationñ)*

áouter-declarationñ ::= type áidentiÞerñ is átype-declarationñ

| constant áidentiÞerñ = áexpressionñ (: átypeñ)?

| procedure áidentiÞerñ is áidentiÞerñ ((áprocedure-formalsñ))?

|

procedure áidentiÞerñ ((áprocedure-formalsñ))? is
(local)? áinner-declarationsñ begin ácommandñ end

|

function áidentiÞerñ ((áfunction-formalsñ))? =
áexpressionñ (: átypeñ)?

|

function áidentiÞerñ ((ábuiltin-function-formalsñ))? is
builtin

: átypeñ

|

if áexpressionñ then áouter-declarationsñ
(| áexpressionñ then áouter-declarationsñ)*
(else áouter-declarationsñ)?
end

átype-declarationñ ::= átypeñ

| new átypeñ

|

record áidentiÞersñ : átypeñ
(; áidentiÞersñ : átypeñ)*
(end | (over átypeñ))

|

enumeration áidentiÞerñ (= áexpressionñ)?
(, áidentiÞerñ (= áexpressionñ)?)*
(end | (over átypeñ))

| builtin

áidentiÞersñ ::= áidentiÞerñ (; áidentiÞerñ)*

átypeñ ::= áidentiÞerñ

| áexpressionñ (signed)? bits

| array árangeñ of átypeñ

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 133

11.3. Balsa Language Definition

áfunction-formalsñ ::= áidentiÞersñ : átypeñ (; áidentiÞersñ : átypeñ)*

ábuiltin-function-
formalsñ

::= áformal-parametersñ

| áfunction-formalsñ

| áformal-parametersñ ; áfunction-formalsñ

áprocedure-formalsñ ::= áformal-parametersñ

| áformal-portsñ

| áformal-parametersñ ; áformal-portsñ

áformal-parametersñ ::= parameter áidentiÞersñ : átypeñ
(; parameter áidentiÞersñ : átypeñ)*

áformal-portsñ ::= áformal-portñ (; áformal-portñ)*

áformal-portñ ::= (array árangeñ of)? (input | output) áidentiÞersñ : átypeñ

| (array árangeñ of)? sync áidentiÞersñ

|

if áexpressionñ then áformal-portsñ
(| áexpressionñ then áformal-portsñ)*
(else áformal-portsñ)?
end

árangeñ ::= áexpressionñ

| áexpressionñ .. áexpressionñ

| over átypeñ

áinner-declarationsñ ::= (áinner-declarationñ)*

áinner-declarationñ ::= áouter-declarationñ

| variable áidentiÞersñ : átypeñ

| áchannel-optionsñ (array árangeñ of)? channel áidentiÞersñ :
átypeñ

| áchannel-optionsñ (array árangeñ of)? sync áidentiÞersñ

|

shared áidentiÞerñ is (local)? áinner-declarationsñ
begin ácommandñ end

|

if áexpressionñ then áinner-declarationsñ
(| áexpressionñ then áinner-declarationsñ)*
(else áinner-declarationsñ)?
end

áchannel-optionsñ ::= (multicast)?

áexpressionñ ::= áidentiÞerñ

| áliteralñ

| ástringñ

| (áidentiÞerñ)? { áexpressionsñ }

| áidentiÞerñ ' áidentiÞerñ

| áunary-operatorñ áexpressionñ

11.3. Balsa Language Definition

134 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

| sizeof áidentiÞerñ

| áexpressionñ ábinary-operatorñ áexpressionñ

| áexpressionñ . áidentiÞerñ

| áexpressionñ [árangeñ]

| (áexpressionñ as átypeñ)

| # áexpressionñ

| (áexpressionñ)

| áidentiÞerñ ((áexpressionsñ)?)

áexpressionsñ ::= áexpressionñ (, áexpressionñ)*

áunary-operatorñ ::= (- | + | not | log | #)

ábinary-operatorñ ::= (+ | - | * | / | % | ̂ | = | /= | < | > | <= | >= | and | or | xor | @)

ácommandñ ::= continue

| halt

| áchannelñ -> álvalueñ

| áchannelñ -> áchannelñ

| áchannelsñ -> then ácommandñ end

| áchannelsñ ->! then ácommandñ end

| áchannelñ <- áexpressionñ

| sync áchannelñ

| álvalueñ := áexpressionñ

| áblockñ

| ácommandñ ; ácommandñ

| ácommandñ || ácommandñ

| ácommandñ ||! ácommandñ

| loop ácommandñ end

| loop ácommandñ while áexpressionñ end

| loop (ácommandñ)? while águardsñ (also ácommandñ)? end

| if águardsñ (else ácommandñ)? end

|

case áexpressionñ of ácase-guardñ
(| ácase-guardñ)*
(else ácommandñ)?
end

| for (|| | ;) áidentiÞerñ in árangeñ then ácommandñ end

| select áchannel-guardñ (| áchannel-guardñ)* end

| select! áchannel-guardñ (| áchannel-guardñ)* end

| arbitrate áchannel-guardñ | áchannel-guardñ end

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 135

11.3. Balsa Language Definition

| print áexpressionsñ

| áidentiÞerñ ((áprocedure-actualsñ)?)

áchannelsñ ::= áchannelñ (, áchannelñ)*

áchannelñ ::= áidentiÞerñ

| áidentiÞerñ [áexpressionñ]

álvalueñ ::= áidentiÞerñ

| álvalueñ . áidentiÞerñ

| álvalueñ [áexpressionñ]

áblockñ ::= (local áinner-declarationsñ)? begin ácommandñ end

| [ácommandñ]

águardsñ ::= áexpressionñ then ácommandñ
(| áexpressionñ then ácommandñ)*

ácase-guardñ ::= ácase-matchesñ then ácommandñ

| for áidentiÞerñ in ácase-matchesñ then ácommandñ

ácase-matchñ ::= áexpressionñ

| áexpressionñ .. áexpressionñ

ácase-matchesñ ::= ácase-matchñ (, ácase-matchñ)*

áchannel-guardñ ::= áchannelsñ then ácommandñ
(| áchannelsñ then ácommandñ)*

áprocedure-actualsñ ::= áactual-parametersñ

| áactual-channelsñ

| áactual-parametersñ , áactual-channelsñ

áactual-parametersñ ::= áactual-parameterñ (, áactual-parameterñ)*

áactual-parameterñ ::= áexpressionñ

| (type)? átypeñ

áactual-channelsñ ::= áactual-channelñ (, áactual-channelñ)*

áactual-channelñ ::= áidentiÞerñ

| áactual-channelñ [árangeñ]

| <- áexpressionñ

| -> álvalueñ

| áblockñ

| { áactual-channelñ (, áactual-channelñ)* }

| áactual-channelñ @ áactual-channelñ

11.3. Balsa Language Definition

136 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 137

12 The Breeze Language DeÞnition

12.1. Summary

Breeze is the intermediate language used for compiled Balsa prgrams. It serves as a repository for
libraries and is the level at which all tools in the Balsa system interact. Users who wish to use
components described outside of Balsa need to provide a Breeze wrapper for those components so
that they may be used within the Balsa system.

12.2. Breeze Language DeÞnition

Lexical

ádec-digitñ ::= (0 ... 9)

álc-letterñ ::= (a ... z)

áletterñ ::= (a ... z | A ... Z)

ápositiveñ ::= (1 ... 9) (ádec-digitñ)*

ánaturalñ ::= (0 | ápositiveñ)

áintegerñ ::= (ánaturalñ | - ápositiveñ)

áidentiÞerñ ::= " (áletterñ | _) (áletterñ | ádec-digitñ | _)* "

ádotted-identiÞerñ ::= " (áletterñ | _ | .) (áletterñ | ádec-digitñ | _ | .)* "

ábooleanñ ::= (#t | #f)

ásymbolñ ::= álc-letterñ (álc-letterñ | ádec-digitñ | _ | :)*

ástring-charñ ::= (áletterñ | ádec-digitñ | | ! | # | $ | % | & | ' | (|) | * | + | , | - | . | / |
: | ; | < | = | > | ? | @ | [|] | ̂ | _ | ̀ | { | | | } | ~ | \ | ")

áquoted-symbolñ ::= " ásymbolñ "

12.2. Breeze Language Definition

138 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

Main Breeze
language

ábreeze-Þleñ ::= (áimportñ)* (ádeÞnitionñ)*

áimportñ ::= (import ádotted-identiÞerñ)

ádeÞnitionñ ::= áconstant-defnñ

| átype-defnñ

| ápart-defnñ

| ábalsa-defnñ

| ánetlist-defnñ

| ácomposition-defnñ

áconstant-defnñ ::= (constant áidentiÞerñ áintegerñ átypeñ)

átype-defnñ ::= (type áidentiÞerñ átypeñ)

átypeñ ::= (numeric-type ábooleanñ ápositiveñ)

|

(enumeration-type ábooleanñ ápositiveñ
((áidentiÞerñ áintegerñ))+)

| (record-type ápositiveñ ((áidentiÞerñ átypeñ))+)

| (array-type átypeñ áintegerñ ápositiveñ átypeñ)

ápart-defnñ ::= (breeze-part áidentiÞerñ
(ports (ápart-portñ)*)
(attributes (ápart-attributeñ)*)
(channels (áchannelñ)*)
(components (ácomponentñ)*))

ábalsa-defnñ ::= ...

ápart-portñ ::= (sync-port áidentiÞerñ áport-senseñ ápositionñ (áoptionñ)*)

| (port áidentiÞerñ áport-senseñ áport-directionñ átypeñ ápositionñ (
áoptionñ)*)

|

(arrayed-port áidentiÞerñ áport-senseñ áport-directionñ átypeñ
áintegerñ ápositiveñ átypeñ ápositionñ (áoptionñ)*)

|

(arrayed-sync-port áidentiÞerñ áport-senseñ
áintegerñ ápositiveñ átypeñ ápositionñ (áoptionñ)*)

áport-senseñ ::= (active | passive)

áport-directionñ ::= (input | output)

ápart-attributeñ ::= (is-procedure)

| (is-function)

| (is-permanent)

| áview-attributeñ

| ápositionñ

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 139

12.2. Breeze Language Definition

Breeze
extensions

| áoptionñ

ápositionñ ::= (at ánaturalñ ánaturalñ ádotted-identiÞerñ ánaturalñ)

áoptionñ ::= (ásymbolñ (ávalueñ)*)

ávalueñ ::= áintegerñ

| áidentiÞerñ

| ábooleanñ

| ásymbolñ

| ((ávalueñ)*)

áchannelñ ::= (sync ápositionñ (áoptionñ)*)

| (áchannel-senseñ ápositiveñ ápositionñ (áoptionñ)*)

áchannel-senseñ ::= (push | pull)

ácomponentñ ::= (component áidentiÞerñ
(áparameterñ

áparameterñ ::= (áintegerñ | áidentiÞerñ)

áchannel-noñ ::= ápositiveñ

| ((ápositiveñ)+)

áview-attributeñ ::= (view áidentiÞerñ áview-specñ áoptionsñ)

áview-specñ ::= (lines-spec (ástringñ)+)

| (list-spec áquoted-symbolñ ávalueñ)

ánetlist-defnñ ::= (breeze-netlist áidentiÞerñ
(ports (ánet-portñ)*)
(attributes (ábreeze-net-attributeñ)*)
(nets (ánet-netñ)*)
(instances (ánet-instanceñ)*))

ánet-portñ ::= (áidentiÞerñ ánet-directionñ ápositiveñ)

ánet-directionñ ::= (input | output | inout | hiz)

ánet-netñ ::= (áidentiÞerñ ápositiveñ)

ánet-instanceñ ::= (instance áidentiÞerñ
((ánet-instance-connectionñ)*) (áoptionñ)*)

ánet-instance-
connectionñ

::= ánet-single-instance-connectionñ

| (vector (ánet-instance-connectionñ)+)

ánet-single-instance-
connectionñ

::= áidentiÞerñ

12.2. Breeze Language Definition

140 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

| (áidentiÞerñ ánaturalñ)

| (áidentiÞerñ ánaturalñ ápositiveñ)

| unconnected

ábreeze-net-
attributeñ

::= áview-attributeñ

| áoptionñ

ácomposition-defnñ ::= (breeze-composition áidentiÞerñ
(ports (ápart-portñ)*)
(attributes (ácomp-attributeñ)*)
(nets (ánet-netñ)*)
(instances (ácomp-instanceñ)*))

ácomp-instanceñ ::= (instance áidentiÞerñ
((ácomp-instance-connectionñ)*) (áoptionñ)*)

ácomp-instance-
connectionñ

::= ánet-single-instance-connectionñ

| ácomp-single-instance-connectionñ

| (vector (ácomp-instance-connectionñ)+)

ácomp-single-
instance-
connectionñ

::= (ácomp-portion-connectionñ ánaturalñ)

| (ácomp-portion-connectionñ ánaturalñ ápositiveñ)

| ácomp-portion-connectionñ

ácomp-portion-
connectionñ

::= áidentiÞerñ

| (áportionñ áidentiÞerñ)

| (áportionñ áidentiÞerñ ánaturalñ)

ácomp-attributeñ ::= áview-attributeñ

| ápositionñ

| áoptionñ

áportionñ ::= áportion-nameñ

| (áportion-nameñ ánaturalñ)

áportion-nameñ ::= (req | ack | data)

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 141

13 The Breeze Components

13.1. Summary

Each of the handshake components described in this section is accompanied by a description of that
componentÕs behaviour. This behaviour is expressed in a notation invented by Bardsley [5], which
is a modified form of van BerkelÕs handshake circuit calculus [1].

13.2. Activation driven control components

The control components provide the events used by other components to sequence their activities.
Each control component has a passive sync activation port and optionally a number of active sync
output activation ports. Connecting the output activation port of a component to the activation port
of another allows control trees to be constructed in which activity at the leaf ports is controlled by a
single collective activation port on the root component. Activity on the output activations is
enclosed within handshakes on the activation port and so leaf activity is enclosed within handshakes
on the root componentÕs activation. These components are used primarily to implement command
composition in handshake circuit HDLs through activation triggered sub circuits connected to
control componentsÕ output activation channels. The Balsa control components are: Loop,
SequenceOptimised (replacing the deprecated Sequence component), Concur, Fork and WireFork.

13.3. Channel termination components

These components are: Continue, ContinuePush, Halt and HaltPush.

13.4. Control to datapath interface components

A small number of components allow control sync channels to interact with data transactions. The
transferrer is the most common of these components, it controls the transfer of data from an active
input port to an active output port under the control (and enclosure) of a passive activation port.
Components with activations implementing looping and condition control operations as well as the
Case component (which translates data values on a passive input activation port into activity on one

13.5. Pull datapath components

142 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

of a number of active sync ports) also fall in this component class. The complete set of components
is: While, Bar, Fetch, FalseVariable, Case, NullAdapt, Encode.

13.5. Pull datapath components

Compiled data operations (+, -, ...) in Balsa consist of a sync channel meeting a transferrer causing a
result to be requested from a tree of pull datapath components implementing the required function
and pushing that result onto an output channel or into a variable (variables are the components
which implement HDL level variables as latches). The pull datapath components form an activation
driven tree in the same way as control components but with variables or input channels at the leaves.
The activations of these components are pull ports with the incoming request flowing (and forking)
towards the leaves of the tree with the result flowing (and joining) back to the root forming the result
acknowledgement. The datapath components are: Adapt, Slice, Constant, Combine, CombineEqual,
CaseFetch, UnaryFunc, BinaryFunc and BinaryFuncConstR.

13.6. Connection components

This class includes components used to connect together channels of the same sense, provide
synchronisation between multiple channels and combine the activity of a number of channels to
allow multiplexing and resource sharing. This class also includes variables as they occupy the same
positions in a handshake circuit as other types of channel connection component. Other than
variables, the connection components in a handshake circuit are the only components whose
presence isnÕt explicitly described in the HDL source for that handshake circuit. This is because they
are usually present as glue to implement HDL level channels and in particular, the multicast nature
of Balsa channels. The greater part of connection components implementations consist of just port-
to-port wire connections. For this reason, optimising and combining connection components gives
us better control of the location of troublesome wire forks which can cause wire load and drive
strength management problems in implementation.

The collection of synchronising and resource sharing connection components is mostly borrowed
from the Tangram component set with the addition of parameterised arrayed ports. The connection
components are: ForkPush, Call, CallMux, CallDemux, Passivator, PassivatorPush, Synch,
SynchPull, SynchPush, DecisionWait, Split, Arbiter and Variable.

13.7. Non-delay-insensitive components

These are unsafe components whose behaviour can break due to race conditions. They are generated
by the Balsa compiler when sequenced select/arbitrate statements on the same channel are used. The
activation of their input leads to the activation of all their outputs, but only one output
acknowledgement is expected in return. Other outputs will be Returned-To-Zero (if 4-phase
protocol) even without a proper acknowledgement. These components are: CallActive and
CallDemuxPush.

13.8. Simulation-only components

These components are only used for simulation. They cannot be synthesised. Currently, only one
component fits in this category: BuiltinVariable.

13.9. Breeze components ordered by name

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 143

13.9. Breeze components ordered by name

ActiveEagerFalseVariable
(parameter width : cardinal;

parameter readPortCount : cardinal;
parameter specification : string;
passive sync activate;
active input write : width bits;
active sync signal;
array readPortCount of passive output read)

#[activate: write ?° [signal ; v := write]] || #[read0 !° v] || ... || #[readreadPortCount-1 !° v]

Adapt
(parameter outputWidth : cardinal;

parameter inputWidth : cardinal;
parameter outputIsSigned, inputIsSigned :
boolean;
passive output out : outputWidth bits;
active input inp : inputWidth bits)

#[out !° inp ?· adapt(outputWidth, inputWidth, outputIsSigned, inputIsSigned, inp)]

Arbiter
(sync inpA, inpB, outA, outB)

#[[inpA : inpB | inpB : outB]]

Bar
(parameter guardCount : cardinal;

passive output guard : 1 bits;
passive sync activate;
array guardCount of active input guardInput
: 1 bits;
array guardCount of active sync activateOut)

#[guard !° (c := [guardInput0 ?
· ... ?· guardInputguardCount-1 ?

·

 choose(guardInput0, ..., guardInputguardCount-1)]) != -1)] ||
#[activate : activateOutc]

activate

read[]width
write

signal

#readPortCount

specification

aeFV

outinp
inputWidth outputWidth
inputIsSigned outputIsSigned

Adapt

inpA

inpB outB

outA

Arb

1
guardInput[]

#guardCount

#guardCount

1
guard

activate

[]
activateOut[]

13.9. Breeze components ordered by name

144 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

BinaryFunc
(parameter outputWidth : cardinal;

parameter inputAWidth : cardinal;
parameter inputBWidth : cardinal;
parameter op : BinaryOperator;
parameter outputIsSigned : boolean;
parameter inputAIsSigned : boolean;
parameter inputBIsSigned : boolean;
passive output out : outputWidth bits;
active input inpA : inputAWidth bits;
active input inpB : inputBWidth bits)

type BinaryOperator is enumeration (op symbol between brackets)
 Add (+), Subtract (-), ReverseSubtract (\\-), Equals (==), NotEquals (!=), LessThan (<),
 GreaterThan (>), LessOrEquals (<=), GreaterOrEquals (>=), And (&), Or (|)
end

#[out !° inpA ?· inpB ?· op(outputWidth, outputIsSigned, inputAIsSigned,
 inputBIsSigned, op, inpA, inpB)]

BinaryFuncConstR
(parameter outputWidth : cardinal;

parameter inputWidth : cardinal;
parameter constWidth : cardinal;
parameter op : BinaryOperator;
parameter outputIsSigned : boolean;
parameter inputIsSigned : boolean;
parameter constIsSigned : boolean;
parameter constant : constWidth bits;
passive output out : outputWidth bits;
active input inp : inputWidth bits)

#[out !° inp ?· op(outputWidth, outputIsSigned, inputIsSigned,
 constIsSigned, op, constant, inp)]

BuiltinVariable
(parameter readPortCount : cardinal;

parameter name : string;
passive input write : 64 bits;
array readPortCount of output read : 64 bits)

#[write ?° v := write] ||
#[read0 ! v] || ... || #[readreadPortCount-1 !° v]

op out
outputWidth

inputAWidth
inputAIsSigned

inputBWidth
inputBIsSigned

inpB

inpA
outputIsSigned

op outinp
inputWidth outputWidth
inputIsSigned

constant

constIsSigned
constWidth

read[]

#readPortCount

namewrite
64 bits

64 bits

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 145

13.9. Breeze components ordered by name

Call
(parameter inputCount : cardinal;

array inputCount of passive sync inp;
active sync out)

#[[inp0 : out | ... | inpinputCount-1 : out]]

CallMux
(parameter width : cardinal;

parameter inputCount : cardinal;
array inputCount of passive input inp : width
bits;
active output out : width bits)

#[[out !· inp0 | ... | out !· inpinputCount-1]]

CallDemux
(parameter width : cardinal;

parameter outputCount : cardinal;
array outputCount of passive output out :
width bits;
active input inp : width bits)

#[[out0 !° inp ?· inp | ... | outoutputCount-1 !° inp ?· inp]]

CallActive
(parameter outputCount : cardinal;

passive sync inp;
array outputCount of active sync out)

#[inp: [out0 , ... , outoutputCount-1]] but non-DI: RTZ to all outputs when first ack received.

CallDemuxPush
(parameter width, outputCount : cardinal;

passive input inp : width bits;
array outputCount of active output out :
width bits)

#[inp: [out0 , ... , outoutputCount-1]] but non-DI: RTZ to all outputs when first ack received.

#inputCount

inp[] out>-

inp[]

width

out
width

#inputCount

>- ->

out[]

#outputCount

width

width
inp>- <-

-< ! out[]inp

#outputCount

-< -> !

width

out[]

#outputCount

inp
width

13.9. Breeze components ordered by name

146 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

Case
(parameter inputWidth : cardinal;

parameter outputCount : cardinal;
parameter specification : string;
passive input inp : inputWidth bits;
array outputCount of active sync activateOut

)

#[inp ?° [decode(outputCount, specification, inp) != - 1 ->
 activateOutdecode(outputCount, specification, inp) != - 1]]

CaseFetch
(parameter width, indexWidth : cardinal;

parameter inputCount : cardinal;
parameter specification : string;
passive output out : width bits;
active input index : indexWidth bits;
array inputCount of active input inp : width bits)

#[out !° index ?· inpindex ?
· inpindex]

Combine
(parameter outputWidth : cardinal;

parameter LSInputWidth : cardinal;
parameter MSInputWidth : cardinal;
passive output out : outputWidth bits;
active input LSInp : LSInputWidth bits;
active input MSInp : MSInputWidth bits)

#[out !° LSInp ?· MSInp ?· combine(LSInp, MSInp)]

CombineEqual
(parameter outputWidth : cardinal;

parameter inputWidth : cardinal;
parameter inputCount : cardinal;
passive output out : outputWidth bits;
array inputCount of active input inp : inputWidth
bits)

#[out !° inp0 ?
· ... ?· inpinputCount-1 ?

· combineEqual(inp0, ..., inpinputCount-1)]

activateOut[]

#outputCount

inp

inputWidth

specification

@

width

inp[]
width

index

out

indexWidth

#inputCount

@->

out
outputWidth

LSInputWidth

MSInputWidth
MSInp

LSInp

out
outputWidth

inputWidth

inp[]

#inputCount

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 147

13.9. Breeze components ordered by name

Concur
(parameter outputCount : cardinal;

passive sync activate;
array outputCount of active sync activateOut

)

[activate : [activateOut0 || ... || activateOutoutputCount-1]]

Constant
(parameter width : cardinal;

parameter value : width bits;
passive output out : width bits)

#[out !° value]

Continue
(passive sync inp)

ContinuePush
(parameter width cardinal;

passive input inp : width bits)

#[inp]

DecisionWait
(parameter portCount : cardinal;

passive sync activate;
array portCount of passive sync inp;
array portCount of active sync out)

#[activate : [inp0 : out0 | ... | inpportCount-1 : outportCount-1]]

activateOut[]activate

#outputCount

* 0

||

value
width

out

inprun

inp
width

run

out[]inp[] DW

activate

#portCount #portCount

13.9. Breeze components ordered by name

148 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

Encode
(parameter outputWidth : cardinal;

parameter inputCount : cardinal;
parameter specification : string;
array inputCount of passive sync inp;
active output out : outputWidth bits)

#[[inp0 : out !· encode(outputWidth, inputCount, specification, 0) | ... | inpinputCount-1 : out !·

encode(outputWidth, inputCount, specification, inputCount)]]

FalseVariable
(parameter width : cardinal;

parameter readPortCount : cardinal;
parameter specification : string;
passive input write : width bits;
active sync signal;
array readPortCount of passive output read)

#[write ?° [v := write ; signal]] || #[read0 !° v] || ... || #[readreadPortCount-1 !° v]

Fetch
(parameter width : cardinal;
parameter outBroad: boolean;
passive sync activate;
active input inp : width bits;
active output out : width bits)

#[activate : out !· inp ?· inp]

Fork
(parameter outputCount : cardinal;

passive sync inp;
array outputCount of active sync out)

#[activate : [out0 , ... , outoutputCount-1]]

#inputCount

inp[] Enc out
outputWidth

#readPortCount

read[]width
write

signal

FV
specification

® outinp
width width

activate

^ out[]inp

#outputCount

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 149

13.9. Breeze components ordered by name

ForkPush
(parameter width, outputCount : cardinal;

passive input inp : width bits;
array outputCount of active output out :
width bits)

#[inp ?° [out0 !· inp , ... , outoutputCount-1 !
· inp]]

Halt
(passive sync inp)

HaltPush
(parameter width cardinal;

passive input inp : width bits)

stop

InitVariable
(parameter width, readPortCount : cardinal;

parameter name : string;
parameter initValue: width bits;
passive input write : width bits;
array readPortCount of output read : width
bits)

v := initValue ;
#[write ?° v := write] ||
#[read0 ! v] || ... || #[readreadPortCount-1 !° v]

Loop
(passive sync activate;

active sync activateOut)

activate : #[activateOut]

^

width

out[]

#outputCount

inp
width

inpstop

inp
width

stop

width

read[]width

#readPortCount

namewrite

initValue

activateOutactivate *

13.9. Breeze components ordered by name

150 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

NullAdapt
(parameter inputWidth : cardinal;

passive sync out;
active input inp : inputWidth bits)

#[inp : out]

Passivator
(parameter count : cardinal;

array count of passive sync inp)

#[inp0 : ... : inpcount-1]

PassivatorPush
(parameter width, outputCount : cardinal;

array outputCount of passive output out :
width bits;

passive input inp : width bits)

#[out0 !° ... !° outoutputCount-1 !° inp ?° inp]

PassiveEagerFalseVariable
(parameter width : cardinal;

parameter readPortCount : cardinal;
parameter specification : string;
passive sync activate;
passive input write : width bits;
active sync signal;
array readPortCount of passive output read)

#[activate: write ?° [signal ; v := write]] || #[read0 !° v] || ... || #[readreadPortCount-1 !° v]

PassiveSyncEagerFalseVariable
passive sync activate;
passive sync write;
active sync activateOut;

#[activate: (activateOut ; write)]

inp
inputWidth

NA out

#count

inp[]

width

#outputCount

out[]
width

inp

activate

read[]width
write

signal

#readPortCount

specification

peFV

activate

activateOutwrite peFV

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 151

13.9. Breeze components ordered by name

SequenceOptimised
(parameter outputCount : cardinal;

parameter specification : string;
passive sync activate;
array outputCount of active sync activateOut

)

[activate : [activateOut0 ; ... ; activateOutoutputCount-1]]

Slice
(parameter outputWidth : cardinal;

parameter inputWidth : cardinal;
parameter lowIndex : cardinal;
passive output out : outputWidth bits;
active input inp : inputWidth bits)

#[out !° inp ?· slice(outputWidth, lowIndex, inp)]

Split
(parameter inputWidth : cardinal;

parameter LSOutputWidth : cardinal;
parameter MSOutputWidth : cardinal;
passive input inp : inputWidth bits;
active output LSOut : LSOutputWidth bits;
active output MSOut : MSOutputWidth bits)

#[inp ?° [LSOut !· bitfield(0, LSOutputWidth-1, inp) ||

 MSOut !· bitfield(LSOutputWidth, inputWidth-1, inp)]]

SplitEqual
(parameter inputWidth : cardinal;

parameter outputWidth : cardinal;
parameter outputCount : cardinal;
passive input inp : inputWidth bits;
array outputCount of active output out :
outputWidth bits)

#[inp ?° [out0 !
· bitfield(0, outputWidth-1, inp) || ... ||

 outoutputCount-1 !
· bitfield(inputWidth-outputWidth, inputWidth-1, inp)]]

activateOut[]activate

#outputCount

* 0

;

inp out
inputWidth outputWidth

lowIndex

8<

inp
inputWidth

LSOutputWidth

MSOutputWidth
MSOut

LSOut

outputWidth

out[]

#outputCount

inp
inputWidth

13.9. Breeze components ordered by name

152 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

Synch
(parameter inputCount : cardinal;

array inputCount of passive sync inp;
active sync out)

#[inp0 : ... : inpinputCount-1 : out]

SynchPull
(parameter width, outputCount : cardinal;

array outputCount of passive output pout :
width bits;
active input inp : width bits)

#[pout0 !° ... !° poutoutputCount-1 !° inp ?· inp]

SynchPush
(parameter width, outputCount : cardinal;

passive input inp : width bits;
array outputCount of passive output pout :
width bits;
active output aout : width bits)

#[pout0 !° ... !° poutoutputCount-1 !° inp ?° aout !· inp]

UnaryFunc
(parameter outputWidth : cardinal;

parameter inputWidth : cardinal;
parameter op : UnaryOperator;
parameter inputIsSigned : boolean;
passive output out : outputWidth bits;
active input inp : inputWidth bits)

type UnaryOperator is enumeration (op symbol between brackets)
 Negate (~), Invert (-)
end

#[out !° inp ?· op(outputWidth, inputIsSigned, op, inp)]

(s)

#inputCount

inp[] out

(s)

#outputCount

width

width
pout[] inp

(s)pout[]

width
width

width

#outputCount

inp

aout

op outinp
inputWidth outputWidth
inputIsSigned

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 153

13.9. Breeze components ordered by name

Variable
(parameter width, readPortCount : cardinal;

parameter name : string;
parameter specification : string;
passive input write : width bits;
array readPortCount of output read : width
bits)

#[write ?° v := write] ||
#[read0 ! v] || ... || #[readreadPortCount-1 !° v]

While
(passive sync activate;

active input guard : 1 bits;
active sync activateOut)

#[activate : [guard ?· g ; [g -> activateOut]]]

WireFork
(parameter outputCount : cardinal;

passive sync activate;
array outputCount of active sync out)

#[activate : [out0 , ... , outoutputCount-1]]

read[]width

#readPortCount

namewrite

specification

activate

1

guard activateOutdo

W^ out[]inp

#outputCount

13.9. Breeze components ordered by name

154 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 155

14 Reporting Bugs

We are currently using Bugzilla as a bug tracking system.

The current URL is http://bluu.cs.man.ac.uk. Should it change, you will always find an updated
link on the main Balsa web page at http://www.cs.manchester.ac.uk/apt/projects/tools/balsa/.

You have found a bug? Here are 5 steps to getting it fixed!

Check your
Balsa version

Before you begin, make sure you are using the latest version of Balsa. Balsa might have already
been fixed!

Figure 14.1: BalsaÕs bug tracking system

156 Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06

Searching for
Bugs

Check to see if the bug has already been reported. This step is very important! If you find that
someone has filed your bug already, please go to the next step anyway, but instead of filing a new
bug, vote for or comment on the one youÕve found. If you canÕt find your bug in Bugzilla, go to the
next step.

Create a
Bugzilla
account

You will need to create a Bugzilla account to be able to report bugs (and to vote or comment on
them). Once you have an account you can report bugs on any product. Balsa is declared as an
individual product in Bugzilla, and all of our bugs can be classified in various components under the
Balsa product. If you have registered, proceed to the next step.
Note: We are currently experimenting with a guest account avoiding the need to create an account
for reporting bugs. However, we might suppress it if people abuse it (it is possible for guests to edit
other guestsÕ bug reports).

File the bug! Now you are ready to file your bug. Balsa is divided into 11 components:

¥ balsa-c: for bugs in the Balsa compiler

¥ breeze-sim: for bugs in the Breeze simulator

¥ breeze-sim-ctrl: for bugs in the GUI for breeze-sim

¥ balsa-mgr: for bugs in Balsa Manager, the graphical frontend

¥ balsa-tech-amulet: for bugs in the AmuST technology backend

¥ balsa-tech-example: for bugs in the Example technology backend

¥ balsa-tech-xilinx: for bugs in the Xilinx technology backend

¥ Balsa - all technologies: for bugs involving more than one balsa technology

¥ Balsa - all: for bugs involving multiple components of the Balsa system

¥ balsa-sim-verilog: for bugs in the wrapper scripts for Verilog simulators

¥ Balsa manual: for reporting errors found this manual

Click on ÒEnter a new bug reportÓ, select which component is affected, and write a summary (bugÕs
title) and description of your bug. Try to give enough information for us to be able to reproduce your
bug. You can even attach files if needed.

What happens
next?

Once your bug is filed, you will receive an email when it is updated at each stage in the bug life
cycle. After the bug is considered fixed, you might want to ask us for the updated Balsa distribution.

Balsa: A Tutorial Guide. V3.5 - Printed: 19/5/06 V3.1 157

15 References

[1] Kees van Berkel. ÒHandshake Circuits - an Asynchronous Architecture for VLSI
programmingÓ. Cambridge International Series on Parallel Computerss 5, Cambridge University
Press ,1993

[2] Theseus Logic Inc. <http://www.theseus.com>

[3] Part 2 of ÒPrinciples of Asynchronous Circuit Design: A Systems PerspectiveÓ, Eds Spars¿ &
Furber, Kluwer Academic Publishers, ISBN 0-7923-7613-7, 2001

[4] http://www.cs.man.ac.uk/apt/projects/lard/index.html

[5] A. Bardsley, ÒImplementing Balsa Handshake CircuitsÓ, Ph.D. thesis University of
Manchester, 2000.

