
Abstract

Asynchronous design methodologies can yield designs
that are smaller, and/or consume less power, than their
synchronous counterparts. Traditional tools, oriented
toward synchronous designs, may miss critical asynchro-
nous design problems. This paper describes the modeling
methodology and hazard analysis of the SIMIC logic simu-
lator that address asynchronous designs. It also describes
tools and a methodology for generating accurate timing
models from SPICE simulations and for analyzing and
viewing dynamic power consumption. Finally, it presents a
case study illustrating the use of these tools in a leading-
edge asynchronous design.

1. Simulation overview

Since the ultimate goal of the design verification pro-
cess is to manufacture working parts, the simulation phase
must, in addition to modeling a design’s functionality and
timing as accurately as possible, also predict its operation
if event timing could vary somewhat (e.g., due to changes
in processing parameters or supply voltage). In general,
this may require multiple simulations with different com-
ponent delay distributions. However, since today’s designs
could easily contain over 100,000 devices, manual analy-
sis of the (voluminous) simulation results by itself cannot
be expected to uncover every timing problem. Thus, the
simulator must at least be capable of directing the designer
to problematic sections of the logic.

Since circuit-level simulators such as SPICE, whose
domain is voltages and currents, provide the greatest mod-
eling accuracy and coupling to manufacturing parameters,
they have been the mainstay for verifying and characteriz-
ing cell libraries for both synchronous and asynchronous
applications, and for analyzing delays along critical paths
once these paths have been determined. Simulating the

1. Genashor Corp, 9 Piney Woods Drive, Belle Mead, NJ 08502, USA
(908) 281-0164, genashor@pluto.njcc.com
2. AMULET Group, Department of Computer Science, The University,
Oxford Road, Manchester M13 9PL, UK, farnswoc@cs.man.ac.uk

entire design at this level is prohibitive, however, even
with the speedup provided by “timing simulators”, which
exploit latency in MOS circuits and utilize relaxation-
based iteration and/or lookup tables rather than analytical
models. Even if the barrier of execution time didn’t exist,
it is very difficult to isolate and identify, at this level of
abstraction, many types of hazard conditions (e.g., setup
and hold time violations, essential hazards, functional haz-
ards) that could cause different operation with minor
changes in event timing. Also, there is no way to represent
indeterminate values, that is, the values of signals that are
unknown during simulation but will either be logical 0 or
logical 1 in the actual circuit (e.g., the values of state vari-
ables at power up, the state of a flip-flop after a setup-time
violation occurs, etc.).

Switch-level simulators abstract analog node voltages
to logical levels, which can increase throughput consider-
ably. They also solve the initial state problem by adding an
uninitialized logic state. However, current switch-level
simulators have problems with timing accuracy and, sig-
nificantly, with reconvergent fanout of an unknown state.
For example, a switch level simulator will incorrectly set
the output of the multiplexer of Figure1 to X (unknown)
when the two data inputs have the same value and the con-
trol input is unknown.

Gate-level and systems-level simulators can provide
fast throughput by utilizing higher-level primitive ele-
ments and behavioral models. They can, therefore, elimi-
nate many switch-level problems by encapsulating
reconvergent fanout within a single model (e.g., a func-
tional model of a 2-input multiplexer). Traditionally, these
simulators have focused on ease of modeling and/or simu-
lator throughput, neglecting some fundamental circuit
properties (for example, nonlinear delay vs. loading char-
acteristics, input-slew-dependent delays, merging the out-

S (X)

A (0)

B (0)

Out (X instead of 0)

FIGURE 1 Switch model of 2-input multiplexer

Tools For Validating Asynchronous
Digital Circuits

Aaron Ashkinazy1, Doug Edwards2, Craig Farnsworth2, Gary Gendel1, and Shiv Sikand2

put characteristics of wire-tied drivers) that may cause
gross errors in timing. Errors of 400% have been seen in
many “good” models at points over the expected operating
range of the cells.

Modern gate-level simulators support various features
to detect and locate timing problems. Almost all support
spike propagation (generation of an X-pulse when a
“glitch” occurs, i.e., when an element’s inputs change too
quickly for its output to respond) and timing checks. How-
ever, these timing checks are primarily oriented toward
synchronous designs, where proper clocking (glitch-free
clocks with adequate pulse-widths and periods) and adher-
ence to gross safety margins for setup and hold times can
usually avert any unexpected problems. For this reason,
designers of asynchronous circuits do not have a high
degree of confidence in current generation systems- and/or
gate-level simulators.

Some simulators utilize a bounded delay methodology,
allowing element delays to range between their minimum
and maximum extremes. Ambiguity region (“min-max”)
analysis propagates rising and falling levels within
bounded regions and utilize element-specific rules to set
outputs to the unknown state when the transition regions
of the element’s inputs overlap. This approach tends to be
overly-pessimistic, even when “correlated delay” and
reconvergent-fanout analysis is used to reduce the overlap
of related inputs. Monte Carlo simulation is arguably the
best bounded delay approach; some judgement is neces-
sary, however, in determining the number of simulations
required to reach a comfortable level of confidence.

2. Hazard analysis for asynchronous designs

The SIMIC logic simulator provides the benefits of
gate-level simulation with accuracy typically within 20%
of SPICE timing. It supports a robust set of hazard checks
to trap potential problems in both asynchronous and syn-
chronous designs. Additionally, SIMIC can be run as an
interactive debugging tool to quickly locate and correct
timing problems.

In addition to the flip-flop setup-time, hold-time, and
clock/set/reset pulse-width checks, SIMIC supports
checks for wire-tie conflicts, oscillations (excessive activ-
ity in response to a primary input event), combinational
hazards, plus a number of other useful checks. The combi-
national hazard checks can direct the designer not only to
the origin of a manifest timing problem, but also to sec-
tions of the logic that are dangerously close to malfunc-
tioning, even though circuit operation is correct for the
delay distribution being simulated.

The hazard categories are illustrated in Figure2 for an
AND gate, whereTr andTf are respectively the output’s

Tr

Tr, Tf T = (Tr + Tf) / 2

C
A

B

A

B

C

(a) Pulse Hazard (0 ≤ W ≤ kT)

Tf

W

(where k = 3 by default)

Tr

A

B

C

(b) Spike Hazard (0 ≤ D ≤ Tr)

D

or (0 ≤ D ≤ Tf)

A

B

C

(c) Near Hazard (0 ≤ D ≤ kT)

D

(where k = 2 by default)

FIGURE 2 Combinational Timing Hazards

rise and fall delays, andT is the output’s average propaga-
tion delay:

(1) Pulse hazard – a “narrow” pulse on a signal
whose width is comparable to the signal’s aver-
age propagation delay. The user can define “nar-
row”; by default, it is 3× the average propagation
delay. In general, narrow pulses are unplanned,
and could grow wider or disappear with perturba-
tion of delays due to variations in processing
parameters and supply voltage. Pulse hazard
checks are supported for all element types.

(2) Spike hazard – a pair of events at an element’s
inputs in which the second event arrives before
an element output can respond to the first event.
This is the classic “glitch”. In general, the opera-
tion of the actual circuit is indeterminate. How-
ever, to avoid overly-pessimistic results when the
second input event closely follows the first (so
that the output signal could not have begun to
respond to the first event), the user can define a
threshold interval on a per-signal basis that filters
out “innocuous” transients. Spike hazard checks
are supported for all element types.

(3) Near hazard – a sequence of input events within
an interval in which an element’s output response
would have been different had the events
occurred in a different order. For example, in
Figure2(c), instead of remaining at a constant
logical 0, signal C would pulse or spike if the
order of the transitions at inputs A and B were
reversed. The user can define the analysis inter-
val; by default, this interval is twice the output’s
average propagation delay. Near hazard checks
are supported for all combinational primitives.

The user can independently enable or disable each of
the combinational hazard checks on a per-signal basis.
When a hazard is detected at an enabled signal, SIMIC
will issue a warning message describing the hazard. The
user can also (and independently) direct SIMIC to tempo-
rarily set a signal to the unknown value (for the duration of
the transient) when a spike hazard or a near hazard has
been detected. This X value will be then propagate along
the signal’s fanout cone, and if the timing problem can
cause a steady-state error, the X value will ultimately
reach, and latch into, the subset of state variables that
could be affected.

These timing and hazard checks can be very effective
for detecting, locating, and correcting design problems in
asynchronous circuits:

• If a near hazard occurs at a signal along a sensitized
path to a state variable, the circuit may be close to mal-
functioning, though it may be operating correctly with
the simulated delay distribution.

• If a spike hazard is sensitized to a state variable, the
final state of the circuit may be uncertain.

• If a pulse hazard is sensitized to a state variable that
should, at most, execute a single transition in response
to a single input event (i.e., there are no transient
states), the circuit may already be operating incor-
rectly.

Consider, for example, the circuit shown in Figure3,
which is a gate-level representation of a toggle (T) flip-
flop in one cell library used at the University of Manches-
ter [Yant92]. For simplicity, the rise and fall delays of each
element are assumed to be equal; for example, the propa-
gation delay of each multiplexor AND gate is 2 time-units.
The two gates labeled with an asterisk are redundant con-
sensus terms generated to eliminate switching transients in
the model, and are not in the physical cell (which utilizes
charge storage in a functional block to achieve the same
result). This model is a slightly simplified representation

of the model generated by the SPICE-to-gate-level extrac-
tor, SP2LOG, described later.

This cell’s flow table exhibits (in fact, is the classic
example of) anessential hazard, which is defined as
[Ung69]: “For some initial total state and input variablex,
three consecutive changes inx take the system to a state
that is different from (and not equivalent to) the state
reached after a singlex-change”. Typically, unless the
delay distribution is such that an essential hazard mani-
fests itself to produce the wrong final state, it is difficult (if
not impossible) for simulation to uncover its existence
without the “what-if” hazard checks described above.

In this case, the essential hazard manifests itself when
the toggle cell outputs DOT and BLANK are lightly
loaded, so their propagation delays are small, and input IN
is heavily loaded, so the slew-dependent delay at the out-
put of inverter NIN, labeled D in the figure, is relatively
large. In particular, if the circuit is initially stable in State 1
with the inputs CDN = 1 and IN = 0, and if the output
delays at DOT and BLANK are 1 time-unit, as shown in
the figure, then when input IN executes a 0→1 transition
(see arrow in flow table), the final state will be State 4
instead of State 2 when D≥ 5. Furthermore, if simulation
is performed with D< 5, the final state will be State 2, and
there will be no indication that the circuit is close to mal-
functioningunless the hazard checks are enabled.

IN

CDN

ND1

ND2

NB2

NB1

NBLANK

d = 2

NDOT

d = 2

d = 1

d = 1

DOT

BLANK

d = D
NIN

CDN IN

BLANK DOT

0 0

0 1

1 1

1 0

00

1

01 11 10

3

3

1

2

2

4

4

1

1

1

1

1

1

1

1

1

2

3

4

*

d = 2

d = 2

*

FIGURE 3 Toggle cell and its flow table

←

C= CI N ND NB
C= DN I DO BL
C= N N OT LA
C= T AN
C= NK
C= K

 0 T 1: 00 X XX XX
 2 T 1: 00 1 1X 1X
 3 T 1: 00 1 10 10
 50 T 2: 10 1 10 10
 100 T 3: 11 1 10 10
 102 T 3: 11 0 00 10
 103 W 3> NEAR NB1 (AND)
 103 W 3> NEAR ND1 (AND)
 103 T 3: 11 0 01 10

  time test

C= CI N ND NB
C= DN I DO BL
C= N N OT LA
C= T AN
C= NK
C= K

 0 T 1: 00 X XX XX
 2 T 1: 00 X 1X 1X
 3 T 1: 00 X 10 10
 4 T 1: 00 1 10 10
 50 T 2: 10 1 10 10
 100 T 3: 11 1 10 10
 102 T 3: 11 1 00 10
 103 T 3: 11 1 01 10
 104 W 3> SPIKE(0->1->0) NB1
 104 W 3> SPIKE(0->1->0) ND1
 104 T 3: 11 0 01 10

C= CI N ND NB
C= DN I DO BL
C= N N OT LA
C= T AN
C= NK
C= K

 0 T 1: 00 X XX XX
 2 T 1: 00 X 1X 1X
 3 T 1: 00 X 10 10
 5 T 1: 00 1 10 10
 50 T 2: 10 1 10 10
 100 T 3: 11 1 10 10
 102 T 3: 11 1 00 10
 103 T 3: 11 1 01 10
 105 W 3> NEAR NB1 (AND)
 105 W 3> NEAR ND1 (AND)
 105 W 3> NEAR NDOT (NOR)
 105 T 3: 11 0 01 00
 106 T 3: 11 0 01 01
 107 W 3> PULSE(0->1->0 Width=2 Widh/Delay=1.00) NB1
 107 W 3> PULSE(0->1->0 Width=2 Width/Delay=1.00) ND1
 107 W 3> PULSE(0->1->0 Width=5 Width/Delay=2.50) ND2
 107 T 3: 11 0 11 01
 108 T 3: 11 0 10 01

FIGURE 4 SIMIC simulations of the Toggle Cell for different values of input delay

(b) SIMIC Terminal output for D = 4

(c) SIMIC Terminal output for D = 5 exhibiting the essential hazard

(a) SIMIC Terminal output for D = 2

Three SIMIC simulations were performed for the tog-
gle circuit, as shown in Figure4. Each applies the same
three tests (distinct primary input states); the first test, at
time 0, sets CDN to 0 to initialize the circuit to State 1, and
the second test, at time 50, sets CDN to 1 to bring the cir-
cuit to the desired total state. The third test, at time 100, is
the 0→1 transition at IN. Warning messages for near and
spike hazards were enabled, and X propagation for these
hazards were disabled. With D = 2, the circuit correctly
enters State 2, as shown in Figure4(a). However, the near
hazard message for signal NB1 (which occurs for all val-
ues of D < 4) indicates that if the order of its input transi-
tions had been different (i.e., had the value of D been
greater), the simulation results might have been different.
(There is also a near hazard reported at signal ND1, which
happens to be the same logical function, but this hazard is
non-critical since ND2 is 1 at the time, so ND1 is not sen-
sitized at DOT.) The simulation results for D = 4 are
shown in Figure4(b); the circuit still enters State 2, but

now, the 1→0 transition at NIN occursafter the 0→1 tran-
sition at DOT, resulting in a spike hazard at NB1. This
indicates that the final state might actually be indetermi-
nate. With D = 5, NB1 actually executes a 0→1 transition,
forcing NBLANK low, and ultimately causing the circuit
to enter State 4, as shown in Figure4(c). Had X propaga-
tion been enabled for near and spike hazards in these simu-
lations, both DOT and BLANK would have been forced to
X, indicating that circuit operation is really uncertain.

3. Model Accuracy

Since different gate-level models of a given cell can
exhibit different transient responses, the importance of
selecting a model that captures the nuances of the cell’s
physical implementation cannot be overemphasized. With-
out a one-to-one correspondence between the physical
design and its logical representation, the accuracy of the
delay distribution and consequent hazard analysis may be

seriously compromised. To guarantee a good model, we
developed a circuit-to-logic translator called SP2LOG.

SP2LOG translates a SPICE description of a circuit,
consisting of transistors and capacitors, to a gate-level
description. It attempts to retain all important functional
nodes of the SPICE description in the final model. In addi-
tion, SP2LOG can either calculate delay characteristics at
nodes from user-defined equations, or provide symbolic
references into delay tables supplied by alternate means.
SP2LOG utilizes boolean analysis of the pullup and pull-
down path functions for each node, coupled with sophisti-
cated conflict resolution analysis. After the analysis, the
resulting expressions are then examined to determine the
best gate-level representation. Since the resulting model
accurately represents the physical implementation, the
SP2LOG models are applicable to fault analysis as well as
fault-free analysis.

Even in “pure digital” designs, there are several subcir-
cuits whose behavior is sufficiently non-digital to confuse
a switch-level simulator. Typically, but not always, these
circuits are located in the pad circuitry; Schmitt trigger
input pads and TTL level shifters are good examples, as
illustrated in Figure5. If the effective ON resistance of the
P and N devices are comparable, and if either circuit is
simulated at the switch-level as show, its output will
always remain in an unknown, X, state. However,
SP2LOG recognizes the fact that the effective resistance
of a p-type transistor used as a pulldown, or of an n-type
transistor used as a pullup, is significantly greater than the
resistance of the transistors in their normal configurations.
It also recognizes the fact that when a pullup or pulldown
transistor has its gate connected to its drain, it effectively
functions as a large resistance. Thus, the SP2LOG model
for the circuits of Figure5 would be an inverter.

4. Timing Accuracy

For many current technologies, the effects of non-zero
input rise and fall times (so-called “slew-rates”) must be
incorporated in order to achieve a high degree of accuracy
in modeling propagation delays and performing hazard
analysis. We quickly learned that the dependence of propa-

VDD VDD

VDD
OUTIN

FIGURE 5 Quasi-digital circuits

VDD

IN
OUT

(a) Schmitt Trigger input pad (b) Level Shifter

gation delays on output loading and input slew rate isnot
linear over the expected operating range, and that using a
single, simple linear relationship introduces unacceptable
errors. SIMIC therefore allows delays to be described by
two-dimensional piecewise-linear tables to represent the
non-linear relationships. SIMIC will warn if the loading or
input-slew rates exceed the measured data limits but will
extrapolate from the nearest segment in the table.

As illustrated in Figure6(a), the complex rise or fall
waveshape obtained from circuit-level simulation is
approximated by a linear ramp. To generate this ramp
from the original waveshape, we project the central, linear
portion of the rise (fall) waveshape to the rails. This is usu-
ally accomplished by constructing a line that passes
through two threshold points that bracket the 50% point,
sufficiently far enough away to reduce numerical errors,
but close enough so the non-linear “tails” of the curves do
not significantly affect the results. In the technologies that
we have worked with, we have found the 35% and 65%
points to be satisfactory.

Delays are characterized by two output waveform
parameters, as shown in Figure6(b); the base delay, Base,
which is the time interval from the start of the input ramp
to the start of the output ramp, and (2) the output ramp
interval,Oramp. Each piecewise-linear entry in the delay
table contains the values six coefficients,a throughf, that
relate the two delay parameters to output loading (Load)
and input ramp interval (Iramp) using the following equa-
tions:

Base(a,b,c) = a + (b × Load) + (c × Iramp)

Oramp(d,e,f) = d + (e × Load) + (f × Iramp)

The propagation delay used by SIMIC is the time inter-
val between the 50% points of the input and output wave-
forms:

Iramp
IN

OUT

IN OUT

(a) Waveform Linearization

(b) Delay Model Parameters

Load

Base

Oramp

Delay

FIGURE 6 Slew-Rate Delay Model

thresholds

ramp interval

Delay
Oramp Iramp−

2
Base+=

measurements. With this tool, we have completed all the
tools necessary to totally automate the model generation
process, as illustrated in Figure7.

6. Dynamic Power Consumption Analysis

Since one of the potential benefits of asynchronous
design is low power consumption, a tool was needed to
assist in the analysis of power consumption. The tool
developed, XPOWER, analyzes dynamic power consump-
tion, and displays the results in a number of graphical and
textual representations. Windowing on test ranges, and/or
node selection, allows the user to focus on any area of
interest in great detail.

Dynamic power consumption is calculated from the
capacitive energy stored and retrieved at each node when-
ever a signal transition occurs. This energy is calculated
using the formula , where C is the
nodal capacitance, and∆V is the high to low (or low to
high) change in voltage, which is usually the supply volt-
age, Vdd. XPOWER does not currently take into account
power consumption arising from leakage currents, short-
ing currents during transient switching states (through ON
transistors), spikes and other transient phenomena, and
currents through pullup or pulldown resistors.

XPOWER automatically filters out the power dissi-
pated by external sources at primary input and bidirec-
tional pads. In addition, through a command file, the user
can indicate other signal transitions that need to be dis-
counted. The power consumption reports are normalized
to mw/Mhz, allowing the results to be easily scaled for any
input frequency.

XPOWER can also generate a tailored report in Post-
Script (with graphs) or ASCII (with tables).

Figure8 illustrates a Dissipation Graph displaying
dynamic power consumption along the vertical axis vs.
test vector number along the horizontal axis. This display
is typically used to identify areas of interest for more
detailed analysis. It clearly illustrates the effect of exercis-
ing various circuit functions on overall power consump-
tion of power. One of the interesting side benefits of this
display has been the identification of certain timing prob-
lems that show up as unusually high power consumption
spikes in this graph.

A second display is the summary statistics, shown in
Figure9. This lists summary information for the displayed
Dissipation Graph, such as the number of tests, the number
of transitions, and the minimum and maximum points in
the graph.

A third display is the Distribution Graph, illustrated in
Figure10, with the number of vectors (in which a given
level of power consumption occurs) on the vertical axis

E = × C × (∆V)21
2

5. Parameter Fitting

To utilize the delay model described above, we required
a method of automatically capturing the delay coefficient
sets (a through f) for the delay tables. Without an auto-
mated means, the task of generating accurate models
would be too complex and time consuming. We tried using
the Simplex algorithm commonly used to fit delays in the
model, based upon measured path delays, and also a
simultaneous equation solver, but both methods had prob-
lems accurately distributing the delays due to the under-
constrained nature of the problem. Exhaustively character-
izing every node of every cell used in a design over the
entire range of operating conditions would be a computer
resource and/or manpower intensive task, and was ruled
out as a viable alternative.

We discovered that we could identify a number of basic
circuit configurations, oratoms, that could be used to build
accurate delay models; by characterizing just these atoms,
we could cover most of the configurations found in the cell
library. In this way, we could collect data on a small num-
ber of circuits, and relate them to the rest of the cells with
a high degree of delay accuracy.

The atoms consist of P-N stacks with each stack rang-
ing from 1 ton high, wheren is the maximum stack size
expected in the library of cells. Each possible stack/tran-
sistor size configuration is then fully characterized.
SP2LOG can be instructed to recognize the atom configu-
rations in the circuit, and reference the proper delay infor-
mation for that configuration. In this manner, a library can
be characterized in a fraction of the time it usually takes,
while providing superior models.

A parameter fitting program, GENDEL, was developed
to automate the creation of SIMIC delay tables from these

Delay Atom
Descriptions

SPICE

SPICE

GENDEL

SP2LOG

Delay Tables
SIMIC

Cell
Descriptions

SPICE

Measurements
Delay

Cell
Descriptions

SIMIC

Cell
Library

SIMIC

FIGURE 7 Process for automatic model
generation

FIGURE 8 Dissipation Display from XPOWER

FIGURE 9 Summary Statistics Display

FIGURE 10 XPOWER Display of Distributed Power

and power on the other. This clearly illustrates the range of
power consumption and how this consumption is distrib-
uted.

XPOWER allows groups of nodes to be excluded from
analysis. Thus, the power consumption in selected areas of
the design can be determined in dedicated XPOWER ses-
sions. Reports can be generated that include any of the
graphs or other information during the session.

7. The University of Manchester, UK,
A Case Study

An asynchronous serial-in-parallel-out register (SIPO)
with a 2-phase-bundled-data interface, consists of a ring
counter and a set of latches (Figure11). Upon reception of
an event onRin the enabled stage of the ring counter sends
an event to its associated latch stage. The event is con-
verted to a pulse so the latch can be made transparent and
then returned to opaque, storing the data onSin as a conse-
quence.

A ring counter consists of one event input andn event
outputs. Each output makes one output transition, in turn,
during a cycle. This operation is best demonstrated with a
three bit ring counter, see Figure12(a). Assume the circuit
is initialised to the all-zero state. The top Muller C-ele-
ment will fire in response to an event onRin causingd0 to
fire, enabling the second Muller C-element. Two more
events onRin caused1 andd2 to fire respectively, return-
ing the ring counter to its initial state, albeit with inverted
absolute levels.

When a ring counter has an even number of bits, see
Figure12(b), the circuit operation is slightly more compli-
cated. On completion of a cycle the ring counter should
return to its initial state in which the top Muller C-element
is enabled. However, an even number of events has been
received, since there are an even number of stages. As a
consequence,Rin has the wrong absolute value to fire the
top Muller C-element, hence the introduction of an addi-
tional XOR gate and Muller C-element. The XOR gate
invertsRin (Rin2) whend3 is fired and the Muller C-ele-
ment delays the enabling of the top Muller C-element until
the inversion of Rin is complete so as to avoid a false tran-
sition ond0.

The SIPO can return bit level completion signal in two
ways. The first method delaysRin sufficiently. The second
method, shown in Figure12(c), derives completion signals

Ring
Counter Latches

Rin

Sin

Ain

Rout Aout

Pout

FIGURE 11 SIPO Architecture

from the latching signals using an XOR tree, and is clearly
less effective than the first method, particularly as the
number of bits in the SIPO increases.

These ring counters rely on the enabled Muller C-ele-
ment firing after the next Muller C-element has been deac-
tivated byRin so the event onRin does not race through
two stages of the ring counter. This situation arises when
the edge speed is greater than 51 nS, according to a
HSPICE simulation using typical models for both n and p
type transistors on the 1 micron ES2 process. Unfortu-
nately, many switch-level simulators lose the information
which is required to detect this condition during character-
isation. For instance, prior to using SIMIC we relied on
characterising the standard cell library using one input
slew rate for the HSPICE simulation, since in Verilog the
ES2 cells are represented as simple module path delays
(gate produces output change a delay after the input event
causing the change arrives). The delay is composed of two
parts:

where:
tint = internal propagation delay,
CL = Load Capacitance and
k = constant scaling factor in nSec/pF.

However, since a symbolic table of results with input
edge speed, stack size and capacitive loading as variables,
is built for the process, many of the inaccuracies intro-
duced during conversion from the continuous to the dis-
crete domain are removed in SIMIC. As a consequence,
the race condition in the ring counter is detected with an
input slew rate of 50.1 nS.

In bounded-delay designs such as micropipelines, the
modelling of delays can be critical to the performance of
the circuit. A circuit-level simulator such as HSPICE, can
be used to determine all match paths; however, the design
time must be compromised as a consequence. Using
SIMIC, a similar amount of confidence can be gained in a
gate-level simulation environment. For instance, consider

C

C

C

d0

d1

d2

Rin

C

C

C

d0

d1

d2

Rin

C d3

C

Rin2

d0
d1

d2
d3

completion (b) Even length

(c) Completion logic

(a) Odd length

FIGURE 12 Ring counters

td tint k CL×+=

the latches used in the SIPO (Figure13). To store data,
each latch is first pulsed transparent momentarily, then
returned to opaque. To achieve this a delay is inserted
before each XOR gate of the SIPO, so that a request from
its associated ring counter stage causes data to be latched.
A SIPO with this implementation removes all redundant
transitions on data outputs, since the stage only samples
the input data when required.

This particular design has been used in the design of an
asynchronous interface to two serial synchronous buses,
namely the I2C-Bus and I2S-Bus [Farn94]. The objective
of the I2C-Bus I/O Expander design was to determine how
effective micropipeline design techniques are for low
power consumption in comparison to synchronous design.
Therefore a synchronous device was also developed.
XPOWER enabled us to compare the power consumption
of the device in all modes of operation at great accuracy.
Furthermore, since signals, subcircuits and test vectors can
be removed interactively in an X window environment,
the actual source of the power consumption was deter-
mined immediately. For instance, in the synchronous
design the power attributed to the clock could simply be
evaluated by removing the clocking signals which ended
up consuming 60% of the entire power consumption in
this design. In the micropipeline design the power con-
sumption takes a slightly different form since the control is
localised. Therefore the effectiveness of a subcircuit in a
given simulation was evaluated by either removing the
subcircuit and associated outputs or by only considering
the subcircuit and its associated outputs. From these simu-
lations the control component of the device appeared to
use a high proportion of the power consumption. For
example a node on an input to a select block with 0.5% of
the simulations transitions (also available interactively)
consumes 1.5% of the power consumption. As a conse-
quence, we have re-evaluated our design strategy with
respect to standard cells. In this design example the exclu-
sion of signals from the simulation was particularly impor-
tant since the I2C-Bus consists of two bidirectional wire-
ANDed signals. All transitions not caused by the device
could therefore be suppressed. The resulting simulation
task was therefore simplified since it could be achieved
within a tailored system environment. In addition, access
is given to all the system nodes (produced by SIMIC at
simulation run-time), allowing the nodal capacitances to
be altered. In the design of the I2C-Bus I/O Expander this

Ddin dout

request

FIGURE 13 SIPO latch

allowed the application of extra capacitance to its external
outputs so as to determine its effectiveness in a system.
The same test vectors were simply run again so a direct
comparison could be made. As a consequence of the
resulting power simulation, a design inefficiency was dis-
covered in the micropipeline solution, which consumed
over half of the power consumption in the device.

At Manchester, we believe there is a potential for syn-
thesis methods that can be effectively applied to high per-
formance architectures and have been developing such a
system based on VLSI programming from Philips
Research. [vBer88]

The first generation of tools from PRL were used to
build dual rail devices on a custom “standard” cell library
from a CSP based specification language, Tangram. The
second generation tools are designed to make use of con-
ventional standard cells and therefore overcome the prob-
lems posed by portability and foundry migration.

VLSI programming allows the designer considerable
feedback on the chosen specification in regard to area, tim-
ing and power and allows fast re-iteration of the design to
eliminate errors and improve performance. Thus, the goals
at Manchester are to:

• Encompass the VLSI programming discipline

• Extend the scope of the system to allow the addition of
custom components

• Maintain the portability and migration advantages of
standard cell design.

To this end, a complete design system is being inte-
grated into a commercial CAD environment, namely
Cadence Design Systems Framework II. The first stage
involves translating the output from the Tangram com-
piler, known as Handshake Circuit Language into a Ver-
ilog description so that the resulting description can then
be used for two purposes:

(1) Stand alone behavioral simulation. This allows
the designer to confirm the functional behavior of
his program at an early stage and get very coarse
timing and power estimates.

(2) Integration into the Cadence Design Framework.

With the traditional approach to cell development, a
library of fixed cells is created, but if cell variations are
needed, redesign must take place. Variations might include
changing the number of inputs, cell function, design rules,
or drive capability. Redesigning always involves more
than just moving a polygon; it means re-simulating, re-
characterizing, rebuilding simulation models, and re-docu-
menting as necessary.

With the module generator approach, the generator
developer puts the design effort into creating a module
generator that is a parameterized design. The generator is

then delivered to an end user, who can use the generator to
produce many variations of a cell.

From one generator and one set of input parameters, all
cell library types can be generated including the schematic
symbol, schematic, simulation models, logic synthesis
models, symbolic layout, polygon layout, place and route
constraint information, etc.

The automatic generation of all these views ensures
consistency and simplifies cell library management. In
order to maintain portability, the custom cells are built
using symbolic layout and fed to a compactor to enable
DRC correct cells to be constructed with ease. The design-
ers merely specify the topology of the cell rather than con-
cerning themselves with geometrical constraints which
thus eliminates low level errors, often a major problem
when dealing with custom circuits.

With existing simulators, it is often very difficult to use
layout generators since the re-characterisation task is typi-
cally very time consuming and the end user is not granted
the flexibility to tune his circuit with respect to perfor-
mance in terms of speed, power or area.

The GENDEL/SP2LOG path facilitates this approach,
since process characterisation is now only CPU and not
labour intensive. The HSPICE interface has also been
extended to allow automatic generation of SP2LOG mod-
els from HSPICE verified schematics and extracted lay-
outs.

Dynamic resizing of transistors in a design is often use-
ful to avoid the need to insert buffers in critical parts of the
circuit. SIMIC information can be used to identify slow
edges as well as circuits that may be consuming too much
power. This information can then be used to resize the cell
or block, which will then automatically be re-compacted
and re-characterised to allow the circuit to be re-simulated
very quickly.

A complete graphical interface has also been developed
using the Open Simulation system. The netlister module
produces hierarchical netlist descriptions from both Com-
poser and Virtuoso. STL can be used to generate the stim-
ulus files transparently and full color cross probing is
available with Genashor’s waveform analysis and display
program, XWAVE. Both XWAVE and XPOWER support
auto update features which allows the new simulation data
to be automatically updated at high speed. The Genashor
tools were easy to incorporate in this framework (a
strength of both Framework and Genashor products) and
allows us to utilize all of the available features in a fully
integrated environment.

8. Future Work

We are continuing to enhance SP2LOG/SIMIC model-
ing capabilities, and are exploring a Monte Carlo algo-
rithm. A prototype version of SIMIC supports pin to pin
delay specification for each element. This will further
reduce differences in delays reported by SIMIC and
SPICE. The prototype fully supports the hazard analysis of
the original version. In addition, the computed delays
remain accurate even when multiple inputs change within
the gate’s propagation interval. No other known gate-level
simulator has demonstrated this ability.

We are also investigating the use of a methodology,
similar to the one described here for delay modeling, to
characterize power consumption, due to shorting currents
and other power consumption phenomena currently not
addressed by XPOWER, with accuracy close to SPICE.

9. Conclusions

This paper has described several tools that have proven
to be very effective for debugging, modeling, and analyz-
ing the operation of asynchronous designs. The tools run
stand-alone interactively or in batch, and are easily inte-
grated in a custom design environment. The SIMIC logic
simulator performs numerous timing and hazard checks,
often enabling the designer to locate potential timing prob-
lems even when the simulation results appear to be cor-
rect. The SP2LOG gate-level extractor generates
simulation models that accurately reflect the physical
implementation. Both programs utilize piecewise-linear
characterization of output delay as a function of output
loading and input slew rate that achieve agreement with
SPICE to within 20%. Generation of these delay tables
from SPICE simulations of P and N transistor stacks is
completely automated with GENDEL. The XPOWER
program has proven to be extremely useful for analyzing
dynamic power consumption in asynchronous designs.

10. References

[Farn94] Farnsworth C., “Low Power Implementation of an
I2C I/O Expander” Master’s Thesis.

[Suth89] Sutherland I.E., “Micropipelines”, Communications
of the ACM, p 720-738, 1989.

[Ung69] Unger, S. H. “Asynchronous Sequential Switching
Circuits”, Wiley Interscience, 1969, page 143

[vBer88] van Berkel C.H., Rem M., Saeijs R.W.J.J., “VLSI
Programming”, Proceedings of ICCD, IEEE, p 152-
156, 1988.

[Yant92]Yantchev J., An S-I Toggle design. Private Fax
communications, 1992.

