
Asynchronous Logic

S B Furber (sfurber@cs.man.ac.uk),

ICL Professor of Computer Engineering, Department of Computer Science,

The University of Manchester, Oxford Road, Manchester M13 9PL

Abstract

Asynchronous logic is enjoying a resurgence of interest among academic and
industrial researchers after two decades of near total neglect. Why is this?

This tutorial presents the reasons for the renewed interest and discusses the current
state of development of asynchronous design. There are many ways to design chips
without clocks, so some background is offered to the various different asynchro-
nous design methodologies used by various groups around the world today. One
such style, called ‘micropipelines’ was developed by Ivan Sutherland and formed
the basis of his 1988 Turing Award Lecture. This approach has been adopted by a
group at Manchester University in England and used to develop fully asynchro-
nous implementations of the ARM 32-bit RISC microprocessor. The organization
and key implementation details of these AMULET processors will be described.
Finally, speculation will be offered on the future of asynchronous design tech-
niques in a world currently dominated by clocked circuits.

1. Motivation

The principle motivation for re-examining asynchronous design is its potential for power-effi-
ciency. The clock in a synchronous circuit runs all the time, causing transitions in the circuit
that dissipate electrical power. The clock frequency must be set so that the processor can cope
with the peak work-load, and although the clock rate can be adjusted under software control to
suit varying demands, this can only be done relatively crudely at a coarse granularity. There-
fore most of the time the clock is running faster than is necessary to support the current work-
load, resulting in wasted power. An asynchronous design, on the other hand, only causes tran-
sitions in the circuit in response to a request to carry out useful work. It can switch instantane-
ously between zero power dissipation and maximum performance upon demand.

In addition, asynchronous design avoids the problem of clock skew, which is becoming
increasingly hard to control in clocked circuits. Propagation delays in clock interconnect wires
limit the achievable global synchrony, and at high clock speeds very powerful drivers are
required to achieve the necessary edge speeds. As a result, clock drivers are occupying an
increasing share of the die area and power budget, compromising the cost-effectiveness and
power-efficiency of the design. Asynchronous design replaces the central clock with multiple
locally-timed control signals which can be built with much lower area and power costs.

The final benefit is the inherent modularity of self-timed designs. Data encapsulation, modular-
ity and component reuse are of increasing interest in computer software, where such character-
istics are necessary to offset the costs of the increasingly sophisticated (and therefore complex)
products demanded by the marketplace. In the software domain this has led to the development
of novel programming paradigms such as ‘object-oriented’ languages. In the hardware



domain, asynchronous design offers similar benefits which will be increasingly important as
chip complexities rise to exploit the billion transistor VLSI technologies which will be availa-
ble at the end of the millenium.

In summary, therefore, asynchronous technology is attracting renewed interest because of its
potential for power-efficiency, the removal of the clock-skew problem and because of its inher-
ent modularity.

2. Asynchronous Logic Styles

In a synchronous (clocked) chip the clock controls all the state changes and communication
within the chip. Between active clock edges combinatorial logic generates the next state func-
tion, possibly producing many spurious output values (glitches) on the way to the correct
value, but so long as the outputs are correct and stable at the next active clock edge the chip
will operate correctly. The timing constraints which the design must satisfy may be summa-
rized as follows:

• All logic functions must be correct and stable before the next active clock edge;
• The clock must be clean and the clock period must be longer than the longest logic delay.

In addition, clock skew and slow clock edges can give rise to race conditions which can be
avoided by careful latch design and controlling the clock skew and edge speeds carefully.

Asynchronous design styles operate without a clock, so how is data communication controlled
and timing managed?

Asynchronous timing

There are two basic ways used in asynchronous logic to determine when the outputs from a
combinatorial logic block are valid:

• Self-timed logic uses a redundant logic representation where some output values represent
valid logic values and others represent invalid values. The output must pass through an
invalid value when changing from one valid value to another valid value. The simplest
redundant form uses dual-rail encoding, where each boolean uses two wires. ‘00’ is the
invalid value, ‘01’ represents ‘false’, ‘10’ represents ‘true’ and ‘11’ is unused.

• Delay matching logic employs conventional logic representation but includes an additional
control wire which indicates when the output is valid. Usually a transition on the control
wire is passed through logic which is known to have a delay no shorter than that through the
combinatorial logic function.

Self-timed logic can be designed to be insensitive to delay variations in any of the logic gates
or wires in the sense that only the correct valid output will appear, although slow gates or wires
will of course cause it to be delayed. This approach is therefore favoured by purists, since the
complete decoupling of functionality from performance makes the design insensitive to the
characteristics of the implementation technology and very amenable to mathematical proofs of
functional correctness. However, the redundant logic structures incur costs which are about
twice those of standard single-rail logic (measured, for example, in chip area). Delay matching
does not result in delay-insensitivity and requires careful engineering such as detailed SPICE
modelling, and therefore is more technology dependent. However the area overhead compared
to clocked logic is minimal.



In the short term, therefore, delay matching is favoured by most designers of complex asyn-
chronous circuits. In the longer term, deep submicron technologies may make the control of
on-chip delays much trickier and they will also increase the available gate resource, so redun-
dant encoding may become relatively attractive.

Signalling protocols

Conventional logic design typically represents logic values by signal levels; a wire at ground
potential represents a logic ‘0’ and at supply potential a logic ‘1’. Many asynchronous styles
are similar, but it should be recognised that this is not the only possibility. For instance, in a
dual-rail encoded system, a ‘0’ could be represented by a transition on one wire and a ‘1’ by a
transition on the other. Since a transition is an event, there is now no need to pass through an
invalid code between consecutive values. It is possible, though uncommon, to build complete
logic systems on transitions. However, transition signalling is used on the control wires of
some of the examples below. It is useful therefore to define two signalling protocols:

• Level signalling; here an event is indicated by a level (often a logic ‘1’) and before the next
event the wire must return to zero.

• Transition signalling; here an event is indicated by a change in logic level (either ‘0’ to ‘1’
or ‘1’ to ‘0’) and the next event is simply the opposite transition, so no recovery phase is
required.

Self-timed communication

When data is sent from one place to another, not only must the receiver recognize when the
data is valid, but also the sender must recognize when the data has been received before it
sends the next data.

The standard approach is to use aRequest-Acknowledge handshake to control the flow of data.
The sequence of actions comprising the communication of data from the Sender to the
Receiver is as follows, assuming the matched-delay model (in a self-timed systemRequest is
encoded implicitly in the data):

1. The Sender places a valid data value onto a bus.

2. The Sender then issues aRequest event.

3. The Receiver accepts the data when it is ready to do so.

4. The Receiver issues anAcknowledge event to the Sender.

5. The Sender may then remove the data from the bus and begin the next communication when
it is ready to do so.

TheRequest andAcknowledge events may use transition or level signalling as described
above, giving the two communication protocols which are illustrated in Figure 1 and Figure 2.
Transition signalling is conceptually cleaner since every transition has a role and its timing is
therefore determined by the circuit’s function. It also uses the minimum number of transitions,
and should therefore be power-efficient. However, the CMOS circuits used to implement tran-
sition control are relatively slow and inefficient, so level signalling is often used employing
circuits which are faster and in practice more power-efficient despite using twice the number of
transitions. Level signalling leaves somewhat arbitrary decisions to be taken about the timing
of the recovery (return-to-zero) phases in the protocol.

The transition signalling protocol is sometimes called thetwo-phase protocol since each com-



munication has two phases:

• Firstly the Sender is active preparing the data; this phase is terminated by theRequest event.
• In the second phase the Receiver is active accepting the data; this phase is terminated by the

Acknowledge event.

In the level-signalling protocol there are two further phases terminated by the return to zero
transitions, so this protocol is sometimes called thefour-phase signalling protocol.

Self-timed pipelines

An asynchronous pipelined processing unit can be constructed using self-timing techniques to
allow for the processing delay in each stage and one of the above protocols to send the result to
the next stage.

When the circuit is correctly designed, variable processing delays and arbitrary external delays
can be accommodated; all that matters is the local sequencing of events (though long delays
will, of course, lead to low performance).

Unlike a clocked pipeline, where the whole pipeline must always be clocked at a rate deter-
mined by the slowest stage under worst-case environmental (voltage and temperature) and data
conditions, an asynchronous pipeline will operate at a variable rate determined by current con-
ditions. It is possible to allow rare worst-case conditions to cause a processing unit to take a lit-
tle longer. There will be some performance loss when these conditions do arise, but so long as
they are rare enough the impact on overall performance will be small.

Micropipelines

In his 1988 Turing Award Lecture Ivan Sutherland presented an asynchronous design method-
ology based on matched delay transition signalling pipelines which he called ‘Micropipelines’.
Most of what follows was inspired by Sutherland’s work.

Figure 1 Transition-signalling communication protocol.

Figure 2 Level-signalling communication protocol.

Request

Data

Acknowledge

Request

Data

Acknowledge



3. The AMULET microprocessors

Two asynchronous microprocessors have been developed in the Department of Computer Sci-
ence at the University of Manchester in the UK using techniques based on Sutherland’s micro-
pipelines. The first of these, AMULET1, was designed between 1991 and 1993 and used
transition signalling. The second, AMULET2, was designed between 1993 and 1995 and used
level signalling.

Both AMULET processor cores have the same high-level organization as illustrated in Figure
3. The design is based upon a set of interacting asynchronous pipelines, all operating in their
own time at their own speed. These pipelines might appear to introduce unacceptably long
latencies into the processor but, unlike a synchronous pipeline, an asynchronous pipeline can
have a very low latency.

The operation of the processor begins with the address interface issuing instruction fetch
requests to the memory. The address interface has an autonomous address incrementer (the
AMULET2 address interface also incorporates aJump Trace Buffer which attempts to predict
branches from past behaviour) which enables it to prefetch instructions as far ahead as the
capacities of the various pipeline buffers allow. Fetched instructions then flow through the
instruction decoder, access their operands from the register bank and execute. Memory data
accesses are interleaved with instruction fetches through the memory pipeline and loaded data
is returned directly to the register bank.

Figure 3 AMULET internal organization.

instruction
pipeline PC

pipeline

instruction
decode

register
file

execution
pipeline

control
pipeline

address
interface

memory
pipeline

load data

instructionsPC
values

results

addresses

store
data

next
address



AMULET1 silicon

AMULET1 was developed to demonstrate the feasibility of designing a fully asynchronous
implementation of a commercial microprocessor architecture. The prototype chips were func-
tional and ran test programs generated using standard ARM development tools. The layout of
the AMULET1 core is shown in Figure 4.

AMULET2e

AMULET2e is an AMULET2 processor core combined with 4 Kbytes of memory, which can
be configured either as a cache or a fixed RAM area, and a flexible memory interface (thefun-
nel) which allows 8-, 16- or 32-bit external devices to be connected directly, including memo-
ries built from DRAM. The internal organization of AMULET2e is illustrated in Figure 5.

AMULET2e cache

The cache comprises four 1 Kbyte blocks, each of which is a fully associative random replace-
ment store with a quad-word line and block size. A pipeline register between the CAM and the
RAM sections allows a following access to begin its CAM lookup while the previous access
completes within the RAM; this exploits the ability of the AMULET2 core to issue multiple
memory requests before the data is returned from the first. Sequential accesses are detected and
bypass the CAM lookup, thereby saving power and improving performance.

Cache line fetches are non-blocking, accessing the addressed item first and then allowing the

Figure 4 AMULET1 chip layout.

decode 1

dec 3

ctl 3
dec 2
ctl 2

register
bank

add
i/f

execute
pipe

dat
i/f



processor to continue while the rest of the line is fetched. The line fetch automaton continues
loading the line fetch buffer while the processor accesses the cache. There is an additional
CAM entry that identifies references to the data which is stored in the line fetch buffer. Indeed,
this data remains in the line fetch buffer where it can be accessed on equal terms to data in the
cache until the next cache miss, whereupon the whole buffer is copied into the cache while the
new data is loaded from external memory into the line fetch buffer.

AMULET2e systems

AMULET2e has been configured to make building small systems as straightforward as possi-
ble. As an example, Figure 6 shows the organization of an evaluation card incorporating
AMULET2e. The only components, apart from AMULET2e itself, are four SRAM chips
(though the system could equally well have been designed to operate with just one, at lower
performance), one ROM chip, a UART and an RS232 line interface. The UART uses a crystal
oscillator to control its bit rate and to provide a real-time clock, but all the system timing func-
tions are controlled by AMULET2e using the single reference delay.

This system demonstrates that using an asynchronous processor need be no more difficult than
using a conventional clocked processor provided that the memory interface has been carefully
thought out.

4. An Asynchronous Future?

The AMULET chips are presently research prototypes and are not about to replace synchro-
nous ARM cores in commercial production. However, there is a resurgence of world-wide
interest in the potential of asynchronous design styles to save power and to offer a more modu-
lar approach to the design of computing hardware.

The power savings which result from removing the global clock, leaving each subsystem to
perform its own timing functions as and when it has useful work to perform, are clear in theory
but there are few demonstrations that the benefits can be realized in practice with circuits of

Figure 5 AMULET2e internal organization.

control
registers

tag

address
decode

line fill

fu
nn

el
 a

nd
 m

em
or

y 
co

nt
ro

l

chip

DRAM

Address

Data

data in

data out

address

area enables pipeline
latches

delay

AMULET2
core

control

selects

data
RAM

CAM



sufficient complexity to be commercially interesting. The AMULET research is aimed directly
at adding to the body of convincing demonstrations of the merits of asynchronous technology.

An obstacle to the widespread adoption of self-timed design styles is the knowledge-base of
the existing design community. Most IC designers have been trained to have a strong aversion
to asynchronous circuits because of the difficulties that were experienced by the designers of
some early asynchronous computers. These difficulties resulted from an undisciplined
approach to self-timed design, and modern developments offer asynchronous design frame-
works which overcome most of the problems inherent in what is, admittedly, a more anarchic
approach to logic design than that offered within the clocked framework.

The next few years will tell whether or not AMULET and similar developments around the
world can demonstrate the sort of advantages that will cause designers to throw away most of
their past education and learn a new way to perform their duties.

5. Bibliography

Asynchronous logic
• Birtwistle and Davis (editors),Asynchronous Circuit Design, Proceedings of the 1993 VIIth Banff High Order

Workshop, Springer, 1995. ISBN 3-540-19901-2, 0-387-19901-2.

Chapter 5,Computing without Clocks: Micropipelining the ARM Processor, pages 211-262, by S. B. Furber,
describes the AMULET1 organization in some detail. Other chapters in the book give background on asyn-
chronous logic design and describe alternative approaches to the ‘micropipelines’ used in the AMULET
designs.

Micropipelines
• Sutherland, I. E.,Micropipelines, Communications of the ACM, vol. 32, no. 6, June 1989, pp. 720-738.

Figure 6 AMULET2e PIE card organization.

AMULET2e RAM RAM RAM RAM ROM

UART i/f RS232

data

address

de
la

y

chip selects 8 8 8 8832

8


