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~ Abstract—The implementation of an efficient result forward-  control signal that indicates which cycle an instructiomis
ing unit for asynchronous processors faces the problem of Thijs would require a lockstep operation of the pipeline that

the inherent lack of synchronisation between result produer 614 heavily penalise the performance. An asynchronous
and consumer units. An efficient, full-custom solution to ths

problem has been proposed and implemented before (in the implementation is attractive becquse asynchronous sgstem
AMULET3 asynchronous processor) with the consequent limi- ~ have some advantages over their synchronous counterparts
tations on design-space exploration and technology portality. such as: no clock distribution or clock skew problems, lvette
The use of automatic synthesis to describe asynchronous composability, lower power consumption, lower electromag

systems is attractive in terms of rapid development, tech-  heic interference and robustness towards variations pa su
nology mapping transparency and design space exploration.

This paper presents the description of a synthesisable reku ply voltage_, 'Femperature and fabrlc_atlon process parasiete
forwarding unit for an asynchronous microprocessor, using [2]. An efficient, full-custom solution to the problem of
the syntax-directed synthesis approach and targeting a ralist ~ result forwarding within an asynchronous environment has
quasi-delay-insensitive implementation. The descriptio of such been proposed and implemented before in the AMULET3
a system also serves as a complex case study to evaluate theasynchronous processor [3], targeting a bundled-dataeimpl

capabilities and limitations of syntax-directed synthes when . - ; R
used as a tool to automate the synthesis of performance- mentation (see section Il), with the consequent limitagion

demanding asynchronous systems. design-space exploration, technology portability andilaim
timing closure problem as synchronous designs. In order to
. INTRODUCTION overcome such limitations and reduce the impact of increas-

ingly difficult timing closure within modern fabrication @
cesses variability, it is desirable to have a synthesisadta-
l%lronous description, which can be mapped into a quasi-
delay-insensitive implementation (QDI - presented inisect

Result forwarding [1] is a method used in pipelined micro-
processors to reduce the penalty caused by inter-instructi
data dependencies. The forwarding mechanism can also

used to allow partial overtaking of (normally slow) memory

operations, but making sure that the instructions completg)' This paper presgnts the description of a.synthe5|sable
in the same order as they appear in the program. Figur%esu" forwarding unit for an asynchronous microprocessor

1 depicts some potential performance benefits of the resuHS‘irlg the synt:_;\x-directed s_ynthesis appro_ac_h and tagyetin
forwarding mechanism. a robust QDI implementation. The description of such a

system also serves as a complex case study to evaluate

Without forwarding the capabilities and limitations of syntax-directed synath
poRRR L sis when used to automate the synthesis of performance-

_ _ demanding asynchronous systems.
With forwarding

ADD RL, R, R2 fetch | read |exec | write

e R, RO [fercn T tonw | exec e | This paper is organised as follows: Section Il presents
> e an overview of asynchronous design and introduces the
Figure 1: Potential performance benefits of result forwarding in amotivation towards its use in modern VLSI designs. Section
4-stage pipeline. Il introduces the syntax-directed syntax approach and the
synthesis system used. Section IV briefly introduces the
In synchronous systems, the problem of result forwardingarget processor. Section V presents related work on result
can be easily solved because the clock signal serves as a réfrwarding. Section VI presents the architecture of the
erence that allows synchronisation between result proguci proposed forwarding unit and discusses the challenged face
and consuming units. In an asynchronous environment, th&hen such architecture is mapped into a QDI implemen-
problem of implementing a result forwarding mechanism istation and the proposed solutions. Simulation results and
more complicated due to the lack of synchronisation betweediscussion are given in Section VII. Conclusion and future
producers and consumers. In this case, one cannot rely onveork are presented in Section VIII.
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II. OVERVIEW OF ASYNCHRONOUSDESIGN
Synchronous digital systems, which are the basis of

ack

. . . . data i / ’/"
most of today’s digital designs, are based on two major B e I . S
assumptions: all signals are binary and time is discrete, @ ®)

defined by the system’s clock signal which controls all

communication and event sequencing. These assumptiofrégure 2: (a) Bundled-data push channel. (b) Four-phase bundled-
reduce greatly the task of design but also lead to clock data protocol.

distribution and clock skew problems, increased power con-

sumption and electromagnetic emissions (EMI) and forcing 2) Two-phase Bundled data protocols In this protocol

all parts of the circuit to work at the same (Worst-case).ratee%ch transition on theeq and ack signals correspond to

As opposed to synchronous, asynchronous systems does ng ; . :
. an event in the channel. In the first phase the active party
rely on a global clock signal. Instead, these systems use... . o
2 . Ihitiates the handshake with a transitiorrég. In the second
a form of local communication that comprises handshake

signals to request (initiate) and acknowledge (indicee) t phase the other party terminates the handshake by changing

. ; the value of theack signal. After that, the active channel can
reception of a request and that the operation can proceed.

A ransition itsreq signal again, initiating a new handshake.
Asynchronous circuits have some advantages over the .

. or this reason, two-phase protocols are also knowmoas
synchronous counterparts that make them attractive to use
in large VLSI designs, including: no clock distribution or 'curH0-2er0 (NRZ) protocols.

9 gns, g: . - 3) Four-phase dual-rail protocol: In this protocol the
clock skew problems, better modularity and composability, . : ,
request signal and data are encoded together using two wires
lower EMI, lower power, average-case performance and

robustness towards variations in supolv voltage. tempezat per bit of information. Each data hit requires two signals:
ustness tow variatl N SUpply voltage, P d.t for signalling a logic 1 fue) andd.f for signalling a logic
and fabrication process parameters [2].

0 (false). In this way, the pair of wiregd.t, d.f } form a code

A. Handshake protocols and data encoding whose codewords are shown in figure 3(a). This encoding
As introduced in the previous section, asynchronous cirScheme allows the easy extension to an n-bit channel by

cuits communicate using requesid) and acknowledge concatenatingn bits coded in dual-rail as above. Figurg 3(b

(ack) handshake signals. These signals together with th&hoWs an n-bit dual-rail channel. Using this conventios, th

data signals form andshake channel between two units. four phases are: (1) The sender issues a valid codeword on

The unit that requests an operation is calledabizve party ~ €ach pair of wires. (2) The receiver identifies whathbits
(or active port) and the unit that responds is referred to ash@ve become valid (completion detection), reads the data an

passive. If the sender of data is the active party the channefakesack high. (3) The sender detects the acknowledgement
is called apush channdl. If it is the receiver who initiates @nd changes the bits to the empty state (RTZ). (4) The
the communication, the channel is callegdl channel. In ~ Feceiver identifies when all the bits have become empty and
abstract diagrams, it is common to identify the active end@kesacklow (RTZ completion detection). Figure 3(c) shows
of a channel using a black dot. There are several commoft iming diagram for this protocol. The dual-rail coding is
asynchronous handshake protocols named according to tfemember of the family of delay-insensitive codes [4]. This

encoding used for data and handshake signals. Here wghcoding method allows a reliable communication between
briefly present the most common of them. two parties regardless of the delay in the wires. This priyper

1) Four-phase bundled-data protocol: In this protocol the ~Makes dual-rail encoding very attractive despite the féct o
data signals use binary levels to encode information (one bHSING MoOre wires.

per wire) and there are separate wiresrayandack signals. : sender
These are bundled with the data wires to form the channel, el ey I

as shown in figure 2(a). This protocol is also calkible- z : ZZYO -

rail. The term four-phase refers to the number of actions o v e

that take place during a handshake communication, which P (b)

are: (1) the active party issues the data and initiates the deta(dt,df) Empty - Vaid
handshake by setting theq signal high. (2) The passive @ ek m

party reads the data and seisk high. (3) Upon receiving
the acknowledge, the active party returns to zero (RTZ) its
req signal, after this, data is not longer guaranteed to beigure 3: (a) 1-bit Dual-rail encoding. (b) n-bit Dual-rail channel.
valid. (4) The receiver detects the return to zeraeaf and (c) Four-phase dual-rail protocol.

acknowledges this by takinack low (RTZ), allowing a new

handshake to start. Figure 2(b) shows a timing diagram for 4) Two-phase dual-rail protocol: This protocol also uses
this protocol. two wires per bit but the information is encoded as transi-
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tions instead of logic levels. On an n-bit channel, a new [1l. SYNTAX-DIRECTED SYNTHESIS

codeword is received when exactly one wire per bit has The syntax-directed approach to synthesise asynchronous
made a transition. In this case there is no empty value: gjrcuits is based in the compilation of descriptions writte
valid codeword is acknowledged and the sender can changg a high-level language into a communicating network
again one wire per bit to send another codeword. of pre-designed modules called handshake components [7].
B. Delay models The compilation process performs a one-to-one mapping of

each language construct into the network of components

In order to design and implement asynchronous circuit . . . ) X i
. - : at implements it. This transparent mapping gives a high
some delay assumptions and timing constraints are useq, R . .

egree of flexibility in the design as incremental changes

enerating a number of delays models. Delays assumptions o . .
g 9 y y P QO the specification generates predictable changes in the

allow simplifications to the modeliing of the systems amdresultin circuit, allowing the designer to optimise thecait
timing constraints specify the restrictions the circuit is. 9 ' 9 9 P

subject to in order to operate correctly. Here we will discus :gnterr:secig pjrf_lqrr]rgir;(ﬁ, 'Fec:jwr?étoroiri?’hztng;i;kisggrﬁ:loon-
bundled-data and delay-insensitive models. guage level. P! W P

1) Bundled-data circuits As introduced in section 11-Al nents constitutes an intermediate representation thabean

bundled-data uses binary levels to encode information anaubsequently replacgd by a gate netlist.
there are separateq and ack signals. All protocols using Currently there exist two fully automated CAD systems

bundled-data rely on delay matching to preserve the ordetihai use-;t;lsst ar;proacr for”thdeTsyntheS|580f azygclhronous
of events at the sender’s and receiver’'s end. For instance, pystems. e (formerly called Tangram) [8] and Balsa

the push channel of figure 2 (a), valid data must precede th ], an open-source system developed at the Unlyersny of
req signal in order to guarantee correct operation. Manches_ter that closely.follows the Tangram ph|Iosophy._
2) Delay-insensitive (DI) circuits: In this model all wires Syntax-dlrec_:ted synthesis has been us_ed su_ccessfully n
and circuit elements can have positive, unbounded dela);.he synthesis of several VLSI systems, n_wcludmg the SPA
With this assumption, an element that receives an inpu rocessor [10], an asynchr_onous MIPS MICTOprocessor [11]
signal is forced tandicate (acknowledge) to the sender when and .thebIARM99?1HS, theAfer;: commercially-available syn-
it has received the information. No new changes can occutrhesIsa € asynchonous '
at the input before receiving the acknowledge signal. In DIA, The Balsa synthesis system

circuits, completion_detection circuitry is used to ge_mer_a Balsa is the name for both the framework for synthesising
the acknowledge signal. In a DI system, communication,qynehronous circuits and the language used to describe suc
between different modules is made using a DI protocoly sioms Balsa uses the syntax-directed synthesis ajproac
such as the dual-rail protocol described in section II-A3.45 generatdandshake circuits from a description written in
Th? DI quel IS a very robust model, h‘?‘"’e"er' It h,asthe Balsa language. Originally introduce by van Berkel /],
limitations if applied to general circuit design due to its handshake circuit is a communicating network of handshake
heavy restrictions. The only n-input, single-output g&i&tt ., nhonents connected point-to-point ushegdshake chan-

can be safely used |n_DI C|rcg|t_s is called thauller C- nels. Each channel connects exactly one passive port of a
element [5]. Due to this restriction, the class of delay- p,,yshake component to an active port of another handshake
insensitive circuits is very limited. It has been demortstla component. As an example, consider the following Balsa

that only circuits composed of C-elements and inverters ca iece of code, which describes a simple 1-place buffer
be delay insensitive [6]. Figure 4 shows the symbol and th‘?register): '

specification for a two-input C-element.

3) Quasi-delay insensitive (QDI) circuits. This model P nggﬁ{fe?ugteh(y b : type:
uses the DI assumptions with the addition isbchronic input in : DataType;
forks. Isochronic forks are forking wires where the difference  output out : DataType
in delays between the destinations is negligible. Thissglo ) ' ®ariable buf : Dat aType
a signal to go to different places and be safely acknowledgegkgi n '

at only one of the ends, simplifying the design of the cirguit I oop buf
In -> pu )
out <- buf
Symbol Function Table end
a b output end
0 0 0
ﬁ output | 0 1 no change The specification is parameterised in the type of data the
1 0| nochange . . . .
1l 1 register can hold. The register has an input charmel
and an output channelut . The variablebuf stores the
Figure 4: The Muller C-Element. data and the operation consists of an unbounded repetition

(I oop) of two actions: input data ¢) from channel n into



buf sequenced;() with output K-) of the data stored in a fully synthesised asynchronous implementation of the 32-
buf to channelut . Figure 5 shows the handshake circuit bit ARM v5T ISA. As opposed to SPA, whose description

generated by Balsa from the code above, whereLibap
component is labelled with a sta¥)(

Q Q
. Q O
in out

activate

1 2

Figure 5: 1-Place buffer handshake circuit.

1) Sequencing events in asynchronous circuits: In syn-

focused on security, nanoSpa description uses highly opti-
mised Balsa code targeting high performance. NanoSpa is
currently under development and the initial version shares
the same architecture organisation as SPA: an ARM-style 3-
stage Fetch-Decode-Execute pipeline with a Harvard-style
memory interface. To date, nanoSpa has the following
functional differences with respect to SPA: it does not have
support for Thumb instructions, interrupts, memory aborts
coprocessors. In a new description of nanoSpa, the pipeline
depth has been increased to enhance the performance, but
in order to avoid the performance loss caused by inter-
instruction dependencies, this new description requines t
use of a result forwarding unit. This non-trivial problem
presents interesting challenges for the architecturesriges

chronous circuits, the sequencing of events can be easiljon techniques, language expressiveness and performénce
controlled using the global clock. In an asynchronous enfhe synthesised circuits. Figure 7 shows a simplified dimgra

vironment, sequencing handshake events must follow th&f the nanoSpa pipeline.

protocol rules in order to avoid data or control hazards that
may cause malfunction and deadlock. Balsa generates two
types of sequencers, based on the S-element and T-element
respectively [12]. Figure 6 presents a block diagram of such
components with their respective specifications as Signal
Transition Graphs (STG - a class of Petri net used to specify
the operation of a circuit [2]). In an STG, a transition from 0

to 1 in signalx is represented by-. Similarly, a transition
from 1 to O inz is represented by:—. Note how in the
S-element the RTZ phases of the left (1) and right side (O)
do not overlap, whereas in the the T-element they can occur
cuncurrently, which increases the speed of the sequencing.
Unfortunately, it is not always possible to use this type of
overlapping due to the possibility of introducing writeteaf

write (WAW) and write-after-read (WAR) hazards. For a
complete discussion of these issues, the interested reader
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Figure 7: The 5-stage nanoSpa pipeline.

V. RELATED WORK

Earlier asynchronous techniques for resolving depen-
dencies include: the register locking mechanism for the
AMULET 1 processor [14], register locking plus “last
result” register used in the AMULET2 processor [14], the
last result bypass mechanism of the Caltech asynchronous
MIPS [15], the scoreboard-like Data Hazard Detection Table
(DHDT) of the SAMIPS processor [11], the counterflow

Figure 6: (a) S-element. (b) T-element. (c) S-element STG. (d)PiPeline architecture [16] and the asynchronous “queue”

T-element STG.

IV. THE TARGET PROCESSORNANOSPA

The forwarding unit described in this paper was designeanented using matched-delay-based, bundled-data engoding
to be used in the nanoSpa processor [13]. NanoSpa is amhich limits the possibility of design-space exploration
experimental, new specification of the SPA processor [10]and technology portability. The ARM996HS processor by

FIFO [3] for the AMULET3 processor [17]. The “queue”
was an efficient solution to the problems of result forwagdin
and exception handling within an asynchronous pipeline,
with the disadvantage of being a full-custom design imple-



Handshake Solutions, is a commercially-available synthe- Writeout: This process copies valid results back to the
sizable asynchronous 32-bit CPU that was implementedegister bank. It examines the queue locations cyclically a
using the Haste tools [8]. The processor core is a fivewaits until the valid result arrives, then copies the data to
stage asynchronous pipeline but no information has beethe register bank and mark the location as "empty” so it can
published about the dependency avoidance technique usdak reallocated.
Similar to AMULET3, the implementation uses bundled- In order to improve the speed of the lookup process, the
data encoding. AMULET AQF uses a small CAM to hold the information
As nanoSpa is also an ARM core, the AMULET3 asyn-about the registers written in the buffer. Speculative refad
chronous “queue” FIFO (AQF from herein) was used as theghe default value from the register bank is also performed
reference model for the nanoSpa forwarding unit (nFU). Then case the source operand is not present in the buffer. The
AQF is a circular buffer that acts both as a forwarding unitAQF has a centralised control and features three read ports
and a reorder buffer. Figure 8 shows a diagram of the AQHFor forwarding and two write ports for arrival. As mentioned
process model. The queue operation consist of 5 processe=arlier, the AMULET3 and the AQF were implemented
Lookup, Allocation, Forward, Arrival and Writeout. using bundled-data encoding together with a token-passing

asynchronous control.
Lookup

Allocation

|

VI. ARCHITECTURE OF THE NANG-ORWARD UNIT

The nFU has been designed around the process model
of the AMULET3 AQF and it has the same number of read

Processing ports (3) and write ports (2), but as nanoSpa does not execute
_’[I:: i Arrival | queve datalocations instructions out of order, it is not used as a reorder buffer.
Processng f——r Figure 9 shows the architecture of the nFU and its location

within the new nanoSpa pipeline. The figure shows details of
the communication interface between the various procgsses
Writeout the queue and the processor units.

Figure 8: AQF process model. E—

doFwd fwData

%

Lookup: This process receives the source register names <% [~ Lookup |1 1ound

Forward

from the decoder, examines the queue to see if they are ™ ™ 09 PR (@) onaf— | §
present, and returns a bit mask indicating the possible data H
source positions in the queue. This is performed using a § E w
CAM (Content Addressable Memory) that holds the previ- o Radiess  Queve 0@ E: w0 3
ously allocated destination registers. ° Sy S e o watan 32
Allocation: After obtainning the lookup source mask, the soAloe GoAlos
instruction’s own destination address can be written ihto t WriteAddr Allocate e
CAM. The writing position is allocated cyclically within ¢h . \—;—;—‘
circular buffer structure.
Forward: Concurrently withallocation, this process re- . A
ceives the mask generated duritegkup, examines each of ReadAddr ] | Register Bank [T deroata

the possible sources (starting at the most recent), waits un
the data are present and then checks for validity. Valid data
is forwarded, otherwise the process examines the next most
recent possibility. If all the possibilities are exhausfed if . .
there were no data sources) the forwarding process gives up NanoFU implementation
and the default value read from the register bank is used. The nFU implementation targeted a delay-insensitive
Arrival: Results arriving at the queue come along with thedual-rail encoding implementation as this is a robust data
allocated queue address. The allocation process guasanteencoding scheme that facilitates timing closure, which is
non-conflicting allocations even in the event of multiple advantageous in current fabrication technologies aftecte
writes. When the data arrive, the previous data is knowrby process variability. This advantage comes at the cost
to have been both written back to the register bank anaf higher area, energy consumption and, in some cases,
forwarded as required. If the instruction was abandoned dueestricted solution alternatives. Similar to nanoSpa stiyée
to conditional execution, then the result will be marked asused for the Balsa description was data-driven, with perfor
invalid. mance as the main goal.

Figure 9: The nanoForward Unit architecture



B. Implementation issues 2) Performance of sequenced operations: One perfor-

ARM instructions are particular in the sense that anymance problem that arises with the grouping scheme pre-
instruction can be executed conditionally, which addsaextr Sénted in section VI-B1 is that those read-then-write op-
complication to the result forwarding mechanism. In ordererations require the use of sequencers based onSthe
to improve the efficiency of the pipeline in both the AQF element which fglly sequences processing and return-to-zero
and the nFU, allocation is done regardless of the instractio (RTZ) phases in order to avoid the risk of write-after-read
being or not conditional. If a conditional instruction fail (WAR) hazards. To allow a more concurrent operation with
its condition code tests, a token is sent through the pipelindecoupled RTZ phases, the processes can be rearranged as
to indicate that the instruction has been processed and ttf#location/lookup and arrival/forward. This write-then-read
allocated queue slots are marked as invalid. This intrasluce?Peration permits the safe use of a sequencer based on the
some wastage in the queue but figures reported in [3] givd-€lément but requires requires an initial empty token to
90% of queue utilisation for typical ARM programs. be sent toallocate and arrival before the nFU begins to

1) Synchronisation between processes: To guarantee cor- Process instructions. In Balsa, a write-then-read sequtmnc
rect operation, on each instruction the nFU must perforn variable within a procedure generates a sequencer based
sequentially some operations as shown in figure 10. Té" theT-element but in the nFU the write and read processes
allow synchronisation among handshake modules, the Baldgside in separate modules with multiplexed/demultipdexe
language provides special non-data channels caljed  accesses to a global variable. In this situation, the Balsa
channels. The initial description ussghc channels to syn- compiler is conservative and inserts a s&felement. It is
chronise the processes but this caused a large performangi€ar that in such cases, the designer’s knowledge about the
penalty, so alternatives were looked for. A solution thatSystem behaviour should ideally be expressible at the lan-
reduced dramatically this penalty was to perform synchroniguage level so that the compiler can make better decisions.
sation using data instead of sync tokens: to decofgpteard In our case, the S-elements for the mentioned sequencers
from arrival, the queue contents are read speculatively and/ere manually changed to T-elements in the intermediate
sent through data channels to theeward processLookup ~ handshake netlist (before technology mapping).
and allocation were decoupled using an “allocation mask”

procedure rd_w( control | activate

that blocks the reading of the queue locations that are about
to be modified by the allocation/arrival process during the
current instruction. This masking mechanism reduces the
effective length of the queue in 1 or 2 locations, depending
on the number of results to be written (one or two). These
mechanisms obviously dissipate more power and require
larger area. Another alternative is to implement a less
concurrent operation by grouping the processes according t
the information that they read or writéookup/allocate are
sequenced as they read/write the register names analide

) is

loop

variable V : someType

begi n
| oop
) rd_proc(rd_args) e,

'wrfproc(wriar gs) 2 1
nd

end Jo) ¢ some_output
0,
variable
CY (b)

flag. Similarly, forward/arrival are sequenced because they Figure 11: Read-write loop (a) Code. (b) Handshake circuit.

read/write results. In this walgokup/allocation can now run
concurrently withforward/arrival. Synchronisation between
lookup and forward is done with data tokens carrying the
lookup result.Allocation and arrival completion must be
synchronised and this information triggers tlwgteout pro-
cess. This grouping and sequencing prevents an instruction
from overtaking the previous one but reduces the area and

energy penalty.
Lookup
Forward

Allocate

Arrival

procedure rd_w _rd( control

activate
) is
2 1

variable V :
be

someType

gin
rd_proc(rd_args)

" oop
wr _proc(w _args) 1

' read_proc(read_args)
end

O

end

some_output

merge

Q)

(b)

Writeout

Figure 10: Inter-process dependencies in the nFU.

Figure 12: First-read-unfolded version of circuit in figure 11.

An improvement to the above solution is to take advantage
of the unbounded repetition of read-then-write actionsrove



procedure rd_wr( control

Vs sevate that, despite being relatively simple, do not perform as
varian e e e well as an optimised CAM, resulting in some performance
bogin 2 j penalty for thelookup process. In the AMULET3 AQF

1O0p roc(rd_args) the forward process iteratively examines the possible data
W _proc(wr_ar gs) . J sources until valid data is found or, if all possibilitiesear
en exhausted, the default value read form the register bank

Q Q_ Some_output is used. This operation was efficiently implemented at the
signal-level. As Balsa is a behavioural language, no signal
level operations can be described and attempting to replica
@ ®) this behaviour in the nFU would require extensive use of
sequenced operations that penalise the performance. The
implemented solution is to wait for data validity during the
allocation process and attach this information to the tegis
common variables and let the compiler automatically gener?Umber before writing it to the CAM. In this way the CAM
ate an optimised control tree, without the need for reorderi Will report zero or the single most recent valid source to the
the operations. An unbounded repetition of sequenced read@™warding process, avoiding the need for iteration.

write operations can be described in Balsa as shown in %) Register bank operation: Due to the use of dual-rail
the piece of code in figure 11(a) wherel_proc() and encoding in the nFU implementation, speculative reading
wr_proc() access the common variable V. Figure 11(b)_of the register bank concurre_ntly with thriFeout process
shows the resulting handshake circuit. If we unfold the firstS N0t safe, unless the required register is not present in
read operation off the loop construct as the code shown i€ forwarding buffer. An alternative, that has been awide
figure 12(a), the behaviour will remain the same, but now" th|.s design, is the use of arb|t.rat|on to resolve possible
the operation inside the loop is a write-then-read, whiotsdo conflicts. Instead, a modified version of the BafseseFetch
not have WAR hazards. This source-level optimisation ha§ompenent, that provides a default value when a potential
the disadvantage of requiring the use of multiplexers in th&onflict can occur, was designed. In Balsa circuits, the
datapath to merge the reads and duplicate blocks (largey areCaSeFetch, shown in figure 14(a), is u§e_d to access a single
energy and latency) as shown in the resulting circuit of Bgur €/€ment from an array of variables: it receives iamex

12(b). To avoid hardware duplication, Balsa allows the us¢/@lue that indicates which of thieputs must be sent to the
of shared procedures with the limitation of not being able Ut Port. The newCaseFetchDefault in figure 14(b) has an

to access local channels [9]. The proposed solution is t0@1dditiona_| input namedefault Which_indicates whether the
automatically substitute the loop-sequencer controkaire  Selected input or a default (and valid) constant value vell b
obtained for unbounded loop descriptions (as in figure 31(b)S€Nt: Preventing the propagation of spurious values thgt ma
by the optimised control shown in figure 13(b), which allows c@use deadlock.

end

variable

Figure 13: Optimised First-read-unfolded read-write loop.

write and read RTZ overlapping and does not have the VII. RESULTS
restrictions of shared procedures. Simulation resultsvsho ) ) )
that this automatic first-read-unfold optimisation hasisim The nanoSpa with the nFU was synthesised in 180nm

dechnology. After a series of pre-layout, transistor level
simulations it was found that the optimum queue size is 4.
Different architectures of the nFU were tested and compared

performance gain as the operation reorder described earli

ool ot default running the Dhrystone program. Tables | and Il show that

input| . input| . . .

in?u_tmi@:mdex inBL[t[l]T» ndex performance increases were 10%, with area and energy
input{n-1] out inputfn-1] - out overheads of 13% in spite of the limitations faced with

(a) CaseFetch (b) CaseFetchDefault the Balsa description. These results also show that the
techniques used for desynchronising the processes achieve
Figure 14: Symbols for the CaseFetch and CaseFetchDefault  close to 40% increase in performance relative to the use of
handshake components. sync channels. Unfortunately it is not possible to make a
relative comparison of the performance gain with respect
3) Lookup CAM and forward process implementation: In  to the AMULET3 AQF, because there are no published
the AMULET3 AQF, thelookup process uses a small, very figures with and without the AQF. Pre-implementation, sim-
fast custom CAM to determine if the source registers ofulation results in [18] suggest that the AQF in AMULET3
the decoded instruction are written or have been allocatediould increase its performance by 22.5% when running
in the buffer. Balsa does not provide a way to describe d@he Dhrystone benchmark. Notice also that the AMULET3
CAM and generate an efficient circuit structure. The Balsgipeline has a decoupled memory stage and this feature is
synthesised circuit consists of a number of logic compasato not currently present in nanoSpa.



nanoSpa DMIPS | speedup overhead

device (%) in area (%)
no nFU 78.37 0.00 0.00
nFU (sync signals) 61.22 -28.80 5.2
nFU (allocation mask) 82.03 4.67 15.71
nFU (grouping) 81.86 5.86 11.20
nFU (gruping + unfolding) 86.27 10.08 11.21

Table I: Performance results for nanoSpa using the nFU

are looking into the generated structures to find ways of
implementing those as optimised handshake modules that
could be described with new constructs. From the ongoing
analysis of the nFU some peep-hole optimisations such as
4-phase broad semi-decoupled transferrers (differemh fro
those presented in [19]) and removal of redundzahgeVari-

able handshake components are currently being investigated.

nanoSpa Energy for a overhead
device Dhrystone loop(u.J) (%)

no nFU 0.360 0.00

nFU (allocation mask) 0.491 36.23

nFU (grouping) 0.393 8.90
nFU (gruping + unfolding) 0.408 13.33 (1]
Table II: Energy results for nanoSpa using the nFU 2
2
[3]

Results show that the first-read-unfold technique de-
scribed in section VI-B1 is a key factor for the performance
gain in the nFU, contributing more than 50% of the speed- 4
up. Table 1l shows transistor-level simulation results of
first-read-unfolded loops with different data widths. The B3l
simulated loop was a simple read-then-write to a vari-
able. These figures give an estimated upper bound for thdé]
performance gain that can be obtained and show that for
datapath widths greater than 3 bits, the speed-up achigved b7
RTZ overlapping is greater than the overhead of the merge

required in the unfolded control tree of figure 13. Eg%
width (bits) 1 2 3 4 8 | 16 | 32 | 64
speedup (%) | -11.8| 25| -1.0 | 5.0 | 7.2 | 90| 88| 114 [10]
Table Ill: Influence of data widths in first-read-unfold of read-
write unbounded repetitions
[11]

VIII. CONCLUSIONS AND FUTURE WORK

The work presented in this paper demonstrates the fea-
sibility of describing a synthesisable quasi-delay ingams  [12]
result forwarding unit in Balsa and obtaining a significant
performance increase. Compared to a hand-optimised, full-
custom design, the synthesised nFU achieves close to 5006
the maximum possible performance increase. This work also
introduces a new optimised way of sequencing unbounded
repetitions of read-write operations that allows safe laper  [14]
ping on the RTZ phases and produces non-trivial increasés”
in performance. The work also highlights some of the
performance issues that arise from the use of a synthesisabl
forwarding unit in Balsa, namely the lack of efficient ways [16]
of describing and synthesising associative arrays (CAM) an
the problem of deadlock-safe concurrent writes and readd’]
in dual-rail variables to perform speculative reading. Séhe
problems are currently being analysed together with someas)
peep-hole optimisations that the nFU design has highldyhte
including new language constructs. The nFU makes exr g
tensive use of arrayed variables and arrayed channels for
storing and broadcasting data. At the moment, the authors

Future work will also include extending the pipeline depth
of nanoSpa to decouple the memory stage and explore the
effects of new optimisations and components.
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