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Abstract—The implementation of an efficient result forward-
ing unit for asynchronous processors faces the problem of
the inherent lack of synchronisation between result producer
and consumer units. An efficient, full-custom solution to this
problem has been proposed and implemented before (in the
AMULET3 asynchronous processor) with the consequent limi-
tations on design-space exploration and technology portability.
The use of automatic synthesis to describe asynchronous
systems is attractive in terms of rapid development, tech-
nology mapping transparency and design space exploration.
This paper presents the description of a synthesisable result
forwarding unit for an asynchronous microprocessor, using
the syntax-directed synthesis approach and targeting a robust
quasi-delay-insensitive implementation. The description of such
a system also serves as a complex case study to evaluate the
capabilities and limitations of syntax-directed synthesis when
used as a tool to automate the synthesis of performance-
demanding asynchronous systems.

I. I NTRODUCTION

Result forwarding [1] is a method used in pipelined micro-
processors to reduce the penalty caused by inter-instruction
data dependencies. The forwarding mechanism can also be
used to allow partial overtaking of (normally slow) memory
operations, but making sure that the instructions complete
in the same order as they appear in the program. Figure
1 depicts some potential performance benefits of the result
forwarding mechanism.
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Figure 1: Potential performance benefits of result forwarding in a
4-stage pipeline.

In synchronous systems, the problem of result forwarding
can be easily solved because the clock signal serves as a ref-
erence that allows synchronisation between result producing
and consuming units. In an asynchronous environment, the
problem of implementing a result forwarding mechanism is
more complicated due to the lack of synchronisation between
producers and consumers. In this case, one cannot rely on a

control signal that indicates which cycle an instruction isin.
This would require a lockstep operation of the pipeline that
would heavily penalise the performance. An asynchronous
implementation is attractive because asynchronous systems
have some advantages over their synchronous counterparts
such as: no clock distribution or clock skew problems, better
composability, lower power consumption, lower electromag-
netic interference and robustness towards variations in sup-
ply voltage, temperature and fabrication process parameters
[2]. An efficient, full-custom solution to the problem of
result forwarding within an asynchronous environment has
been proposed and implemented before in the AMULET3
asynchronous processor [3], targeting a bundled-data imple-
mentation (see section II), with the consequent limitations on
design-space exploration, technology portability and similar
timing closure problem as synchronous designs. In order to
overcome such limitations and reduce the impact of increas-
ingly difficult timing closure within modern fabrication pro-
cesses variability, it is desirable to have a synthesisableasyn-
chronous description, which can be mapped into a quasi-
delay-insensitive implementation (QDI - presented in section
II). This paper presents the description of a synthesisable
result forwarding unit for an asynchronous microprocessor,
using the syntax-directed synthesis approach and targeting
a robust QDI implementation. The description of such a
system also serves as a complex case study to evaluate
the capabilities and limitations of syntax-directed synthe-
sis when used to automate the synthesis of performance-
demanding asynchronous systems.

This paper is organised as follows: Section II presents
an overview of asynchronous design and introduces the
motivation towards its use in modern VLSI designs. Section
III introduces the syntax-directed syntax approach and the
synthesis system used. Section IV briefly introduces the
target processor. Section V presents related work on result
forwarding. Section VI presents the architecture of the
proposed forwarding unit and discusses the challenges faced
when such architecture is mapped into a QDI implemen-
tation and the proposed solutions. Simulation results and
discussion are given in Section VII. Conclusion and future
work are presented in Section VIII.



II. OVERVIEW OF ASYNCHRONOUSDESIGN

Synchronous digital systems, which are the basis of
most of today’s digital designs, are based on two major
assumptions: all signals are binary and time is discrete,
defined by the system’s clock signal which controls all
communication and event sequencing. These assumptions
reduce greatly the task of design but also lead to clock
distribution and clock skew problems, increased power con-
sumption and electromagnetic emissions (EMI) and forcing
all parts of the circuit to work at the same (worst-case) rate.
As opposed to synchronous, asynchronous systems does not
rely on a global clock signal. Instead, these systems use
a form of local communication that comprises handshake
signals to request (initiate) and acknowledge (indicate) the
reception of a request and that the operation can proceed.
Asynchronous circuits have some advantages over their
synchronous counterparts that make them attractive to use
in large VLSI designs, including: no clock distribution or
clock skew problems, better modularity and composability,
lower EMI, lower power, average-case performance and
robustness towards variations in supply voltage, temperature
and fabrication process parameters [2].

A. Handshake protocols and data encoding

As introduced in the previous section, asynchronous cir-
cuits communicate using request (req) and acknowledge
(ack) handshake signals. These signals together with the
data signals form ahandshake channel between two units.
The unit that requests an operation is called theactive party
(or active port) and the unit that responds is referred to as
passive. If the sender of data is the active party the channel
is called apush channel. If it is the receiver who initiates
the communication, the channel is called apull channel. In
abstract diagrams, it is common to identify the active end
of a channel using a black dot. There are several common
asynchronous handshake protocols named according to the
encoding used for data and handshake signals. Here we
briefly present the most common of them.

1) Four-phase bundled-data protocol: In this protocol the
data signals use binary levels to encode information (one bit
per wire) and there are separate wires forreq andack signals.
These are bundled with the data wires to form the channel,
as shown in figure 2(a). This protocol is also calledsingle-
rail. The term four-phase refers to the number of actions
that take place during a handshake communication, which
are: (1) the active party issues the data and initiates the
handshake by setting thereq signal high. (2) The passive
party reads the data and setsack high. (3) Upon receiving
the acknowledge, the active party returns to zero (RTZ) its
req signal, after this, data is not longer guaranteed to be
valid. (4) The receiver detects the return to zero ofreq and
acknowledges this by takingack low (RTZ), allowing a new
handshake to start. Figure 2(b) shows a timing diagram for
this protocol.
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Figure 2: (a) Bundled-data push channel. (b) Four-phase bundled-
data protocol.

2) Two-phase Bundled data protocols: In this protocol
each transition on thereq and ack signals correspond to
an event in the channel. In the first phase the active party
initiates the handshake with a transition inreq. In the second
phase the other party terminates the handshake by changing
the value of theack signal. After that, the active channel can
transition itsreq signal again, initiating a new handshake.
For this reason, two-phase protocols are also known asnon-
return-to-zero (NRZ) protocols.

3) Four-phase dual-rail protocol: In this protocol the
request signal and data are encoded together using two wires
per bit of information. Each data bitd requires two signals:
d.t for signalling a logic 1 (true) andd.f for signalling a logic
0 (false). In this way, the pair of wires{d.t, d.f} form a code
whose codewords are shown in figure 3(a). This encoding
scheme allows the easy extension to an n-bit channel by
concatenating n bits coded in dual-rail as above. Figure 3(b)
shows an n-bit dual-rail channel. Using this convention, the
four phases are: (1) The sender issues a valid codeword on
each pair of wires. (2) The receiver identifies whenall bits
have become valid (completion detection), reads the data and
takesack high. (3) The sender detects the acknowledgement
and changes the bits to the empty state (RTZ). (4) The
receiver identifies when all the bits have become empty and
takesack low (RTZ completion detection). Figure 3(c) shows
a timing diagram for this protocol. The dual-rail coding is
a member of the family of delay-insensitive codes [4]. This
encoding method allows a reliable communication between
two parties regardless of the delay in the wires. This property
makes dual-rail encoding very attractive despite the fact of
using more wires.

d.t   d.f   meaning

 0     0    Empty

 0     1    Valid "0"

 1     0    Valid "1" 

 1     1    Invalid

(a)
data {d.t, d.f}

ack

Empty Valid Empty Valid

sender receiver

ack

2n

data

(b)

(c)

Figure 3: (a) 1-bit Dual-rail encoding. (b) n-bit Dual-rail channel.
(c) Four-phase dual-rail protocol.

4) Two-phase dual-rail protocol: This protocol also uses
two wires per bit but the information is encoded as transi-



tions instead of logic levels. On an n-bit channel, a new
codeword is received when exactly one wire per bit has
made a transition. In this case there is no empty value: a
valid codeword is acknowledged and the sender can change
again one wire per bit to send another codeword.

B. Delay models

In order to design and implement asynchronous circuits
some delay assumptions and timing constraints are used,
generating a number of delays models. Delays assumptions
allow simplifications to the modelling of the systems and
timing constraints specify the restrictions the circuit is
subject to in order to operate correctly. Here we will discuss
bundled-data and delay-insensitive models.

1) Bundled-data circuits: As introduced in section II-A1
bundled-data uses binary levels to encode information and
there are separatereq and ack signals. All protocols using
bundled-data rely on delay matching to preserve the order
of events at the sender’s and receiver’s end. For instance, in
the push channel of figure 2 (a), valid data must precede the
req signal in order to guarantee correct operation.

2) Delay-insensitive (DI) circuits: In this model all wires
and circuit elements can have positive, unbounded delay.
With this assumption, an element that receives an input
signal is forced toindicate (acknowledge) to the sender when
it has received the information. No new changes can occur
at the input before receiving the acknowledge signal. In DI
circuits, completion detection circuitry is used to generate
the acknowledge signal. In a DI system, communication
between different modules is made using a DI protocol
such as the dual-rail protocol described in section II-A3.
The DI model is a very robust model, however, it has
limitations if applied to general circuit design due to its
heavy restrictions. The only n-input, single-output gate that
can be safely used in DI circuits is called theMuller C-
element [5]. Due to this restriction, the class of delay-
insensitive circuits is very limited. It has been demonstrated
that only circuits composed of C-elements and inverters can
be delay insensitive [6]. Figure 4 shows the symbol and the
specification for a two-input C-element.

3) Quasi-delay insensitive (QDI) circuits: This model
uses the DI assumptions with the addition ofisochronic
forks. Isochronic forks are forking wires where the difference
in delays between the destinations is negligible. This allows
a signal to go to different places and be safely acknowledged
at only one of the ends, simplifying the design of the circuits.
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Figure 4: The Muller C-Element.

III. SYNTAX -DIRECTED SYNTHESIS

The syntax-directed approach to synthesise asynchronous
circuits is based in the compilation of descriptions written
in a high-level language into a communicating network
of pre-designed modules called handshake components [7].
The compilation process performs a one-to-one mapping of
each language construct into the network of components
that implements it. This transparent mapping gives a high
degree of flexibility in the design as incremental changes
to the specification generates predictable changes in the
resulting circuit, allowing the designer to optimise the circuit
in terms of performance, power or area, at the description
language level. The compiled network of handshake compo-
nents constitutes an intermediate representation that canbe
subsequently replaced by a gate netlist.

Currently there exist two fully automated CAD systems
that use this approach for the synthesis of asynchronous
systems:Haste (formerly called Tangram) [8] and Balsa
[9], an open-source system developed at the University of
Manchester that closely follows the Tangram philosophy.
Syntax-directed synthesis has been used successfully in
the synthesis of several VLSI systems, including the SPA
processor [10], an asynchronous MIPS microprocessor [11]
and the ARM996HS, the first commercially-available syn-
thesisable asynchonous ARM.

A. The Balsa synthesis system

Balsa is the name for both the framework for synthesising
asynchronous circuits and the language used to describe such
systems. Balsa uses the syntax-directed synthesis approach
to generatehandshake circuits from a description written in
the Balsa language. Originally introduce by van Berkel [7],a
handshake circuit is a communicating network of handshake
components connected point-to-point usinghandshake chan-
nels. Each channel connects exactly one passive port of a
handshake component to an active port of another handshake
component. As an example, consider the following Balsa
piece of code, which describes a simple 1-place buffer
(register):

procedure buffer (
parameter DataType : type;
input in : DataType;
output out : DataType

) is
variable buf : DataType

begin
loop

in -> buf ;
out <- buf

end
end

The specification is parameterised in the type of data the
register can hold. The register has an input channelin
and an output channelout. The variablebuf stores the
data and the operation consists of an unbounded repetition
(loop) of two actions: input data (->) from channelin into



buf sequenced (;) with output (<-) of the data stored in
buf to channelout. Figure 5 shows the handshake circuit
generated by Balsa from the code above, where theLoop
component is labelled with a star (∗).

activate

outin

;

buf
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Figure 5: 1-Place buffer handshake circuit.

1) Sequencing events in asynchronous circuits: In syn-
chronous circuits, the sequencing of events can be easily
controlled using the global clock. In an asynchronous en-
vironment, sequencing handshake events must follow the
protocol rules in order to avoid data or control hazards that
may cause malfunction and deadlock. Balsa generates two
types of sequencers, based on the S-element and T-element
respectively [12]. Figure 6 presents a block diagram of such
components with their respective specifications as Signal
Transition Graphs (STG - a class of Petri net used to specify
the operation of a circuit [2]). In an STG, a transition from 0
to 1 in signalx is represented byx+. Similarly, a transition
from 1 to 0 in x is represented byx−. Note how in the
S-element the RTZ phases of the left (I) and right side (O)
do not overlap, whereas in the the T-element they can occur
cuncurrently, which increases the speed of the sequencing.
Unfortunately, it is not always possible to use this type of
overlapping due to the possibility of introducing write-after-
write (WAW) and write-after-read (WAR) hazards. For a
complete discussion of these issues, the interested reader
can refer to [12].
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IV. T HE TARGET PROCESSOR: NANOSPA

The forwarding unit described in this paper was designed
to be used in the nanoSpa processor [13]. NanoSpa is an
experimental, new specification of the SPA processor [10],

a fully synthesised asynchronous implementation of the 32-
bit ARM v5T ISA. As opposed to SPA, whose description
focused on security, nanoSpa description uses highly opti-
mised Balsa code targeting high performance. NanoSpa is
currently under development and the initial version shares
the same architecture organisation as SPA: an ARM-style 3-
stage Fetch-Decode-Execute pipeline with a Harvard-style
memory interface. To date, nanoSpa has the following
functional differences with respect to SPA: it does not have
support for Thumb instructions, interrupts, memory abortsor
coprocessors. In a new description of nanoSpa, the pipeline
depth has been increased to enhance the performance, but
in order to avoid the performance loss caused by inter-
instruction dependencies, this new description requires the
use of a result forwarding unit. This non-trivial problem
presents interesting challenges for the architecture, descrip-
tion techniques, language expressiveness and performanceof
the synthesised circuits. Figure 7 shows a simplified diagram
of the nanoSpa pipeline.
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Figure 7: The 5-stage nanoSpa pipeline.

V. RELATED WORK

Earlier asynchronous techniques for resolving depen-
dencies include: the register locking mechanism for the
AMULET 1 processor [14], register locking plus “last
result” register used in the AMULET2 processor [14], the
last result bypass mechanism of the Caltech asynchronous
MIPS [15], the scoreboard-like Data Hazard Detection Table
(DHDT) of the SAMIPS processor [11], the counterflow
pipeline architecture [16] and the asynchronous “queue”
FIFO [3] for the AMULET3 processor [17]. The “queue”
was an efficient solution to the problems of result forwarding
and exception handling within an asynchronous pipeline,
with the disadvantage of being a full-custom design imple-
mented using matched-delay-based, bundled-data encoding,
which limits the possibility of design-space exploration
and technology portability. The ARM996HS processor by



Handshake Solutions, is a commercially-available synthe-
sizable asynchronous 32-bit CPU that was implemented
using the Haste tools [8]. The processor core is a five-
stage asynchronous pipeline but no information has been
published about the dependency avoidance technique used.
Similar to AMULET3, the implementation uses bundled-
data encoding.

As nanoSpa is also an ARM core, the AMULET3 asyn-
chronous “queue” FIFO (AQF from herein) was used as the
reference model for the nanoSpa forwarding unit (nFU). The
AQF is a circular buffer that acts both as a forwarding unit
and a reorder buffer. Figure 8 shows a diagram of the AQF
process model. The queue operation consist of 5 processes:
Lookup, Allocation, Forward, Arrival andWriteout.
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Figure 8: AQF process model.

Lookup: This process receives the source register names
from the decoder, examines the queue to see if they are
present, and returns a bit mask indicating the possible data
source positions in the queue. This is performed using a
CAM (Content Addressable Memory) that holds the previ-
ously allocated destination registers.

Allocation: After obtainning the lookup source mask, the
instruction’s own destination address can be written into the
CAM. The writing position is allocated cyclically within the
circular buffer structure.

Forward: Concurrently withallocation, this process re-
ceives the mask generated duringlookup, examines each of
the possible sources (starting at the most recent), waits until
the data are present and then checks for validity. Valid data
is forwarded, otherwise the process examines the next most
recent possibility. If all the possibilities are exhausted(or if
there were no data sources) the forwarding process gives up
and the default value read from the register bank is used.

Arrival: Results arriving at the queue come along with the
allocated queue address. The allocation process guarantees
non-conflicting allocations even in the event of multiple
writes. When the data arrive, the previous data is known
to have been both written back to the register bank and
forwarded as required. If the instruction was abandoned due
to conditional execution, then the result will be marked as
invalid.

Writeout: This process copies valid results back to the
register bank. It examines the queue locations cyclically and
waits until the valid result arrives, then copies the data to
the register bank and mark the location as ”empty” so it can
be reallocated.

In order to improve the speed of the lookup process, the
AMULET AQF uses a small CAM to hold the information
about the registers written in the buffer. Speculative readof
the default value from the register bank is also performed
in case the source operand is not present in the buffer. The
AQF has a centralised control and features three read ports
for forwarding and two write ports for arrival. As mentioned
earlier, the AMULET3 and the AQF were implemented
using bundled-data encoding together with a token-passing
asynchronous control.

VI. A RCHITECTURE OF THE NANOFORWARD UNIT

The nFU has been designed around the process model
of the AMULET3 AQF and it has the same number of read
ports (3) and write ports (2), but as nanoSpa does not execute
instructions out of order, it is not used as a reorder buffer.
Figure 9 shows the architecture of the nFU and its location
within the new nanoSpa pipeline. The figure shows details of
the communication interface between the various processes,
the queue and the processor units.
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A. nanoFU implementation

The nFU implementation targeted a delay-insensitive
dual-rail encoding implementation as this is a robust data
encoding scheme that facilitates timing closure, which is
advantageous in current fabrication technologies affected
by process variability. This advantage comes at the cost
of higher area, energy consumption and, in some cases,
restricted solution alternatives. Similar to nanoSpa, thestyle
used for the Balsa description was data-driven, with perfor-
mance as the main goal.



B. Implementation issues

ARM instructions are particular in the sense that any
instruction can be executed conditionally, which adds extra
complication to the result forwarding mechanism. In order
to improve the efficiency of the pipeline in both the AQF
and the nFU, allocation is done regardless of the instruction
being or not conditional. If a conditional instruction fails
its condition code tests, a token is sent through the pipeline
to indicate that the instruction has been processed and the
allocated queue slots are marked as invalid. This introduces
some wastage in the queue but figures reported in [3] give
90% of queue utilisation for typical ARM programs.

1) Synchronisation between processes: To guarantee cor-
rect operation, on each instruction the nFU must perform
sequentially some operations as shown in figure 10. To
allow synchronisation among handshake modules, the Balsa
language provides special non-data channels calledsync
channels. The initial description usedsync channels to syn-
chronise the processes but this caused a large performance
penalty, so alternatives were looked for. A solution that
reduced dramatically this penalty was to perform synchroni-
sation using data instead of sync tokens: to decoupleforward
from arrival, the queue contents are read speculatively and
sent through data channels to theforward process.Lookup
and allocation were decoupled using an “allocation mask”
that blocks the reading of the queue locations that are about
to be modified by the allocation/arrival process during the
current instruction. This masking mechanism reduces the
effective length of the queue in 1 or 2 locations, depending
on the number of results to be written (one or two). These
mechanisms obviously dissipate more power and require
larger area. Another alternative is to implement a less
concurrent operation by grouping the processes according to
the information that they read or write:lookup/allocate are
sequenced as they read/write the register names and thevalid
flag. Similarly, forward/arrival are sequenced because they
read/write results. In this way,lookup/allocation can now run
concurrently withforward/arrival. Synchronisation between
lookup and forward is done with data tokens carrying the
lookup result.Allocation and arrival completion must be
synchronised and this information triggers thewriteout pro-
cess. This grouping and sequencing prevents an instruction
from overtaking the previous one but reduces the area and
energy penalty.

Forward Allocate

Lookup

Arrival

Writeout

Figure 10: Inter-process dependencies in the nFU.

2) Performance of sequenced operations: One perfor-
mance problem that arises with the grouping scheme pre-
sented in section VI-B1 is that those read-then-write op-
erations require the use of sequencers based on theS-
element which fully sequences processing and return-to-zero
(RTZ) phases in order to avoid the risk of write-after-read
(WAR) hazards. To allow a more concurrent operation with
decoupled RTZ phases, the processes can be rearranged as
allocation/lookup andarrival/forward. This write-then-read
operation permits the safe use of a sequencer based on the
T-element but requires requires an initial empty token to
be sent toallocate and arrival before the nFU begins to
process instructions. In Balsa, a write-then-read sequence to
a variable within a procedure generates a sequencer based
in theT-element but in the nFU the write and read processes
reside in separate modules with multiplexed/demultiplexed
accesses to a global variable. In this situation, the Balsa
compiler is conservative and inserts a safeS-element. It is
clear that in such cases, the designer’s knowledge about the
system behaviour should ideally be expressible at the lan-
guage level so that the compiler can make better decisions.
In our case, the S-elements for the mentioned sequencers
were manually changed to T-elements in the intermediate
handshake netlist (before technology mapping).
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Figure 11: Read-write loop (a) Code. (b) Handshake circuit.
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Figure 12: First-read-unfolded version of circuit in figure 11.

An improvement to the above solution is to take advantage
of the unbounded repetition of read-then-write actions over
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Figure 13: Optimised First-read-unfolded read-write loop.

common variables and let the compiler automatically gener-
ate an optimised control tree, without the need for reordering
the operations. An unbounded repetition of sequenced read-
write operations can be described in Balsa as shown in
the piece of code in figure 11(a) whererd_proc() and
wr_proc() access the common variable V. Figure 11(b)
shows the resulting handshake circuit. If we unfold the first
read operation off the loop construct as the code shown in
figure 12(a), the behaviour will remain the same, but now
the operation inside the loop is a write-then-read, which does
not have WAR hazards. This source-level optimisation has
the disadvantage of requiring the use of multiplexers in the
datapath to merge the reads and duplicate blocks (larger area,
energy and latency) as shown in the resulting circuit of figure
12(b). To avoid hardware duplication, Balsa allows the use
of shared procedures with the limitation of not being able
to access local channels [9]. The proposed solution is to
automatically substitute the loop-sequencer control structure
obtained for unbounded loop descriptions (as in figure 11(b))
by the optimised control shown in figure 13(b), which allows
write and read RTZ overlapping and does not have the
restrictions of shared procedures. Simulation results show
that this automatic first-read-unfold optimisation has similar
performance gain as the operation reorder described earlier.

(a) CaseFetch (b) CaseFetchDefault

@−>
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outinput[n−1]

input[1]
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input[1]
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default
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Figure 14: Symbols for the CaseFetch and CaseFetchDefault
handshake components.

3) Lookup CAM and forward process implementation: In
the AMULET3 AQF, thelookup process uses a small, very
fast custom CAM to determine if the source registers of
the decoded instruction are written or have been allocated
in the buffer. Balsa does not provide a way to describe a
CAM and generate an efficient circuit structure. The Balsa
synthesised circuit consists of a number of logic comparators

that, despite being relatively simple, do not perform as
well as an optimised CAM, resulting in some performance
penalty for the lookup process. In the AMULET3 AQF
the forward process iteratively examines the possible data
sources until valid data is found or, if all possibilities are
exhausted, the default value read form the register bank
is used. This operation was efficiently implemented at the
signal-level. As Balsa is a behavioural language, no signal-
level operations can be described and attempting to replicate
this behaviour in the nFU would require extensive use of
sequenced operations that penalise the performance. The
implemented solution is to wait for data validity during the
allocation process and attach this information to the register
number before writing it to the CAM. In this way the CAM
will report zero or the single most recent valid source to the
forwarding process, avoiding the need for iteration.

4) Register bank operation: Due to the use of dual-rail
encoding in the nFU implementation, speculative reading
of the register bank concurrently with thewriteout process
is not safe, unless the required register is not present in
the forwarding buffer. An alternative, that has been avoided
in this design, is the use of arbitration to resolve possible
conflicts. Instead, a modified version of the BalsaCaseFetch
component, that provides a default value when a potential
conflict can occur, was designed. In Balsa circuits, the
CaseFetch, shown in figure 14(a), is used to access a single
element from an array of variables: it receives anindex
value that indicates which of theinputs must be sent to the
out port. The newCaseFetchDefault in figure 14(b) has an
additional input nameddefault which indicates whether the
selected input or a default (and valid) constant value will be
sent, preventing the propagation of spurious values that may
cause deadlock.

VII. R ESULTS

The nanoSpa with the nFU was synthesised in 180nm
technology. After a series of pre-layout, transistor level
simulations it was found that the optimum queue size is 4.
Different architectures of the nFU were tested and compared
running the Dhrystone program. Tables I and II show that
performance increases were 10%, with area and energy
overheads of 13% in spite of the limitations faced with
the Balsa description. These results also show that the
techniques used for desynchronising the processes achieve
close to 40% increase in performance relative to the use of
sync channels. Unfortunately it is not possible to make a
relative comparison of the performance gain with respect
to the AMULET3 AQF, because there are no published
figures with and without the AQF. Pre-implementation, sim-
ulation results in [18] suggest that the AQF in AMULET3
would increase its performance by 22.5% when running
the Dhrystone benchmark. Notice also that the AMULET3
pipeline has a decoupled memory stage and this feature is
not currently present in nanoSpa.



nanoSpa DMIPS speedup overhead
device (%) in area (%)

no nFU 78.37 0.00 0.00
nFU (sync signals) 61.22 -28.80 5.2
nFU (allocation mask) 82.03 4.67 15.71
nFU (grouping) 81.86 5.86 11.20
nFU (gruping + unfolding) 86.27 10.08 11.21

Table I: Performance results for nanoSpa using the nFU

nanoSpa Energy for a overhead
device Dhrystone loop(µJ) (%)

no nFU 0.360 0.00
nFU (allocation mask) 0.491 36.23
nFU (grouping) 0.393 8.90
nFU (gruping + unfolding) 0.408 13.33

Table II: Energy results for nanoSpa using the nFU

Results show that the first-read-unfold technique de-
scribed in section VI-B1 is a key factor for the performance
gain in the nFU, contributing more than 50% of the speed-
up. Table III shows transistor-level simulation results of
first-read-unfolded loops with different data widths. The
simulated loop was a simple read-then-write to a vari-
able. These figures give an estimated upper bound for the
performance gain that can be obtained and show that for
datapath widths greater than 3 bits, the speed-up achieved by
RTZ overlapping is greater than the overhead of the merge
required in the unfolded control tree of figure 13.

width (bits) 1 2 3 4 8 16 32 64
speedup (%) -11.8 -2.5 -1.0 5.0 7.2 9.0 8.8 11.4

Table III: Influence of data widths in first-read-unfold of read-
write unbounded repetitions

VIII. C ONCLUSIONS AND FUTURE WORK

The work presented in this paper demonstrates the fea-
sibility of describing a synthesisable quasi-delay insensitive
result forwarding unit in Balsa and obtaining a significant
performance increase. Compared to a hand-optimised, full-
custom design, the synthesised nFU achieves close to 50%
the maximum possible performance increase. This work also
introduces a new optimised way of sequencing unbounded
repetitions of read-write operations that allows safe overlap-
ping on the RTZ phases and produces non-trivial increases
in performance. The work also highlights some of the
performance issues that arise from the use of a synthesisable
forwarding unit in Balsa, namely the lack of efficient ways
of describing and synthesising associative arrays (CAM) and
the problem of deadlock-safe concurrent writes and reads
in dual-rail variables to perform speculative reading. These
problems are currently being analysed together with some
peep-hole optimisations that the nFU design has highlighted,
including new language constructs. The nFU makes ex-
tensive use of arrayed variables and arrayed channels for
storing and broadcasting data. At the moment, the authors

are looking into the generated structures to find ways of
implementing those as optimised handshake modules that
could be described with new constructs. From the ongoing
analysis of the nFU some peep-hole optimisations such as
4-phase broad semi-decoupled transferrers (different from
those presented in [19]) and removal of redundantFalseVari-
able handshake components are currently being investigated.
Future work will also include extending the pipeline depth
of nanoSpa to decouple the memory stage and explore the
effects of new optimisations and components.
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