
Power, Delay and Area Efficient Self-Timed
Multiplexer and Demultiplexer Designs

P. Balasubramanian and D.A. Edwards
School of Computer Science,

The University of Manchester,
Oxford Road, Manchester M13 9PL, United Kingdom.

E-mail ID: {padmanab, doug}@cs.man.ac.uk

Abstract—Efficient gate level design methods for robust self-
timed realization of arbitrary size multiplexer and demultiplexer
function blocks, using elements of a commercial standard cell
library are discussed in this paper. While the optimal self-timed
multiplexer implementations correspond to strong-indication,
the optimal self-timed demultiplexer implementations pertain to
weak-indication phenomenon. The design methods presented
are scalable and enable achieving simultaneous optimization in
power, delay and area parameters.

I. INTRODUCTION
Self-timed (ST) logic design, in general, guarantees that

the required functionality is satisfied irrespective of delays in
the circuit components or signal wires. Hence, they are
inherently elastic, comprising the ability to deal with device
irregularities, which are becoming prominent in ultra deep
submicron technologies. The latest SIA’s ITRS update on
design [1] projects parametric variation of device delay to
increase from a current figure of 10% to 25% by 2020. Design
blocks reuse (as a percentage of all logic) is anticipated to
increase from a current figure of 38% to 55% by 2020. Interest
in ST designs is on the rise, as they feature an innate tolerance
to variations in supply voltage, temperature and fabrication
process parameters. In addition, they promise greater
modularity, less EMI, no clock distribution and clock skew
problems and eliminate unnecessary power consumption.

Multiplexers (MUXes) and demultiplexers (DEMUXes)
are common building blocks of data paths and are used
extensively in numerous applications including processor
busses, network switches and digital signal processing stages
incorporating resource sharing. In this paper, we consider
efficient asynchronous realizations of MUX and DEMUX
logic as function blocks, characterized by four-phase
handshaking protocol and dual-rail input encoding, the robust
self-timed approach having its roots in Muller’s pioneering
work of the 1950’s and 60’s [2]. Circuits designed following
the four-phase protocol DR encoding approach are generally
quasi-delay-insensitive (QDI), since the class of DI circuits is
rather small [3]. QDI is as robust as the DI class to variable
operating conditions and transistor variations [4]. A circuit is
QDI if and only if the production rule set describing it is stable

and non-interfering [5]. It is also an attractive design style
mainly for the simple timing closure and analysis it permits.
QDI circuit design assumes that both operators and wires can
take an arbitrary time (finite and positive time) to switch,
except for certain wires that form isochronic forks [6]
(weakest compromise to delay insensitivity). The isochronic
fork assumption has been defined by Martin in [6] as: “In an
isochronic fork, when a transition on one output is
acknowledged and thus completed, the transitions on all
outputs are acknowledged and thus completed”. The 4-phase
signaling protocol is also known as the return-to-zero protocol,
wherein input data alternates between valid data and empty
data (also called spacer). The dual-rail (DR) input encoding
protocol is a delay-insensitive (DI) protocol, with the DR code
being the widely used member of the family of DI codes [7].

A function block is the asynchronous equivalent of a
synchronous combinational logic circuit [8]. But apart from
satisfying the requisite functionality, it is required to possess
the additional attribute of being transparent to handshaking as
implemented by its surrounding latches. A function block can
be classified as either strongly indicating or weakly indicating
depending on how it behaves with respect to the handshaking
transparency. In case of the former, all the inputs need to
become valid/empty before valid/empty outputs can be
produced, while in case of the latter, valid/empty outputs can
be produced as soon as a subset of the inputs have become
valid/empty. However, unless all its inputs have not become
valid/empty, all its outputs should not become valid/empty.
The above conditions formulated by Seitz [9] ensure that the
generation of all the primary outputs in a function block
wholly indicates the arrival of all the input data and also the
completion of computation within the block.

II. PREVIOUS WORK AND PROBLEM STATEMENT
A number of self-timed logic design techniques exist either

for generic or specific function block design adhering to the
property of indication [9] [10] [11] [12] [13] [14], employing
4-phase handshaking and DR input encoding. However, many
of these suffer from limitations with increase in primary
circuit inputs. Methods of [9], [10] can conform to both
strong-indication and weak-indication timing models, but they

A major part of this research is funded by EPSRC, UK through the
SEDATE project grant EP/D052238/1.

978-1-4244-4321-5/09/$25.00 ©2009 IEEE 173

Authorized licensed use limited to: The University of Manchester. Downloaded on July 23, 2009 at 09:47 from IEEE Xplore. Restrictions apply.

require at the minimum the generation of all minterms, which
is O[2n] for ‘n’ inputs, resulting in a huge input space
consideration. In case of [8], decomposition of multiple inputs
C-element is often necessitated. This can give rise to
unacknowledged transitions on gate outputs (usually called
gate-orphans) within the circuit making it QnDI for naïve
decomposition, leading to violation of speed-independence
conditions. Despite a cautious speed-independent (SI) logic
decomposition, the area overhead severely exacerbates. In [9],
a self-timed function block design was proposed, but
decomposition procedures for the monotonic implementation
of the combinatorial DRN were not put forth, which restricts
the scalability of this approach. Also, the DRN can evaluate to
the correct empty state in case of a spacer, signaling the
completion of computation within the function module even
with some internal nodes not reset and thereby gate-orphans
get created. A method to effectively realize function blocks
using conventional logic gates has been proposed in [12], but
it overlooks the partial gate-orphans that are generated within
the circuit, which might be difficult to ascertain. Also,
adequate care may be required to ensure that they do not
become critical by extensive timing analysis. [13] presents an
efficient method, but it necessitates building a library using
custom-defined standard cells (27 proprietary macros are
used) for technology mapping. A recent work [14] dealing
with the synthesis of QDI circuits (using 2-input C-elements
and 2-input OR gates) corresponding to DR input encoding
(also, any generic m-of-n code), encompasses a decomposition
technique incorporating elements of both conventional
rectangle covering based multilevel logic synthesis and speed-
independent decomposition. Though it is a versatile method, it
also suffers from the problem of input space explosion as the
entire input space is to be covered (i.e., all the canonical
product terms of a function need to be considered).

It is a proven fact that if individual function blocks satisfy
strong/weak-indication constraints, then they can be combined
to form larger function blocks, which also pertain to a similar
timing regime [9]. This property can be utilized to aid the
construction of iterative logic circuits, such as MUXes,
DEMUXes, adders and magnitude comparators. Hence, the
main issue addressed in this paper is to efficiently realize self-
timed MUX and DEMUX functionality of any specification in
a robust asynchronous style by adhering to the property of
indicatability, within the ambit of 4-phase handshaking
protocol and DR encoding, whilst satisfying the monotonic
cover constraint [15]. The elements of a commercial standard
cell library are being used for physical realization.

III. TERMINOLOGIES AND DEFINITIONS

A. Support set and Dependency set of a Boolean cube
The support set S(C) entails the enumeration of all the

literals that are a function of the cube, while a cube’s
dependency set D(C) entails enumeration of all its support set
literals in their actual form for its evaluation to a logic ‘1’.

For a cube C specified by ab'c'd, its S(C) and D(C) are:

S(C) = {a,b,c,d} (1)

D(C) = {a,b’,c',d} (2)

B. Cubes Support Intersection set (CSI), Cubes Dependency
Intersection set (CDI) and Polarity Eliminated CDI set
The intersection of the support set of two cubes

(dependency set of two cubes) is characterized by the literals
that are common to the support set (dependency set) of both
the cubes. This is referred to as CSI (CDI). The polarity
eliminated CDI (CDIPE) set consists of the variables of CDI
set represented in their uncomplemented form. For e.g. with
D(C1) and D(C2) specified by {a’,b,c,d} and {a’,b’,c,f}
respectively, the corresponding CSI, CDI and CDIPE sets are,

CSI [S(C1), S(C2)] = {a,b,c} (3)

CDI [D(C1), D(C2)] = {a’,c} (4)

CDIPE [D(C1), D(C2)] = {a,c} (5)

C. Covering cube, Covered cube [16] and Cover extent
We say a cube C1 as fully covering another cube C2, if

D(C2) is a subset of D(C1). Cover extent (CE) is a measure,
which basically quantifies the degree of sharing (common
variables) between the two Boolean cubes C1 and C2.

CDI [D(C1), D(C2)] = D(C2) and CE = |D(C2)| (6)

D. Sum-of-Products and Disjoint Sum-of-Products [17]
A Boolean formula is said to be in sum-of-products (SOP)

form if it consists of a disjunction of standard product terms,
each of which is a conjunction of literals.

A Boolean equation is said to be in mutually orthogonal or
disjoint SOP (MOSOP or DSOP) form if and only if it
consists of an array of conjunctions which are mutually
orthogonal, i.e. the cubes do not overlap or they are disjoint.
Every Boolean cube is mutually orthogonal to every other
Boolean cube in a DSOP. When two Boolean cubes C1 and C2
are mutually orthogonal, the following inequalities are valid.

|CSI [S(C1), S(C2)]| � 1 (7)

|CDI [D(C1), D(C2)]| � 0 (8)

E. Mutual Orthogonality set and Degree of Mutual
Orthogonality
Mutual orthogonality set, MO characterizes or isolates the

input variables that are responsible for making two Boolean
cubes (say C1 and C2) mutually orthogonal. It is given by the
set-theoretic difference of CDI and CSI, of cubes C1 and C2.

MO [C1, C2] = CSI [S(C1), S(C2)] \ CDIPE [D(C1), D(C2)] (9)

The degree of mutual orthogonality (DMO) between two
primary input cubes C1 and C2, DMO, is an integer measure of
the number of primary inputs in which C1 and C2 exhibit
orthogonality. A generalization of the DMO between C1 and
C2 is then given by,

DMO = |MO [C1, C2]| (10)

F. Speed-Independent Shared Cube
If and only if, for two mutually orthogonal cubes C1 and

C2, (11) and (12) are satisfied, then a common cube can be
extracted from them, which we shall refer to as the speed-
independent shared cube, SISC. Hence, between C1 and C2,

174

Authorized licensed use limited to: The University of Manchester. Downloaded on July 23, 2009 at 09:47 from IEEE Xplore. Restrictions apply.

DMO is unity. Subsequently, both C1 and C2 can be
represented in terms of a conjunction involving the SISC.
Assuming (11) and (12) are satisfied by C1 and C2, let us label
the SISC extracted from them as C3. Hence, D(C3) is a subset
of D(C1) and D(C2). Also S(C3) is a subset of S(C1) and S(C2).

CSI [S(C1), S(C2)] = S(C1) = S(C2) (11)

|CDI [D(C1), D(C2)]| = |D(C1)|-1 = |D(C2)|-1 (12)

The elements of D(C3) are found out using (13).

D(C3) = CDI [D(C1), D(C2)] (13)

CE = |D(C1)|-1 = |D(C2)|-1 = |S(C1)|-1 = |S(C2)|-1 (14)

The terminologies (some are proposed) mentioned above
describe speed-independent logic decomposition rules anew
based on set theory which form the basis of robust ST designs.

IV. STRONG-INDICATION MULTIPLEXER DESIGNS
The regularity implicit in MUX functionality can be best

exploited to facilitate their efficient ST implementations. To
clarify this, the basic equations governing the true and false
outputs of a 2:1 MUX are first given.

y1 = a1s0 + b1s1 (15)

y0 = a0s0 + b0s1 (16)

Equations (15) and (16) are minimum MOSOP forms,
despite being the minimum SOP expressions for a 2:1 MUX.
It is easy to comprehend that the general expressions for true
and false outputs of an arbitrary 2n:1 MUX with n select inputs
correspond to a minimum MOSOP form. Hence, the problem
now relatively narrows down to effective speed-independent
logic decomposition. Figures 1, 2 and 3 portray a 2:1 MUX
implementation based on the methods of [9], [10] and [14]
respectively. The C-element is indicated by the marking of
letter ‘C’ within an AND gate, in the diagrams that follow.

Two design techniques have been proposed at the gate
level: a strong-indication design using C-elements and OR
gates (SIDCO) and a strongly indicating design utilizing C-
elements, AND gates and OR gates (SIDCAO). The structural
block diagram representation of an arbitrary MUX design
(SIDCO) is shown in figure 4.

Figure 1. Seitz’s 2-to-1 MUX realization

Figure 2. DIMS 2-to-1 MUX implementation

Figure 3. Toms 2-to-1 MUX synthesis

Figure 4. Block diagram based realization of a generic MUX functionality

In figure 4, block B1 contains the SI decomposed multi-
level logic realization of a MUX functionality (with m select
inputs and n data inputs; where n = 2m), implemented in a ST
fashion, which strictly satisfies the monotonic cover constraint
(MCC). Block B2 guarantees the arrival of all the DR data
inputs for both valid data and spacer values. Block B3 is

175

Authorized licensed use limited to: The University of Manchester. Downloaded on July 23, 2009 at 09:47 from IEEE Xplore. Restrictions apply.

mainly meant to ensure that the strong-indication criterion is
satisfied by synchronizing arrival of all the data inputs with
the outputs of function block B1. iy0 and iy1 are logically
equivalent to y0 and y1. Figure 5 shows the proposed
realization of a 2:1 MUX logic based on this design style.

Figure 5. Proposed 2:1 MUX logic (SIDCO)

An alternative design is possible with AND gates replacing
the C-elements in the first logic level of block B1. As a result,
block B2 would now have (2n + 2m) inputs, to satisfy the
property of indication. This leads to a slightly different
synthesis solution, as can be seen in figure 6. Since MUX
logic has only a single output, weak-indication is not possible.

Figure 6. Alternative realization of 2:1 MUX logic (SIDCAO)

V. WEAK-INDICATION DEMULTIPLEXER DESIGNS
The ST realization of data distributor functionality is also

based on a general design methodology, represented by the
block diagram illustration in figure 7. However, block B1
realization involves some complexity, in that a translation of
the minimum SOP forms of the true and false DEMUX
outputs into their respective minimum MOSOP forms is first
necessary, followed by an effective SI decomposition. Thus a
weak-indication design based on C-elements and OR gates
(WIDCO) is possible. Also, another logic realization based on
C-elements, AND gates and OR gates is also feasible
(WIDCAO), with a slight modification to the overall structure
shown in figure 7. In this case, block B2 would now consist of
(2m + 2) inputs. Also iy0

1 is additionally fed to block B3 and
synchronized with the signal sc of block B2 to produce y0

1,

though both these are logically equivalent signals. The two
different implementations of a 1:4 DEMUX are portrayed by
figures 8 and 9 respectively. DEMUX realizations based on
other methods have been omitted here for reasons of brevity.

Figure 7. Block diagram based generic DEMUX functionality realization

Figure 8. Proposed 1:4 DEMUX logic (WIDCO)

For direct MUX and DEMUX realizations, extraction of
SISC constitutes an essential step. In case of MUX logic, they
are primarily a unique conjunction of the select inputs. In case
of higher order MUXes, the granularity of the SISC is set at a
maximum. A parent SISC could then give rise to two off-
springs (child nodes), and these child nodes can act as parent
SISCs, provided each has two off-springs. This hierarchy is
extendable for function realization of higher dimensions.

Throughout this work, the synthesis (mainly logic
decomposition) of both MUX and DEMUX functionality is
primarily technology-dependent with focus on delay
optimization, on the foundation of a base function set
comprising the following cells: AND2, AND3, AND4, OR2,

176

Authorized licensed use limited to: The University of Manchester. Downloaded on July 23, 2009 at 09:47 from IEEE Xplore. Restrictions apply.

OR3 and Muller C-element functionalities (CE2, CE3 and
CE4) described using complex gates (AO222, AO2222 and
AO12), of the high-speed 130nm Faraday CMOS standard cell
library. Strongly indicating DEMUX designs are also possible
based a modification of the above block diagram; nevertheless
they would only be at the expense of increase in area, delay
and power metrics and so they have not been considered.

Figure 9. Alternative implementation of 1:4 DEMUX logic (WIDCAO)

VI. SIMULATION MECHANISM, RESULTS AND
CONCLUSIONS

The simulation set-up for MUX and DEMUX logic are
depicted by figures 10 and 11 respectively. The primary inputs
for both the MUX and DEMUX logic are assumed to arrive
from the environment. The input acknowledge signal from the
environment (ideally from the succeeding stage logic) is either
embedded into the data path logic pertaining to the function
block, where possible, or synchronized with each of the
outputs of the function block using separate latches.

Figure 10. Simulation set-up for MUX functionality

Figure 11. Simulation set-up for DEMUX functionality

The input sequences used for simulation represent testing
of the MUX and DEMUX DR outputs for all unique input
combinations. The input patterns are fed to the MUX and
DEMUX circuits every 4ns. The maximum data path delay is
the actual propagation delays encountered while traversing the
longest path from a primary input signal of the current stage
function block to the inverted acknowledge signal generated
out of it, after crossing the output latches. This signal is in turn
meant to be fed back as the acknowledge input for the
previous stage. Though forward latency specifies the actual
worst case combinational delay encountered within a function
block, the maximum data path delay gives the summation of
forward latency and the delay associated with the CD circuit.

TABLE I. SIMULATION RESULTS FOR DIFFERENT MUX DESIGNS

MUX
size

Logic
realization

method

Total
power
(�W)

Path
delay
(ns)

Cells
area
(�m2)

2:1

Seitz [9] 23.14 0.75 155
DIMS [10] 17.88 0.88 242
Toms [14] 21.39 1.00 167
SIDCO 27.58 0.81 130
SIDCAO 28.98 0.94 118

4:1

Seitz_tree 104.65 1.33 393
DIMS_tree 51.82 1.65 670
Toms 56.14 1.75 577
SIDCO 44.24 1.05 317
SIDCAO 54.76 1.21 224

8:1

Seitz_tree 231.58 2.15 836
DIMS_tree 121.88 2.41 1526
Toms_tree 130.90 2.48 1265
SIDCO 78.82 1.40 748
SIDCAO 87.54 1.40 429
SIDCO_SIDCO_tree 150.08 1.48 654
SIDCAO_SIDCO_tree 95.12 1.38 431
SIDCAO_SIDCAO_tree 112.45 1.51 461

16:1

Seitz_tree 349.15 2.60 1818
DIMS_tree 345.13 2.82 3334
Toms_tree 312.34 3.28 2837
SIDCO 138.99 1.74 1315
SIDCAO 160.85 1.63 1014
SIDCO_SIDCO_tree 367.38 1.59 1429
SIDCAO_SIDCO_tree 201.08 1.60 953
SIDCAO_SIDCAO_tree 232.92 1.70 929

32:1

Seitz_tree 718.62 3.07 3674
DIMS_tree 716.99 3.58 6854
Toms_tree 649.60 4.00 5653
SIDCO 257.82 2.08 2464
SIDCAO 273.06 1.87 2160
SIDCO_SIDCO_tree 765.41 1.92 2838
SIDCAO_SIDCO_tree 400.06 1.83 1863
SIDCAO_SIDCAO_tree 486.85 2.17 1865

A 2-input NOR gate at the output of block B3 performs the
function of completion detection (CD) for MUX logic as
shown in figure 10, while for the DEMUX logic a
conventional CD circuitry (composed of OR gates and a C-
element tree) is required. The simulations have all been
performed using Cadence and Synopsys tools on a Linux
platform, targeting the high-speed 130nm Faraday (UMC)
CMOS process for a typical PVT corner. The recommended
supply voltage of 1.2V was used, at an ambient temperature of

177

Authorized licensed use limited to: The University of Manchester. Downloaded on July 23, 2009 at 09:47 from IEEE Xplore. Restrictions apply.

25�C. The MUX and DEMUX designs of different approaches
exhibit fanout-of-2 output drive strength, while the inputs
possess the driving strength of the minimum sized inverter in
the cell library. Appropriate minimum sized buffer cells were
used for the logic realizations so as to eliminate timing
violations. Power, delay and area metrics for the MUX
functionality are given in Table I and those for the DEMUX
functionality are mentioned in Table II. Total power
dissipation is the summation of dynamic (switching + internal)
and leakage power components. Path delay refers to the
maximum delay encountered in the data path, as explained
before, and cell area indicates the combined area of data path
logic, output registers and CD circuitry.

TABLE II. SIMULATION RESULTS FOR DIFFERENT DEMUX DESIGNS

DEMUX
size

Logic
realization

method

Total
power
(�W)

Path
delay
(ns)

Cells
area
(�m2)

1:2

Seitz [9] 37.11 0.90 144
DIMS [10] 30.86 0.97 135
Toms [14] 30.99 0.98 135
WIDCO 32.35 1.28 123
WIDCAO 40.41 1.16 137

1:4

Seitz_tree 74.50 1.35 298
DIMS_tree 69.30 1.52 385
Toms 75.27 1.63 327
WIDCO 77.73 1.62 329
WIDCAO 79.21 1.50 278

1:8

Seitz_tree 160.18 1.87 713
DIMS_tree 156.43 2.28 1033
Toms_tree 161.94 2.34 688
WIDCO 166.43 2.16 810
WIDCAO 162.77 2.02 574

1:16

Seitz_tree 416.99 2.62 1304
DIMS_tree 418.46 2.90 1813
Toms_tree 435.21 2.92 1523
WIDCO 360.10 2.76 1460
WIDCAO 362.14 2.47 1228
WIDCO_WIDCO_tree 610.12 2.74 1443
WIDCAO_WIDCO_tree 386.92 2.52 1384
WIDCAO_WIDCAO_tree 408.85 2.56 1145

1:32

Seitz_tree 850.62 3.03 3052
DIMS_tree 979.64 3.73 4514
Toms_tree 902.41 3.65 3076
WIDCO 704.49 3.24 2649
WIDCAO 700.59 2.92 2414
WIDCO_WIDCO_tree 1381.89 3.20 3431
WIDCAO_WIDCO_tree 864.39 2.83 3369
WIDCAO_WIDCAO_tree 822.40 3.00 2394

For the MUX and DEMUX logic, tree structures are
essential for the other methods [9] [10] [14] to facilitate delay-
optimized implementations for MUXes (DEMUXes) with 4
(8) inputs and more, as direct realizations may not be feasible
or would incur heavy area and considerable delay and power
penalty. This is because of the exponential increase in input
space by O(2n), but both direct and tree type structures are
practically feasible based on the proposed approach. A 4:1
MUX is formed with two 2:1 MUXes in the first level and a
2:1 MUX in the second level; an 8:1 MUX with two 4:1
MUXes in the first level and a 2:1 MUX in the second level; a

16:1 MUX with four 4:1 MUXes in the first level and a 4:1
MUX in the second level and a 32:1 MUX with four 8:1
MUXes in the first level and a 4:1 MUX in the second level,
to achieve delay optimized implementations. It is the converse
for DEMUX logic realization based on tree structures. In case
of MUX logic, SIDCO_SIDCO tree refers to the combination
where a MUX based on SIDCO was used for the first and
second levels of the tree. SIDCAO_SIDCO tree refers to the
combination where a MUX based on SIDCAO was used for
the first level of the tree alone. With a SIDCAO utilized for
both the first and second levels, a SIDCAO_SIDCAO tree
structure results. Based on similar lines, WIDCO_WIDCO,
WIDCAO_WIDCO and WIDCAO_WIDCAO tree structures
can be obtained for DEMUX logic. The above mentioned
logic tree cascades for MUX and DEMUX designs constitute
block B1 of figures 4 and 7 respectively. Nevertheless, block
B2 would require modification for SIDCAO_SIDCAO and
WIDCAO_WIDCAO tree structures. The internal signals of
Seitz, SIDCAO_SIDCAO and WIDCAO_WIDCAO tree
structures are carefully indicated to preserve gate-orphan
freedom. The proposed MUX and DEMUX design methods
enable direct (cumbersome with other approaches) and tree
type realizations, which are better than those of other methods
in terms of power, delay and area; especially with higher
orders, evident from the values listed in Tables I and II.

REFERENCES
[1] SIA’s ITRS report 2007 edition, Available: http://www.itrs.net
[2] D.E. Muller, “Asynchronous logics and application to information

processing,” in Switching Theory in Space Technology, Stanford
University Press, pp. 289-297, 1963.

[3] A.J. Martin, “The limitations to delay-insensitivity in asynchronous
circuits,” Proc. 6th MIT Conf. on Adv. Res. in VLSI, pp. 263-278, 1980.

[4] T.M. Mak, “Is CMOS more reliable with scaling?,” Proc. IEEE Intl.
On-Line Testing Workshop, July 2002.

[5] R. Manohar and A.J. Martin, “Quasi-delay-insensitive circuits are
Turing-complete,” Caltech CS Technical Report, CS-TR-95-11, 1995.

[6] A.J. Martin, “Compiling communicating processes into delay-
insensitive VLSI circuits,” Dist. Comp., vol. 1(4), pp. 226-234, 1986.

[7] T. Verhoeff, “Delay-insensitive codes: an overview,” Distributed
Computing, vol. 3, no. 1, pp. 1-8, 1988.

[8] J. Sparso and S.B. Furber (Eds.), Principles of Asynchronous Circuit
Design – A Systems Perspective, Kluwer Academic Publishers, 2001.

[9] C.L. Seitz, “Chapter 7 – System Timing”, in Introduction to VLSI
Systems, C.A. Mead and L.A. Conway (Eds.), Addison-Wesley, 1980.

[10] J. Sparso and J. Staunstrup, “Delay-insensitive multi-ring structures,”
Integration, the VLSI journal, vol. 15, no. 1, pp. 313-340, Oct. 1993.

[11] I. David et al., “An efficient implementation of Boolean functions as
self-timed circuits,” IEEE Trans. on Comp., vol. 41(1), pp. 2-11, 1992.

[12] X. Li and J.W. Sanders, “Efficient function block implementation of
self-timed circuits,” Proc. 47th MWSCAS, vol. 2, pp. 269-272, 2004.

[13] K.M. Fant and S.A. Brandt, “NULL convention logic: a complete and
consistent logic for asynchronous digital circuit synthesis,” Proc. Intl.
Conf. on Appl. Spec. Sys., Arch. and Processors, pp. 261-273, 1996.

[14] W.B. Toms, “Synthesis of Quasi-Delay-Insensitive Datapath Circuits,”
PhD thesis, University of Manchester, 2006.

[15] A. Kondratyev et al., “Hazard-free implementation of speed-
independent circuits,” IEEE Trans. on CAD, vol. 17(9), 749-771, 1998.

[16] B Teel and D. Wilde, “A logic minimizer for VLSI PLA design,” Proc.
19th IEEE Design Automation Conf., pp. 156-162, 1982.

[17] T. Sasao (Ed.), Logic Synthesis and Optimization, Kluwer, MA, 1993.

178

Authorized licensed use limited to: The University of Manchester. Downloaded on July 23, 2009 at 09:47 from IEEE Xplore. Restrictions apply.

