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Abstract—The syntax-directed synthesis paradigm has
shown to be a powerful synthesis approach. However, its
control-driven nature results in significant performance over-
head. Some methods to reduce this overhead include peephole
optimisations, control resynthesis and component optimisa-
tions. This work explores new methods of improving the per-
formance of syntax-directed synthesised asynchronous circuits,
using the Balsa synthesis system as the research framework.
This includes investigating description styles and the usage of
language constructs that exploit the directness of the synthesis
method to obtain more concurrent and faster circuits. The
techniques and optimisations presented here has been tested
in a set of non-trivial examples including a 32-bit processor, a
Viterbi decoder, and a channel-sliced wormhole router.

I. INTRODUCTION

The syntax-directed synthesis paradigm has shown to be

a powerful synthesis approach. However, its control-driven

nature, results in significant performance overhead [1]. In an

attempt to reduce this overhead, the following circuit-level

approaches have been previously reported:

• Peephole optimisations: this technique is based on the

identification of a pattern of components that can be

replaced with an faster alternative [2]–[4].

• Control resynthesis: this technique consist on clustering

sections of control trees and replacing these with an op-

timised controller that implements the same behaviour

[4], [5].

• Component optimisation: this is based on finding alter-

native designs for the handshake components that result

in more concurrent, faster operation [6].

An orthogonal alternative to the above is to exploit

the directness of the synthesis method at the description

level. Highly expressive, high-level description languages

like Balsa and Haste [7] can result in naı̈ve descriptions with

poor performance unless the designer has a good understand-

ing of the underlying compilation process. Furthermore, it is

often claimed that in this approach, an experienced designer

could make performance/power/area trade-offs. This task

would be easier if the designer could have some insight into

the impact of a particular construct or coding style.

This work explores the effects of directness in the per-

formance of Balsa synthesised circuits and proposes coding

techniques and optimisations that result in more concurrent,

faster implementations. The techniques and optimisations

presented here has been tested in a set of non-trivial exam-

ples including a 32-bit processor, a Viterbi decoder, and a

channel-sliced wormhole router.

This paper is organised as follows: Section II introduces

syntax-directed synthesis and the Balsa synthesis system.

Section III summarises the related work. Section IV intro-

duces the data-driven description style as an efficient way

of describing circuits in Balsa/Haste. Section V introduces

the description-level optimisations proposed in this work.

Section VI presents simulation results for the examples

listed above. finally, Section VII summarises this work and

proposes future work.

II. SYNTAX-DIRECTED SYNTHESIS

The syntax-directed approach to synthesise asynchronous

circuits is based in the compilation of descriptions written in

a high-level language into a communicating network of pre-

designed modules. The compilation process performs a one-

to-one mapping of each language construct into the network

of components that implements it. This transparent mapping

gives a high degree of flexibility in the design as incremental

changes to the specification generates predictable changes

in the resulting circuit, allowing the designer to optimise

the circuit in terms of performance, power or area, at the

description language level. The compiled network of hand-

shake components constitutes an intermediate representation

that can be subsequently replaced by a gate netlist.

Currently there exist two fully automated CAD systems

that use this approach for the synthesis of asynchronous

systems: Haste (formerly called Tangram) [7] and Balsa

[8], an open-source system developed at the University of

Manchester that closely follows the Tangram philosophy.

Syntax-directed synthesis has been used successfully in

the synthesis of several VLSI systems, including the SPA

processor [9], and the ARM996HS [10].

A. The Balsa synthesis system

Balsa is the name for both the framework for synthesising

asynchronous circuits and the language used to describe such

systems. Balsa uses the syntax-directed synthesis approach

to generate handshake circuits from a description written

in the Balsa language. Originally introduced by van Berkel

[11], a handshake circuit is a communicating network of



handshake components connected point-to-point using hand-

shake channels. Each channel connects exactly one passive

port of a handshake component to an active port of another

handshake component. As an example, consider the Balsa

specification for a simple 1-place buffer (register) shown in

figure 1(a). The specification is parameterised in the type of

data the register can hold. The register has an input channel

in and an output channel out. The variable buf stores the

data and the operation consists of an unbounded repetition

(loop) of two actions: input data (->) from channel in

into buf sequenced (;) with output (<-) of the data stored

in buf to channel out. Figure 1(b) shows the handshake

circuit generated by Balsa from the code at its left, where

the Loop component is labelled with a star (∗).

procedure buffer 

(

  parameter DataType : type;

  input inp  : DataType;

  output oot : DataType

) is

  variable v : Datatype

begin

      loop

        inp -> v

        ;

        out <- v

    end

end

activate

inp out

control

datapath

*

buf

21

;

(a) (b)

Figure 1: Balsa 1-place buffer.

III. RELATED WORK

Balsa has previously been used to demonstrate the impact

on performance of some description-level techniques com-

bined with the introduction of more concurrent handshake

components. In particular, true asynchronous operation of

the system pipeline, a data-driven coding style are presented

as performance-driven description techniques [6].

In a recent work, Hansen and Singh [12] describe a

series of automated “source-to-source” transformations that

optimise syntax-directed descriptions using a variety of

concurrency-enhancing optimisations including: automatic

parallelisation, automatic pipelining, arithmetic optimisation

and reordering of channel communication. Although consid-

erable speed-ups are claimed, some of the example designs

start with extremely naı̈ve code sequences, where significant

improvements can be easily obtained. Also, their proposed

approach is limited to slack elastic [13] systems descriptions

only (a slack elastic system preserves correct operation even

if extra pipeline buffer stages are introduced in any channel).

This limitation reduces the usefulness of an “automated”

approach as it is frequently necessary for the designer to

understand the nature of the transformations to ensure they

are safe, which may represent a considerable design effort

for the user.

The approach used here is more general and attempts

to give the designer a clearer understanding of the source

of performance inefficiencies, the techniques available to

reduce it and the trade-offs made. As an additional and

important benefit, manual optimisation techniques can be

applied to exploit the designer’s knowledge about the be-

haviour of the system. This knowledge is something that

is more complex to automate because it cannot be inferred

by analysing the code. This work is complementary to the

approaches presented above and to the circuit-level optimi-

sation techniques. The techniques presented here could also

serve as a source for optimising compilers or to enhance

automated source-to-source transformations.

IV. THE DATA-DRIVEN DESCRIPTION STYLE

In Balsa/Haste it is relatively easy for an user to write a

working, but most likely low-performance, description of a

system due to their similarities with C and Verilog language.

One of the major challenges for an asynchronous designer

is to learn to think in terms of concurrent processes, instead

of the easier to understand sequential processing found in

imperative languages. An imperative, sequential description

generates a large control tree that directs the flow of data in

the datapath. This large control tree results in performance

penalties that tends to increase with the complexity of the

description.

However, it is possible to describe a more concurrent

operation by using a data-driven description style, that is, a

description in which the arrival of data activates the units. In

this style the description of a circuit is divided into simpler,

concurrent actions that communicate using channels. Given

the asynchronous nature of the circuits, these actions are

activated immediately by the data arriving at their inputs,

process the information and generate outputs to activate the

next unit. The resulting control tree is generally small and

local to the modules implementing the actions.

Key to implementing data-driven circuits is an adequate

partitioning of the circuit into groups of actions that source

and consume data. Internal channels will connect theseac-

tions. The partitioning also involves determining the group

of actions that will necessarily require sequencing, as unnec-

essary sequencing is a well-known source of overheads. Se-

quencing is normally associated with the use of variables but

also may be required to prevent deadlocks. Every variable

that has a write-then-read access pattern inside each iteration

of a group of actions can be substituted by a channel write

and an enclosing read (where the value can be read as many

times as required). Only variables that store a value required

in the next iteration need to be left in the description.

V. OPTIMISING DATA-DRIVEN DESCRIPTIONS

In this section different description techniques will be in-

troduced in order to achieve the goal of writing performance-

optimised data-driven descriptions. To give a clearer idea of



the effects in the code, a simplified version of the Branch

Metric Unit (BMU) of an asynchronous Viterbi decoder will

be used here as a running example.

A. The Branch Metric Unit example

Consider the description of a branch metric unit (BMU)

for a soft-decision-based asynchronous Viterbi decoder [14].

This unit takes two 3-bit quantities (a,c) which are soft-

coded representations of the two received bits in a Viterbi

decoder. For each input, 000 (0) denotes the reception of a

strong zero and 111 (7) indicates a strong 1.

The task of the BMU is to calculate the distance (branch

weight) between the received pair and the ideal branch pat-

tern symbols (0,0), (0,7), (7,0), (7,7), as shown in figure 2(a).

The distance to be calculated is the Manhattan distance, as

this turns out to be equivalent to the Euclidean distance

squared in this application [15]. The required branch weights

are: d00 = a + c, d01 = a + d, d10 = b + c, d11 = b + d,

where b = 7 − a and d = 7 − c. Figure 2(b) depicts

the BMU algorithm. The data-driven description of the

simplified BMU is shown in figure 3(a).

input (a,c) ;

b ← 7 - a ;

d ← 7 - c ;

d00 ← a + c ;

d01 ← a + d ;

d10 ← b + c ;

d11 ← b + d ;

output(d00, d01, d10, d11) d00

d01

d10

d11

0,0 7,0

7,70,7

b

c

d

a

(a) (b)

Figure 2: Branch metric computation for a Viterbi decoder [14].

B. Separating actions into concurrent loops

The example code in figure 3(a), which is already split

in two groups of actions, can be split into two concurrent

enclosed groups instead of having two nested enclosures.

Furthermore, the outer unbounded loop can be split into two

concurrent unbounded loops, where any value of the original

enclosure required in the second loop must be passed using

new internal channels. In this example, the values of ia and

ic required in the second group are transferred together with

b and d, as shown in figure 3(b). In general, this “splitting”

can continue until all grouping possibilities are exhausted,

according to the dependencies of the commands.

The resulting circuits for the original and with the splitted

loops are shown in figure 3(c) and (d), respectively. After

the splitting process the datapath will be a pipelineable de-

scription without pipeline registers. On the control side, the

control tree in the middle has been split and now the control

for the second round of computations runs concurrently with

the control of the input section. The new description results

in the addition of two extra aeFVs (for the copies of ia and

ib passed to the bottom loop). The four aeFVs decouple the

RTZ phases of the control of the two loops, without adding

any latency.

loop
    ia, ic ->! then -- read inputs                       (1)
        -- first batch of calculations                  (2)

        b <- (7 - ia as TOut) || d <- (7 - ic as TOut) ||
        d00 <- (ia + ic as TOut) ||
        -- compute the other metrics                     (3)

        b, d ->! then
            d01 <- (ia + d as TOut) || 
            d10 <- (b + ic as TOut) || d11 <- (b + d as TOut)
    end
end

(a)
loop
    ia, ic ->! then
           b   <- (7 - ia as TOut)  || d <- (7 - ic as TOut) || 
        d00 <- (ia + ic as TOut) ||    ta  <- ia || tc  <- ic
    end
end ||
loop -- compute the other metrics
    ta, tc, b, d ->! then    
        d01 <- (ta + d as TOut) ||
        d10 <- (b + tc as TOut) || d11 <- (b + d as TOut)
    end
end 

(b)
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Figure 3: The simplified BMU Balsa description: (a, c) original,

(b, d) with separated loops.

The results for the BMU description that uses this tech-

nique is labelled “Lopt eager” in the graphs of figure 4. All

results are normalised to those of the original BMU design

presented earlier. Let us refer for now to the first group

of bars labelled “no ch. broadcast” in figure 4 (the other

groups of results will be introduced later). From the graphs,

the performance gain using the technique just introduced

is ∼1.5 with a relative area and energy of ∼1.3 and ∼1.5

respectively.

An important remark with respect to the level of granu-

larity of this technique is that the throughput will depend

on the slowest stage and increasing the pipeline depth will

increase the latency. Indiscriminate loop splitting (either

manually or automatically) by just analysing precedences



and/or dependencies may end up being suboptimal. The

designer must take into account the balancing of the pipeline,

the nature of the data and the behaviour of the environment

among other factors. Being able to express the designer’s

knowledge about the circuit is an advantage but also a

challenge in syntax-directed descriptions.
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Figure 4: Simulation results of different optimisations applied to
the BMU.

C. Broadcasting values

Often within a pipeline, a value from a channel is required

unconditionally and concurrently by more than one stage

in the pipeline, as noticed previously with ia and ic.

Enclosure provides a means for multicasting values but it

may prevent finer grain concurrency and deeper pipelining.

For instance, in the code of figure 3(a) the groups of

actions (2) and (3) are within the same enclosure, hence

no new token can be processed by action (2) until action

(3) has finished. A solution for this, shown previously in the

loop splitting example (figure 3(b)), relied on duplicating the

values required by the next group of actions inside the active

enclosure, but more concurrent solutions for broadcasting are

possible. In Balsa, there are two ways of specifying multiple

concurrent receivers for the same channel:

i. Using implicit broadcasting: In the description, the

channel is read in every place that it is required. In

this case, the reads are fully synchronised: the data

will be available to the reading processes only after

every read request has been received. Similarly, data

withdrawal will begin only after all reading processes

have signalled the consumption of data.

ii. Using explicit duplication of the channel by means

of enclosure. This method provides more decoupling

between processing the RTZ phases of the reads, as

every request will be granted independently of the

arrival of the others.

    loop
        ia, ic ->! then
            b <- (7 - ia as TOut) || d <- (7 - ic as TOut)
        end
    end ||
    -- ia and ic reuse in next loop

    -- creates implicit broadcasting

    loop
        ia, ic, b, d ->! then
            d00 <- (ia + ic as TOut)|| d01 <- (ia + d as TOut) || 
            d10 <- (ic + b as TOut) || d11 <- (b + d as TOut)
        end
    end

(a)

    loop -- make two copies of ia explicitly
        ia ->! then  a1 <- ia || a2 <- ia end 
    end ||
    loop -- make two copies of ic explicitly
        ic ->! then c1 <- ic || c2 <- ic end
    end  ||
    loop
        a1, c1 ->! then
            b <- (7 - a1 as TOut) || d <- (7 - c1 as TOut)
        end
    end ||
    loop
        a2, c2, b, d ->! then
            d00 <- (ta + tc as TOut)|| d01 <- (ta + d as TOut) || 
            d10 <- (tc + b as TOut) || d11 <- (b + d as TOut)
        end
    end

(b)

Figure 5: Broadcasting: (a) Implicit broadcasting. (b) Explicit

duplication.

The code in figure 5 show these two forms of broadcasting

in the simplified BMU example. This technique further

improves concurrency, which results in higher performance

at the cost of some area and energy penalties. The bins

labelled “ch. duplicate” and “ch. broadcast” in the graphs

of figure 4 shows the results for the complete BMU design

when these techniques are applied. Referring to the “Lopt

eager” columns, the relative speed is now ∼2.1 (slightly

larger for the broadcast method). The relative area and

energy are ∼1.45 and ∼1.65 when using channel duplication

and a bit smaller (∼1.35 and ∼1.50) when using implicit

broadcasting.

In this particular example, the synchronisation penalty

imposed by the implicit broadcasting is not apparent be-

cause the design has balanced threads: all four outputs

are generated using similar operations and the simulation

environment generate inputs and consumes outputs eagerly.

In designs with this balanced behaviour, broadcasting has

the advantage of less area and energy penalties. However,



in designs with more complex, imbalanced thread execution

patterns like a processor, thread decoupling provided by

explicit duplication allows a head start for some of the

threads required to complete an instruction, resulting in fully

asynchronous operations and better performance.

In common with the previous technique, it is difficult to

predict the places or levels of granularity to apply efficiently

this technique by only analysing the operations precedence

or data dependencies without input from the designer’s

knowledge about the system.

D. Adding pipeline registers

To increase its throughput, a pipelined description requires

inter-stage pipeline registers to decouple them. These can be

added in two ways:

i. Using pipeline variables within the stage instead of the

active enclosure, as presented in [12].

ii. Using explicit pipeline buffer modules (like the one

described in section II-A) between stages.

These two styles are shown in the example codes of

figure 6. Use of pipeline variables adds a Sequencer to the

control tree and results in lower performance than the use

of explicit pipeline buffers. Results in the graphs of figure 4

reveal this performance penalty. However, pipelining using

variables is cheaper in terms of area and energy because no

extra FalseVariable and Passivator components are required.

    -- Pipeline variables :

    -- va, vc, vta, vtc, vb, vc

    loop 
        [ ia -> va || ic -> vc ] ;
        [ b <- (7 - va as TOut) || d <- (7 - vc as TOut) ||
          ta <- va || tc <- vc ]
    end ||
    loop
        [ ta -> vta || tc -> vtc || b -> vb || d -> vd ] ;
        [ d00 <- (vta + vtc as TOut)|| d01 <- (vta + vd as TOut) || 
          d10 <- (vtc + vb as TOut) || d11 <- (vb + vd as TOut) ]
    end

(a)

    -- procedure buf3 is buffer(TInp)

    -- procedure buf4 is buffer(TOut)

    buf3(a, pa) || buf3(c, pc) ||
    loop
        pa, pc ->! then
            b <- (7 - pa as TOut) ||
            d <- (7 - pc as TOut) || ta <- pa || tc <- pc
        end
    end || 
    buf3(ta, pta) || buf3(tc, ptc) ||
    buf4(b, pb) || buf4(d, pd) ||
    loop
        pta, ptc, pb, pd ->! then
            d00 <- (pta + ptc as TOut)|| d01 <- (pta + pd as TOut) || 
            d10 <- (ptc + pb as TOut) || d11 <- (pb + pd as TOut)
        end 
    end

(b)

Figure 6: Pipelining: (a) using variables. (b) using explicit

pipeline buffers.

Results for the design that uses pipeline variables are

labelled “Lopt + pipeline var”. Results for the designs that

use explicit buffering are labelled “Lopt + pipeline buf.”

and “Lopt eager + pipeline buf.” (with active eager inputs).

Notice how in this case, the synchronisation imposed by

channel broadcasting has limited the effectiveness of the

decoupling.

A detailed look at the results in figure 4 reveals that

adding pipeline registers when using broadcasting or channel

duplication has not noticeably increased the performance,

but has increased the area and energy penalties. There are

two reasons for this: Firstly, the BMU stages are very

simple and have low latency (four bit adders/comparators),

the extra latency of the pipeline registers reduces their

possible benefits. Secondly, as seen in the previous examples

(figure 3), the use of active inputs requires PassivatorPush

components to interface with active outputs.

If dual-rail or other DI data encoding is used, the Pas-

sivatorPush components require storage in the form of C-

elements as shown in figure 7(b). Hence, the PassivatorPush

acts as a simple “half-latch” [15], [16] that allows the

active output to withdraw the data (after synchronising with

the active input request) while the other side is in the

processing phase. Each time a channel is duplicated using

active enclosure, a half-latch is added to the pipeline, pro-

viding decoupling between stages. Inserting explicit pipeline

registers in this case will only contribute to increase the

latency and area of the circuit.

In summary, the implicit storage added to the channels

when specifying active inputs serves in some cases as a

pipeline register which, when combined with the optimised

control of the active eager inputs, efficiently implements

decoupling between pipeline stages.

C

C

Completion Detector

R.1

R.0

R.req

in2

in1

syncR

out1

out2

syncL

L.req

L.0

L.1

(a) (b)

Figure 7: (a) Interfacing of two Balsa modules using Passi-

vators. (b) A 1-bit dual-rail PassivatorPush.

E. Optimising guards

Another common source of inefficiencies when coding

in Balsa is related to the implementation of the guard

expressions for conditional loops and for the case and if

constructs. These conditional constructs require the use of

handshake circuits that generate control channels from the

datapath. In many cases, the designer can optimise these

datapath-generated control by evaluating the guards before

their use in the construct, as will be demonstrated here.

Consider the GCD algorithm example, that computes the

greatest common divisor of an integer. Figure 8 shows a

specification of the GCD algorithm. Figure 9(a) shows a



input (a, b);
while a 6= b do

mmmmif a > b then a← a− b;
mmmmmmmmmmmelse b← b − a;
output (a);

Figure 8: A pseudo-code specification of GCD [15].

direct implementation of the algorithm in Balsa. In the

implementation, the two guards (va /= vb and va > vb)

are evaluated only after the control reaches each conditional

structure, resulting in an unnecessary delay. The code also

exhibits the common “problem” of auto-assignment, which

in most cases introduces additional performance penalties.

The performance-optimised description of the GCD

shown in figure 9(b) illustrates how to solve the above

problems: Firstly, to avoid auto-assignment, two additional

variables (tva and tvb) are used as temporary storage.

Secondly, the two required guards are evaluated in parallel

and stored using 1-bit variables neq and gt. The resulting

handshake circuits are shown below the code.

Notice in the circuit at the left how the body of the

loop ... while (highlighted) contains four sequenced

operations:

i. Evaluate the guard expression for the loop ...

while construct and proceed accordingly.

ii. Evaluate the guard expression for the if construct and

make the decision.

iii. Update one of the auxiliary variables (labelled only for

variable b in the circuit).

iv. Update one of the variables (labelled only for variable

b in the circuit).

In the optimised circuit at the right the loop has only only

three sequenced operations:

i. Read the guard expression for the loop ... while

construct and proceed accordingly.

ii. Read the guard expressions for the if construct and

update one of the auxiliary variables.

iii. Evaluate and store both guards, and update both vari-

ables.

Table I shows the simulation results for the two circuits

above. The table compares the average time required to

calculate the GCD of two 8-bit numbers, area and energy. As

the reader may have already noticed, in this example area

and energy are being traded for speed: on each iteration,

there is a redundant update operation on the variable that

does not change and two 1-bit variables are used. The design

with the optimised guard is 36% faster at the cost of 14%

extra energy and negligible area increase.

F. Encoding multiple guards

In situations where multiple guards are required, it is

better to encode the guards into a multi-bit variable and

use a case construct instead of the more straightforward

(but slow) multi-guarded if construct. Consider the example

GCD tcycle(ns) Relative Area Relative Relative

device speed (transistors) area energy

Original 181.68 1.00 6856 1.00 1.00

Optimised 133.26 1.36 6991 1.02 1.14

Table I: GCD Simulation results.

code in figure 10 adapted from the description of the input

buffer of a sliced-channel wormhole router designed in

Balsa [17]. Each router has five I/O ports, namely, Local,

North, South, East and West. The code shown corresponds

to the South input buffer and has been simplified for clarity:

only the operations over the dataless sync channels that

generate the request to the destination ports are detailed.

begin
  loop
    d_in[0] -> buf[0]; 
    -- NOTE: buf[0][4..7] = X, buf[0][0..3] = Y

    if (#(buf[0])[4..7] as 4 bits) < addrX then sync req[NORTH] 
        -- data transfer commands omitted

    |  (#(buf[0])[0..3] as 4 bits) > addrY then sync req[EAST] 
        -- data transfer commands omitted

    |  (#(buf[0])[0..3] as 4 bits) < addrY then sync req[WEST] 
        -- data transfer commands omitted

    else sync req[LOCAL] 
    -- data transfer commands omitted

    end
  end
end

Figure 10: Simplified description of the South input buffer of a
sliced-channel wormhole router [17].

The first value received at input d_in[0] is the header

flit. It contains the XY destination addresses that will be

compared with the addresses of the router addrX and

addrY. The destination is chosen accordingly to the com-

parisons and the order of priority specified in the description.

begin
  loop
  -- NOTE: d_in[0][4..7] = X, d_in[0][0..3] = Y

    d_in[0] ->! then
      n <- (#(d_in[0])[4..7] as 4 bits) < addrX ||
      e <- (#(d_in[0])[0..3] as 4 bits) > addrY ||
      w <- (#(d_in[0])[0..3] as 4 bits) < addrY
      d_in0 <- d_in[0] -- replicate d_in required
    end
  end ||
  loop
    n, e, w ->! then
      case (#w @ #e @ #n as 3 bits) of
       0b1xx then sync req[NORTH]
        -- data transfer commands omitted

      |0b01x then  sync req[EAST]
        -- data transfer commands omitted

      |0b001 then  sync req[WEST]
        -- data transfer commands omitted

      else sync req[LOCAL]
        -- data transfer commands omitted

      end
    end
  end
end

Figure 11: Optimised, simplified description of the South input
buffer of a sliced-channel wormhole router [17].

The optimised code is shown in figure 11. In this new



type dtype is 8 bits
procedure gcd
(

  input a, b : dtype;
  output gcdout : dtype
) is
  variable va, vb : dtype
begin
   loop
      [ a -> va || b -> vb ] ;
      loop
      while va /= vb then
         if va > vb then  va := (va - vb as dtype)
         else vb := (vb - va as dtype)
         end
      end ;
      gcdout <- va
   end
end

*
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type dtype is 8 bits
procedure gcd
(

  input a, b : dtype;
  output gcdout : dtype
) is
  variable va, vb, tva, tvb : dtype
  variable neq, gt : bit
begin
   loop
      [ a -> tva || b -> tvb ] ;
      loop
         neq := tva /= tvb || gt := tva > tvb ||
         va := tva || vb := tvb
      while neq then
         if gt then tva := (va - vb as dtype)
         else tvb := (vb - va as dtype)
         end
      end ;
      gcdout <- va
   end
end gcdout

>− −> >− −>
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−>

−
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Figure 9: Two implementations of the GCD algorithm in Balsa and their compiled handshake circuits.

description, instead of using the if construct, all guards

are evaluated and stored in parallel with the buffering of

the input value within an active enclosure. The four bits

generated by these evaluation are then joined and used as

the guard expression of a case construct. Also, in this

new construct the encoding of the guards reflect the priority

expressed in the original description.

VI. EVALUATION OF DESIGN EXAMPLES

The optimisations presented here were evaluated using the

following design examples: (i) the 32-bit nanoSpa processor

core [6], (ii) a Viterbi decoder (VD), (iii) a channel-sliced

wormhole router [17]. All results were obtained for pre-

layout, transistor-level simulations, using a 180nm technol-

ogy cell library.

Table II shows the simulation results for the nanoSpa

design. DD is the data-driven reference design. the table

shows that adding the separation of actions into concur-

rent loops and explicit broadcasting (+BLopt) increases the

performance in 16.45%. Adding the guard optimisations,

the improvement reaches 23.45%. In both cases, Area and

energy penalties/improvements are negligible.

nanoSpa DMIPS Area Energy

device absolute ∆ (%) elements ratio µJ ratio

DD (ref) 63.15 — 622884 1.00 0.358 1.00

+BLopt 73.54 16.45 662734 1.06 0.361 1.01

+Gopt 77.96 23.45 611793 0.98 0.355 0.99

Table II: NanoSpa simulation results.

Table III summarises the results for the Viterbi decoder.

The parameter used to measure the performance is the

average output data rate. The design VD(ref) is the orig-

inal unoptimised description. VDO is the description-level

fully-optimised version VDO. In this particular design, the

performance obtained by optimising guards was negligible

and is not included in the results.

The results indicate that the description-level optimised

design achieves more than twice the speed of the original

description. It is worth comparing this result with the 23%

obtained with the more complex nanoSpa description. There



Decoder data rate Area Energy

device Msps ∆ (%) elements ratio µJ ratio

VD 31.59 — 58815 1.00 0.145 1.00

VDO 64.75 200.5 80640 1.37 0.218 1.50

Table III: Viterbi decoder simulation results.

are two reasons for this difference: firstly, the reference

design was not in data-driven style as the nanoSpa and

secondly the difference in complexity between the designs

makes easier to improve the critical path with the optimisa-

tions.

Table IV shows the results for the wormhole router,

where WR is the original unoptimised description, WR+DL

includes the guard optimisation and guard grouping, and

WR+DL+B includes explicit data broadcasting in the output

buffers. The parameter used to measure the performance is

the average period of the flits.

Router Tflit Area Energy

device ns ∆ (%) elements ratio pJ/flit ratio

WR 1.40 — 103251 1.00 11.64 1.00
WR+DL 1.31 7.3 88762 0.86 12.49 1.07
WR+DL+B 1.20 17.4 117856 1.14 15.40 1.32

Table IV: Balsa wormhole router simulation results.

Results show that the description-level optimisation of

guards has increased the performance in 7.3% with a re-

duction in area to 86% of the original and a penalty of 7%

in energy. Applying a more aggressive optimisation in the

output buffers, takes the speed-up to 17.4% at the expense

of larger area and energy penalties.

VII. CONCLUSIONS AND FUTURE WORK

This work has presented a number of description-level

optimisations together with their effects in performance,

resulting circuit structures and trade-offs made. these de-

scription level techniques included: separation of actions

within unbounded loops to increase concurrency, broadcast-

ing styles and stage decoupling techniques. Early evaluation

of guards and encoding of multiple guards for conditional

loops and case constructs were also presented as a way

of increasing the performance. Because the structures that

implement the mentioned constructs generate control signals

from the datapath, optimising the decision-making circuit

speeds up the control. The effects of the use of active eager

enclosures with the above techniques were also analysed.

The reduced control tree achieved with these optimisation

techniques combined with the head start of the control

provided by the active eager enclosure contribute to the

increase in performance of the circuit. The effects on the

performance of the circuits clearly depend on the nature of

the operations implemented. However, there usually will be

some energy and area penalty as shown in the results.

Most of the optimisations presented here may be auto-

mated, with the guard encoding and optimisation possibly

requiring a wider window of exploration. However, the opti-

misations also serve as a guidance to exploit the designer’s

knowledge of the system behaviour. Future work includes

using the circuit structures that result from the optimised

descriptions as a reference to create optimised mappings in

a optimisation step of the compiler or can be incorporated as

rules for automated source-to-source transformation tools.
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