
1

Routing of Asynchronous Clos Networks
Wei Song, Doug Edwards, Zhenyu Liu, and Sohini Dasgupta

Abstract—Clos networks provide the theoretically opti-
mal solution to build high-radix switches. Dynamically
reconfiguring a three-stage Clos network is more difficult
in asynchronous circuits than in synchronous circuits.
This paper proposes a novel asynchronous dispatching
(AD) algorithm for general three-stage Clos networks.
It is compared with the classic synchronous concurrent
round-robin dispatching (CRRD) algorithm in unbuffered
Clos networks. The AD algorithm avoids the contention
in central modules (CMs) using a state feedback scheme
and outperforms the throughput of CRRD in behavioural
simulations.

Two asynchronous Clos networks using the AD algo-
rithm are implemented and compared with a synchronous
Clos network using the CRRD algorithm. The asyn-
chronous Clos scheduler is smaller than its synchronous
counterpart. Synchronous Clos networks achieve higher
throughput than asynchronous Clos networks because
asynchronous Clos networks cannot hide the arbitration
latency and their data paths are slow. The asynchronous
Clos scheduler consumes significantly lower power than
the synchronous scheduler and the asynchronous Clos
network using bundled-data data switches shows the best
power efficiency in all implementations.

I. INTRODUCTION

Clos networks are a class of multi-stage switching networks
first proposed over 50 years ago [1]. They provide the theo-
retically optimal solution to build high-radix switches when
the requirement exceeds the capacity of a feasible crossbar.
Although emerging VLSI technologies intensively reduce the
area of a single cross-point and enlarge the capacity of a
crossbar, the insatiable desire for speed and performance
always pushes router designs to the very limit. Clos networks
are still used in state-of-the-art designs.

Early telephone networks are circuit-switched networks
where switches are statically configured. The later asyn-
chronous transfer mode (ATM) networks and IP networks
achieve higher throughput using packet switching technologies
[2], which require switching networks to be dynamically
reconfigured. The random dispatching algorithm used in the
ATLANTA chip [3] demonstrates a feasible way of dynami-
cally reconfiguring a three-stage Clos network using heuristic
algorithms. Subsequently, numerous routing algorithms have
been proposed to improve throughput [4]–[9]. A Clos network

W. Song, D. Edwards and S. Dasgupta are with the School of Computer
Science, University of Manchester, Manchester, M13 9PL, United Kingdom
(email: songw@cs.man.ac.uk; doug@cs.man.ac.uk; sohinid@cs.man.ac.uk)

Z. Liu is now with the School of Information and Electronics, Beijing Insti-
tute of Technology, Beijing 100081, P.R. China (email: liuzhenyu@bit.edu.cn)

designed for current optical backbone networks has already
achieved peta-bit throughput [6].

Clos networks also find their utilization in intra- and inter-
chip interconnection networks. Transistor scaling increases the
available bandwidth of a router chip and the wire resources
in on-chip networks. A router with many narrow ports is
more efficient than a router with a few wide ports [10],
[11]. A folded-Clos network is used in the Cray BlackWidow
multiprocessor to support high bandwidth communications
[12] and Beneš networks (multi-stage Clos networks) are used
in routers of an on-chip network providing delay-guaranteed
services [13].

Asynchronous circuits [14] are well known for their low
power consumption and tolerance to process, voltage and
temperature variation [15]. Considering the high power con-
sumption of current communication fabric and the increasing
process variation, it is beneficial to implement high-radix
routers asynchronously. However, dynamically reconfiguring
a three-stage Clos network is complicated and area consum-
ing even for synchronous implementations. No asynchronous
implementation has yet been reported.

In this paper, a novel asynchronous dispatching (AD) al-
gorithm is proposed to reconfigure unbuffered asynchronous
Clos networks. It can be directly utilized to substitute the high-
radix switch in asynchronous spatial division multiplexing
routers [16] or asynchronous high-radix routers in on-chip
networks where area constraints are important. Compared
with the classic concurrent round-robin dispatching (CRRD)
algorithm in unbuffered Clos networks, AD provides higher
throughput in behavioural level simulations. An asynchronous
Clos network using bundled-data data switches is area and
power efficient. The remainder of this paper is organized as
follows: Section II explains the background knowledge needed
to understand this work. Section III describes the CRRD and
the AD algorithms in detail. Section IV then compares the
performance of these two algorithms in behavioural simula-
tions. Section V demonstrates the way of implementing an
asynchronous Clos scheduler using the AD algorithm. Later
in Section VI, three different Clos networks are implemented
and compared. Finally the paper is concluded in Section VII.

II. CLOS NETWORK

Fig. 1 shows a three-stage Clos network. The terminologies
used in this paper are as follows:

2

n m

n m

n m

k k

k k

k k

m n

m n

m n

,0�1�

,0�k�

,0�i�

&0�1�

&0�m�

&0�r�

20�1�

20�k�

20�j�

Fig. 1: A three-stage Clos network C(n, k,m)

IM Input module at the first stage.
CM Central module at the second stage.
OM Output module at the third stage.
n Number of input ports (IPs)/OPs in each

IM/OM.
k Number of IMs/OMs.
m Number of CMs.
i Index of IMs (0 < i ≤ k).
j Index of OMs (0 < j ≤ k).
r Index of CMs (0 < r ≤ m).
h Index of IPs/OPs in an IM/OM

(0 < h ≤ n).
IM(i) The (i)th IM.
OM(j) The (j)th OM.
CM(r) The (r)th CM.
IP(i, h) The (h)th IP in IM(i).
OP(j, h) The (h)th OP in OM(j).
LI(i, r) The link between IM(i) and CM(r).
LO(r, j) The link between CM(r) and OM(j).
C(n, k,m) A Clos network has m CMs and k

IMs/OMs with n IPs/OPs.
N The total number of IPs/OPs (N = nk).

The first stage contains k IMs, each of which is an n×m
crossbar. In the second stage, m CMs are statically connected
with IMs and each CM is a k × k crossbar. The third stage
contains k OMs, each of which is an m×n crossbar statically
connected with CMs.

Switching networks can be classified into three cate-
gories [2]: Blocking: the switches have possible connection
states such that an available I/O pair cannot be connected
because of internal blocking. Strict Non-Blocking (SNB): the
switches ensure the connection of any available I/O pairs with-
out altering any established connections. Rearrangeable Non-
blocking (RNB): the switches ensure the connection of any
available I/O pairs with possible modification of established
connections. A three-stage Clos network with n CMs (m = n)
is a RNB network while it is an SNB network with more than
2n− 1 CMs [2].

The major advantage of Clos networks over crossbars is
their area efficiency. The area of a switching network is
proportional to the number of internal cross-points. For a

0 20 40 60 80 100 120 140
0

5000

10000

15000

N
um

be
r

of
 c

ro
ss

 p
oi

nt
s

Number of input/output ports

 Crossbar
 SNB Clos
 RNB Clos

Fig. 2: Area of crossbar and Clos network

crossbar with N input/output ports, the area is proportional
to the cost C.

CCB = N2 (1)

Both SNB and RNB Clos networks have the minimal cost
when k =

√
2N .

CClos,SNB ≥ 2(2N)1.5 − 4N (2)

CClos,RNB ≥ (2N)1.5 (3)

Fig. 2 demonstrates the area of crossbars and Clos networks
with various numbers of ports. Both SNB and RNB Clos
networks reduce area overhead significantly and RNB Clos
networks have the minimal area.

There are two classes of routing algorithms for Clos
networks [5]: optimal algorithms, which provide guaranteed
results for all matches but with a high complexity in time or
implementation, and heuristic algorithms, which provide all
or partial matches in low time complexity. Although optimal
algorithms guarantee the connection of any I/O pairs, they
require a global view of all modules and consume long time
to reconfigure. On the other hand, heuristic algorithms are
fast and spatially distributed. Most of current dynamically
reconfigurable Clos networks utilize heuristic algorithms [3]–
[9].

Buffer insertion is a usual way of improving throughput.
According to the stage where buffers are inserted, a Clos
network can be a space-space-space (S3) network without
any buffers, a memory-space-memory (MSM) network with
buffer insertion in IMs and OMs, or a space-memory-space
(SMS) network with buffer insertion in CMs. S3 networks
(or unbuffered networks) introduce no buffer overhead but
provide the worst throughput. SMS networks normally show
better throughput than MSM networks because the buffers in
CMs resolve the contention in CMs; however, this scheme
requires a re-sequencing function in OMs because data issued
to OMs are out-of-order. MSM is the most utilized scheme in
ATM networks. Buffers in IMs and OMs improve throughput
without the out-of-order problem but the OMs are required
to speed-up m times to avoid throughput degradation (the
detailed comparison of buffer insertion schemes and memory
speed-up can be found in [2], [9]).

Virtual output queueing (VOQ) [17] is an important concept
in Clos networks. It is a buffer technique that solves the head-
of-line (HOL) blocking problem. Instead of using a first-in-

3

first-out (FIFO) queue for each IP which limits the throughput
to 58.6% [18], breaking the queue into N logical VOQs and
storing data heading to different OPs in individual VOQs
achieves 100% throughput [17]. This buffer technique can be
used in input-buffered switches [9], [17] or inside the IMs of
MSM Clos networks [4].

In this paper, we consider only three-stage S3 Clos networks
with no VOQs in input buffers or in IMs. This limitation is
introduced for two reasons:

• The area consumption of VOQs or buffered switches is
over-large for the routers in on-chip network, which is the
direct application of this paper. Similar with the VOQs
in input-buffered switches, routers in on-chip networks
can use virtual channels (VCs) [19] to alleviate the HOL
blocking with much less area overhead than VOQs. How-
ever, the analyses in [16] shows that the area overhead
of VCs is already significantly large in asynchronous
VC routers and the synchronization introduced by VCs
compromises its throughput improvement.

• The routing algorithms for S3 Clos networks can be easily
extended to support SMS or MSM Clos networks. The
real difficulties are the asynchronous implementations
which can schedule a Clos network complying with
these algorithms. As it will be shown in Section V, the
scheduler for an S3 Clos network is already complicated.
It is better to keep the problem simple at this early
research stage.

III. DISPATCHING ALGORITHMS

In a Clos network, CMs are shared by all I/O pairs as
every I/O pair has m possible path configurations and each
of them utilizes a different CM. In the worst case, all the
nk IPs would try to utilize the same CM ignoring that one
CM is capable of setting up only k paths. Therefore, an
efficient routing algorithm must dispatch requests from IPs
to all CMs evenly, otherwise the throughput performance is
compromised. Heuristic algorithms process a request from
IP(i1, h1) to OP(j2, h2) in two stages [8]. Firstly module
matching: reserving a path from IP(i1, h1) to an LO(r, j2)
which is connected with OM(j2), and secondly port match-
ing: connecting LO(r, j2) and OP(j2, h2) in OM(j2). As the
module matching stage chooses the target CMs for all IPs, it
determines the request distribution which directly affects the
throughput of a routing algorithm. The sub-algorithm used in
module matching, namely the dispatching algorithm, is the key
research issue of Clos routing algorithms.

A. Concurrent round-robin dispatching (CRRD)

The data transmitted in synchronous Clos networks are
routed in units of a cell – a small fraction of a packet
with fixed size. Multiple cells are transmitted synchronously
from IMs to OMs in one cell time. The reconfiguration of
switches proceeds concurrently with data transmission in a
pipelined manner. The new configuration generated in the
current cell time takes effect in the next cell time. The latency
of generating a new configuration for the Clos network is

IP(i,0)

IP(i,1)

IP(i,2)

IP(i,3)

LI(i,0)

LI(i,1)

LI(i,2)

LI(i,3)

IM(i)

(a) Step 1, request

IP(i,0)

IP(i,1)

IP(i,2)

IP(i,3)

LI(i,0)

LI(i,1)

LI(i,2)

LI(i,3)

IM(i)

(b) Step 2, grant

IP(i,0)

IP(i,1)

IP(i,2)

IP(i,3)

LI(i,0)

LI(i,1)

LI(i,2)

LI(i,3)

IM(i)

(c) Step 3, accept

IP(i,0)

IP(i,1)

IP(i,2)

IP(i,3)

LI(i,0)

LI(i,1)

LI(i,2)

LI(i,3)

IM(i)

(d) Step 1, next iteration

Fig. 3: Example of iterations in CRRD

therefore hidden. A cell time lasts one or multiple cycles
depending on the complexity of the routing algorithm.

The concurrent round-robin dispatching (CRRD) algorithm
[4] is one of the classic algorithms extensively utilized in
synchronous Clos networks. It was first proposed in MSM
Clos networks where VOQs are implemented in IMs. CRRD
provides 100% throughput. The algorithm can be modified
to schedule S3 Clos networks, which is used in this paper
to represent the classic performance of synchronous S3 Clos
networks.

As indicated by its name, the original CRRD algorithm
places independent round-robin arbiters on each LI (output-
link arbiter), VOQ (VOQ arbiter) and LO. In an S3 Clos
network, the VOQ arbiters are replaced with input-port arbiters
on each IP. The modified description of CRRD is illustrated
as follows:

• Phase 1: Matching within IMs.
– The first iteration
* Step 1: Non-idle IPs send requests to all output-link

arbiters.
* Step 2: Each output-link arbiter selects an IP.
* Step 3: Each non-idle IP accepts one LI from the

received grants.
– The ith iteration (i > 1)
* Step 1: Unmatched IPs send requests to all output-

link arbiters.
* Step 2 and 3: The same as the first iteration.

• Phase 2: Matching within CMs.
– Step 1: Matched LIs send requests to CMs. Each LO

in CMs selects one request and returns a grant.
– Step 2: In the next cell time, the granted IPs send

their cells and other IPs try again.
Fig. 3 shows an example of the iterations in CRRD. Assume

that all IPs have received new packets and all LIs are available
initially. As shown in Fig. 3a, IPs send requests to all available
LIs. Then each LI grants one IP. Fig. 3b illustrates an uneven
request distribution where multiple LI arbiters select the same
IP. The step 3 of CRRD ensures all IPs to accept only one LI
(Fig. 3c). In this way, the unmatched IPs are able to try again
in the next iteration as shown in Fig. 3d.

4

CRRD ensures that requests are dispatched to different CMs
evenly and one IP requests only one CM. However, the even
distribution relies on the number of iterations. In the worst case
when only one match is made in each iteration, an IM needs
n iterations to match all the n IPs. The number of iterations
is limited by the cell time. As one iteration needs one clock
cycle to finish, the cell time must be longer than n cycles to
guarantee even request distribution.

Although requests from IPs are evenly distributed to all
CMs, two requests from different IMs asking for the same
OM can be distributed to the same CM competing for the
same LO. CRRD produces even request distribution but this
distribution is oblivious to the possible contention between
requests from different IMs.

B. Asynchronous dispatching (AD)

Reconfiguring an asynchronous Clos network has funda-
mental differences with its synchronous counterpart:

• Incoming packets arrive asynchronously.
• An asynchronous Clos network is reconfigured for pack-

ets instead of cells.
• Modules are event-driven. The dispatching of different

requests are not synchronized.
As a solution to these problems, a new asynchronous

dispatching (AD) algorithm is proposed. In this algorithm, the
matching within IMs and the matching within CMs are sepa-
rated in two independent sub-algorithms running concurrently.
All configuration modules are event-driven. Independent ar-
biters are placed on each LI (output-link arbiter), IP (input-
port arbiter) and LO as the modified CRRD algorithm does,
but these arbiters are MUTEX arbiters [20] or tree-arbiters
[21], [22].

In the CRRD algorithm, if a request fails to reserve a path
due to the contention in CMs, it automatically tries again in
the next cell time. However, an asynchronous request cannot
withdraw itself until an acknowledgment is received. The path
in an asynchronous Clos network is reserved for a whole
packet instead of a single cell. Directly adopting the CRRD
algorithm in asynchronous Clos networks introduces severe
arbitration latency because the contention in one CM causes
at least one request to wait a whole packet time even when
other CMs are available. To reduce such latency overhead, the
AD algorithm introduces a state feedback scheme. Once an LO
is occupied or released, the information is broadcasted to all
IMs. Since IMs are informed of the availabilities of LOs in all
CMs, they distribute requests only to the CMs with available
LOs in the IM matching sub-algorithm. The contention in CMs
is accordingly avoided. A simplified description is as follows:

• Sub-algorithm 1: Matching within IMs.
– Step 1: A new packet arrives at IP(i, h).
– Step 2: IP(i, h) waits until at least one target LO is

available.
– Step 3: IP(i, h) sends requests to all output-link

arbiters leading to the available LOs.
– Step 4: Output-link arbiters return grants to IP(i, h).
– Step 5: IP(i, h) selects a path and withdraws requests

to other output-link arbiters.

• Sub-algorithm 2: Matching within CMs.

– Step 1: A request is forwarded from an IM.
– Step 2: The target LO returns a grant to the IM and

reconfigures the CM once it is available.
– Step 3: The updated states are broadcasted to all IMs.

Although the algorithm description appears in a way that
only one request is served at one time, the same algorithm
run concurrently in all IPs. Thus a maximal of N requests
from all IPs can be served simultaneously but these requests
are unsynchronized: an request may arrive at any time when
another request is under processing.

Fig. 4 illustrates an example of the state feedback scheme
in the AD algorithm. The initial state is shown in Fig. 4a. The
C(3, 3, 3) network has some links occupied already, such as
the links on paths IP(2, 3) to LO(1, 3) and LI(3, 3) to LO(3, 1).
Assume that a new packet arrives at IP(2, 1) and requests
an OP in OM(1). According to this request, the packet must
occupy a CM with an available LO to OM(1). Informed by
the state feedback from all CMs, the sub-algorithm running in
IM(2) learns that LO(3, 1) in CM(3) is already taken. IP(2, 1)
sends requests to LI(2, 1) and LI(2, 2) which lead to the CMs
with the available LOs to OM(1). Because LI(2, 1) is already
occupied by the path IP(2, 3) to LO(1, 3), as depicted in
Fig. 4b, only the output-link arbiter on LI(2, 2) returns a grant
to IP(2, 1). Later in Fig. 4c, IP(2, 1) sends a request to LO(2, 1)
through LI(2, 2). The arbiter on LO(2, 1) accepts this request
and broadcasts its new state to all IMs. Similar to the CRRD
algorithm, the sub-algorithm running in IMs evenly distributes
requests to CMs but this distribution is no longer oblivious to
the contention in CMs. IMs utilize the state feedback from
CMs to avoid contention, which also increases throughput.

The state feedback scheme cannot resolve the contention
among the requests processed simultaneously because they use
the same state feedback. In other words, the state feedback
avoids contention between established paths and future re-
quests but cannot resolve the existing contention. If contention
occurs, multiple requests from different IMs are sent to the
same CM competing the same LO. In this case, the arbiter
on the LO grants only one request and forces others to wait
until the granted request is withdrawn. The arbitration latency
for the blocked requests is prolonged but they will be served
eventually.

It should be noticed that the number of simultaneous re-
quests in asynchronous Clos networks are significantly smaller
than synchronous Clos networks due to the asynchronous
nature. In synchronous Clos networks, all requests are syn-
chronized; therefore, the number of simultaneous requests
is the total number of active requests. On the other hand,
asynchronous Clos networks are not synchronized. When the
network load is low, the time to establish a path is much shorter
than the time to transmit a packet. The process of establishing
a path can be recognized as an event. It is rare for two
events to occur at exactly the same time. When the network
is saturated, the number of simultaneous requests increases
as many requests are blocked. Nevertheless, the number of
simultaneous requests is still much smaller than the number
in synchronous Clos networks as nearly half IPs are busy

5

IP(2,1)

IP(2,2)

IP(2,3)

IM(2)

CM(1)

CM(2)

LO(1,1)

LO(2,1)

CM(3)

LO(3,1)

LO(1,3)

LI(3,3)

(a) IP requests

IP(2,1)

IP(2,2)

IP(2,3)

IM(2)

CM(1)

CM(2)

LO(1,1)

LO(2,1)

CM(3)

LO(3,1)

LO(1,3)

LI(3,3)

(b) Grant return

IP(2,1)

IP(2,2)

IP(2,3)

IM(2)

CM(1)

CM(2)

LO(1,1)

LO(2,1)

CM(3)

LO(3,1)

LO(1,3)

LI(3,3)

(c) Path reconfiguration and state feedback

Fig. 4: Example of AD

transmitting data (49% throughput in uniform traffic as shown
in Fig. 8). Using the placed and routed implementations of the
synchronous and asynchronous Clos schedulers in Section VI,
we have extracted the CM contention rate (the ratio of the
number of conflicted requests sent to CMs to the number of
all CM requests) of the saturated Clos networks. The rates
are 56.7% and 24.9% for the synchronous and asynchronous
schedulers respectively. It is shown that the state feedback
scheme successfully reduces the contention significantly. As
will be demonstrated in the next section, the state feedback
improves throughput in saturated networks.

IV. PERFORMANCE OF CRRD AND AD

In this section, CRRD and AD algorithms are evaluated with
behavioural level models written in SystemC. Schedulers for a
C(4, 8, 4) S3 Clos network are built and injected with various
traffic patterns. Some assumptions are employed to produce a
fair comparison:

• Random arbiters are utilized in both models.
• Requests are withdrawn immediately after a path is

configured.
• Latency is normalized in units of a cell time.
Synchronous and asynchronous Clos networks have dif-

ferent hardware implementations. The simulations in this
section attempts to reveal the performance differences at the
behavioural level. Many hardware details are thus simplified.
Both the round-robin arbiters in synchronous Clos networks
and the MUTEX or the tree arbiters in asynchronous Clos
networks are hardware models approximating random arbiters.
Therefore, pseudo-random arbiters are directly used in the
behavioural models. In synchronous Clos networks, the gen-
eration of a new configuration and data transmission run in a
pipelined fashion. The arbitration latency is hidden and does
not compromise throughput. On the other hand, asynchronous
Clos networks cannot pre-calculate a path before the path
is fully available. Thus dynamic reconfiguration introduces
throughput loss, which will be analysed in section VI. For the
performance comparison of the dispatching algorithms in this
section, the arbitration latency is normalized by ignoring the
data transmission latency and assuming that the asynchronous
arbitration latency is equal to the synchronous arbitration
latency – a cell time.

A. Non-blocking uniform traffic

In non-blocking uniform traffic, network load spreads to
all output ports without any head-of-line (HOL) blockage.
Therefore, the inefficiency of routing algorithms is the sole
source of throughput loss. ρ(s, d) is the normalized load
between IP(s) and OP(d) where 1 ≤ s, d ≤ N . A packet
is injected in every cell time when ρ = 1 and no packet is
injected when ρ = 0. The injected packet sequence of IP(s)
complies with a Poisson process which generates a load with

expectation ρ̄(s) =
N∑

d=1

ρ̄(s, d). The individual load between

any IP and OP is:

ρ̄(s, d) =
ρ̄(s)

N
(4)

For each OP, a prior condition:

N∑
s=1

ρ(s, d) ≤ 1 (5)

is guaranteed to avoid overloaded OPs.
Fig. 5 shows the packet latency and throughput performance

using different dispatching algorithms. To achieve the top
throughput, the CRRD algorithm runs with four iterations.
CRRD is reported to achieve 100% throughput in MSM
networks [4] where VOQs are implemented. In an S3 Clos
network, however, an IP is blocked until the blocked cell
is successfully forwarded. Although CRRD evenly dispatches
requests to all CMs, the oblivious request distribution leads
to contention in CMs. AD algorithm avoids such contention
by utilizing the state feedback from CMs in the IM match-
ing sub-algorithm. As shown in Fig. 5b, the AD algorithm
achieves 76% switch throughput, which is 6% higher than the
throughput of the CRRD algorithm.

Heuristic algorithms cannot achieve 100% throughput in a
RNB S3 Clos network even when the traffic is non-blocking.
This sub-optimal throughput has two major causes: firstly,
most heuristic algorithms, such as the CRRD algorithm, are
oblivious algorithms which cannot resolve the contention in
CMs when VOQs are not implemented; secondly, established
paths are not allowed to be modified in some Clos networks,
including all asynchronous Clos networks. One way to im-
prove the throughput is increasing the number of CMs because
it reduces the probability that two requests from different IMs

6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

20

40

60

80

100

La
te

nc
y,

 c
el

l t
im

e

Injected load

 CRRD
 AD

(a) Packet latency

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

ep
te

d
lo

ad

Injected load

 CRRD
 AD

(b) Switch throughput

Fig. 5: Switch performance in non-blocking uniform traffic

4 5 6 7 8 9 10

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
ax

im
al

 a
cc

ep
te

d
lo

ad

Number of CMs

 CRRD
 AD

Fig. 6: Throughput with various number of CMs

compete for the same LO in one CM [3]. When the number of
CMs reaches 2n− 1, the Clos network is SNB and new paths
can be connected without modifying any established paths.

As shown in Fig. 6, both the CRRD and the AD algorithms
show better performance with more CMs. The AD algorithm
reaches 100% throughput when the Clos network is SNB
(m ≥ 7). Therefore, the throughput of AD is solely constricted
by the resources occupied by established paths. Once the Clos
network has enough CMs to resolve the resource bottleneck,
AD can deliver all packets within a fixed amount of time. On
the other hand, the CRRD algorithm cannot provide 100%
throughput even with 10 CMs. Increasing the number of
CMs significantly alleviates the contention in CMs but cannot
resolve it.

1 2 3 4 5 6 7 8
0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

M
ax

im
al

 a
cc

ep
te

d
lo

ad

Number of iterations

Fig. 7: Throughput of CRRD with various number of iterations

The throughput of the CRRD algorithm is also constricted
by the number of iterations in its matching within IMs. Fig. 7
shows the maximal accepted load of CRRD with various
numbers of iterations. CRRD achieves the peak throughput
with more than four iterations. Since an IM in a C(4, 8, 4)
network has four IPs, four iterations are enough to match
all possible IPs. Strictly speaking, the AD algorithm also
utilizes iterations in its IM matching sub-algorithms. However,
asynchronous modules are event-driven. Compared with the
interval between two continuous requests, the latency of an
internal feedback is much shorter and can be ignored. As a
result, the AD algorithm always runs with sufficient iterations
to provide the optimal throughput.

B. Blocking traffic patterns

Traffic patterns in real applications are blocking. Uniform
traffic is one of the most analysed synthetic traffic patterns,
which is defined as

ρ̄(s, d) =
ρ̄(s)

N
(6)

Uniform traffic has the same load description as the non-
blocking uniform traffic but without the prior non-blocking
condition; therefore an OP can be loaded with traffic exceeding
its actual bandwidth and some IPs are thus blocked in some
occasions.

Fig. 8 shows the accepted load under uniform traffic. S3

Clos networks are input buffered switching networks. Every
IP is connected with an infinite FIFO in simulation. This
is different from the buffered IM scheme where an IP is
connected to VOQs inside the IM [4]. It is known that the max-
imal accepted load for an input buffered switching network is
58.6% [18]. When the number of CMs is 4 (m = 4), the
Clos network is a RNB network where connection capability
is restricted. As a result, the maximal accepted load of all
routing algorithms is much lower than 58.6%. As shown in
Fig. 8, neither CRRD nor AD can provide throughput greater
than 50% in RNB Clos networks. The AD algorithm achieves
49.7% throughput, which is 0.8% higher than that of the
CRRD algorithm. We have also simulated both algorithms in
SNB Clos networks. The maximal accepted load of the AD
algorithm increases to 55.4%, which is only 3.2% lower than
the optimal accepted load and 1.6% higher than that of the

7

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

A
cc

ep
te

d
lo

ad

Injected load

 CRRD (m=4)
 AD (m=4)
 CRRD (m=7)
 AD (m=7)

Fig. 8: Accepted load in uniform traffic

CRRD algorithm. If VOQs are implemented in IMs, CRRD
provides 100% throughput in RNB networks because the HOL
problem is solved by VOQs [4].

V. IMPLEMENTATION

This section reveals the hardware details of an asynchronous
scheduler controlling a 32-port C(4, 8, 4) S3 Clos network
using the AD algorithm. Fig. 9 depicts the overall architecture
of the scheduler. Each switching module in the Clos network
is reconfigured by a separate scheduler (IMSCH, CMSCH or
OMSCH). For each request from an IP, a path is reserved from
IM to OM in a forward direction and released from OM to IM
in a backward direction. The detailed sequence control will be
introduced in Section V-A.

An IM scheduler (IMSCH) comprises n input request
generators (IRGs), one IM dispatcher (IMD) and two dual-
directional crossbars. Each IRG receives the request from an IP
and translates the request into three different one-hot request
signals: IM request (imr), CM request (cmr) and OM request
(omr). As indicated by their names, these request signals are
used in the schedulers of different switching modules. The
IM crossbar is reconfigured by the IMD running the AD
algorithm. The IMD receives the imr signals from all IRGs
in the IM and the state feedback cms from all CMs. It selects
an available CM and reserves a path in the IM crossbar through
the IM configuration bus imcfg. This configuration is also sent
to CMRICB (cmr forwarding crossbar in IM) and OMRICB
(omr forwarding crossbar in IM). These two crossbars then
forward cmr and omr to the CM selected by the IMD. Note
that these two crossbars are dual-directional. Therefore, ACK
signals (cmra or omra) are sent back through the same path as
configured in these crossbars when a path is reserved in CMs
or OMs.

A CM scheduler (CMSCH) contains one CM Dispatcher
(CMD) and one dual-directional crossbar. CMD receives cmr
from all IM Schedulers. According to the target LO in each
request, CMD reserves a path to the LO or block the request
until the LO is available. Once a new configuration is made,
the internal state of the CMD module is broadcasted to all IMs
through the cms signals. Similar to IMSCH, the configuration
bus cmcfg also controls the internal omr forwarding crossbar
(OMRCCB). Thus corresponding omr signals are forwarded
to OMSCHs using the same configuration. OMRCCB is also

k

Format

translator
(from IP) req

(to IP) ack

lo_req
imr (to IMD)

cmr (to CMRICB)

omr (to OMRICB)

imra (from IMD)

cmra (from CMRICB)

omra (from OMRICB)

n

(a) Schematic

req +

imr +cmr +omr +

imra +

cmra +

omra +

ack +req å

omr åomra å

cmr åcmra å

imr åimra å

ack å

(b) STG

Fig. 10: Input request generator

dual-directional; therefore, the ACK signal omra is sent back
through the same path.

An OM scheduler (OMSCH) is simpler than IMSCH or
CMSCH. It receives all omr signals forwarded from CMs and
tries to reserve a path to the target OP for each request.

A. Input request generator

An IP can request one of the nk OPs scattered in k OMs.
In the module matching stage, a path leading to the target OM
is reserved using the dispatching algorithm. Then in the port
matching stage, a path to the target OP will be reconfigured in
the target OM. Therefore, the request from an IP needs to be
translated into two sub-requests: one for the module matching
stage and the other one for the port matching stage. As IMs
and CMs have separate dispatcher modules, the sub-request
for module matching is further divided into two independent
requests.

In our Clos scheduler, every IP is connected with an
input request generator as shown in Fig. 10. The incoming
request (req) is translated into two requests: one used in the
dispatching algorithm, identifying an LO to the target OM
(lo req), and the other one used in the port matching stage,
actually the request used in the target OM (omr). As required
by normal asynchronous circuits, both lo req and omr are one-
hot coded. The format translator in IRG coverts the coding
format of req into one-hot. In our implementation, the req
signals are pre-coded in one-hot and no translation is needed.
Although both IM dispatcher and CM dispatcher use the same
request information from lo req, they have different timing
requirements. lo req is divided into two independent requests:
imr and cmr. The ACK signals for imr, cmr and omr are imra,
cmra and omra respectively.

The signal transition graph (STG) of the input request
generator is shown in Fig. 10b. All of imr, cmr and omr
are fired immediately after a request is received. Although
IM should be the first stage to be reconfigured, cmr and omr

8

IRG1

IRG2

IRG3

IMD
IRG4

imcfg

imr

im
r

o
m
r

omr

CMD

CMSCHrIMSCHi

CMSCH4IMSCH8

c
m
c
fg

OMSCHj

OMSCH8

OMSCH1
IMSCHi

CMSCHr

OMSCHj

IRG

IMD

CMD

CMRICB

OMRICB

OMRCCB

reqi,h
imr

cmr

omr

imcfg

cmcfg

the ith IM scheduler

the rth CM scheduler

the jth OM scheduler

input request generator

IM Dispatcher

CM Dispatcher

crossbar for cmr in an IM

crossbar for omr in an IM

crossbar for omr in a CM

request from IP(i,h)

the request used IMD

the request used CMD

the request used OMSCH

crossbar configuration for an IM

crossbar configuration for a CM

wires of imr

wires of cmr

wires of omr

wires of the state feedback from

CMs (cms)

Description

IMSCH1 CMSCH1

req1,1

req1,2

req1,3

req1,4

reqi,1

reqi,4

req8,1

req8,4

OMRCCB
OMRICB

CMRICB

cm
r

Fig. 9: Architecture of the Clos Scheduler

are automatically blocked in the two crossbars (CMRICB and
OMRICB) inside IM scheduler. Simultaneously firing them
with imr introduces no side-effect and simplifies the control
logic. When imra is driven to high by a new configuration in
imcfg, the IM dispatcher successfully reserves a path inside
IM. At the same time, cmr and omr are forwarded to the
central stage through CMRICB and OMRICB respectively.
Similar to an IM dispatcher, an CM dispatcher reconfigures
the CM crossbar and omr is forwarded to the OM scheduler
through OMRCCB inside the CM scheduler. Finally when a
positive edge on omra is detected in IRG, an acknowledgement
is sent back to IP through the ack signal and a path is
successfully reserved in the Clos network.

The release of a path is more complicated than its reser-
vation. The release sequence must start from OMs and end
in IMs. If the path in IMs or CMs is withdrawn before that
the path in OMs is safely withdrawn, the release of the path
in OMs would not be guarded and the next request would
be misrouted. As a result, two asymmetric C-elements are
added on imr and cmr to guarantee that the strict withdrawal
sequence is satisfied. When a negative edge on imra is detected
in IRG, the path is safely withdrawn and IP is acknowledged.

B. IM dispatcher

IM dispatchers are the most important and complicated
modules in the asynchronous Clos scheduler. An IM dispatcher
receives requests (imr) from all IRGs in the same IM, searches
an available CM for each request according to the state
feedback from CMs (cms), and configures the IM crossbar.
The structure of an IMD is shown in Fig. 11. It comprises
three components: a request generate matrix, an M-N match
allocator and an ACK tree.

As described in Section III-B, an IP requests only those
LIs leading to available LOs. To achieve this selective request
scheme, the request generate matrix acts as a filter where
only requests with available LOs are let through. A part of
its internal circuit is depicted in Fig. 12a. imri,h,j is one bit of
the k-bit request signal imri,h from the IRG connected with

M-N
match

allocator

Request
generate

matrix

ACK
tree

imri,1

imri,n

cm
s

1

cm
s

m

k

k

m ipri,1

ipri,n

imcfgi,1

imcfgi,m

n
imrai,1

imrai,n

imcfgi

Fig. 11: IM dispatcher

IP(i,h). It is high when imri,h is fired and the target output
module is OM(j). There are m LOs leading to OM(j) and
their availabilities are identified in the state feedback signals
from cms1,j to cmsm,j , which come from the m CMs. Every
pair of imri,h,j and cmsr,j are verified by the asymmetric C-
element in Fig. 12a. As every bit of the total of n × k imr
request bits is paired with m cms state bits, there are n×k×m
C-elements inside one request generate matrix and the output
signals of these C-elements form a three-dimensional matrix,
namely iprm (the index i in Fig. 12a is constant in an IM
dispatcher). Because each k-bit imri,h is one-hot coded, the
signal vector {iprmi,h,r,1 – iprmi,h,r,k} is also one-hot coded
and is or-reduced into a request bit, namely ipri,h,r, indicating
that IP(i,h) attempts to occupy LI(i,r). These ipr signals are
grouped into n signal vectors (ipri,1 – ipri,n), each of which
is m bits.

The request generate matrix does not ensure that the verified
request reserves an LO without contention. A positive cms bit
indicates that one LO is currently available but it may trigger
multiple requests in different IMs. If these requests are sent
to the same CM, contention occurs in the same way as using
CRRD. The requests, which fail to reserve the LO, are blocked
in the CM dispatcher and wait for the LO to be released.
In this situation, a pulse is produced on the cms bit but it
must not withdraw the requests triggered by itself, otherwise
a false acknowledgement can be produced. The asymmetric
C-elements in the request generate matrix ensure that cms
signals block incoming requests but the established requests

9

imri,h,j

cmsr,j

iprmi,h,r,j

iprmi,h,r,1

iprmi,h,r,k ipri,h

ipri,h,r

ipri,h,1

ipri,h,m
m

(a) Request generate matrix

o
u
tp
u
t-lin

k

a
rb
ite
r (1
)

o
u
tp
u
t-lin

k

a
rb
ite
r (m

)

in
p
u
t-p
o
rt

a
rb
ite
r (1
)

in
p
u
t-p
o
rt

a
rb
ite
r (n
)

ipri,1,1
ipreni,1,1

ipri,1,m
ipreni,1,m

ipri,n,1
ipreni,n,1

ipri,n,m
ipreni,n,m

imcfgi,1,1

imcfgi,1,n

imcfgi,m,1

imcfgi,m,n

olgi,1,1

olgi,n,m

(b) M-N match allocator

imcfgi,1,h

imcfgi,m,h

imrai,h

(c) Ack tree

Fig. 12: Components of IMD

are withdrawn only by themselves rather than cms. Avoiding
false acknowledgement is the underlying reason that the state
feedback cannot solve the existing contention as described
previous in Section III-B.

Fig. 12b demonstrates a novel M-N match allocator that
matches multiple input ports to multiple output ports concur-
rently. It utilizes the classic parallel iterative matching (PIM)
algorithm [23], which is also used in the phase 1 of the CRRD
algorithm. In the classic PIM algorithm, requests from input
ports are synchronized. PIM uses multiple iterations to reach
an even match. The key prerequisite of this algorithm is that
once an output port is reserved, the matched input port must
withdraw its extra requests to other output ports. In an M-
N match allocator, a total number of n IPs compete for m
LIs. The requests of IPs come from ipri,1 – ipri,n and the
m LIs are configured by imcfgi,1 – imcfgi,m. Note that every
ipri,h has m bits requesting all the m LIs. The bit leading
to busy LOs are filtered out by the request generate matrix.
When an IP(i,h) fires a request, ipri,h requests all available LIs
concurrently. If an LI is idle, the output-link arbiter on this LI
grants the request using the olg signal. As multiple output-link
arbiters may grant the same IP, the input-port arbiter selects
one granted LI and drives the corresponding imcfg bit to high.
As the same as the PIM algorithm, after an LI is reserved, the
extra requests to other LIs are withdrawn immediately through
the request enable signals (ipreni,1 – ipreni,n). The generation
equation for every ipreni,h,r bit is expressed in Equation 7.

ipreni,h,r = ¬(
m∪

l=1,l ̸=r

imcfgi,l,h) (7)

In the literature, there are other allocators that can allocate
multiple resources (output ports) to multiple clients (input
ports): the forward acting n × m arbiter [24], the virtual

olg1,1+olg2,1+

imcfg1,1+imcfg2,1+

ipr1 /1ipr1 /2

olg1,1 /1olg2,1 /1

imcfg1,1imcfg2,1

ipr1 +

olg1,2+olg2,2+

imcfg1,2+imcfg2,2+

ipr2 /2ipr2 /1

olg1,2 /1olg2,2 /1

imcfg1,2imcfg2,2

ipr2 +

olg2,2 /2 olg1,2 /2 olg2,1 /2

Output-link arbiter (1)Output-link arbiter (2)

Input-port arbiter (2) Input-port arbiter (1)

olg1,1 /2

Fig. 13: STG of a 2x2 M-N match allocator

channel admission control presented in QNoC [20] and the
multi-resource arbiter [25]–[27]. The virtual channel admis-
sion control treats all clients fairly but resources are selected
by an unbalanced static priority arbiter [28]. The multi-
resource arbiter is a quasi-delay-insensitive (QDI) allocator
that allocates resources fairly. We have utilized the multi-
resource arbiter in our original scheduler design [29] but it
introduces large area overhead. Both virtual channel admission
control and the multi-resource arbiter allocate resources in
a serialized way that causes extra arbitration latency. The
forward acting n×m arbiter is a speed independent allocator
that can allocate multiple requests in parallel.

The M-N match allocator is much smaller than the multi-
resource arbiter. It uses a similar structure as the forward
acting n × m arbiter and it allocates requests in parallel.
However, it is not speed independent or QDI because the
withdrawn of requests and olg is unguarded for less area
overhead. Fig. 13 illustrates the STG of an M-N match
allocator with two requests (ipr1 and ipr2) and two resources.
To simplify the problem, we assume the request generate
matrix blocks no requests. Thus the input request ipr is always
duplicated to all output-link arbiters. The forward arbitration
transitions are depicted in black bold lines and the backward
request withdrawn transitions are drawn in blue slim lines. The
unguarded completion check is highlighted in red dash lines.
As an example, supposing the second resource is allocated to
the first request, imcfg2,1 is driven to high and the duplicated
request sent to output-link arbiter (1) should be withdrawn.
As the second request can arrive at any time, the output-link
arbiter (1) may select ipr1 (olg1,1+) or block ipr1 as ipr2

10

arrives already. In either case, the AND gate on the duplicated
request ipr1,1 in Fig. 12b releases ipr1,1 and olg1,1. For correct
operation, this withdrawn process must finish before ipr1−,
otherwise olg1,1 can produce a fake acknowledgement. Instead
of using complicated completion detection circuits to enforce
the speed independent requirement as shown by the red dash
line, we found that practical hardware implementations ensure
correct operation. The timing requirement is expressed in
Equation 8.

timcfg+→olg− < timcfg+→ipr− (8)

In the overall transition graph in Fig. 10b, imra+ is triggered
by imcfg+ and ipr− is triggered by imr−. The right side
of Equation 8 is the accumulative latency of reserving and
releasing a path in CMs and OMs, together with the whole
data transmission delay. The left side of Equation 8, on the
other hand, is merely the accumulative latency of an OR gate
tree expressed by Equation 7, a 2-input AND gate and an
output-link arbiter. It will be shown in Section VI-A that the
right side is far longer than the left side even without data
transmission.

As shown in Fig. 12c, the ACK signals imra are generated
from the configuration bus imcfg using the OR gate trees inside
the ACK tree. These ACK signals are then sent to IRGs.

C. CM dispatcher

CM dispatchers reconfigure the central stage of a Clos net-
work using the AD algorithm. They are similar to the arbiters
of crossbars where each output port has an independent arbiter
granting requests from all input ports.

Fig. 14 shows the internal structure of a CM dispatcher.
As every CM has k output ports, there are k arbiters in each
CM dispatcher. Each arbiter receives requests from all the k
input ports and generates the configuration signal for its output
port. cmrr,i,j is a 1-bit request forwarded from IMs indicating
that an IP in IM(i) is competing for the LO(r,j) in CM(r).
cmcfgr,j,i is set to high when the arbiter on LO(r,j) grants
the request cmrr,i,j . When a new configuration is made, an
acknowledgement is sent back to the IRG using the reserved
path and the state is broadcasted to all IMs using the state
feedback signal cms. The ACK signals cmra and the state
feedback cms are generated using OR gate trees similar to
the tree shown in Fig. 12c. Their generation equations are
expressed as follows:

cmrar,i =
k∪

l=1

cmcfgr,l,i (9)

cmsr,j =
k∪

l=1

cmcfgr,j,l (10)

D. OM scheduler

An OM scheduler reconfigures an OM using the same arbi-
tration structure as a CM dispatcher. Each OP has an arbiter
that receives requests from all input LOs in the same OM
and makes a grant when the OP is available. The requests are

$
UE
LWH
U�1
�

$
UE
LWH
U�k�

cmrr,1,1

cmrr,k,1

cmrr,1,k

cmrr,k,k

cmcfgr,1,1

cmcfgr,1,k

cmcfgr,k,1

cmcfgr,k,k

Fig. 14: CM dispatcher

forwarded from the input request generators in IM schedulers
through the path reserved in OMRICBs and OMRCCBs. The
ACK signals are also generated using the same logic as in CM
dispatcher. The generation equation is expressed below:

omraj,r =
n∪

l=1

omcfgj,l,r (11)

where omraj,r is the ACK signal from OM(j) to CM(r) and
omcfgj,h,r is the configuration bit controlling the connection
between LO(j,r) and OP(j,h).

VI. HARDWARE PERFORMANCE

Three different 32-port C(4, 8, 4) S3 Clos networks have
been implemented in this paper: an asynchronous Clos net-
work with data switches using the channel sliced pipelines
[30] (A-SC), another asynchronous Clos network with data
switches using bundled-data pipelines (A-BD), and a syn-
chronous Clos network (Syn). Both asynchronous Clos net-
works are reconfigured by the same scheduler using the AD
algorithm and the synchronous Clos network is reconfigured
by a classic scheduler using the CRRD algorithm [4].

All designs are synthesized, placed and routed with com-
mercial tools using the Faraday 0.13 µm standard cell library
based on the UMC 0.13 µm technology. All basic asyn-
chronous cell elements, such as the C-element and the 2-input
MUTEX cell, are manually written in gate-level Verilog HDL
using only standard cells. Accurate latency and throughput
is obtained from the post-layout netlists co-simulated with
test benches written in SystemC. Gate and wire latencies are
extracted and back-annotated in all simulations. The power
consumption of different Clos networks is obtained from the
Synopsys PrimeTimeTM PX tool suite using the toggle rates
from simulations and the accurate RC information extracted
from the routed layout.

The asynchronous Clos scheduler is self-timed with a timing
requirement described in Equation 8. The channel sliced
pipeline [30] is a fast QDI pipeline style which transmits
data packets through a number of unsynchronized 1-of-4 sub-
channels [31]. Although the QDI data switches are tolerant
to temperature, power and process variation, and dissipates
extremely low power during idle states, it introduces extra
power and area overhead. As an alternative, an asynchronous
Clos network using bundled-data pipelines in its data switches
is also implemented. The bundled-data pipeline is self-timed.
Although it consumes extremely low power during idle states,

11

it may suffer from variation and timing closure is problematic.
Compared with the QDI data switches, the bundled-date data
switches introduce much lower power and area overhead.

The scheduler in the synchronous Clos network is a repro-
duction of the CRRD algorithm described in [4]. Its structure
is similar to that of the asynchronous scheduler shown in
Fig. 9, but all components are synchronized with the global
clock. A global state machine is added in the scheduler to
control iterations. Since synchronous circuits handle binary
codes easily and the sequence control problem is now resolved
by the global state machine, no IRG module is needed. After
detailed optimization, the synchronous Clos network can run at
as high as 300 MHz after layout. The final clock period is set
to 3.5 ns (285 MHz) because running at 300 MHz introduces
significant area overhead on buffers. The number of iterations
is dynamically reconfigurable and the length of a cell time is

tcell = tclock · (Niteration + 1) (12)

where Niteration is the number of iterations.

A. Basic implementation results

The area consumption of all Clos implementations, includ-
ing the original asynchronous Clos scheduler in [29] (A-Orig)
and an asynchronous crossbar using bundled-data pipelines
(Crossbar-BD), are demonstrated in Table I. The data width
of each I/O port is 32 bits.

The synchronous Clos network has the smallest total area
due to its smallest data switches. Asynchronous circuits in-
troduce extra area overhead on data paths. For bundled-
data pipelines, although data are transmitted in binary as the
synchronous data path, extra single-rail latch control circuits
are inserted as required by the self-timed handshake protocol.
In the channel sliced pipelines, every two data digits are trans-
lated into a 4-bit one-hot code word and every sub-channel
delivering this 4-bit code word needs an extra ACK wire
as sub-channels are not synchronized. In summary, utilizing
asynchronous circuits introduce area overhead in data paths
due to handshake protocols and code styles.

On the other hand, the proposed asynchronous scheduler is
smaller than its synchronous counterpart. Three reasons lead
to this outcome: (1) the storage elements used in asynchronous
circuits are C-elements which are smaller than flip-flops.
(2) As synchronous circuits are synchronized and clocked,
extra storage elements are inserted where the latency of one
operation, such as the iterations, is longer than one clock
period. (3) Since synchronous scheduler pre-calculates the
configuration for the next cell time, the generated configuration
is stored in flip-flops as an extra pipeline stage. Because
of these reasons, all asynchronous scheduler components are
smaller than their synchronous counterparts except the IM
dispatcher. The request generate matrix in every IM dispatcher
uses the state feedback from CMs to avoid the contention in
CMs. As depicted in Fig. 12a, every request generate matrix
contains an n×k×m matrix of C-elements, which causes the
large area consumption of IM dispatchers.

It is also shown in Table I that the asynchronous scheduler
implemented in this paper achieves a significant area reduction

req +

imra +

cmra +

omra +

ack +
req å

omra å

cmra å

imra å

ack å 1.37

1.72

1.17

0.18

1.87

1.79

1.33

0.17

Fig. 15: Speed performance, ns

of 66% from its original design. The original design utilizes
the multi-resource arbiter which sequentially allocates multiple
input ports to multiple output ports. As every I/O pair has m
different paths through the m CMs, each IM dispatcher has
m multi-resource arbiters running in parallel. These parallel
arbiters lead to the major area overhead. We have also opti-
mized the state feedback logic and timing constraints for the
new implementation.

The asynchronous crossbar using bundled-data pipelines
is scheduled by 32 tree arbiters, one per individual output
port. The bundled-data Clos switch demonstrates 41% area
reduction but the Clos scheduler is 7% larger than tree arbiters.
It is normal to produce large Clos schedulers as the scheduling
problem of Clos networks is more complicated than that of
crossbars. The area reduction in data switches compensates the
area overhead of schedulers and the overall area is reduced.

The detailed latency is labelled in the simplified STG shown
in Fig. 15. The transitions from req+ to ack+ denote the
path reservation procedure and the transitions from req− to
ack− denote the path release procedure. During the interval
between ack+ and req−, data are being transmitted through
the path reserved in the Clos network. The latencies labelled
are averaged from different IPs requiring various OPs in an
idle Clos network. When the Clos network is busy, these
latencies are related to the load as some requests are blocked.
The asynchronous Clos network can reserve a path in 4.44 ns
and release it in 5.16 ns. The minimal allocation period is 9.6
ns, which is 4.9% shorter than the 10.1 ns period of the original
design [29]. Apropos of the timing assumption (Equation 8) of
the M-N match allocator, the left side timcfg+→olg− is around
0.69 ns, which is far shorter than the 6.73 ns latency of the
right side without data transmission.

For the data switches, the channel sliced Clos network is
slightly slower than the bundled-data one. In the channel sliced
Clos network, the average cycle period for one data trans-
mission is 4.9 ns while it is 4.6 ns in the bundled-data Clos
network. However, both asynchronous switch implementations
are much slower than the synchronous Clos network which can
easily run at more than 400 MHz (less than 2.5 ns). The reason
for this low speed is straightforward. Both asynchronous Clos
networks use 4-phase handshake protocols [14] that require
four transitions in one cycle while the synchronous pipeline
requires only one. Some techniques can be used to reduce the
cycle period, such as the 2-phase handshake protocols [14],
[32], the lookahead pipeline [33], the GasP pipeline [34] or

12

TABLE I: Area consumption, µm2

A-CS A-BD A-Orig [29] Crossbar-BD Syn [4]
Scheduler 88,057 88,191 260,740 82,344 115,262

One IMD 3,862 3,870 21,882 — 3,186
One CMD 4,879 4,803 8,437 — 6,498
One OMSCH 985 992 1,258 — 1,375
One IRG 160 163 196 — —

Switch 347,276 146,804 — 251,089 97,454
Total 435,333 234,995 — 333,433 212,716

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

400

La
te

nc
y,

 n
s

Injected load, MPacket/port/second

 Hardware
 SystemC

Fig. 16: Consistency between hardware and behaviour simu-
lation

inserting pipeline stages inside the Clos network. As the key
research issue in this paper is the routing algorithm, we will
not exploit these techniques.

It is possible to evaluate the consistency between the
hardware implementation and the behaviour models used in
Section IV. The SystemC model in Section IV is now back-
annotated with the latencies shown in Fig. 15. The same
SystemC test bench loads both the SystemC model and the
post-layout netlist with the uniform traffic model described
in Section IV-B. As shown in Fig. 16, the SystemC model
accurately matches the post-layout netlist.

B. Comparison among implementations

Fig. 17 reveals the packet latency in uniform traffic. Ac-
cording to Equation 12, the cell time for the synchronous
Clos network is set to five clock cycles to guarantee an even
request distribution. Using the same assumption in Section IV,
we assume a packet contains only one cell and every cell
comprises 20 bytes of data (32 bits/cycle for five cycles).
The packets delivered in asynchronous Clos networks have
the same length as in synchronous Clos networks.

When network load is low, asynchronous Clos networks
show shorter packet latency thanks to their faster scheduler.
As described in Section VI-A, the asynchronous scheduler can
reserve a path in 4.44 ns. The synchronous Clos scheduler
needs a cell time to calculate a new configuration. In this
test case, a cell time is 17.5 ns (Equation 12) which is 2.9
times longer than the 4.44 ns in asynchronous Clos networks.
However, when networks are heavily loaded, the throughput
performance is affected by data transmission latency rather
than the arbitration latency. As the cycle periods for data
in asynchronous Clos networks are much longer than the

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0

50

100

150

200

250

300

350

400

La
te

nc
y,

 n
s

Injected load, Gbit/port/second

 A-CS
 A-BD
 Syn

Fig. 17: Packet latency with four iterations

clock period in synchronous Clos networks and the arbi-
tration latency is not hidden, the maximal accepted load
of asynchronous Clos networks is significantly smaller than
synchronous Clos networks.

Fig. 18 shows the power consumption of all Clos net-
works. The power of all Clos networks increases with the
injected load. When networks are idle, both asynchronous Clos
networks demonstrate nearly zero power dissipation but the
synchronous Clos network consumes 9.8 mW of which 85%
is dissipated on the clock tree. When networks are heavily
loaded, the bundled-data Clos network shows the best power
efficiency while the channel sliced Clos network consumes
the most power. Specifically, when the network load is 2.4
Gbit/port/second, the channel sliced, the bundled-date and the
synchronous Clos networks consume 35.6 mW, 12.8 mW and
23.8 mW respectively.

The significant power consumption of the channel sliced
Clos network is related to the QDI handshake protocol and
the 1-of-4 code style. In synchronous data paths, an average
of 50% of the 32 data wires turn over every cycle, which is
16 toggles per cycle. In the bundled-data pipelines, data wires
have the same toggle rate but the single-rail latch control logic
transit four times every cycle period. When the data width
is large, the extra toggle rate on latch control logic can be
ignored; therefore, the bundled-data and the synchronous Clos
networks have similar power consumption on data switches.
When the QDI 1-of-4 pipelines are utilized, every two data bits
are translated into a 4-bit code word. In each cycle, one wire
in this 4-bit code word transits twice, which causes 32 toggles
per cycle period. Every ACK wire also transits twice every
cycle. As the channel sliced pipelines utilize unsynchronized
sub-channels, the overall toggle rate is around 64 toggles
per cycle. The high toggle rate of the channel sliced Clos
network leads to its high power consumption. Using traditional

13

0.0 0.5 1.0 1.5 2.0 2.5
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
P

ow
er

, W

Injected load, Gbit/port/second

 Scheduler
 Data switches

(a) A-CS

0.0 0.5 1.0 1.5 2.0 2.5
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

P
ow

er
, W

Injected load, Gbit/port/second

 Scheduler
 Data switches

(b) A-BD

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

P
ow

er
, W

Injected load, Gbit/port/second

 Clock tree
 Scheduler
 Data switches

(c) Syn

Fig. 18: Power consumption with four iterations

1-of-4 pipelines with a common ACK wire can reduce the
toggle rate to 34 toggles per cycle. However, the completion
detection tree on every pipeline stage consumes extra power
and compromises the speed performance significantly. The
area and speed of traditional and channel sliced pipelines has
been compared in [30].

The asynchronous Clos scheduler consumes low power.
As shown in Fig. 18, when the network load is 2.4
Gbit/port/second, the asynchronous scheduler consumes 1.7
mW while the synchronous scheduler consumes 12.3 mW
(including the power of the clock tree as data switches contain
no flip-flops). Thanks to this small power consumption, the
bundled-data Clos network shows the best power efficiency.

The length of a cell time is an important design parameter.
In synchronous Clos networks, it determines the maximal
number of iterations in the CRRD algorithm (Equation 12). If
the number of iterations is less than n, the CDDR algorithm
cannot guarantee an even request distribution. In asynchronous
Clos networks, a cell is equivalent to a packet; therefore, the
length of a cell controls the amount of data being transmitted
in one packet and the highest frequency that a path is recon-
figured.

Fig. 19 shows the throughput of all Clos networks with var-
ious packet lengths (cell time). The throughput of synchronous
Clos networks is stable when the cell time is more than four
clock cycles. As described in the original paper of the PIM
algorithm [23], the average number of iterations C required
to match an N ×N crossbar is:

E[C] ≤ log2N +
4

3
(13)

As the PIM algorithm is used in the CRRD algorithm and in
Equation 13, N = n (the number of IPs in one IM), E[C] =
3.33. On average, a cell time larger than 4.3 is enough to reach
an even request distribution, which is demonstrated in Fig. 19.

For asynchronous Clos networks, throughput increases
monotonically with packet length. Unlike the synchronous
Clos network where new configuration is pre-calculated, a
path must be strictly idle before it can be re-allocated. As
a result, the bandwidth of certain data paths is wasted during
the arbitration process. When the length of packets increases,
the frequency of reconfiguration decreases and throughput
increases.

The power consumption of Clos networks with various
packet lengths (cell time) is revealed in Fig. 20. The power

2 3 4 5 6 7 8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

T
hr

ou
gh

pu
t,

G
bi

t/p
or

t/s
ec

on
d

Packet length, number of cycles

 A-CS
 A-BD
 Syn

Fig. 19: Throughput with various packet lengths

of both the bundled-data and the synchronous Clos networks
decreases along with the packet length because of the low
reconfiguration frequency with long packets. On the contrary,
the power of the channel sliced Clos network slightly in-
creases. Although the power of the asynchronous scheduler
decreases as expected, the power of data switches increases
as the maximal accepted load increases in the meanwhile.
As described in the previous simulation (Fig. 18), QDI data
switches consume a significant amount of power. Since the
power saved from the scheduler cannot compensate the extra
power consumed by the increased throughput, the total power
consumption rises.

VII. CONCLUSION

In this paper, the first asynchronous dispatching (AD)
algorithm for general unbuffered three-stage Clos networks
is proposed and implemented. Behavioural level simulations
have been made to compare the performance of the AD al-
gorithm against the classic concurrent round-robin dispatching
(CRRD) algorithm in S3 Clos networks. The CRRD algorithm
dispatches requests evenly to all central modules (CMs) but
this distribution is oblivious and leads to the contention in
CMs. The AD algorithm introduces a state feedback scheme.
By utilizing the state information from CMs, AD avoids the
contention in CMs. Behavioural simulation results show that
the AD algorithm outperforms the CRRD algorithm in all
traffic patterns. When the traffic is non-blocking, the AD
algorithm achieves 100% throughput in SNB Clos networks.
When the traffic is blocking, the AD algorithm shows only

14

2 3 4 5 6 7 8
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050
P

ow
er

, W

Packet length, number of cycles

 Scheduler
 Data switches

(a) A-CS

2 3 4 5 6 7 8
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

P
ow

er
, W

Packet length, number of cycles

 Scheduler
 Data switches

(b) A-BD

2 3 4 5 6 7 8
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

P
ow

er
, W

Packet length, number of cycles

 Clock tree
 Scheduler
 Data switches

(c) Syn

Fig. 20: Power consumption with various packet lengths

3.2% throughput loss compared with the theoretically optimal
throughput.

Three 32-port C(4, 8, 4) S3 Clos networks have been im-
plemented using the Faraday 0.13 µm cell library: two asyn-
chronous Clos networks using channel sliced and bundled-
data data switches, and a synchronous Clos network. The AD
and CRRD algorithms are utilized in asynchronous and syn-
chronous Clos networks respectively. Post-layout simulations
show that the asynchronous Clos scheduler can reserve a path
in 4.44 ns and release it in 5.16 ns.

Different Clos implementations demonstrate their own ad-
vantages. The synchronous Clos network supports the highest
throughput but it is power consuming and not tolerant to
variation. Both asynchronous Clos networks consume little
power and show shorter packet latency than synchronous
Clos networks when the network is not heavily loaded. The
bundled-date Clos network shows the best power efficiency in
all Clos implementations and outperforms the channel sliced
Clos network in throughput. If we consider schedulers only,
the asynchronous scheduler is more power and area efficient
than the synchronous scheduler and is tolerant to variation.

The authors are currently integrating the asynchronous Clos
network into the asynchronous on-chip networks. Compared
with traditional five ports routers in mesh networks, using
high-radix routers reduces communication latency and im-
proves throughput. However, the size of the internal crossbar
increases quadratically with the port number. Clos networks
can be used to replace these crossbars and reduce the area
overhead.

VIII. ACKNOWLEDGEMENTS

Parts of this paper has been published in the 10th Interna-
tional Conference on Application of Concurrency to System
Design (ACSD 2010) [29]. The authors appreciate the helpful
review comments from all the anonymous reviewers. This
work is supported by EPSRC EP/E06065X/1.

REFERENCES

[1] Clos, C.: ‘A study of nonblocking switching networks’, Bell System
Technical Journal, March 1953, 32, (5), pp. 406–424

[2] Chao, H.J., Lam, C.H., and Oki, E.: ‘Broadband packet switching
technologies: a practical guide to ATM switches and IP routers’ (John
Wiley & Sons, Inc., 2001)

[3] Chiussi, F.M., Kneuer, J.G., and Kumar, V.P.: ‘Low-cost scalable switch-
ing solutions for broadband networking: the ATLANTA architecture and
chipset’, IEEE Communications Magazine, December 1997, 35, (12),
pp. 44–53

[4] Oki, E., Jing, Z., Rojas-Cessa, R., and Chao, H.J.: ‘Concurrent
round-robin-based dispatching schemes for Clos-network switches’,
IEEE/ACM Transactions on Networking, 2002, 10, (6), pp. 830–844

[5] Chao, H.J., Jing, Z., and Liew, S.Y.: ‘Matching algorithms for three-stage
bufferless Clos network switches’, IEEE Communications Magazine,
October 2003, 41, (10), pp. 46–54

[6] Chao, H.J., Deng, K.L., and Jing, Z.: ‘PetaStar: a petabit photonic packet
switch’, IEEE journal on Selected Areas in Communications, September
2003, 21, (7), pp. 1096–1112

[7] Cheyns, J., Develder, C., Breusegem, E.V., Colle, D., Turck, F.D.,
Lagasse, P., Pickavet, M., and Demeester, P.: ‘Clos lives on in optical
packet switching’, IEEE Communications Magazine, 2004, 42, (2), pp.
114–121

[8] Rojas-Cessa, R., and Lin, C.B.: ‘Scalable two-stage Clos-network switch
and module-first matching’, Proc. Workshop on High Performance
Switching and Routing, 2006, pp. 303–308

[9] Oki, E., Kitsuwan, N., and Rojas-Cessa, R.: ‘Analysis of space-space-
space Clos-network packet switch’, Proc. International Conference on
Computer Communications and Networks, 2009, pp. 1–6

[10] Kim, J., Dally, W.J., Towles, B., and Gupta, A.K.: ‘Microarchitecture
of a high radix router’, Proc. International Symposium on Computer
Architecture, 2005, pp. 420–431

[11] Gómez, C., Gómez, M.E., López, P., and Duato, J.: ‘Exploiting wiring
resources on interconnection network: increasing path diversity’, Proc.
Euromicro Conference on Parallel, Distributed and Network-Based
Processing, 2008, pp. 20–29

[12] Scott, S., Abts, D., Kim, J., and Dally, W.J.: ‘The BlackWidow high-
radix Clos network’, SIGARCH Comput Archit News, 2006, 34, (2),
pp. 16–28

[13] Leroy, A., Milojevic, D., Verkest, D., Robert, F., and Catthoor, F.: ‘Con-
cepts and implementation of spatial division multiplexing for guaranteed
throughput in networks-on-chip’, IEEE Transactions on Computers,
September 2008, 57, (9), pp. 1182–1195

[14] Sparsø, J., and Furber, S.: ‘Principles of Asynchronous Circuit Design
— A Systems Perspective’ (Kluwer Academic Publishers, 2001)

[15] Krstić, K., Grass, E., Gürkaynak, F.K., and Vivet, P.: ‘Globally asyn-
chronous, locally synchronous circuits: overview and outlook’, IEEE
Design & Test of Computers, 2007, 24, (5), pp. 430–441

[16] Song, W., and Edwards, D.: ‘Asynchronous spatial division multiplexing
router’, Microprocessors and Microsystems, 2011, 35, (2), pp. 85–97

[17] McKeown, N., Mekkittikul, A., Anantharam, V., and Walrand, J.:
‘Achieving 100% throughput in an input-queued switch’, IEEE Trans-
actions on Communications, 1999, 47, (8), pp. 1260–1267

[18] Karol, M.J., Hluchyj, M.G., and Morgan, S.P.: ‘Input versus output
queueing on a space-division packet switch’, IEEE Transactions on
Communications, December 1987, 35, (12), 1347–1356

[19] Dally, W.: ‘Virtual-channel flow control’, IEEE Transactions on Parallel
and Distributed Systems, March 1992, 3, (2), pp. 194–205

[20] Dobkin, R.R., Ginosar, R., and Kolodny, A.: ‘QNoC asynchronous
router’, Integration, the VLSI Journal, March 2009, 42, (2), pp. 103–115

[21] Josephs, M.B., and Yantchev, J.T.: ‘CMOS design of the tree arbiter
element’, IEEE Transactions on VLSI, December 1996, 4, (4), pp. 472–
476

15

[22] Kinniment, D.J.: ‘Synchronization and Arbitration in Digital Systems’
(John Wiley & Sons Inc., 2007)

[23] Anderson, T.E., Owicki, S.S., Saxe, J.B., and Thacker, C.P.: ‘High-
speed switch scheduling for local-area networks’, ACM Transactions
on Computer Systems, November 1993, 11, (4), 319–352

[24] Patil, S.S.: ‘Forward acting n x m arbiter’, Computation Structures
Group, Massachusetts Institute of Technology, Memo 67, June 1972

[25] Golubcovs, S., Shang, D., Xia, F., Mokhov, A., and Yakovlev, A.: ‘Mod-
ular approach to multi-resource arbiter design’, Proc. IEEE International
Symposium on Asynchronous Circuits and Systems, 2009, pp. 107–116

[26] Golubcovs, S., Shang, D., Xia, F., Mokhov, A., and Yakovlev, A.: ‘Multi-
resource arbiter decomposition’, Newcastle University, Tech. Report,
2009, NCL-EECE-MSD-TR-2009-143

[27] Shang, D., Xia, F., Golubcovs, S., and Yakovlev, A.: ‘The magic rule
of tiles: virtual delay insensitivity’, Proc. International Workshop on
Power And Timing Modelling, Optimization and Simulation, 2009, pp.
286–296

[28] Bystrov, A., Kinniment, D., and Yakovlev, A.: ‘Priority arbiters’, Proc.
IEEE International Symposium on Asynchronous Circuits and Systems,
2000, pp. 128–137

[29] Song, W., and Edwards, D.: ‘An asynchronous routing algorithm for
Clos networks’, Proc. International Conference on Application of Con-
currency to System Design, 2010, pp. 67–76

[30] Song, W., and Edwards, D.: ‘A low latency wormhole router for
asynchronous on-chip networks’, Proc. Asia and South Pacific Design
Automation Conference, 2010, pp. 437–443

[31] Bainbridge, J., and Furber, S.: ‘Chain: a delay-insensitive chip area
interconnect’, IEEE Micro, 2002, 22, pp. 16–23

[32] Sutherland, I.E.: ‘Micropipelines’, Communications of the ACM, 1989,
32, (6), pp. 720–738

[33] Singh, M., and Nowick, S.M.: ‘The design of high-performance dynamic
asynchronous pipelines: lookahead style’, IEEE Transactions on VLSI,
November 2007, 15, (11), pp. 1256–1269

[34] Sutherland, I., and Fairbanks, S.: ‘GasP: a minimal FIFO control’, Proc.
International Symposium on Asynchronous Circuits and Systems, 2001,
pp. 46–53

