
Exploiting mpical DSP Data Access Patterns amid
Asynchrony for a Low Power

M. Lewis
Ericsson Microelectronics AB

Isafjordsgatan 16
S-164 81 Kista, Sweden

mike.lewis @mic.ericsson.se

Abstract
CADRE (Configurable Asynchronous Dsp for

Reduced Energy) is a low-power asynchronous DSP
(digital signal processor) architecture intended for
digital mobile phone chipsets. Central to the architec-
ture are the X and Y register banks, which supply the
four processing units with the data they require and to
which results are written. The register banks each
require 10 read and 6 write ports to service all possible
requests, leading to a large and power-hungry unit if
implemented directly. Instead, typical DSP data
access patterns are exploited to produce a partitioned
design which offers fast and low-power operation in
typical cases but also caters for worst-case patterns.
Power consumption and performance results for the
register bank with the DSP running typical algorithms
are presented, and it is shown that the register bank
consumes only 8% of total power (core and memory)
in what is already a highly power-efficient system.

1. Introduction
CADRE is a 16-bit DSP architecture intended for

low-power embedded applications such as digital
mobile phone chipsets. The design of the architecture
is based on the principle that a reduction in power con-
sumption can be traded for an increase in die area by
providing multiple processing elements, which allow
the voltage to be reduced while maintaining through-
put (so-called architecture driven volrage scaling [I]).
The CADRE architecture contains 4 functional units
(Mus), as shown in Figure 1, each operating with an
average period of 2511s to give a total throughput of
160 million operations per second. A fuller descrip-
tion of the architecture can be found in [2].

One of the challenges in the design of the architec-
ture is to supply the functional units with data at a suf-
ficient rate while minimising the associated power
consumption. This power consumption is made up of
the power consumed within the main memory RAM
units themselves, and the power required to transmit
the data across the large capacitance of the system
buses. Memory accesses can form the largest compo-
nent of power consumption in data-dominated appli-
cations 133, and a study of the Hitachi HX24E DSP [41

Multiported Register Bank
L. Brackenbury

AMULET Group,
Department of Computer Science,

University of Manchester, Oxford Road
Manchester M13 9PL, UK

lbrackenbury @cs.man.ac.uk

showed that memory accesses caused ,a significant
proportion (-20%) of the total power consumption
even where the activity of the system is not dominated
by memory transfers. As technologies scale further
into the deep submicron region, the proportion of the
power consumption associated with memory transfers
will increase, due to the increased relative cost of driv-
ing long interconnections.

Fortunately, DSP programs tend to display very
strong locality of reference, so the memory hierarchy
approach can work very well to both reduce power
consumption and increase operating speed. For this
reason, a large register file made up of hvo 128 word
banks (labelled X and Y) is included in the design.
Many DSP algorithms map naturally onlo two sepa-
rate banks, e.g. data in one bank and filter coefficients
in the other, or the real part of data in one bank and the
complex part in the other.

I I OPERANDSETUP

Figure 1 Block Diagram of CADRE

Having a large explicit register file has ii number of
advantages when compared to the alternative of hav-
ing few local registers and a cache berween main
memory and the DSP. In a traditional DSP architec-
ture, data is located in memory by means of address
registers whose contents are updated by address gen-
eration units (AGUs). The AGUs update the addresses
in parallel with arithmetic instruction execution, in the
pattern required by the algorithm. Thess generally
support features such as circular buffeis and bit-

4
1522-8681/01 $10.00 0 2001 IEEE

mailto:cs.man.ac.uk

reversed addressing, and have the same number of bits
width as the maximum addressable space of the proc-
essor (24 bits for CADRE). CADRE can require up to
8 operands for the functional units per cycle, with
each access potentially requiring an address update.
The hardware required to perform these 8 updates
would clearly represent a significant area and power
overhead if implemented by 24 bit AGUs.

Having an explicitly addressable register file
allows data to be located in the register file by means
of 7-bit index registers. These can be updated much
more quickly with much lower hardware and power
cost, than the 24-bit wide address registers. In the
CADRE architecture, address registers are only used
for loading and storing data between the register file
and memory, with transfers of 16 or 32 bits allowed
from each bank per operation.

The notation used in the paper is that a store
involves the reading of a value from the register bank
and its transfer to memory, while a load involves the
reading of a value from memory and its transfer to the
register bank.

2. Register bank design
A typical multiported register cell with n read and

m write ports is shown in Figure 2. The data is stored
by the cross-coupled weak inverters. Each read port
connects to one bit line (Nop l ... Nopn, which go to all
of the cells at that bit position in the register bank) on
which the read value is placed, and one word line
(en-opl ... en-opn, which go to all of the cells in that
word of the register bank) through which the word to
be read from the register bank is selected and which
enables the precharged bit lines to be discharged
depending on the contents of the register cells. An
example of how the bit and word lines are connected
is given in Figure 3. Each write port connects to one
word line, (en-wl ... en-wm) selecting the word to be
written and enables the value stored on the bit line
(wbl ... wbm) to be driven onto the weak inverters.

By necessity, the read and write transistors are
larger than those for the weak inverter, as the read
ports drive the large capacitance of the bit lines and
the write port$ need to overdrive the weak inverter. It
is therefore the number of ports which control the
overall size of the register bank. The physical size of
the register bank dictates the length of the bit lines,
and it is the charging and discharging of these lines
which represents one of the major sources of power
consumption in the register bank. It is claimed [5]
that, if the size is limited by the wiring pitch of both
the bit lines and word lines, that the area of the register
bank can be expected to increase quadratically with
the number of ports. Consequently, despite a number
of power saving measures that can be employed, the

P-

I
wblmx; I repeated

Figure 2 Multiported register cell

Y Y Y Y Y Y W W Y Y , r * * l y Y ~ ~

Register cell array

lrd line

c

0
m
ii n

lines

IS

Figure 3 Word and bit lines in a register bank

register bank is likely to be a major component of the
power consumption.

One way of avoiding the energy and area cost of a
large centralised multiported register bank is to divide
it into a number of smaller banks, each of which are
associated with a smaller number of processing ele-
ments. However, this requires that data access pattems
can be mapped onto this configuration, and adds addi-
tional complexity for the programmer or the compiler.
An automatic way of performing this mapping is pro-
posed in [6], but this adds hardware complexity and is
not necessasily well suited to DSP algorithms, where
individual data values tend to be processed by many
or all of the functional units.

The register bank for CADRE requires 10 read
ports (2 readr from each functional unit, and data to
be read for stores to memory from two sequential reg-
isters aligned on an even boundary), and 6 write ports
(1 writeback from each functional unit, and 2 writes
to sequential even-aligned registers for data arriving
due to loads from memory). The proposed design
exploits the timing flexibility of asynchronous pipe-
lines and the data access pattems of typical applica-
tions, to give the appearance of two unified 128-word
register files with the requisite number of read and
write ports at a much lower area and power cost than
a conventional multiported register bank. It also offers
the potential for faster reads than could be expected

5

from a conventional implementation, when using common
data access patterns.

X:n

X:n

3. Data access patterns
Many DSP algorithms require access to sequential

addresses, such as for sequential data values and filter coef-
ficients, and write the results back in sequential order.
When parallelized, this maps onto simultaneous requests to
four consecutive addresses. Tho important examples of this
are the F’IR filter algorithm and the calculation of autocor-
relations (autocorrelations being the dominant processing
component of many speech compression algorithms).

3.1. FIR filter data access patterns X:n-6 X:n+l X:n-5 Y:n Y:n-6 \I:n+l Y:n-5 6

X:n-7 X:n+l X:n-6 Y:n Y:n-7 Y:n+l Y:n-6 7
A N-point finite impulse response (FIR) digital filter is

characterized by the equation:

y(n) = E” x (n - i) c (i)
i = O

When mapped onto four functional units, this leads to
simultaneous accesses to x(n), x (n - 1). x (n - 2) and
x (n - 3) from X memory, and c(O), ~ (l) , 4 2) and 4 3)
from Y memory, and so on for all values of i at each data
index n .

3.2. Autocorrelation data access patterns

Autocorrelation is characterized by the equation:
N

r (k) = E x (n) x (n - k)
n = O

When implemented directly with four functional units,
this can require simultaneous accesses from up to 8 data
locations. However, the situation can be improved by split-
ting the data into two halves with one half residing in the X
register bank and the other in the Y register bank. In this
way, no more than 4 reads occur to each register bank, and
the final result can be calculated with a summation after
processing the blocks.

Where more than one autocorrelation value must be cal-
culated, further optimizations can be made by concurrently
calculating sets of consecutive autocorrelation results to
give sequential data accesses, which also minimizes multi-
plier switching activity by keeping one input constant over
four operations. This leads to the register access patterns
shown in Table 1 for each data point, with MAC A-D rep-
resenting the four separate multiply-accumulate functional
units. The summation can be performed in any order, and
in this implementation MAC A and MAC C process even
data points in the X and Y register banks respectively, while
MAC B and MAC D process odd data points. In practice,

the functional units in CADRE contain only 4 accumula-
tors, so autocorrelation values for 4 valules of lag k (0 ... 3,
4...7, etc.) can be calculated on each pass through the data.

Table 1. Autocorrelation data access patterns

4. Register bank structure
The sequential nature of data accesSes suggest that one

way to improve the performance and power consumption of
the register banks in this application would be to divide
them into N address-interleaved sub-banks, with the sub-
banks containing sequential register numbers repeating
every N th digit. Given that there are 4 functional units, and
that operations are mapped onto separate X: and Y banks, an
obvious choice of N for this design would be 4, with a sub-
bank size of 32. Usefully, optimised custorn layout cells are
available from the AMLJLET3 processor, which has a 32-
entry register bank.

This sub-division means that sub-bank 0 contains regis-
ters 4n, sub-bank 1 contains registers 4n + 1 , sub-bank 2
contains registers 4n + 2 and sub-bank 3 contains registers
4n + 3 (with n = 0...7) as shown in Figure 4. Write- and
read-requests are distributed to the appropriate sub-bank,
by two very different mechanisms.

When the code is written so that all of the register
accesses to each bank occur in different sub-banks, the
power consumption and delay incurred at each read port
will be that of an access to a single-ported 32-entry register
file, with some overhead from the routing: and arbivation
circuitry. Where contention for register sub-banks exists, a
number of access cycles can be performed until all of the
requests have been answered. In the asynchronous domain,
this represents no difficulty: surrounding stages will simply
wait until the accesses have completed. The programmer
need only ensure that the average data access patterns are
good to ensure that overall performance will not be
affected. By contrast, in a synchronous system it would be
necessary to ensure that, at most, only a small number of

6

Write arbiters

WY subbanks

Read winner
selection

Read pori
t 1 I

I +
Read requests (x8)

Figure 4 Register bank organization

access contentions occurred so that the operations are guar-
anteed to complete within the given clock period, which
would be extremely difficult.

5. Write mechanism
Write-requests to the register bank arrive asynchro-

nously: while there is likely to be some correlation between
the times of writeback requests from the functional units.
data returned by loads from external memory can arrive at
arbitrary times. It is expected that contention for the sub-
banks is unlikely between writebacks from functional units,
as few algorithms write back data other than in a sequential
manner. Contention is somewhat more likely between loads
from memory to the registers and writebacks from func-
tional units to the registers, since the timing of load com-
pletion is unknown and the destination register for the load
is likely to be in one of the next groups of 4 registers to
those currently being written back.

The chosen mechanism for distributing writes is shown
in Figure 5. When a write-request arrives at one of the
writeback ports, it is routed to one of the arbiter blocks in
each of the 8 sub-banks. The selection is based on bit 7 (X/

Y select) and bits 1:0 (sub-bank selection) of the register
selection reg[7:0]. Similarly, the data and the address
within the sub-bank (reg[6:2fi are also passed to the target
sub-bank. A similar process occurs for arriving load com-
pletions, except that only one load can occur to each of the
X and Y register banks and, when a 32-bit load is selected,
the targets are either sub-banks 0 and 1 or sub-banks 2 and
3.

At the input to each sub-bank, an arbiter block accepts
possible write-requests from all of the write ports, and con-
tention for that sub-bank is resolved amongst the pending
requests. The data and register selection of the winning
request are passed to the sub-bank write input, and the write
process occurs. Once the write has completed, the acknowl-
edge is passed back to the winning write port, the winning
request is removed and any other contending requests can
gain access in whichever order that the arbiters determine.

Figure 6 shows the organization of the arbiter blocks,
and the arbitration component used to construct it. At the
input to each arbiter, the incoming requests vie for control
of the mutex element. The winning request then gains con-
trol of the multiplexers, causing the appropriate register and
data values to be passed through. It can be seen that the
organization of the arbiter components is asymmetric: load
completion is arbitrated after all of the writeback requests,
making load completion somewhat faster and giving it
higher priority. If a conflict occurs between the writebacks
and incoming data on the final instruction of a loop, it is
important that the new data should arrive first, so that the
register read for the next iteration of the algorithm can
begin. The writeback occurs in the pipeline stage following
the register reads, so that the writebacks will then occur in
parallel with the reading of the fresh data. If the priority
were reversed, then the writebacks would complete and the
execution stage of the pipeline would become empty. How-
ever, the register read in the previous stage would be unable
to start until the loading of fresh data had completed, lead-
ing to a bubble being introduced in the pipeline while the
read is performed.

The individual arbitration circuits are not symmetrical in
terms of the delay that they impose: the multiplexers are
normally set to pass input A, and if input B wins control it
is necessary to delay the output until the multiplexers have
changed their selections. A slightly fairer technique, which
is also likely to be faster, would be to use a tree arbiter with
arbitration off the critical path, such as that proposed in [7],
to determine the winning request and then select the data
and address corresponding to the winner (e.g. by using tri-
state drivers). However, writebacks to the register bank
from the functional unit accumulators are an infrequent
event in the CADRE architecture, and the repeated tree
structure gave a simple (and readily expandible) design

7

:req_wb I

Winning writeback handshakes, with data and addresses, to register sub-banks

Figure 5 Write request distribution

a
db[l5 6.~15 01 01 e- n ~ o u t ~ l ~ 01

__ -~ - -

Figure 6 Arbitration block structure and arbitration component

which operated well within the target speed for typical
access pattems.

6. Read mechanism
6.1. Overview

In contrast to write requests, read requests to the register
banks tend to arrive at approximately the same time as they
originate from a single triggering event. Also, it is very

8

much more likely that read requests from the functional
units will conflict with one another in their choice of sub-
bank, particularly in the case where they all require access
to exactly the same register (as occurs in the autocorrelation
example in Table 1). For these reasons, an asynchronous
arbiter tree will give poor performance as the chances of
metastability in the mutual exclusion elements is maxi-
mized due to this near-synchronization of requests. In addi-
tion, when a number of functional units all require access
to exactly the same register, it is undesirable that the same
register should be read multiple times, for reasons of both
performance and power consumption [81.

The method proposed here uses distributed requests
coordinated by a central read controller, and avoids redun-
dant reads as an inherent part of the mechanism by which a
multiported register file is simulated. The register bank
waits for all read requests to have arrived before commenc-
ing: this synchronisation incurs little penalty, since incom-
ing requests are already nearly synchronised, but greatly
simplifies the design of the hardware by avoiding the need
for arbitration.

The read mechanism is shown in more detail in Figure
7. The system consists of the register sub-banks, which are
connected to the read ports by a switching network. The
switching network allows any read port to pass a request for
a register to any sub-bank, and for register data and the reg-
ister selection address from each sub-bank to be passed
back to any of the read ports. The read process occurs over
one or more cycles, managed by the read controller. The
read cycle begins with one of the contending requests from
the read ports being selected as the winner at each register
sub-bank. Reads are then performed, and the winning reg-
ister selections and the associated register data are passed
back to the read ports. The controller then signals for the
read ports to evaluate whether or not their request has been
the winner: if so, the read port captures the data and
removes its request. If there are any requests outstanding at
the end of the cycle, the controller begins another read cycle
after a delay to allow changes to the request signals to prop-
agate across the switching network.

In practice, read requests arrive in pairs from each func-
tional unit, so there is one control circuit for every two
ports. However, for simplicity only a single port is shown
in the figure. Requests arriving from the read ports are syn-
chronized by the lock unit, which then signals the read con-
troller to begin the read operations.

Data being written into the register bank as the result of
a load from main memory may arrive at any time. This
implies a possible hazard, where a load is initiated and a
subsequent instruction attempts to access the data before it
has arrived from memory. It is therefore necessary to

enforce locking of registers which are the target of load
instructions, to ensure that this does not occur. Before
reaching the read ports, each active read request is com-
pared against any currently active register locks. If a con-
flict exists, the read request is stalled until the lock is
removed when the loaded data is written to the register. If
no conflict exists, the read request is passed on to the read
port.

6.2. Read operation

For reasons of synchronization, a request must be sent to
each read port regardless of whether a read is actually
required or not: a read enable signal is bundled with the
request I acknowledge interface to the read port. When a
read request, whether enabled or not, arrives at a read port
the port asserts the go signal to the lock unit.

While the go signals are being passed to the lock unit,
each enabled read port passes its choice of register (5 bits)
and a read request signal to the relevant sub-bank. At each
register sub-bank, a simple priority selector chooses one of
the active requests according to some arbitrary ordering,
and passes the associated register selection to the sub-bank.
The ordering chosen could be exploited by the designer, by
connecting slower processing elements to the ports with
higher priority: the slowest functional unit is guaranteed to
begin operation in the earliest possible read cycle, with sub-
sequent read cycles occuning concurrently with this slow
operation.

Once go signals have been issued by all of the read ports,
new register locking information and details of loads and
stores are accepted from the load / store unit: this is the
point where synchronization occurs. The new register lock-
ing information does not affect the state of any of the cur-
rently pending reads, allowing reads from a register and
loads writing to that register to take place in the same par-
allel instruction (read-before-write ordering is enforced by
the lock unit). Once the load I store information is latched,
the reqdo signal is asserted to the read controller to begin
the first read cycle.

The read controller is responsible for coordinating
requests from the read ports and performing read cycles a y
long as any read requests are outstanding. Each read cycle
begins by sending the req-read signal to all of the sub-bank
inputs. All of the sub-bank input selectors with at least one
active read request perform read operations on their sub-
banks, and respond on ack-read. Sub-banks with no active
read requests remain idle, responding immediately with
ack-read. Along with the output data, the register selection
address of the winning request is also passed back across
the switching network to the requesting read ports allowing

9

v)
Q
0

re

m
0 -
z ".i 6

Lock unit 1 / x 8 3 Read port (x6)

v r
From / to functional units

Figure 7 Read mechanism

them to determine when their register request has been sat-
isfied.

Once each sub-bank read has completed, the read con-
troller asserts req-eval to all of the read ports, to indicate
that the output data from the register sub-banks is valid.
Each read port has compared the winning register selection
with its desired register in parallel with the register read
process, SO any read port whose request has been satisfied
can capture the data immediately and remove its read
request. This means that, if multiple read portr are request-
ing the same register, all of the read ports will have their
requests satisfied by a single read cycle. Each read port
responds with ack-eval once the capture I non-capture of
data is complete and the read cycle is completed once all
read ports have responded with ack-eval. As soon as the
data has been captured by each port, i t is passed to the func-
tional unit which requested it using reg-op I ack-op.

-4 c ~

After the cycle has completed, another cycle is begun by
the read controller if any read requests are still outstanding.
Matched delays in the control path ensure that changes to
the read-requests have time to pass across the switching
network before the next read cycle begins. Once the final
cycle is performed, with all read requests satisfied, the read
controller finishes the read process by responding with
a c k s o . The lock unit, in turn, completes the handshake
process with the read ports. The read ports only complete
their input handshake cycle once both the read process has
completed, and the functional units have accepted the new
data: this means that, while data will be passed forward
from the register bank to the functional units as soon as it
is available, new read requests will only be accepted at the
input of the register bank once the whole read process has
completed. Free access without this synchronization would
require arbitration for access to the read coirltroller: as men-
tioned previously, the near-synchronization of the read

10

requests makes this undesirable. Also, the synchronization
steps greatly simplify the locking mechanism.

7. Implementation
The CADRE DSP has been designed at the schematic

level, using a mixture of standard cells and full-custom lay-
out cells on a 0.35pm 3 metal layer process. The register
bank consists of 89,835 transistors, out of which 50,736
transistors are used in the register sub-banks themselves. Of
the remaining 39,100 transistors, approximately 11,000 are
used in the control circuits with the remainder performing
switching functions.

Control circuits for the DSP were specified using signal
transition graphs, and synthesised into speed-independent
circuits using the Petrify tool [9].

8. Simulation and Testing
All testing was performed by simulation of the processor

architecture of Figure 1. The Powermill circuit simulator,
which claims SPICE-like simulation accuracy, was used to
perform the analyses. Memory models were used to simu-
late the system program and data memories. These mod-
elled the power consumption of the memory units, using the
power consumption figures from the RAM blocks of the
AMULET3i embeddedprocessor system [101. Since layout
of the CADRE processor has not begun, parasitic wiring
capacitances were not available for inclusion in the simula-
tions.

Timing information for reads and writes to the register
bank were collected by using the functional modelling
interface supported by Powermill. C models were written to
record the time requited to perform a writeback to the reg-
ister file, and to record the time required to perform reads.
The writeback time was measured as the time taken from
the start to the finish of the write request handshake at each
of the write ports. The read time was measured at each
active read port, as the time taken from the assertion of the
go signal to the completion of all the read requests at that
Port.

8.1. Read and write timing

The first test performed simply measured the depend-
ence on the read and write process times on the number of
conflicting elements. First, a succession of reads were per-
formed on a single sub-bank; with the number of conflict-
ing requests at the sub-bank increasing from one to nine.
Second, a succession of writes were performed on a sub-
bank, with the number of conflicting write requests increas-
ing from one to four. The random nature of the arbitration

for the write process means that there some variability is to
be expected in the write times when a deliberate conflict is
being introduced. In theory, the time to resolve metastabil-
ity in the arbiters is unbounded, To give a rearonable assess-
ment of the practical performance, each number of requests
was performed using a variety of different write port con-
figurations (to use different paths through the arbiter tree),
and were repeated to perform a total of 100 attempts for
each case.

8.2. Testing with DSP algorithms

To evaluate the effectiveness of the register file pamtion-
ing and the analysis of data access patterns, and the power
impact of the register bank on the whole system, extensive
testing was performed using real DSP algorithms. The cho-
sen algorithms were a 20 point FIR filter, a @-point com-
plex FET, and the LPC (linear predictive coding) analysis
section from a GSM speech compression algorithm. The
FIR filter and m;T were performed using both random data
and speech data taken from the European Telecommunica-
tions Standards Institute’s standard speech sequence for
speech codec testing, with 256 samples being processed in
each case. The W C analysis program war performed on
speech data alone, on a GSM speech frame of 160 data sam-
ples.

9. Simulation Results

9.1. Read timing

The maximum read times for each level of conflict are
shown in Table 2. The results demonstrate that the first read
cycle takes place quickly, within 5ns. Subsequent read
cycles are slower, taking between 7-811s to complete. This
is because the req-eval/ ack-ewal cycle must be completed
before another read cycle can be started, while the data
from the first read cycle can be captured as soon as the
req-eval signal has been issued. The figures presented are
for the time taken to perform the last read cycle: other
requests will be serviced in earlier read cycles, and will take
proportionately less time.

9.2. Write timing

The measured worst case write cycle times for each level
of conflict are shown in the right-hand column of Table 2.
It can be seen that the time per write does not increase in
proportion to the number of writes, since the incremental
increase reduces somewhat. This is due to other requests
propagating further through the arbiter tree while the first
write requests are serviced, reducing subsequent write
times.

11

Number of requests Read cycle
per bank time

I 1 I 5ns I lons I I

Slowest write
access time

2 1211s 18ns

3

4

I I 8 55ns

Table 2. Read and write times with different levels of
contention

19ns 2611s

26ns 3211s

93. Performance for DSP algorithms

6

7

The average, minimum and maximum read and write
cycle times for the different DSP algorithms are shown in
Table 3. It can be seen that, in all cases, the average read
time is close to the minimum read time which illustrates the
efficient performance of this asynchronous system.

The FFT has the worst read performance, as it is difficult
to schedule all of the operations so that they do not conflict
due to the bit-reversed addressing. However, the average
caqe performance is still less than twice the minimum case,
and is substantially less than the target cycle time of 25ns..

I I Read times I Write times I

4111s

48ns

Algorithm

FIR filter

E analysis

Table 3. Register access times for DSP algorithms

The mR filter algorithm could be expected to always
have good performance, since it can be designed so that no
conflicts occur. However, when the buffer size is not an
even multiple of 4 (as is the case here, due to the way in
which the parallelism is implemented) there are boundary
cases where the sequential ordering breaks down. This,
combined with additional delays due to store operations,
leads to the higher maximum read time.

The GSM LPC analysis code demonstrates the best aver-
age and maximum read time. The code has, at worst, two
read cycles required when implementing the autocorrela-
tion portion of the algorithm.

In all c a w , the average write time is very close or iden-
tical to the minimum value. The FIT and the FIR filteralgo-
rithms suffer similar difficulties in their write accesses as
they do for their read accesses. By contrast, the LPC anal-
ysis algorithm never experiences write. contention: the
higher maximum write time is solely due to the worst-case
delay through the writeback arbiter tree.

9.4. Power consumption results

Energy per operation for the whole DSP system running
the test algorithms are given in Table 4. This gives the total
system energy including the memory models, the energy
dissipated in the whole register bank, that dissipated in the
register subbanks themselves, and the number of accesSes
to the register bank and the data memories (the data mem-
ory consumes 0.67nJ per access). The siimulations do not
take into account capacitances due to interconnections,
with the overhead of the switching network between the
ports and the sub-banks representing the greatest load.
However, for each operation only one path is driven from
each port to a single sub-bank, and normally-closed opera-
tion of latches are used to avoid unwanted1 transitions from
propagating across the network and out through the read
ports.

9.4.1. Effect of split register architecture

It can be seen from Table 4 that, averaged over the dif-
ferent runs, the register bank consumes less than 9% of the
total energy. The register bank uses decreasing amounts of
energy per access for the FFT. FIR filter and LPC analysis
tests respectively: this corresponds to how efficiently the
algorithms make use of the register sub-bank interleaving.
Accesses to the register bank require approximately one
third of the energy required for an access to the main mem-
ory, and the register bank is accessed between 6 and 21
times more frequently than the memory. Even were the
inclusion of wiring capacitances to increase the register
bank energy consumption disproportionakly, there is still a
clear energy benefit from use of the register bank. A direct
comparison is difficult however: the energy consumption
figures for the main memory are based on those for an 8 kil-
obyte single-ported RAM. To service the functional units
would require higher speed and / or multiple ports, both of
which would dramatically increase the anergy consumed
by the memory system.

If it is assumed that power consumption of register
banks increases in proportion to the square of the number

12

I -

Data
memory
accesses

556

556

b pc analysis

averages

1096

3.47nJ 0.15nJ 0.04nJ 1004 0.7 0.21nT 57pJ

4 . 2 d 0.36d 0.12d - 0.22d 70pJ

1096

180

Table 4. Energy per parallel instruction and per register bank access

of ports as suggested in [5], then the average power for a
conventional multiported implementation could be greater
by a factor of 64 than the interleaved scheme presented
here: the register sub-banks have only 2 ports, while a uni-
fied implementation would require 16 ports. This gives an
indication of how much benefit can be obtained from using
the proposed architecture rather than a direct multiported
register bank.

The actual benefit will be less than the factor of 64
implies (although still significant) as the quadratic assump-
tion can be considered an ‘upper limit’ and the figures take
no account of the wiring capacitance of the switching net-
works for reads and writes. A more conservative estimate
can be made by extrapolating the data available. In a direct
multiported implementation, each bit line for each read port
would be connected to 256 register cells, as opposed to 32
in the current implementation. Assuming that the energy
consumed by the register subbanks is dominated by the
capacitance on the bit lines, it would be expected that each
read to a direct implementation would require 8 times as
much energy as each read to the register subbanks (70pJ)
when neglecting wiring capacitances. This would lead to an
average read energy of 0.56nJ, 2.5 times greater than that
of the entire partitioned implementation. This estimate for
the direct implementation neglects the cost of the register
locking mechanism, which would further increase the
energy per read.

Similar estimates may be applied to the read access
times: each register cell must discharge 8 times as much
capacitance on the bit lines. The discharge time for the 32
entry register subbanks is 0.6111~ out of a total access time
of 1.7111s. Assuming that the access time scales only with
the time required to discharge the word lines gives an esti-

mated access time of 6.011s. again neglecting the overhead
of the locking mechanism. These results lead to an energy-
delay product for the direct implementation of 3.3ns.nT, as
compared to an average energy-delay product for the parti-
tioned implemenation of 1.5ns.nJ.

The above comments assess only the direct effect of the
register bank on memory activity, and the effect of the reg-
ister bank structure: use of a register bank also has collateral
effects such as the ability to address data through 7-bit
index registers rather than 24-bit address registers. Other
figures collected in the same simulations show that an
update to the index registers requires on average 0.15nJ
while an update to the address registers requires 3.4nJ; and
there are on average 14 index registers updates to every
address register update.

10. Conclusions
An architecture for an asynchronous register bank has

been presented. This allows the appearance of a large
highly-ported register file to be presented to the program-
mer, while maintaining the power and speed advantages of
using small single-ported register files.

The design takes advantage of the ability of asynchro-
nous systems to exploit average-cas operation times. Spe-
cifically, the data access pattems for DSP are suited to an
interleaved address division of the register banks, but asyn-
chronous operation allows deviations from these pattems to
be accepted with only a modest decrease in average opera-
tion speed for typical algorithms. Where different data
access pattems exist, similar techniques could be used with
different partitioning schemes.

13

The proposed technique could also be applied to syn-
chronous systems, but this would require either that the pro-
grammer guarantees only a limited amount of conflict
(which is in practice extremely difficult) or that complex
control logic be included to stall the pipeline when non-
ideal access pattems occurred. In addition, the access times
would then be coarsely quantized into an integral number
of clock cycles; reducing the average-caqe performance.

Power consumption measuremen& made of the register
bank within the CADRE architecture while executing real
DSP algorithms indicate that the register bank consumes
only a small proportion of the total power, giving a signifi-
cant advantage in terms of energy per access over the main
memory despite the fact that this memory is a fairly small
single-portedRAh4: it would be expected that a multiported
RAM would consume very much more power and area.
Estimates made for a direct multiported register implemen-
tation suggest that it would have an average energy per
access around 2.5 times greater, with more than twice the
average energy-delay product of the partitioned design.

Overall, the proposed register architecture gives the pro-
grammer an extremely simple and flexible programming
environment, while maintaining fast access times on aver-
age, and minimising power consumption. The CADRE
project is now proceeding to layout, transferred onto a
smaller scale process technology, and this will allow the
benefits of the register architecture to be assessed in greater
depth.

11. References
A.P. Chandrakasan, R.W. Brodersen, “Minimizing Power
Consumption in Digital CMOS Circuits”, Pmc. /E€€ vol.
83 no. 4, April 1995
M. Lewis, L. Brackenbury, “CADRE: A Low-Power, Low-
EMI DSP Architecture for Digital Mobile Phones”, V U 1
Design, Gordon and Breach Science Publishers, in press
J.P. Diguet, S. Wuytack, E Catthoor, H. De Man, ‘Formal-
ized Methodology for Data Reuse Exploration in Hiemhi-
cal Memory Mappings”, IEEE Transactions on V U 1
Systems, Vol. 6 No. 4, December 1998, pp. 529-537
H. Kojima, D. Gomy, K. Nitta, K. Sasaki, “Power analysis
of a programmable DSP for architecture /program optimiza-
tion”, in Tech. Dig. IEEE Symp. Low Power Electron., pp.

V. Zyuban, P. Kogge, ‘The Energy Complexity of Register
Files”, P m . Intemutional Symposium on Low-Power Elec-
tronics and Design, 1998, pp. 305-310
V. Zyuban, P. Kogge, “Split Register File Architectures for
Inherently Lower power Microprocessors”, Power-Driven
Microarchitecture Workshop, in conjunction with ISCA’98,

26-27, Oct. 1995

1998, pp. 32-37

[7] M.B. Josephs, J.T. Yantchev, “CMOS Design of the Tree
Arbiter Element”, IEEE Transactions on VLSl Systems, Vol.
4, No. 4, Dec. 1996, pp. 472-476

[8] U.S. Patent No. 5,657,291, issued Aug. 12, 1997 to A.
Podlesny, G. Kristovsky, A. Malshin, “Multiport Register
File Memory Cell Configuration for Read Operation

[9] J. Cortadella, M. Kishinevsky. A. Kondiatyev, L. Lavagno,
A. Yakovlev, “Petrify: a Tool for Manipulating Concurrent
Specifications and Synthesis of Asynchronous Controllers”,
IElCE Trunsuctions on Informution Systems, vol. E80-D, no.
3, pp. 315-325, March 1997

[lo] J.D. Garside et. al., “AMULET3i - An Asynchronous Sys-
tem-on-Chip”, Proc. Intemational Symposium on Advanced
Research in Asynchronous Circuits and Systems, April
ZOOO, pp. 162-175

14

