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Abstract

This paper presentsPARBREEZE, a distributed simula-
tion kernel for asynchronous hardware behavioural simula-
tion. PARBREEZEis based on the Logical Process paradigm
and targets asynchronous handshake circuits generated
by the Balsa asynchronous hardware synthesis environ-
ment. The paper describes the architecture ofPARBREEZE

and presents performance results for different partitioning
strategies.

1 Introduction

The increasing size and complexity of designs and qual-
ity assurance, reliability and relentless time-to-market pres-
sures have rendered functional verification and performance
evaluation the major bottleneck in hardware design, call-
ing for ever faster and greater verification coverage. Two
main approaches have been followed to address this is-
sue, namelytestbench automation1 and speeding up the
simulationper se, thus allowing an increase in the cover-
age through improved run times. Traditionally, it has been
Switch and Logic level models whose demands in terms of
time and memory made their simulation on conventional
von Neumann machines extremely time consuming. How-
ever, the increasing complexity of architectural designs has
also dramatically increased the requirements of higher level
digital simulation (e.g. Register Transfer) and has long
placed it in the highly computation intensive world, with
computational requirements which far exceed the capabili-
ties of conventional sequential von Neumann computer sys-
tems. As the complexity of the designs has increased, long
execution times have made simulation a major and increas-
ing bottleneck in theVLSI design process2.

An approach to speed up the simulation is to exploit
the inherent parallelism of digital systems and employ par-

1This approach has sought to automate the design environment, utiliz-
ing more efficient test and debugging tools, such as test plan specifications,
code coverage tools, testbench generators and result checking techniques.

2In his keynote speech at the International HDL Conference (HDL-
Con) in March 2002, Raul Camposano, chief technology officer at Synop-
sys Inc., indicated that “complexity has caused simulation needs to grow
a thousandfold since 1995, while simulator speed has only increased fifty-
fold”.

allel and distributed simulation techniques whereby gates,
functional blocks, etc. are modelled as “Logical Pro-
cesses” (LPs) which may be executed on different proces-
sors [9]. Distributed simulation has emerged as a partic-
ularly promising and viable approach to alleviate the sim-
ulation bottleneck in VLSI design and over the past ten
years has received considerable attention from researchers
in mainstream Hardware Description Languages such as
VHDL and Verilog [3, 15]. Distributed simulation tech-
niques, albeit ad hoc, are progressively finding their place in
innovative commercial hardware design environments (e.g.
the VCK by Avery Design Systems3, where SimCluster, an
ad hoc distributed simulation engine, is used to leverage
mainstream Verilog simulations).

Another important recent development in VLSI design
has been a resurgence of interest in asynchronous design
techniques, due to the significant potential benefits that
the elimination of global synchronisation may offer to is-
sues such as clock distribution, power consumption, perfor-
mance and modularity [10].

A number of asynchronous processors have been de-
veloped including NSR and Fred at the University of
Utah, STRiP at Stanford University, FAM and TITAC at
Tokyo University and Institute of Technology respectively,
Hades at the University of Hertfordshire, Sun’s Counter-
flow pipeline processor, Sharp’s Data-Driven Media Pro-
cessor, CalTech’s processors and Lutonium, the series of
asynchronous implementations of the ARM RISC proces-
sor (AMULET1, AMULET2e, AMULET3i and SPA) de-
veloped by the AMULET group at the University of Manch-
ester [1] andSAMIPS [21, 24, 25], a synthesisable asyn-
chronous MIPS processor core developed at the University
of Birmingham .

Synchronous VLSI modelling and simulation techniques
are proving unsuitable for the asynchronous design style
and therefore the last decade has witnessed an intense re-
search activity aimed at developing notations and tech-
niques appropriate for modelling and simulating asyn-
chronous systems. I-Nets, Petri Nets, Signal Transition
Graphs, CCS and in particular the concurrent process alge-
bra Communicating Sequential Processes (CSP) are some
of these tools and formalisms that have been employed in

3http://www.avery-design.com
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Figure 1. The Balsa System

asynchronous logic design [17].
This paper presentsPARBREEZE, a framework for the

distributed simulation of asynchronous hardware. The
framework targets the behavioural simulation of asyn-
chronous hardware developed within Balsa, a CSP-based
synthesis environment developed at the University of
Manchester, UK [8]. The rest of the paper is organised as
follows: section 2 provides an overview of the Balsa sys-
tem and the associated handshake circuits; section 3 dis-
cusses the role of simulation in asynchronous hardware de-
sign; section 4 describes the architecture ofPARBREEZE;
section 5 discuss performance results; and section 6 sum-
marises the paper and identifies areas for further work.

2 Balsa and Handshake Circuits

Balsa [6] is both an asynchronous hardware synthesis
framework and a CSP-based language for describing asyn-
chronous systems. It has been demonstrated by synthe-
sising the DMA controller of Amulet3i, and SPA [16], an
AMULET core for smartcard applications , andSAMIPS.

Figure 1 shows an overview of the Balsa system. Balsa
uses CSP-based constructs to express Register Transfer
Level design descriptions in terms of channel communica-
tions and fine grain concurrent and sequential process de-
composition.

2.1 Handshake Circuits

Descriptions of designs (.balsa file) are translated
(Balsa-c) into implementations in a syntax directed-fashion
with language constructs being mapped into networks of
parameterised instances ofhandshake components(.breeze
file) each of which has a concrete gate level implementa-
tion [4]. Balsa handshake circuits are very similar to those
introduced in the Philips Tangram system [7].

A number of tools are available to process the breeze
handshake files [6].Balsa-netlistautomatically generates
CAD native netlist files, which can then be fed into the com-
mercial CAD tools that further synthesize the netlist to the
fabricable layout.
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Balsa has approximately fifty handshake components in
total, most of them inherited from Tangram. Each com-
ponent has a unique name, symbol, definition and several
implementations (based on different technologies). In the
handshake circuit, components communicate via point-to-
pointchannelsto exchange control information and option-
ally data. During a transaction, theinitiator component
requests the transfer of information (by issuing arequest
signal) and thetarget component responds (with anac-
knowledgement). Channels are connected to components
via ports which may be eitheractive (connected at initia-
tor’s side) or apassive(connected at target’s side). Depend-
ing on the direction of the data flow, a channel is classified
as apushchannel (from the the initiator to the target) or a
pull channel (from the target to the initiator).syncchannels
are used for synchronisation and do not carry any data. Fig-
ure 2 illustrates the channel types. Depending on the way
that transitions on wires are interpreted, there are two pro-
tocols for implementing request and acknowledge signals,
namely2-phaseand4-phase. Figure 3 shows an example
of a 4-phase signaling for push channels.

2.2 Levels of Simulation

Three levels of simulation are supported in Balsa,
namely behavioural, gate-level and post layout simulation
(figure 1). The latter two low simulation levels are carried
out by the native simulators of the commercial CAD tools
supported by Balsa. At the behavioural level, discrete-event
simulation is used to simulate the network of handshake
components. Two sequential simulators have been devel-



oped for this level,LARD [2] andbreeze-sim[12].

3 Simulation in Asynchronous Hardware De-
sign

Functional verification and performance evaluation is a
more complex task in asynchronous systems than in their
synchronous counterparts. In the latter, benchmark execu-
tion times are easy to interpret based on the number of clock
cycles and the existence of a critical path. Delays in the crit-
ical path can determine the clock period while non-critical
path delays have no effect on the performance of the sys-
tem. In contrast, the temporal behaviour in asynchronous
systems is more difficult to understand and interpret as de-
lay inter-dependencies are more complex. Delays in one
module may often be masked by occasional longer delays in
another module, while the accumulation of delays through
a chain reaction in a non-deterministic concurrent environ-
ment may have a chaotic effect on system performance. The
need to evaluate the asynchronous architecture for different
sub-system delays further complicates the process render-
ing simulation speed a crucial element [19].

For instance, the slow performance ofLARD system of-
ten made it quicker to synthesise directly into a concrete re-
alisation and then use the native CAD environment for sim-
ulation. As a result, functional simulation of the Amulet3i
processor was severely constrained by the speed of the sim-
ulation . Consequently, the design was frozen prematurely
in order to meet tape-out deadlines. A faster simulation en-
vironment would have allowed the design space to be ex-
plored more thoroughly [5].

An effort to improve the performance of the sequential
simulation for Balsa, has yielded impressive results, with
thebreeze-simsimulator achieving a speedup factor of more
that 19000 compared toLARD4 [12].

However, as asynchronous design techniques find their
place in the mainstream VLSI industry and asynchronous
designs become increasingly more complex, simulation
speed will remain a crucial problem and, like in syn-
chronous hardware design, distributed simulation will pro-
vide the only viable solution .

4 Distributed Simulation of Balsa: The PAR-
BREEZE Kernel

The distributed simulation effort for Balsa has targeted
the handshake circuit level. Simulation at lower levels
(switch, gate) would require a complete (expensive) CAD
suite and a (specific) technology file and its associated li-
braries to be installed, merely to investigate design alter-
natives at the architecture level. A fast distributed simula-
tion environment tightly coupled to Balsa is more sensible
from the designer’s viewpoint, avoiding the need to negoti-
ate complex general purpose commercial CAD frameworks.

A decentralised event-driven approach based on the Log-
ical Process Paradigm has been adopted for the develop-

4For instance, a comparableLARD simulation completes in 12 days 22
hours 15 minutes whereas the Breeze simulator takes only 56.9 seconds.
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ment of the Balsa distributed simulator (thePARBREEZE

kernel), whileMPI is used for interprocess communication.
The breeze file is parsed and partitioned so that different
subsets of handshake components are assigned to different
Logical Processes (LPs). Finding an optimal partition for
a given circuit graph is an NP-complete problem and vari-
ous heuristics have been developed to address this problem
[11, 20].

4.1 The Network Handshake Components

Figure 4 depicts an example configuration of thePAR-
BREEZEkernel. Partitioning the handshake graph in differ-
ent LPs generates a set of cut edges as depicted in figure
5. A edge cut defines a handshake channel which connects
components in different LPs. To avoid modifying the im-
plementation of the Balsa handshake channels, a new cate-
gory of Network Handshake Components(NHC) has been
defined to facilitate interprocess communication. NHCs are
automatically inserted in an existing handshake circuit be-
tween the components over the cut. The NHCs implement
the corresponding handshake channels viaMPI messages
while preserving their semantics.

Based on the channel types, six different NHCs
have been defined, namelyBrzNetCompPassPush, BrzNet-
CompPassPull, BrzNetCompPassSync, BrzNetCompAct-
Pull, BrzNetCompActPush, BrzNetCompActSync(figure 6).

Figure 7 shows the use of network components when
sync, push and pull channels are cut. As an indicative ex-
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ample, when a sync channel connecting an active port A to
a passive port P is chosen by a partitioning algorithm to be
an edge cut, then a pair of BrzNewCompActSync, BrzNet-
CompPassSync of NHC are introduced. After the cutting
we obtain two new sync channels: the first one connects the
passive port P with the active port of BrzNetCompActSync
and the second connects the active port A with the passive
port of BrzNetCompPassSync.

4.2 Event Driven Scheduler

Each LP inPARBREEZE is build around a typical event
driven scheduler as depicted in figure 8. The scheduler ex-
tracts events from an chronologically ordered event queue
and processes them invoking the model of the correspond-
ing handshake component. Two message queues are also
utilised to respectively send and receiveMPI messages to
remote LPs. If the processing of an input event results to a
communication over a local channel, then the output event
is placed in the event queue, otherwise the corresponding
NHC is invoked and anMPI message is scheduled in the
Outgoing Event queue.

Before the processing of the next event, the scheduler
examines whether there are remote messages waiting in the
Incoming Event queue, and inserts them all in the internal
event queue. This may naturally result in causality errors,
however, as we have shown in previous work [18], such er-
rors can be ignored. The time stamps of the incoming events
are all set to the the current value of the internal clock of the
LP before they are inserted in the event queue.

The interaction with remote LPs is dealt with by alis-
tener POSIX thread which runs in parallel with the main
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scheduler thread (figure 9). The listener receivesMPI

messages (using non-blockingMPI Iprobe followed by the
MPI Recv) and inserts them in the Incoming Event queue.
In the absence of incoming messages, the listener turns its
attention to the outgoing queue sending all pending mes-
sages. Synchronisation between the two threads is achieved
by means of semaphores, using thepthreadmutexlock
function. The proposed architecture is deadlock free.

5 Experiments and Results

A series of experiments have been performed in order
to evaluate the performance ofPARBREEZE, in relation
to the sequentialbreeze-simsimulator. As a testbed, the
SAMIPS asynchronous processor has been used.SAMIPS

is built around a five-stage pipeline datapath (figure 10),
namely Instruction Fetch (IF), Decode/Register File Read
(ID), Execution or Address Calculation (EX), Memory Ac-
cess (MEM) and Register Write-back (WB). The datapath
includes an ALU, a Shifter, a Multiplier/Divider, an Ad-
dress Adder, and a PC incrementer.SAMIPS has been mod-
elled as a hierarchy of concurrent processes with approx-
imately 900 lines of Balsa code , with the corresponding
handshake circuit consisting of approximately 2300 hand-
shake components and 3600 channels.SAMIPS executes
MIPS machine language instructions produced by aMIPS

cross-compiler and loaded during the initialisation phase as
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32-bit quantities in hexadecimal format from an image file.
The well established Dhrystone benchmark has been used
for the experiments [23]. The execution platform is a cluster
machine with dual-processor Intel Xeon 3GHz nodes and 2
GBytes of memory, interconnected via a Myrinet switch.

5.1 Partitioning Strategies

Two main partition strategies have been used, namely
manual and using the well established graph partitioning
systemMETIS [13]. The manual partitioning follows the
pipeline stages ofSAMIPS, from two up to five LPs.

METIS partitions a graph following a multilevel recursive
bisection algorithm [14], where the vertices of the graph
represent the set of the handshake components while the
edges are the communication channels.

Four different partitioning strategies supported byMETIS

has been used (the first three require the execution of the
simulation once, to collect the necessary information):

1. Weighted edges, where weights define the number of
events on each channel. This strategy attempts to min-
imise communication costs.

2. Weighted vertices, where the weight of each vertex in-
dicatesthe number of eventsprocessed by each hand-
shake component. This strategy attempts to balance
the load on each LP.

3. Weighted edges and vertices. Both load and commu-
nication are expected to be balanced.

4. No weights at all. The algorithm attempts to minimise
the number of edgecuts and assign approximately the
same number of vertices to each LP.

5.2 Execution Efficiency and Analysis

Figure 11 shows the performance achieved byPAR-
BREEZE for the different partitioning algorithms using the
MPICH-GM 1.2.6.14b for Myrinet.
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Partitioning Method # LPs Max Speedup
Manual 4 1.31

METIS

No Weights
Weighted Edges
Weig. Vertices
Weig. Edg.-Vert.

4
9
4
6

1.28
1.40
1.24
1.21

Table 1. Speedups for Different Partitions

The results show that the distribution ofPARBREEZEcan
achieve a maximum speedup of 1.4 (26.8% reduction in ex-
ecution time, see table 1) and that the choice of the partition-
ing strategy can have a significant impact on the execution
efficiency of distributed simulator.

Understanding the factors that affect the performance of
the simulator and the relationship amongst these factors is
crucial for the selection of the appropriate partitioning algo-
rithm.

As a first step in this endeavour, we have quantified the
available parallelism in the model that can potentially be
exploited. We define thedegree of parallelismin the model
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as the average number of concurrent events in the system
that can be executed at the same time step. The degree of
parallelism ofSAMIPS is presented in figure 12.

Figure 13 shows how well the partitioning strategies
have exploited the available parallelism. Theparallelism
balance factoris defined as the (average) ratio of the maxi-
mum number of concurrent events in a particular time step
assigned to a single LP (and therefore executed sequen-
tially) over the number of events that the optimal, even dis-
tribution would have assigned to each LP.

Figure 14 illustrates the quality of the workload balanc-
ing in terms of theworkload balance factor, namely the
number of events executed by the busiest LP divided by the
optimum number of events. The latter is defined as the total
number of events in the whole graph divided by the number
of LPs being used.

The results in figures 13 and 14 indicate that the par-
titioning strategies that achieve better exploitation of the
parallelism and workload balance are those that include the
weighted vertices as one of their parameters while the worse
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is the one that tries to minimise communication.
Figure 15 shows the total communication cost, in terms

of the total number ofMPI messages in the overall system.
Clearly, as the number of LPs increases so does the total
number ofMPI messages that need to be exchanged between
them. As expected, the partitioning that results is the lowest
communication cost is the one that minimises the edgecuts
in the graph.

Figure 16 shows the average idle times over all LPs
for the different partitioning algorithms. The partitioning
strategy which results in the lowest idle times is the one
which minimises communication (which is also the one that
achieves the maximum speedup in figure 1). This is ex-
plained by the fact that since there is a reduced number of
messages in the system, the LPs spend less time waiting for
remote messages.

From figure 11 it is clear that the reduction in commu-
nication yields the highest speedup even though the work-
load is not well balanced. This is mainly due to the fact
that the simulation model is a communication bound sys-
tem, rendering the communication overhead (figure 18) the
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MPICH

determining factor of the performance. Indeed, the cost of
sending anMPI message corresponds to the processing time
of approx. 18 events in the simulator. Figures 11 and 16
clearly show that the total execution times closely follow
the patterns of idle times in the simulation.

5.3 Speedup andMPI Overhead

Despite the significant speedup achieved by the distri-
bution of PARBREEZE, PARBREEZE has not managed to
beat the performance of the sequentialbreeze-simsimula-
tor. This is mainly due to the computation overhead that
theMPICH-GM has introduced in the system, which has in-
creased the execution time of the simulator on one node by
106% (figure 11). To investigate the cause of this com-
putation overhead, a different version ofMPI, MPICH has
been tested. The results achieved are illustrated in figure
17. Clearly, asPARBREEZEis distributed onto more nodes,
the execution times increase. This should be expected, as
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MPICH is for gigabit Ethernet and its communication effi-
ciency is very poor compared toMPICH-GM5 (figure 18).
Hence the communication cost becomes the dominant fac-
tor of the simulation, as explained in the previous section.
However, the computation overhead introduced byMPICH

in PARBREEZEon one node is almost zero compared to the
106% introduced byMPICH-GM. This additional overhead
of the MPICH-GM, can be attributed to the way it performs
memory (malloc) and thread management. Indeed, a simple
program which invokedmalloc(), took 5.3 secs to execute
on a single node when compiled withgccandMPICH while
within MPICH-GM it took 8.0 secs. Compiling the program
using the-pthreadparamemeter forPOSIX threads, raised
the execution time forMPICH-GM to 25 secs while it had no
impact on that ofMPICH (which remained at 5.3 secs).

6 Summary and Future work

Asynchronous Logic is progressively finding its place in
the mainstream VLSI design, not least in the development
of GALS (Globally Asynchronous Locally Synchronous)
systems. As a result, there will be an increasing demand
for appropriate efficient simulation techniques. This paper
has presented a framework for the distributed simulation
of asynchronous handshake circuits generated by the Balsa
system. This work has shown that significant speedup can
be achieved by the utilisation of distributed simulation. Our
investigation has identified both the partitioning algorithm
and the efficiency of the communication software (MPI) em-
ployed as significant factors for the performance of the sim-
ulator. Further work will investigate the cause of the com-
putation overhead ofMPICH-GM and will perform a more
detailed analysis of the performance of the simulation, us-
ing additional benchmarks (such as the SPA processor) and
partitioning algorithms (such as theJOSTLE system [22]).
Synchronisation issues will also be investigated.

5These results have been obtained executing a ping-pong program with
2 MPI processes using blocking send and receive with message size of 40
bytes.
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