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ABSTRACT
There is an on-going debate about which consumes less en-
ergy: a RAM-tagged associative cache with an intelligent or-
der of accessing its tags and ways (e.g. way prediction), or a
CAM-tagged high associativity cache. If a CAM search can
consume less than twice the energy of reading a tag RAM, it
would probably be the preferred option for low-power appli-
cations. Based on memory traces — which usually cause tag
mismatch within the lower four bits — a new serial CAM or-
ganisation is proposed which consumes just 45% more than
a single tag RAM read and is only 25% slower than the con-
ventional, parallel CAM. Furthermore, it can optionally be
operated as a parallel CAM, at no speed penalty, and still
reduce energy consumption.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—Associative
memories; B.3.2 [Memory Structures]: Design Styles—
Cache memories; B.7.1 [Types and Design Styles]: VLSI

General Terms
Design, Performance

Keywords
CAM, cache design, VLSI, low power, low energy, asyn-
chronous circuits

1. INTRODUCTION
The cache accounts for a considerable fraction of the en-

ergy consumption in an embedded system. For example, it
is responsible for over 40% in StrongARM [1]. At the same
time it is usually performance-critical, so implementations
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targeting low energy consumption cannot neglect the access
time.
This work follows the idea of many other implementations

[2][1] in assuming that the cache is made up out of many
small blocks, trading silicon area for speed and low power
consumption. Specifically a memory block size of 1 KByte
and a line size of 32 bytes (8 32-bit words) are used here.
These SRAM blocks are used for the data storage and are
coupled with smaller structures for the tags. The choice of
the block and line sizes means that each block contains 32
cache lines and, similarly, the tag structures consist of 32
tags.
Often in embedded applications the silicon area available

for the cache is not large enough for a direct-mapped organ-
isation to achieve the required high hit rates. This is where
the question of using a RAM- or CAM-based tag structure
must be addressed. Closely related to this decision is the
degree of associativity required. Generally, the higher the
associativity the better the hit rate, but the design complex-
ity increases with associativity and the hit rate obeys the law
of diminishing returns. As a rule of thumb, an associativity
of four is usually adequate, although a higher associativity
— at no extra cost — would still be preferred.
A RAM-tagged cache can be organised as a conventional

n-way associative cache, where a number, n, of the (direct-
mapped) blocks are accessed concurrently; within each block
a part of the address is used to select a line directly. This
method is quite wasteful of energy because at least n − 1
tag and data reads will be wasted for each cache access. To
conserve energy, phased caches [3] first access the tags and
then only the data memory where there was a hit; however
this doubles the cache latency. Pseudo-associative caches
[4] and way-predicting caches [5] take a different approach.
These access one block (or ‘way’) first and only try other
blocks if they miss at the first. This results in a cache with
variable hit (and sometimes miss) times. There is consider-
able range for variation here too: the method used to select
the first block can be dynamic (e.g. PSAC [6]), or static.
If the first access misses, the rest of the blocks can be ac-
cessed concurrently or sequentially [7]. Furthermore, in all
the above cases, the tags can be read before the data to save
even more energy at the expense of performance, as in the
original phased cache.
A block-structured, CAM-based cache uses some of the

136



low order bits of the address to select one of the blocks,
within which a fully associative approach is used. In this
case the associativity depends on the memory block and
cache line sizes. With the example chosen here this would
make a 32-way associative cache. In this implementation
the CAM must be searched before the data can be accessed,
so this is similar to the phased cache.
The following section continues the above description and

sets a working example of a cache that is used throughout
the rest of this paper. Section 3 compares the energy and
speed of reading a tag RAM and searching a tag CAM, both
extracted from layout using Spice simulation. This shows
that a standard CAM search requires five times more en-
ergy than reading a RAM, which suggests that RAM-based
caches should be more energy efficient. However section 4
analyses the behaviour on tag checking by applications; this
hints at a more energy efficient CAM design, presented in
section 5. The proposed CAM has two modes of operation
depending on the energy/speed trade-off required. Finally,
section 6 concludes the paper.

2. CACHE ORGANISATION OPTIONS
An example cache size of 16 KBytes is used here for demon-

stration purposes. This is broken into sixteen blocks of
1KB each. Virtual addressing is assumed to be used for the
caches. This is more energy efficient as it does not require
an address translation for every memory access.

Set associative
For a conventional 4-way set associative implementation,
four of the sixteen blocks would be accessed in parallel. Two
bits of the address would be used to select a set of 4 blocks
in addition to those selecting the cache line and word in the
line, leaving a tag size of 20 bits.
The pseudo-associative implementation can be described

as an amalgamation of the direct-mapped and the parallel
set-associative. Initially the address is mapped to a block
and line and the corresponding tag is checked. If this fails a
different mapping is applied and another access and compar-
ison are made. The number of times this is repeated deter-
mines the (pseudo) associativity. The mappings can be dy-
namic, based on some ‘hint’ and a ‘steering table’, which will
keep the average number of accesses low [6]. Although the
tag size for these caches is the same as in a direct-mapped
cache, additional information is required to keep the cache
consistent (e.g. the rehash bit in [6]). This information is
different for each variation of the pseudo-associative con-
cept. Thus, the analysis here is based on the assumption
that the pseudo-associative tag size is as big as that of the
conventional way-associative cache and no other information
is stored.

Fully associative
The fully-associative (within each block) approach uses some
low order bits of the address to select one of the blocks, each
of which is fully-associative internally. For the 16 KByte, 32-
byte line size example the tag size would be 23 bits. The
tag structure would require CAM implementation for fast
parallel searching. Because the blocks contain 32 cache lines
the cache would be 32-way set-associative, a ‘side-effect’ of
the block size and the cache line size.
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Figure 1: CAM cell

Comparison
Assuming an energy conserving policy of only accessing a
data memory block when there is a hit, the differences in
the above organisations will depend on the average number
of tag accesses for the (pseudo) associative case, the energy
cost of a RAM read for tags and the energy cost of a CAM
search. The way-predicting cache [5] using a most recently
used algorithm for selecting which block to access first, has
a prediction rate of about 90%. In case of parallel checking
all the other ways, the average number of tag accesses will
be 0.9 · 1 + 0.1 · 4 = 1.3. Considering the extra overhead
of the prediction for the way-predicting caches, we can as-
sume that if the energy for a CAM search is no more than
twice that of a RAM read, a fully associative implemen-
tation would be preferable for low-power microprocessors.
Moreover, the fully-associative implementation will achieve
a somewhat better hit rate, which should save some (high
energy consuming) accesses to higher level memories.

3. COMPARISON OF RAM/CAM
For this comparison a set of RAM, CAM and sense ampli-

fier cells were designed and laid out in a 0.18µm, 1.8V, dual
Vt technology and simulated with Spectre, a Spice variant.
Although the implementations could be further optimised,
they were designed by the same person and a similar amount
of time was spent on each of them, so this comparison should
be fair.
The RAM was based on the low-power SRAM design of

Amrutur and Horowitz [8]. It uses cross-coupled inverter-
style sense amplifiers, enabled by a delay-matched dummy
column, and pulsed wordlines to limit the voltage drop on
the bit lines to about 15% of the supply voltage. The RAM
block has 32 rows of 20 bits each (plus a dummy line for
delay matching).
For the CAM design (fig. 1 shows the cell), separate search

and bit lines were used to minimise the capacitance on the
former, which are more frequently used. No power is con-
sumed within the CAM cell when a search operation is per-
formed, but the search lines must be pulled down while the
match lines are being precharged, otherwise it is possible to
short-circuit the supply and ground terminals through the
match line. Thus, for every search, one of the search lines
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will always have to be raised; this is responsible for almost
half the CAM’s energy budget.
To compare the two circuits, a series of ten reads and ten

searches were performed on the RAM and CAM blocks re-
spectively. As neither the value nor the position of the row
being read affects the energy consumption of the SRAM,
the Spectre circuit description was simplified having only
one cell active and dummy cells to capture the effect of wire
loading for the columns and rows. A number of probes were
used to measure the supply currents which are then multi-
plied appropriately for the columns and the rows that would
normally be activated. The CAM was modelled similarly,
with two cells in a row active and dummy cells for the rest
of the row and column. At most one row will match each
time and that row consumes no energy, since it will not dis-
charge its match line, but all the other rows do. All ten
searches were made not to match in the simulation and the
current consumed by the row is multiplied by the number of
rows less one, to capture the most usual case of a cache hit.
The RAM-based tag block has an access time of 0.5ns

and an average energy of 2.3pJ per read access, in typical
silicon and operating conditions. These figures include the
energy consumed by the drivers of the precharge and sense
amplifier trigger signals, but not the address decoder con-
sumption, which — for a 32 row memory — is not expected
to contribute significantly. The final wordline driver con-
sumption is included however.
The energy consumed by the CAM is 12pJ per search at

a minimum access time of 0.8ns. This energy consumption
is over five times that of the RAM, although the result is
slightly biased in favour of the RAM because the energy
consumed by the decoder and that of the comparator needed
to test the tags are not included. The CAM block is also
larger than the RAM, the cell being 25% bigger and the
block width is 23 bits for each of the 32 rows (3 bits more).
Based on these results a (pseudo) associative cache with

a low average number of sub-block accesses per memory re-
quest is better than the fully associative implementation.
The following sections present an alternative CAM archi-
tecture that reverses this situation.

4. APPLICATION BEHAVIOUR IN CACHE
TAG MATCHING

Much of the energy consumed in a CAM is due to the
frequent precharging and discharging of all but one of the
match lines for each access. How many bits are actually
different in each comparison and is there any way of know-
ing their positions? An analysis of the memory traces of
various SPECInt95 benchmarks was undertaken to gather
information to answer this question.
The applications were compiled for an ARM processor,

with all the speed optimisations enabled, using the ARM
Developer’s toolkit compiler and debugger/simulator ver-
sion 2.51. The simulator was set to emulate the Strong-
ARM implementation which is the closest to Un. of Manch-
ester’s asynchronous implementation of ARM, AMULET3
[9], where the cache will be used in the future.
For each benchmark two cases where analysed:

• A unified 16K cache.

• Two dedicated instruction and data caches, each 16K
in size.
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Figure 2: Ratio of tag checks ending at each bit
position.

The cache line size is 32 bytes in all cases. The caches use
a write-back, no write-allocate policy with round-robin line
replacement.
Memory traces from the simulations were used to measure

how many tag tests could stop at each bit position if they
started from the least significant bit. The results, presented
in figure 2, show that over 90% of the mismatches are de-
termined within the four least significant bits of the tags.
This figure is consistent for all the benchmarks and cache
types: Unified, Instruction and Data, from left to right in
the graph.
For these results virtual addressing was used for the caches.

If the addresses were translated to physical addresses, the
results may have been different, but for low-power opera-
tion, virtually addressed caches are preferred because they
avoid address translation for most memory accesses.

5. PROPOSED CAM ARCHITECTURE
Based on the results of the tag matching behaviour of

the applications, an adaptive serial-parallel CAM (SPCAM)
organisation was designed to take advantage of the infre-
quently changing MSBs of the tags. When designing the
circuits the following principles, which are the same as those
in Hsiao et al. [10], were followed:

• Minimise the transitions on the match lines.
• Use separate search and bit lines.
• Do not force the search lines to ‘0’ or ‘1’ while charging
the match lines.

• Minimise the use of timing signals.
The proposed CAM can operate either in parallel or in

serial mode. In serial mode the four least significant bits
of each row are checked serially and, if they all match, the
remaining bits are checked in parallel. In parallel mode the
four LSBs are checked serially again, but the remaining bits
are tested concurrently. The results of the two matches are
ANDed together in both cases to give the final result.
A row of the circuit is shown in figure 3. Note that there

are different types of CAM cells for the serial and paral-
lel parts. The parallel CAM cell is the same as that in
figure 1, with the ground connection of the two pull down
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Figure 3: A row of the proposed CAM.

NMOS chains testing the equivalence, replaced with Vgnd-
Match. This signal runs lengthwise and is connected to all
the parallel CAM cells in the row. The four serial bits are
broken down into two sets of two bits to limit the number
of transistors in series to three.
The circuits used for the match operation in the serial

part look very similar to the Manchester carry chain used
in adders. A match propagates as a zero from the least
significant bit to the most significant. A cell that matches
opens its NMOS transistor, propagating the result from its
less significant neighbour to its more significant neighbour.
If it doesn’t match it breaks the chain and generates a one to
pass on. If the first cell of a set doesn’t match but the second
does then a one is propagated to the right through an NMOS
transistor. This is allowed to propagate only through one
device — another reason for separating the four bits into two
sets. The gates at the output of these chains are designed so
that their input threshold is lowered (with widened NMOS
transistors) to compensate for the Vt voltage drop in this
case. When the cells in the second set match but those in
the first don’t, transistor P1 is used to pull up the serial
part match signal m3b signifying a ‘no match’. If the four
LSBs all match, the virtual ground VgndMatch is pulled
down allowing the rest of the row to evaluate the parallel
match line; otherwise the match line of the parallel part
is precharged, via transistor P2 although, mPar would not
have been discharged in most cases.
In serial operation the search lines are not pre-discharged;

this saves energy as transitions only occur when the search
data actually change. This means that the parallel CAM
cells will be evaluating all the time, even when the match
line is being precharged. If some of these cells don’t match,
there will be a path from the parallel match signal mPar to
the virtual ground, which is left undriven. In this case either
the precharge time should be made longer so that the extra
capacitance will be charged, or larger precharge transistors
should be used that are able to charge the increased capac-
itance in the same time. Obviously neither of these options
is desirable. Instead we opted not to change the precharge
transistor sizes or the time. This could leave mPar not fully
charged but it will not affect the operation. If the LSBs
match, VgndMatch will be pulled down and, as some of the
parallel part tags don’t match, mPar will also be discharged.
If the LSBs don’t match, the final match line will stay low,

driven from m3b and the charging will continue, so eventu-
ally it will reach the appropriate level. Simulation indicates
that the time between two accesses is sufficient to precharge
mPar fully when this form of charge sharing happens.
An interesting situation can occur when the following op-

erations happen consecutively: a search is started and in
some row the LSBs all match but the MSBs do not. This
will leave mPar discharged. A subsequent search is initiated
which matches the whole row. This would normally fail be-
cause mPar was not precharged in the interim. For this
reason evalB — the inverse of the parallel block evaluation
signal eval — is connected to the NOR gate within the LSB
match logic; this forces a ‘no match’ for the LSBs, impos-
ing a precharge of the parallel match line (mPar) for every
search. This implementation was preferred to combining the
evalB signal with m3b in a logic gate to drive VgndMatch
and mPar because it has less capacitive load on evalB.
When the CAM is in parallel mode the virtual ground

line, VgndMatch, of the parallel part of the CAM is always
connected to the ground. In addition the NAND gate G3
isolates the precharging of the parallel part’s match line,
mPar, from the match signal of the serial part, m3b. A
separate signal eval is then used for precharging. This signal
is gated off in serial mode so that its driver does not consume
power.
Figure 4 shows the most important signals in the SPCAM

for five consecutive operations. The potential charge sharing
problem mentioned earlier could occur in the third search,
where VgndMatch is being charged up together with mPar.
For the precharge transistor sizes chosen, the problem does
not appear here. In the same operation m3b is shown not
to reach Vdd; this is the case when it is being pulled high
through an NMOS transistor, because the last cell in the
serial part matched but the one before didn’t, as explained
above. As shown in the waveforms, the circuit correctly
reports a ‘no match’.

5.1 Results
SPCAM was simulated using the same simulator and tech-

nology as the previous designs. The results are summarised
in table 1. The distribution of mismatches to bit positions
follow the findings of the previous section. In serial mode
the energy consumption is only 45% more than the RAM
(which does not include the decoder and comparator); this
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Figure 4: Waveforms of SPCAM in serial mode.

is almost a quarter of the standard low-power CAM energy
consumption. The cycle time is twice that of the RAM, but
only 25% slower than the original CAM. Thus SPCAM is
much more energy efficient than the conventional CAM. In
parallel mode, the energy consumption is 3.5 times that of
the RAM, still 33% better than the conventional parallel
CAM, while the performance is the same as the latter.
With a CAM search energy consumption so close to that

of a single RAM read, the fully associative cache organisa-
tion becomes a much lower energy choice than any (pseudo)
associative, way predicting cache. Caches with conventional
CAMs are reported to have a similar access time to caches
with RAM tags [11], thus the effect of the decoder and the
comparator must slow down the RAM-based designs to a
similar speed to the CAM-based ones. With the results pre-
sented here conventional CAMs are only 20% faster than
the proposed SPCAM in serial operation. Thus the perfor-
mance of a cache using the SPCAM should not be signifi-
cantly slower than a cache built with RAM tags.
The proposed CAM is able to switch from serial to parallel

mode, trading energy for speed. In a common synchronous
processor this is hard to exploit, unless the cache access

Table 1: Comparison of tag implementations

Energy per Cycle time
search/access

CAM (32x23) 12.0 pJ 0.8ns
RAM (32x20) 2.3 pJ 0.5ns
Serial SPCAM 3.3 pJ 1.0ns
Parallel SPCAM 8.0 pJ 0.8ns

is made to take two cycles in serial mode and one cycle
in parallel. As this design is intended for an asynchronous
processor, the variation in speed can be accommodated more
easily.

5.2 Related work
A recent CAM design by Hsiao, et. al. [10], claims to be

the lowest power CAM yet reported. It evaluates the match
lines serially (NAND-type) and does not require discharg-
ing of the search lines while the match line is precharged.
However precharging and evaluating the match line seg-
ments requires more ‘clocking’ power than the design pro-
posed here. They report a 45.5fJ/bit/search at 12ns cycle
time in a .35µm, 3.3V technology. Converting their energy
per bit per search result to our technology suggests about
11fJ/bit/search, which is over twice that of the SPCAM in
serial mode.
Zhang and Asanovic [11] argue that CAM-based caches

are preferable for low-power processors. They describe a
CAM design with separate bit and search lines and they
precharge the match lines through NMOS transistors to re-
duce voltage swings. As a speed enhancement they split each
match line into two segments which, in view of the analysis
here, would also save energy as the most significant part will
be discharged infrequently. For further speed improvement
they employ single-ended sense amplifiers on both segments
of the match lines. The internals of these are not described
but they are quite likely to consume significant power. The
energy consumed in the tags is not directly compared in
that paper but they showed that the total energy consump-
tion of a cache, with the same configuration as the working
example here, is similar to a 2-way associative conventional
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(RAM-based) cache. Their CAM-based cache has an almost
identical performance to a conventional RAM-based cache,
which is not phased, i.e. all tags and data are read in parallel
in all ways.
Huang et al. [7] compared a number of different pseudo-

associative policies. In their results systems with Fallback
regular, Fallback phased and Predict phased policies have
very similar energy consumption and delays. Unfortunately
they do not compare these results to CAM-based caches.
Burd [2] presented a CAM which consumes twice the en-

ergy of an equivalently sized RAM. This is quite surprising
because it is a conventional parallel CAM with shared bit
lines and search lines. The difference is that the bit lines
are pulled up when the match lines are precharged, but one
of them still has to be pulled down for each search. With
this modification the bit lines are more heavily loaded, with
two transistor gates and a drain for each cell. Burd argues
that caches using this CAM consume the same energy as
a conventional 2-way set associative cache built with RAM
tags, so the CAM-based design is preferable since a higher
associativity is needed for his design.

6. CONCLUSIONS
A new serial-parallel CAM (SPCAM) design has been

proposed which consumes about a quarter of the energy
of a conventional low-power CAM, when used as a cache
tag store/comparator. It exploits the address patterns com-
monly found in application programs, where testing the four
LSBs of the tag is sufficient to determine over 90% of the tag
mismatches; the proposed CAM checks those bits first and
evaluates the remainder of the tag only if they match. In
addition the search lines do not have to be forced to ‘0’ or ‘1’
while precharging the match line, which accounts for almost
half of the energy of a conventional CAM. The proposed
CAM is also adaptive, i.e. it can be configured to work seri-
ally as described above or it can operate as a parallel CAM
with less energy benefit than in serial mode, but at the same
speed as a conventional CAM.
SPCAM’s energy consumption is comparable to that of

reading a RAM of similar capacity. Thus using this CAM
for the tag parts of a sub-blocked high-associative cache,
would make this cache more energy efficient compared to
way-predicting (pseudo) associative caches.
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