
, UK.
AMULET3i – an Asynchronous System-on-Chip

J.D. Garside, W.J. Bainbridge, A. Bardsley, D.M. Clark, D.A. Edwards, S.B. Furber, J. Liu1,
D.W. Lloyd, S. Mohammadi1, J.S. Pepper, O. Petlin2, S. Temple, J.V. Woods

Dept. of Computer Science, The University of Manchester, Oxford Road, Manchester M13 9PL
1Cogency Technology Inc. 144 Front St. West, Suite 580, Toronto, M5J 2L7, Canada

2ASIC Alliance Corporation, 78 Dragon Court, Woburn, MA 01801 USA.
jgarside@cs.man.ac.uk
st
Abstract

AMULET3i is the third generation asynchronous ARM-
compatible microprocessor subsystem developed at the
University of Manchester. It is internally modular, being
based around the MARBLE asynchronous on-chip bus,
and is also extensible through the addition of conventional
clocked synthesizable peripherals via an on-chip synchro-
nous peripheral bus. As such it is capable of forming the
core of a wide range of system-on-chip applications,
bringing asynchronous design into commercial use in a
flexible and easy-to-use configuration. Its performance
and area are comparable with clocked equivalents, and its
low-power and electromagnetic emission characteristics
give it unique capabilities in appropriate applications.

1. Introduction

AMULET3i is an asynchronous ‘island’ containing an
AMULET3 microprocessor core and other asynchronous
macrocells which can sit in a synchronous sea of gates. It
provides a complete, self-contained microprocessor system
with RAM, ROM, peripherals and an expansion bus; hard-
ware debugging support and a production test interface are
also included. The first AMULET3i based device is sched-
uled for commercial production in early 2000.

The expansion bus supports conventional, synthesizable
synchronous peripherals, enabling AMULET3i to be used
as a hard macro at the centre of a wide range of system-on-
chip applications which can be developed using conven-
tional design tools.

The asynchronous subsystem is itself modular, being
based around the MARBLE asynchronous on-chip bus [1].
Different variations on the asynchronous island can there-
fore be developed with relative ease (although requiring
asynchronous design skills which are outside the capabili-
ties of a conventional design flow).

AMULET3i represents the culmination of almost a dec-
ade of research and development within the AMULET

group and takes the technology forward through its mo
significant step to date, into full commercial use.

2. AMULET3i

• AMULET3 microprocessor

• 8 Kbytes RAM

• 16 Kbytes ROM

• Flexible multi-channel DMA controller

• Programmable external memory interface

• MARBLE, a fully asynchronous on-chip bus

• Bridge to on-chip synchronous bus

• Configuration registers

• Software debug support

• Test interface

AMULET3

8 Kbyte
RAM

DMA
controller

16 Kbyte
ROM

MARBLE/
Synchronous

Bridge

Test
interface
controller

Synchronous
peripheral
subsystem

data

addr

chip
selects

DRAM
control

peripheral
I/Os

asynchronous

synchronous

MARBLE

DMArq

test

Memory
interface

Figure 1: AMULET3i asynchronous subsystem

delay

the

us
dif-
n/
s as
ter
n-
d.
or
ch
on-
le

ll-

us
As shown in figure 1 the majority of the macrocells are
interconnected by the MARBLE bus. However the asyn-
chronous RAM is local to the processor to avoid the need
for bus arbitration for each instruction fetch. This locality
allows the use of separate instruction and data buses
although, logically, the RAM is unified (see section 4). The
‘local’ buses each provide roughly twice the bandwidth
available across MARBLE, the instruction fetch bus being
somewhat faster than the data bus. The difference in the
speeds of these buses is one of the more macroscopic of the
system’s asynchronous features.

The first use of AMULET3i is as the control system for
DRACO (DECTRAdio COmmunication controller) a wire-
less communications device. DRACO is targeted at the
DECT (Digital Enhanced Cordless Telecommunications)
multimedia market and contains a large number of conven-
tional, synthesized, synchronous peripheral subsystems
(ISDN and DECT controllers, DSP etc.) which inhabit their
own synchronous bus to which AMULET3i has access via
a bus bridge.

3. AMULET3 microprocessor core

The AMULET3 microprocessor architecture (figure 2)
has been described elsewhere [2], so only a brief overview
of the more salient and unusual features will be given here.

AMULET3 is an ARM microprocessor. It is fully code
compatible with version 4T of the ARM instruction set [3]
as used in the ARM9 microprocessor [4]. This also includes
full compliance with the 16-bit Thumb instruction set [5].

The processor has a Harvard-like memory architecture
which interfaces to local RAM; one port is used for instruc-
tion fetches, the other is used for data operations with the
exception of direct loads to the PC, which use the instruc-
tion fetch port. This facility allows PC loads to overtake
some of the data operations which is useful in the standard
ARM procedure return where processor context is popped
from the stack. The PC, being aliased as R15, is nominally
the last register to be loaded; speeding this up reduces the
latency involved in starting the next code segment. The
degree of overtaking is governed by numerous factors, such
as the pipeline occupancy and the speed of the appropriate
memory.

The instruction port normally fetches 32-bit words (the
exceptions being when it is known that only one half-word
is needed). This differs from earlier, synchronous ARM
implementations which fetched Thumb instructions at one
per clock cycle. AMULET3 therefore makes better use of
available bus bandwidth – important when the memory
speed is a performance limiting factor – and reduces the
number of external accesses so reducing power consump-
tion. This mechanism is assisted by the asynchronous
nature of the processor in that the instruction packets may

be analysed and expanded as appropriate further down
pipeline without any need for global control.

The processor itself contains a number of asynchrono
stages. Because of its elastic nature the pipeline depth is
ficult to define, but there are identifiable Thumb expansio
predecode, decode/register read and execution stage
well as an asynchronous reorder buffer [6] and regis
writeback. The data memory interface has its own pipeli
ing and the memory system itself may also be pipeline
Not all these stages are invoked for every instruction – f
example some instructions prefetched following a bran
may be discarded before reaching the execution stage; c
trariwise some instructions may be expanded into multip
cycles inside the pipeline, possibly “backing-up” and sta
ing the prefetch process.

Internally the pipeline stages interact by asynchrono

Figure 2: AMULET3 core organisation

Thumb

Prefetch

Decode &
Reg. Rd.

Latch

Latch
FIFO

Register
Write

Data
Memory

Instr
Memory

Data
Interface

Latch

Execute

Reorder
Buffer

IRQ

FIQ

– may generate

 additional packets

Latch

Latch

Latch

br
an

ch
 a

dd
re

ss
es

fo
rw

ar
di

ng
in

di
re

ct
 P

C
 lo

ad

memory
skip

store data

addr.

load data

uc-

c-
e
m-
ee
t
o
h
ll
ss.)
s
at
on-

en
r a

rgy
rd
h
red
-
at
m
ll
-
to

t
a

d-
an
handshakes and – whenever feasible – systems are not
invoked unless needed. Thus the barrel shifter and multi-
plier (located within the execution stage) are bypassed most
of the time thus speeding up execution and minimising
power consumption. Register operand fields are only read
onto buses when they are required, again lowering power
demands and removing any artificial register dependencies.
The register read processes are also mutually asynchronous
and tend to become slightly staggered as a consequence of
the forwarding mechanism; this is an attempt to spread the
power demand over time and consequently reduce electro-
magnetic interference.

One final subsystem worth mentioning in an asynchro-
nous context is the instruction prefetch unit. This has sev-
eral novel features. Perhaps the most significant is the
“HALT” instruction which has been retrofitted into the
instruction set by reinterpreting an instruction which
branches to itself. On execution this causes the prefetch unit
to stop cycling immediately, thus dropping the power con-
sumption of the processor to near-zero. As the processor
instigates most of the activity within AMULET3i this, in
turn, effectively turns off the asynchronous subsystem. Full
speed operation is restored instantly in response to an inter-
rupt with the first instruction fetched being the beginning of
the interrupt service code. Experience with a similar feature
in AMULET2e [7, 8] has shown that this leads to very sim-
ple yet efficient power management.

The other notable feature of the prefetch unit is its, albeit
limited, ability to predict branches. A sixteen entry Branch
Target Buffer (BTB) [9,10] is used which reduces the
number of instructions prefetched unnecessarily by about
half. In addition howeverany branch prediction (whether
correct or not) suppliesall the information contained in the
branch instruction. The fetch is therefore suppressed, thus
delivering the instruction faster than can be done by the
memory system and at a lower energy cost. Even without
memory bypass, branch prediction showed a power saving
in AMULET2e [8] and with the suppression of perhaps
10% or more of instruction fetches the power reduction is
expected to be significant. The BTB can perform this func-
tion when running ARM, Thumb or a mixture of code. In
Thumb code it is also capable of identifying that only one
half word is required and adjusting the fetch size accord-
ingly. This is not significant when running code from the
internal memory but will have some effect when using nar-
rower, external store.

4. Local RAM

The AMULET3 processor core has ‘local’ address and
data buses for instruction and data memory accesses (see
figure 1). This would normally imply split instruction and
data memories; RISC systems frequently employ a ‘modi-

fied Harvard’ architecture where there are separate instr
tion and data caches with a unified main memory.

The AMULET3i controller employs memory-mapped
RAM rather than cache memory as this is more cost-effe
tive and has more deterministic behaviour for real-tim
applications. Instead of separate instruction and data me
ories, a dual-ported, unified memory structure is used (s
figure 3). Dual-porting the memory at the individual bi
level would be too costly, so the memory is divided int
eight 1 Kbyte blocks, each of which has two ports whic
are arbitrated internally. (Dividing the memory into sma
blocks also reduces the energy cost of a memory acce
Internally each RAM block is 4 words wide and the block
are interleaved above this level so that it is unlikely th
simultaneous references require the same block. When c
current data and instruction accessesare to different RAM
blocks each can proceed unimpeded by the other; wh
they conflict in the same block, one access may suffe
delay while it waits for the other to complete.

Conflicts (and average memory access time and ene
cost) are further reduced by including separate quad-wo
instruction and data buffers in each RAM block. Eac
access to a block first checks to see whether the requi
data is in the buffer. Only if it is not must the RAM be inter
rogated, with a risk of conflict. Simulations suggest th
about 60% of instruction fetches may be satisfied fro
within these buffers and many short, time-critical loops wi
run entirely from here. A smaller but still significant pro
portion of data references also show sufficient locality
benefit from this mechanism.

These buffers, in effect, form simple 128-byte direc
mapped first-level caches inside the RAM blocks. This is
particularly apt analogy when it is observed that the avoi
ance of the RAM array results in a faster read cycle,

Figure 3: Memory block organisation

1Kbyte RAM

AMULET3
microprocessor

1Kbyte RAM1Kbyte RAM

DbufferIbuffer

ArbiterArbiter

DbufferIbuffer

Arbiter

DbufferIbuffer

Initiator/Target

MARBLE

Local Instruction bus

Local Data bus

Initiator

MARBLE

d-
-

al
se
ip

nel.
ith

the
of
ttle
iti-
s
g
nd
g
r-

in
ll

-

hip
s

nd
en
LE
occurrence which is exploited automatically by the asyn-
chronous pipeline. Note that cycle speed varies on a word-
by-word basis so that sequential reads will induce one
‘slow’ followed by three ‘fast’ cycles.

The use of these buffers does not detract from the unified
model of the RAM. A (comparatively rare) data write oper-
ation is synchronised with any instruction fetch within the
same block and, if it addresses the buffered instruction line,
the buffer is invalidated. This averts any memory coherency
problems and retains a totally unified RAM model. As in a
synchronous processor this could be broken by modifying
code which has already been prefetched, but the prefetch
depth, while non-deterministic, is bounded (at 4 instruc-
tions in this implementation).

The two RAM ports are not symmetrical. The processor
fetches approximately two instructions for every data
access, so it is the instruction local bus that is performance
critical and thus is made as simple and as fast as possible.
This is assisted by the fact that this is a read-only bus.

The local data bus must provide read, write and atomic
read-write transfers (for semaphore operations) and is thus
somewhat more complex. Access to the RAM is also
required from MARBLE (for DMA transfers), so a MAR-
BLE target interface is provided on the data side. This bus
therefore must arbitrate between accesses to the RAM from
MARBLE and to the RAM or MARBLE from the proces-
sor (see figure 4). The fact that the required data bandwidth
is lower than the required instruction bandwidth allows this
additional complexity to be supported here with less
adverse effect on performance than if the instruction local
bus supported the MARBLE accesses to the RAM.

All these effects cause subtle differences in the timings
of local RAM cycles. Whilst the asynchronous pipeline
accommodates these variations automatically, the ‘dither-
ing’ of the cycles on the local buses – which contain some
of the longest wires on the device – should assist in reduc-
ing electromagnetic emissions.

5. MARBLE

Whilst a local memory bus can provide the high ban
width required by the processor instruction port, its sim
plicity does not allow for the connection of many peripher
devices. This is the domain of MARBLE, a general purpo
multimaster, split transfer, asynchronous system-on-ch
bus [1].

MARBLE comprises two multipoint asynchronous
channels, the command channel and the response chan
Each channel uses a four-phase signalling protocol w
tristate data lines.

The split-transfer nature of MARBLE relates activity on
the two channels through the causal dependency that
start of a response cycle will always occur after the start
the corresponding command cycle and provides a thro
on the number of outstanding commands that any one in
ator can issue. The control flow for a MARBLE transfer i
shown in figure 5 as a token-flow around a loop involvin
the command and response controllers of one initiator a
one target. MARBLE can support multiple outstandin
commands but this requires the introduction of a reorde
buffer at the initiator; to avoid this extra complexity the
AMULET3i subsystem only permits a maximum of one
outstanding command per initiator (i.e. only one token
the control loop). Transfers from different initiators can sti
interleave at will however.

The first cycle of a MARBLE transfer is the transmis
sion of a command from the initiator. Control information
carried on the command channel includes:

• a 32-bit address

• a read/write signal

• a 2-bit initiator identification tag

• a lock signal indicating atomicity of transfer

• a 2-bit transfer size (byte, halfword or word)

• a 3-bit code showing the sequential address relations
of this command with previous/subsequent command

The address is partially decoded to allow the comma
to be routed to the appropriate target. The target can th
process the command and return a response. The MARB

Figure 4: Memory port organisation

InstDec

A D

AmuInstAdr

InstBus

RIA

M
ID

RRI

D
at

a
P

or
t

In
st

 P
or

t

IAI DAI

M
IA

D
at

aB
us

AmuWriteData

AmuDataAdr

RWD

RRD

RDA

S
D

A

S
W

D

M
D

A

M
W

D

M
R

D

A

MARBLE

D A D

Logic

AMULET3
Core

8Kbyte
RAM

Initiator Target

DataDec/
Arbiter

Initiator

Initiator
Response

Control

Figure 5: MARBLE control flow

Target
Command

Control

Initiator
Command

Control

Target
Response

Control

DecouplingThrottle

Command

Response Response

Decoupling

bus command channel

bus response channel

Command

control flow loop

-
c-

et
-
f
nd
s
h
ll

rs
ed
ead

d
or
e
o-

the
s,
sts
nly
-

ugh

ri-
-

e-
e
yn-
e

-
the
s,
n-
ch
ata
e-

ch
-
2)

of
cal
nt
response channel carries:

• the initiator identification tag (for routeing)

• a copy of the read/write signal for this transfer

• an exception status bit

• 32-bit read data returning to the initiator or write data
delivered to the target

Each channel has its own dedicated arbitration network
using tree-arbiters to provide the multiway arbitration.
MARBLE supports locking of the command channel by an
initiator, thus allowing atomic read-modify-write actions
upon memory-mapped peripherals and memory, as are
required for the implementation of semaphores. Support for
deferred transfers allowing bridging of the bus to other mul-
timaster buses is provided as a part of the MARBLE spec-
ification, but is not required in the AMULET3i subsystem.

In general, a target’s arbitration for the response channel
does not occur until the payload (exception status, and any
read data) is available, thus providing maximum bus avail-
ability so that the bus can be used by other transfers. This
behaviour means that the full arbitration delay is incurred
as additional latency (this can be up to 2 ns in the
AMULET3i subsystem which uses a balanced arbitration
tree). This additional penalty is avoided for some of the per-
formance critical targets by starting the arbitration before
the payload is available (using a matched delay, 2 ns shorter
than the target’s response time to indicate when to start the
arbitration.

There are a total of 4 initiators and 7 targets connected

to MARBLE in this system. As illustrated in figure 6, trans
actions may be initiated by the processor reading instru
tionsor transferring data, a DMA transfer or from off-chip
via the test port; the other ports in this figure are all targ
interfaces. The split transfer protocol employed in MAR
BLE allows (for example) the fine-grained interleaving o
DMA transfers between the synchronous peripherals a
the on-chip memory while the CPU fetches instruction
from its local memory and reads data from off-chip. In suc
a case MARBLE would allow an arbitrary length CPU sta
waiting for data without impeding DMA activity.

The MARBLE interfaces use around 2000 transisto
each, the majority of these being contained in latches us
to store the address and write-data at the target, and the r
and write data at the initiator.

The MARBLE interfaces and bus control are compile
from standard cells, except for the drivers and arbiters f
which were assembled manually. All control circuits hav
been designed manually with verification/guidance pr
vided through Petri-net synthesis using Petrify [11].

6. MARBLE/Synchronous bus Bridge (MSB)

Synchronous peripherals can be connected to
AMULET3i subsystem using a simple, synchronou
strobed-access bus. This synchronous bus only ho
peripherals which act as bus slaves; the bridge is the o
bus master, which simplifies its design. Initiators on MAR
BLE can address targets on the synchronous bus thro
the MARBLE/synchronous bus bridge.

Synchronisation of an asynchronous event with a pe
odic clock carries a risk of failure. There is only one syn
chronisation point in the MSB which uses an edg
triggered flip-flop with well understood metastable failur
characteristics. The same approach was used in the s
chronous peripheral interface of the DMA controller (se
section 7.2)

7. DMA controller

The design of the DMA controller (figure 7) was influ
enced greatly by the structure of the peripherals outside
AMULET3i subsystem. The peripherals are synchronou
dumb (they present/take register values to/from the sy
chronous bus but have very simple control) and may ea
be mapped to a number of addresses from which d
should be transferred on each DMA request. This is a sp
cial requirement in the telecommunications device – whi
has heavy DMA traffic – and results in the controller con
taining an unusually large number of transfer channels (3
many of which are used entirely to perform clusters
transfers from the same peripheral. To reduce the physi
size of the registers required to hold all this control, cou

Figure 6: MARBLE interface locations

da
ta

ad
dr

es
s

ch
ip

 s
el

ec
ts

D
R

A
M

 c
on

tr
ol

Off-chip Interface

te
st

DRAM Test

Bus Control
(Arbitration/Decode)

RAM CPU

Instruction
Bridge

sy
nc

hr
on

ou
s

bu
s

synchronous
peripheral

synchronous
peripheral

synchronous
peripheral

DMA
Controller

ROM

ADC Target

Initiator

Data
Bridge

Control/Test
RegistersTarget

Initiator

MARBLE
Sync Bridge

M
A

R
B

LE

Initiator

Target

Target

Target

Target

Target Initiator

re
A

us
re
ot

er
hy
ted
ed

o-
els
or
an-
PI
e
sts

he
ous
.
d-
nel.
be
rs
ts is
to

ffec-
re
cre-
w
st

uest
ich
s-
nd,
he
it
ting
nt)

ines
e as
is
o-
10
-
on
22
om
tal
and address information the channels are partitioned into
two types: ‘long’ channels with full 32-bit addresses and
count registers and ‘short’ channels with 16-bit registers.

The DMA controller was built using full custom design
for the regular blocks – particularly the register files – with
the control logic being synthesized. The use of the asyn-
chronous circuit synthesis language Balsa [12] in the
description of the non-regular parts of the controller
allowed the design to be re-engineered as the customer’s
demands changed with the minimum of designer effort and
time. During the implementation of the custom-made parts
of the controller the specification for the DMA controller
underwent significant change at least twice. Each time large
sections of the 900 line Balsa functional description
changed without incurring large delays in the implementa-
tion of the controller.

The completed DMA controller consists of four main
parts: the MARBLE bus interfaces, the synchronous
peripheral interface (SPI), a large block of standard cells
and a number of small, custom-made register blocks (logi-
cally part of the DMA registers unit in figure 7).

7.1. DMA/MARBLE Interfaces

The DMA controller presents two interfaces to MAR-
BLE: a target interface through which the controller is pro-
grammed and interrogated by the processor and an initiator
interface through which the controller performs its periph-
eral data and memory transfers. The data being transferred
between devices is held in the MARBLE initiator interface
while in transit giving ‘store and forward’ DMA operation.
For each DMA transfer the transfer engine must perform
two bus transactions, a read followed by a write.

7.2. The DMA Synchronous Peripheral Interface

In a completely asynchronous environment arbiters a
needed to select between unsynchronised incoming DM
requests. In AMULET3i the peripherals are synchrono
and so provide clock-synchronised DMA requests. Whe
requests arrive synchronised to a clock, arbitration is n
only unnecessary, it is unwise; the likelihood of an arbit
signal becoming metastable requiring a possible lengt
resolution is increased if all the input signals are presen
shortly after synchronisation. For this reason it was decid
to implement the SPI using synchronous techniques.

The SPI controls the mapping of 16 incoming synchr
nous peripheral requests onto the DMA controller chann
and the filtering out of requests for disabled channels. F
this reason the channel enable and request number to ch
nel number mappings for all channels are stored in the S
along with a global ‘fake request’ register which allows th
SPI to be tested by introducing software generated reque
at the front of the request to channel mapping block. T
SPI’s registers can be programmed by the asynchron
control across the bidirectional bundle shown in figure 7

The SPI contains not only the channel mapping har
ware but also request state machines for each chan
These state machines allow incoming requests to
latched, for the asynchronous control in the DMA registe
unit to be able to set and reset requests (setting reques
used to trigger channels which are free running, resetting
clear requests between transfers). The state machines e
tively act as modulo-three saturating counters which a
incremented each time a new request is received and de
mented by the DMA registers control each time a ne
transfer is issued. This counter allows a new DMA reque
to be issued by a peripheral as soon as a previous req
has begun to be acted upon. In this way a peripheral wh
is read by a DMA transfer need not wait for the whole tran
fer to be completed before requesting a second transfer a
combined with the essentially synchronous nature of t
SPI, allows the use of DMA requests without explic
acknowledgements (the memory access to the reques
peripheral can be used as an implicit acknowledgeme
simplifying the design of the synchronous peripherals.

The processed requests from the request state mach
are bundled together and presented to the transfer engin
a single word on which a static prioritisation scheme
applied. Only 22 of the 32 DMA channels have request-t
channel mappings present in the SPI. The remaining
channels provide ‘chain only’ transfer functionality, trans
fers on these being initiated by a completed transfer
another channel. The SPI is implemented as a block of
stripes (one per request capable channel) of both cust
and standard cells and occupies around 15% of the to
area of the DMA controller.

Transfer
engine

Target

DMA
registers

Transfer
engine

MARBLE

DMArq[n]

MARBLE domain

Arbitration

async. control

Address

Data

AddressData

clocked
island

self timed
region

DMA SPI
(sync control)

request reset

Channel Requests

DMAirq/DMAfiq

DMA controller

Client Requests

Initiator

Address Data

SOCB clock

Figure 7: DMA controller structure

ol,
s
its
the

;

d
are

are
PI
as-
as
el
.

to
er.
a
sed
-

is
s-

ni-
7.3. The DMA Standard Cell Blocks

The standard cell block dominates the DMA controller
occupying nearly 50% of its total area. This block contains
the initial decoding and control for the register blocks,
some of the MARBLE interfacing glue, the SPI top level
control, a request prioritisation system based on a synchro-
nously presented vector of channel requests from the SPI,
the DMA registers asynchronous control and the transfer
engine. The DMA registers’ control and the transfer engine
make up the largest part of the standard cell block as they
are made from compiled Balsa descriptions of the overall
DMA controller’s main operations: the coordination of
DMA registers access, register value incrementers, end-of-
transfer test logic for transfer addresses and the transfer
engine which actually initiates DMA transfers on the bus.
The transfer engine is responsible for reacting to channel
requests received from the SPI, requesting register values
from the DMA registers’ control for transfers and control-
ling the initiator interface through which transfers are per-
formed.

7.4. The DMA Register Blocks

The DMA register blocks contain channel address,
count and control data totalling around 2000 bits. They can
be accessed via the MARBLE target interface for program-
ming purposes and by the transfer engine by arbitrated
access through the asynchronous standard cell control
block coded in Balsa. The blocks were constructed from
full custom register and decoder cells in a similar manner
to the register bank in the processor core. Each register
block corresponds to a particular channel register type and
is indexed by channel number. They each provide a single
read/write interface to the standard cell block allowing all
the registers for a single channel to be read or written in one
operation. A typical transfer operation would access a
channel’s registers twice, once to read addresses and count
values for a channel and a second time to update the regis-
ters with those incremented address and count values.

There are 7 separate register blocks in the DMA control-
ler. These can be seen in figure 10 as the 3 slim blocks on
the left of the DMA controller, the 3 larger blocks at the bot-
tom of it and the similarly sized block to the right of the
controller. Each block corresponds to different set of regis-
ters for those channels which include that register type. The
slim blocks contain the upper 16 bits of the source/destina-
tion addresses and count registers for the 4 ‘long’ (full
memory range). The larger 3 blocks contain the lower 16
bits of the addresses and the common control register bits.
The remaining block contains the count registers and
remaining control bits for the 22 channels which are capa-
bly of receiving requests from the SPI.

7.5. Designing with Balsa

Balsa was used to implement the register bank contr
transfer engine and initiator interface. Each block wa
described by a single Balsa process communicating with
neighbours using handshake channels. For example,
main loop in the transfer engine is:

loop
ChannelReq := {0, false} || CountEqZero := false;
– read DMA request vector

select PReq then
– priority encode, chan 0 has highest priority
if PReq[0] then ChannelReq := {0, true}
else if PReq[1] then ChannelReq := {1, true}
else if PReq[2] then ChannelReq := {2, true}
…

if ChannelReq.dotfr then
PerformTransfer ();
– while we are asked to chain
while RegReadData.usechain

and RegReadData.genable then
ChannelReq := {RegReadData.nextchan, true}
PerformTransfer ()
end end– while and if

end– select
end– loop

The initialisation of the variables ChannelReq an
CountEqZero can be seen in the above example. They
followed by aselect PReq then … endstatement within
which values on the channel PReq (Peripheral Request)
visible. The PReq channel is the channel on which the S
request vector is received by the transfer engine. The c
cadingif statement involving the value on PReq is used
a priority encoder on incoming requests with the chann
number of the chosen request ending up in ChannelReq

The transfer is performed (or rather communicated
the initiator interface) by the sub-process PerformTransf
The while loop is used to perform the tail transfers in
chain of channels. It is easy to see that chains are compo
of ‘linked lists’ of channels from the way that they are proc
essed.

The initiator interface portion of the transfer engine
the simplest of the Balsa blocks as it simply performs tran
fers on behalf of the transfer engine. The complete defi
tion of the initiator interface is:

procedure DMA_II (
output II_Addr : MARBLEAddr;
input DI : IIData;
– inform control of end of run
output EndOfRun : ChannelNo

ey
by

e
-

be
ded
s-
ci-
n
e
ce

g-
g-

rnal

16
k

he

on
in
a
only

-
a

er-
hat
be

is
tion
me
s
-
nd
e
he
re –

y
a-
es
r
ng
ilt
an
h
ls
) is local variable RegReadData : IIData
begin loop

DI → RegReadData;
– read from Source Device
II_Addr ← {RegReadData.src, Read,

RegReadData.size};
– write to Destination Device
II_Addr ← {RegReadData.dst, Write,

 RegReadData.size};
if RegReadData.endofrun then

EndOfRun← RegReadData.channelno
end

end end– loop and procedure

The channel interface that the process (DMA_II)
presents to other processes can be clearly identified along
with the locally defined variable RegReadData and the loop
of 4 operations. The EndOfRun indication is attached to the
register bank arbitration as a third input (register requests
for the transfer engine and accesses from the target inter-
face being the other two) and is used to signal the end of a
run of transfers by the channel transfer count becoming
zero.

The AMULET3i DMA controller is the first substantial
design to be attempted with Balsa. It is a block with modest
performance requirements constructed in the midst of a
changing specification without occupying designer time
which could be more constructively spent working on the
processor core and memory system. The use of a synthesis
system to meet this need has turned the DMA controller
from a potential millstone into a promising example of an
asynchronous design approach applicable to peripheral
construction.

The required performance of the controller is limited by
the speed of the MARBLE/Synchronous bus Bridge
(MSB). The delivered controller can perform a single trans-
fer in approximately 90 ns (simulated), which is sufficient
to saturate this bridge.

8. External Memory and Test Interfaces

The External Memory Interface (EMI) is based around
the design which was used successfully in AMULET2e [7].
This has been designed to allow direct access to a range of
standard memory devices without the need for any glue
logic. The pin level interface consists of an address bus, a
bidirectional data bus and a range of programmable control
signals to provide strobes and enables to external memory
devices. The supported devices include static RAM and
ROM devices and also conventional DRAM. There is no
support for synchronous DRAM devices and, unlike
AMULET2e, there is no mechanism for hardware refresh
of the DRAM. The EMI contains a simple write buffer

which allows up to five data items to be buffered before th
are written to external memory. Coherency is maintained
delaying read operations until the write buffer is empty.

As AMULET3i is targeted at embedded applications th
EMI provides a simple memory map which allows a rela
tively small number of memory and peripheral devices to
connected. The processor’s 32-bit address space is divi
into eight 512Mbyte regions. Timing and other characteri
tics (such as databus width) for the memory devices asso
ated with each region are controlled by configuratio
registers which are set under program control. With th
exception of the bottom two megabytes of address spa
(reserved for on-chip RAM and ROM) and the top 16 me
abytes (used for on-chip peripherals and configuration re
isters) the whole of the address space is available to exte
devices.

The external data bus supports memory devices of 32,
and 8 bits and the EMI will automatically pack and unpac
data from the processor so that it is the correct width for t
external memory. In the first application of AMULET3i the
requirement is for a system with most of the peripherals
chip and only memory devices off chip. Because of p
count limitations in this application a 16-bit external dat
bus and 20-bit address bus has been implemented and
4 of the 8 possible regions may be used.

8.1. EMI Timing

In order to control the timing of the EMI a calibrated
timing reference is required. In AMULET2e this was pro
vided by allocating two pins on the device and sending
transition out on one pin to be delayed by an external ref
ence delay and then fed back to the other pin to indicate t
a certain time period had passed. This basic delay can
called a number of times to wait for longer periods. This
a reasonable scheme as it minimises power consump
but is somewhat imprecise and, in practice, there was so
difficulty in finding suitable reference delay devices. It i
impractical to use a crystal oscillator in this sort of applica
tion as such circuits require a substantial time to start up a
– if left running continuously – require the interface to b
at least partially synchronous, thus negating some of t
advantages gained from the device’s asynchronous natu
notably the electromagnetic emission characteristics.

AMULET3i addresses the timing reference problem b
implementing the delay on chip. This introduces a calibr
tion problem in that the absolute delay of a chain of gat
will vary according to a number of factors, including (fo
example) the manufacturing conditions and the operati
temperature of the device. To combat this a delay line bu
from a chain of simple gates is used, the length of which c
be controlled by the processor (figure 8). A latch whic
may be written by the processor drives the control signa

ch
ort.
orm
its
ss

r-
be

to
he

r

to
e

in
nd,
he
-
ed
ute
ter

.
es

ld
ter.
rts

ely
r
t
o
his
ted

gn
r is
is

d
ort
ata
the
T3
lso
nals
-
be
L, M and R. Setting these three signals high causes the out-
puts of the C gates to go high and the delay line then
presents its minimum delay. Setting the control signals low
drives the C gates low and the delay is them maximised.
From either of these states writing a sequence of walking
zeros or ones onto L, M and R allows the length of the delay
to be incremented or decremented one stage at a a time. The
delay line has 54 stages each of which has a delay of
approximately 250 ps (typical silicon). Thus the basic delay
can range up to 31.5 ns. To extend the range of the delay
line a prescaler can multiply the delay by 1, 2, 4 or 8 to give
the basic timing unit (Tref) which is used by the EMI. Tim-
ing parameters for memory devices in each region are given
in terms of this timing unit. For example, the write strobe
width for a static RAM can be specified to be 1, 2, 3 or 4
Tref. The logic which implements theTref timing imposes
various overheads so that the minimumTref which can be
specified is around 5.0 ns and the maximum around 120 ns.
There are testability issues arising from this circuit and
additional hardware is incorporated to address these prob-
lems.

Keeping the delay line internal reduces electromagnetic
emissions and having it adjustable in software allows more
flexibility than was afforded with AMULET2e. To support
this the output of the delay line can be routed to a 16-bit
binary counter which is readable by the processor. The
delay line can be configured to free run so the counter can
then be used in conjunction with a reliable timing reference
(such as a crystal) to calibrate it. Variations in operating
conditions of the device will have an effect on the timing the
delay line and so any calibration software will have to be
written with this in mind, although effects such as changes
in temperature happen relatively slowly and should be easy
to compensate for.

8.2. Test interface port

Because AMULET3i is a relatively complex device,
production testing is a considerable task. The fact that all of
the major units on the device are connected via the MAR-
BLE bus affords an opportunity to rationalise the testing

procedure. This is achieved by having a test mode in whi
the pins allocated to the EMI are used to create a test p
The data bus and 16 bits of the address bus are used to f
a 32-bit bidirectional test port and three other address b
are used to specify a test function. The remaining addre
input forms a test clock input which is used to initiate va
ious test functions. An asynchronous interface would
inappropriate here as current chip testers are not able
interface in this manner. Instead a clock is used and t
tester run at an appropriate rate.

The test port connects internally to a MARBLE initiato
which allows it to have read/write access to all MARBLE
peripherals. This allows many functions of these devices
be tested directly. Of particular interest is the fact that th
on-chip RAM may be loaded via the test interface. When
test mode the normal bootstrap mechanism is ignored a
following reset, the processor fetches instructions from t
on-chip RAM. This allows very powerful self-test mecha
nisms whereby a test program of up to 8 Kbytes is load
via the test port and the processor is then allowed to exec
that program. The processor is independent from the tes
(including clocking!) at this point and will run at full speed
This greatly reduces tester time for testing on-chip devic
(particularly the RAM and ROM) and allows much more
complex test algorithms to be contemplated than wou
have been possible with just a basic interface to the tes
Even more time may be saved by filling any unused pa
of the ROM with test routines which could be called from
a short, downloaded program.

Most parts of the system are accessible and relativ
easy to test. However the CAM-RAM structure required fo
the Branch Target Buffer (BTB) is particularly hard to tes
in normal operation. Access for test is provided by tw
additional test buses and a number of test registers. T
makes the BTB accessible to the test program, but isola
from the remainder of the prefetch unit which will be
required for the execution of the test program. The desi
is such that tests can be conducted whilst the processo
running (albeit with branch prediction disabled) so that th
can be included in self-test software.

9. On-chip debug support

The AMULET3i subsystem includes breakpoint an
watchpoint hardware which can cause an interrupt or ab
to be generated whenever a particular instruction or d
access occurs. The debug registers specify values for
address, data and control signals on each of the AMULE
instruction memory and data memory interfaces and a
specify mask values which cause any subset of these sig
to be ignored in the matching logic. This allows, for exam
ple, ranges of addresses and particular data fields to
tested.

Figure 8: Controllable delay circuit

In

Out

R

L
M

1

0

1

0

1

0

1

0

C- + C- + C- + C- +

ed

b-
late

d

ath
ut
n
nd

t
%.
rn
cu-
a
or-
o

ust
me
n
if-

ata
ed
ed

in
-

bus.
n
that
y
ue
to

h

er
m-
r-

nt
nd-
d-

M
-

The debug registers are implemented as serial scan
chains, one for the instruction memory interface and one for
the data memory interface. They are loaded by software via
8-bit control registers: the BreakPoint Control register
(BPC) and the WatchPoint Control register (WPC). Each
debug chain is organized in three sections, as illustrated in
figure 9.

Once the appropriate scan chain has been loaded and
enabled, execution of application code can continue unim-
peded until the interface state matches (under its mask) that
loaded into the scan chain. When a match is detected either
an (imprecise) interrupt or a (precise) memory fault can be
generated. In either case control is returned to the system
software and the processor and system state can be exam-
ined by software.

This does not give the debug capability of the Embed-
dedICE macrocell used by clocked ARM cores [13] which
is fully independent of any resident code, but it provides a
basic debug facility at low cost; this form of debugging has
been used on DRACO’s (synchronous) predecessors with
positive results. The AMULET3 processor core has been
designed to include the full ARM debug functionality and
it is possible that this will be included in a future device.

10. Performance figures

The current AMULET3i macrocell occupies approxi-
mately one half of the DRACO chip (figure 10) which is
implemented in a VLSI Technology Inc. 0.35µm 3-layer
metal ASIC process; it measures about 7.0x 3.5 mm. The
transistor counts of the major blocks are:

• AMULET3 – 113 000
• RAM (total) – 504 000
• DMA controller – 70 000
• EMI – 26 000

These, together with the smaller logic elements, give a
total of about 800 000 transistors in the asynchronous sub-
system; the synchronous peripherals contribute about
another million transistors.

Extensive simulation has been employed on extract
layout. The simulator most used was TimeMill from EPIC
Design Technology, Inc. which was used to simulate su
systems as they were commissioned and is able to simu
extracted layout for the whole AMULET3i system. All the
simulations in the following sections were performe
assuming ‘typical’ silicon parameters at 3.3 V, 25°C.

10.1. Processor

Simulation suggests that the processor’s execution p
will consume most data processing instructions at abo
120 MIPS. There is some variation in this due to instructio
classes, so that MOV instructions are somewhat faster a
ADD instructions a little slower. Including a series shif
with these instructions stretches the cycle by around 35
Multiplication, which uses 32-bit operands and can retu
a 64-bit result, takes about 30 ns although an optional ac
mulation can be included with no time penalty. Dat
dependencies between instructions are resolved by f
warding from the reorder buffer and – apparently – incur n
additional cost.

Branches execute at a similar rate, although they m
interrupt the (asynchronous) prefetch unit so there is so
inherent uncertainty in their timings. Branch predictio
alleviates some of this (although, unfortunately, not sign
icantly in the Dhrystone benchmark).

The longest processor stalls are caused by external d
references. This is due to the longer latency and limit
bandwidth available on the local data bus and is describ
below.

10.2. Local Bus

The quad word instruction and data buffers contained
the on-chip RAM have a significant impact on the perform
ance of instruction and data accesses across the local
An instruction access that ‘hits’ the instruction buffer ca
be returned in around 9.5 ns, whereas an access
‘misses’ will take 12 ns (with some variation as physicall
distant blocks are fractionally slower than nearby ones d
to the length of the handshake wires). This averages
about 95 Mwords/s although it will be faster in code wit
much locality and slower if many jumps are taken.

For data reads both the hit and miss cycle are slow
(13 ns and 16 ns respectively) due to the increased co
plexity of the local data bus. In the case of single load ope
ations the added latency is the most importa
consideration; this imposes about 8.75 ns/10.5 ns depe
ing on the buffer hit/miss status. In block transfers ban
width is more important; a typical LDM (LoaD Multiple)
instruction can achieve around 70-75 Mwords/s, ST
(STore Multiple) is 3-4 Mwords/s slower. The asynchro

Figure 9: Debug hardware structure

AMULET3
core

BPC WPC

ad
dr

es
s

da
ta

da
ta

ad
dr

es
s

control control

in
st

ru
ct

io
ns

da
ta

31 31 31 31

0 0 0 0

the
m

Hz
s),

n
get

of
ra-
nous operation of the local buses allows these performance
variations to be exploited by the typically faster AMULET3
processor.

10.3. MARBLE

Simulation results show MARBLE cycling at up to
85 MHz when more than one initiator is active. Saturation
cannot be achieved by one initiator alone because of the sin-
gle-outstanding command constraint, the implementation
of which means that there is a delay (for arbitration)

between the start of a response cycle and the start of
subsequent command cycle. Even so, the maximu
throughput for one initiator has been measured as 55 M
(CPU data-port performing a series of ROM accesse
including the access time for the ROM of 6 ns. Read latency
starting from an empty bus is 15 ns (or 13 ns if arbitratio
is commenced early) plus the access time of the tar
peripheral.

Bus arbitration takes approximately 0.5 ns per stage
the arbiter tree (two stages for command channel arbit
tion, three stages for data channel arbitration).

RAM

RAM RAM RAM RAM

RAMRAMRAM

EMIDMAC CTRL

AMULET3

ROM

Telecommunications peripherals

Figure 10: DRACO layout

ing
to
ilt

-
M
e
S
n

s
sor
d
ide
k-

the
d-
de
the

e-
d
n-
es

g’
E

is

e
h

of
y
red
ple
a-
ce

not
se.
er
cu-
is
eir
ted
l-
her
on
10.4. System

To assess the performance of the whole system some
metric which averages out many of the interactions and
dependencies is required. The Dhrystone 2.1 benchmark
has been used because it is a familiar standard which allows
comparison with other devices. This does not measure
MARBLE performance, but it does exhibit a ‘typical’
instruction mix and takes into account interactions between
instructions and the instruction and data local bus speeds.
This program can also be compiled for both the ARM and
Thumb instruction sets so the performance of these can be
compared. It is already known that Dhrystone exhibits atyp-
ical branch behaviour and so the BTB gives less benefit
than in code which iterates more.

The system achieves about 176 kDhrystones/s – which
translates to 100 Dhrystone MIPS – when running code
compiled into the ARM instruction set. During this process
the system power averages 215 mW within the AMULET3i
system (of which 130 mW is within the processor core);
this yields about 465 MIPS/W for the system (or
780 MIPS/W for the processor alone).

Running Thumb code is somewhat slower as there are
more instructions to execute. This gives around
125 kDhrystones/s (71 MIPS), which is around 30% slower
than the ARM code. This is according to expectation; ARM
Ltd. estimate that the Thumb instruction overhead as 40%
but the AMULET3 processor is not throttled by instruction
fetch bandwidth (although the pipeline/prefetch depth is
increased).

For comparison an ARM9 using the same instruction set
and manufactured on the same process may be clocked at
up to 120 MHz, at which speed it yields 133 Dhrystone
MIPS. Although this number will be derated to account for
elevated temperature (and, possibly, voltage fluctuations)
the comparison is fair because AMULET3i will accommo-
date such fluctuations; the typical operating conditions of
ARM-based products are those of devices such as cellular
telephones, which do not operate at 70°C! The ARM9 proc-
essor core achieves 800 MIPS/W. Both processor cores
occupy just over 3mm2 on the same 0.35µm process; it is
believed that AMULET3 is slightly smaller but an exact
like-for-like comparison is difficult.

This compiler used has not been optimised for
AMULET3 although it has been adjusted to allow for a 5-
stage instruction pipeline. Using an earlier version of the
compiler intended for a 3-stage pipeline gives a system per-
formance about 2% lower; it is believed that this is chiefly
due to the increased load latency allowance.

In comparison with other asynchronous microproces-
sors, AMULET2e achieved about 42 Dhrystone MIPS and
TITAC-2 [14] about 52 Dhrystone MIPS. The Caltech

asynchronous MIPS R3000 [15] was reported as achiev
170 native MIPS but we are unsure how this translates in
Dhrystone MIPS. Note that all these processors were bu
on different (older) 0.5µm or 0.6µm technologies.

The peak MIPS numbers for AMULET3i are still some
what uncertain. However it has been observed to run AR
instructions at a rate of around 105 MIPS (limited by th
prefetch bandwidth) and Thumb instructions at 110 MIP
(limited by the Thumb expansion stage, which slows dow
when instruction translation is required).

11. Summary of novel features

AMULET3i is wholly asynchronous. This means that it
different subsystems run at different rates. In the proces
pipeline this simply means the traffic flow is speed limite
by the slowest stage (and the pipeline elasticity), but outs
the simple pipeline structure traffic is passing and overta
ing according to less rigorous constraints.

The speeds of the buses are quite markedly different;
local RAM instruction bus has the highest required ban
width and is the fastest of the buses. Trade-offs were ma
which reduced the speed of local data accesses and
bandwidth on this bus is about 25% lower. This is not rel
vant to the functionality of the system, although it woul
probably have forced an overall speed reduction in a sy
chronous environment. The speed of local RAM access
also varies by about 20% due to the limited ‘cachein
implemented. The access speed drops further if MARBL
is used.

Another vaunted benefit of asynchronous systems
their modularity. Within AMULET3i several modules
(processor module, ROM, DMA controller, EMI, etc.) wer
designed independently and ‘bolted on’ to MARBLE; eac
has its own design style and performance criteria.

The entire design has been produced with the intent
minimising power consumption. This includes man
detailed features: for example tristate enables onto sha
buses are non-overlapping, a simple and familiar exam
of self-timing. However there are also a few novel mech
nisms which have been introduced in order to redu
unnecessary bus activity.

Because of its asynchronous nature the pipeline can
discard erroneously prefetched instructions en mas
Instead it uses a ‘colouring’ mechanism [16] as in earli
AMULET processors. The discard takes place at the exe
tion stage, which means that instructions must flow to th
point first, in the process being decoded and acquiring th
register operands. To alleviate much of the associa
power wastage AMULET3 counterflows the ‘branch co
our’ back to the decode stage (one stage earlier) and furt
discarding takes place here. This counterflow is arbitrati

i-

is-

the

m
e
nt

s
!)
).

ll
,

-

r-

-
,

b-

-
.

nd
d
.

P.

7,

r
-

n
y
b-

,

rs”
0-
free and uses the local synchronisation between stages,
which means that it ‘leapfrogs’ the instruction following
the branch, but is effective after that. Simulation reveals that
this has no great speed benefit – other pipeline stages still
limit performance – but it removes typically one and some-
times two instructions before their register values are read,
with a consequent power reduction. However the real sig-
nificance is apparent when running Thumb code, which
effectively doubles the prefetch buffer size, typically dis-
carding at least three instructions early.

Other notable features to reduce bus activity act at a
more global level. The halt mechanism and the division of
RAM into sub-blocks have been employed before, includ-
ing in AMULET2e; the predicted branch fetch suppression
described in section 3 is new to this design and should prove
of significant power (and some performance) benefit.

Lastly, whilst not a specific asynchronous advantage, the
inclusion of a flexible DMA controller provides a major
efficiency gain when moving data amongst peripherals. By
removing the need for the processor to perform many sim-
ple data transfers the inclusion of this unit should provide a
significant power reduction at system level.

12. Conclusions

AMULET3i is one of the most complex asynchronous
devices yet produced. It demonstrates that an asynchronous
implementation can compete directly with a synchronous
implementation of the same instruction sets in perform-
ance, area and power consumption. Although AMULET3
does not demonstrably beat ARM9 in performance or
power consumption it must be remembered that the devel-
opment effort and experience available within a university
is significantly less than in a world leading microprocessor
design company. The asynchronous implementation also
has unique advantages in terms of power management –
especially in embedded systems – and, judging from previ-
ous experience with AMULET2 [8], electromagnetic emis-
sion.

As the basis of a commercial device the issue of produc-
tion test has been addressed; indeed it may be that self-
timed self-test can even reduce the time-on-tester in pro-
duction as a single attempt at running the code will indicate
if the device is functional and give a speed measurement.

Modularity has often been cited as an advantage of asyn-
chronous circuits. Within this design this has been
exploited to include units which have used different design
processes and styles. It is intended to exploit this further in
the future to allow incremental change to the system and the
development of more functional modules. AMULET3i is
the first commercial asynchronous ARM; it is not intended
to be the last.

13. Acknowledgments

The development of AMULET3 has been support pr
marily within the EU-funded OMI-DE2 and OMI-ATOM
projects, and authors are grateful to the European Comm
sion for their continuing support for this work. ARM Lim-
ited coordinated these projects; their support, and that of
other project partners, is also acknowledged.

Aspects of the work have benefited from support fro
the UK government through the EPSRC, particularly in th
form of PhD studentships and the tools developme
funded under ROPA grant GR/K61913.

The VLSI design work has leant heavily on CAD tool
from Compass Design Automation (now part of Avant
and EPIC Design Technology, Inc. (now part of Synopsys

14. References

[1] Bainbridge, W.J., Furber, S.B., “Asynchronous Macroce
Interconnect using MARBLE” Proc. Async’98, San Diego
April 1998 pp. 122-132

[2] Garside, J.D., Furber, S.B., Chung, S-H. “AMULET3
Revealed” Proc. Async ’99, Barcelona, April 1999 pp. 51
59.

[3] Jaggar, D., “Advanced RISC Machines Architecture Refe
ence Manual”, Prentice Hall, 1996. ISBN 0-13-736299-4

[4] Segars, S., “The ARM9 Family - High Performance Micro
processors for Embedded Applications”, Proc. ICCD’98
Austin, October 1998, pp. 230-235.

[5] Segars, S., Clarke and Goudge, “Embedded Control Pro
lems, Thumb, and the ARM7TDMI”, IEEE Micro, 15 (5),
October 1995, pp. 22-30.

[6] Gilbert, D.A., Garside, J.D. “A Result Forwarding Mecha
nism for Asynchronous Pipelined Systems”, Proc
Async’97, Eindhoven, April 1997, pp. 2-11.

[7] Furber, S.B., Garside, J.D., Temple, S., Liu, J., Day, P. a
Paver, N.C., “AMULET2e: An Asynchronous Embedde
Controller”, Proc. Async’97, Eindhoven, April 1997, pp
290-299.

[8] Furber, S.B., Garside, J.D., Riocreux, P., Temple, S., Day,
Liu, J., Paver, N.C. “AMULET2e: An Asynchronous
Embedded Controller” Proceedings of the IEEE, volume 8
number 2 (February 1999), pp. 243-256 ISSN 0018-9219

[9] York, R. “Branch Prediction Strategies for Low Powe
Microprocessor Design” M.Sc. Thesis, University of Man
chester 1994

[10] Chung, S-H., “The Design of a Branch Target Cache for a
Asynchronous Microprocessor”, MPhil Thesis, Universit
of Manchester, 1998 (http://www.cs.man.ac.uk/amulet/pu
lications/thesis/chung98_mphil.html)

[11] Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno
L., Yakovlev, A. “Petrify: a tool for manipulating concurrent
specifications and synthesis of asynchronous controlle
IEICE Transactions on Information and Systems, Vol. E8
D, No. 3, March 1997, pp. 315-325.

,
f
th

-
-

[12] Bardsley, A. “Balsa: An Asynchronous Circuit Synthesis
System”, MPhil Thesis, University of Manchester, 1998
(http://www.cs.man.ac.uk/amulet/publications/thesis/
bardsley98_mphil.html)

[13] Furber, S.B., “ARM System Architecture”, Addison Wesley
Longman, 1996. ISBN 0-201-40352-8.

[14] Takamura, A.,Kuwako M., Imai, M., Fujii, T., Ozaw, M.,
Fukasaku, I., Ueno, Y. Nanya, T. “TITAC-2: An Asynchro-
nous 32-Bit Microprocessor Based on Scalable-Delay Insen-

sitive Model” Proc. ICCD’97, 288-294, October 1997.
[15] Martin, A.J., Lines, A., Manohar, R., Nystrom, M., Penzes

P., Southworth, R., Cummings, U., Lee, T.K. “The Design o
an Asynchronous MIPS R3000 Microprocessor” Proc. 17
Conf. on Advanced Research in VLSI, September 1997.

[16] Paver, N.C., “The Design and Implementation of an Asyn
chronous Microprocessor”, PhD Thesis, University of Man
chester, June 1994.

	AMULET3i – an Asynchronous System-on-Chip
	J.D. Garside, W.J. Bainbridge, A. Bardsley, D.M. Clark, D.A. Edwards, S.B. Furber, J. Liu1, D.W. ...
	Dept. of Computer Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK. 1Co...
	Abstract
	1.� Introduction
	2.� AMULET3i
	Figure 1: AMULET3i asynchronous subsystem

	3.� AMULET3 microprocessor core
	Figure 2: AMULET3 core organisation

	4.� Local RAM
	Figure 3: Memory block organisation
	Figure 4: Memory port organisation

	5.� MARBLE
	Figure 5: MARBLE control flow
	Figure 6: MARBLE interface locations

	6.� MARBLE/Synchronous bus Bridge (MSB)
	7.� DMA controller
	Figure 7: DMA controller structure
	7.1.� DMA/MARBLE Interfaces
	7.2.� The DMA Synchronous Peripheral Interface
	7.3.� The DMA Standard Cell Blocks
	7.4.� The DMA Register Blocks
	7.5.� Designing with Balsa

	8.� External Memory and Test Interfaces
	8.1.� EMI Timing
	Figure 8: Controllable delay circuit

	8.2.� Test interface port

	9.� On-chip debug support
	Figure 9: Debug hardware structure

	10.� Performance figures
	Figure 10: DRACO layout
	10.1.� Processor
	10.2.� Local Bus
	10.3.� MARBLE
	10.4.� System

	11.� Summary of novel features
	12.� Conclusions
	13.� Acknowledgments
	14.� References
	[1] Bainbridge, W.J., Furber, S.B., “Asynchronous Macrocell Interconnect using MARBLE” Proc. Asyn...
	[2] Garside, J.D., Furber, S.B., Chung, S-H. “AMULET3 Revealed” Proc. Async ’99, Barcelona, April...
	[3] Jaggar, D., “Advanced RISC Machines Architecture Reference Manual”, Prentice Hall, 1996. ISBN...
	[4] Segars, S., “The ARM9 Family - High Performance Microprocessors for Embedded Applications”, P...
	[5] Segars, S., Clarke and Goudge, “Embedded Control Problems, Thumb, and the ARM7TDMI”, IEEE Mic...
	[6] Gilbert, D.A., Garside, J.D. “A Result Forwarding Mechanism for Asynchronous Pipelined System...
	[7] Furber, S.B., Garside, J.D., Temple, S., Liu, J., Day, P. and Paver, N.C., “AMULET2e: An Asyn...
	[8] Furber, S.B., Garside, J.D., Riocreux, P., Temple, S., Day, P. Liu, J., Paver, N.C. “AMULET2e...
	[9] York, R. “Branch Prediction Strategies for Low Power Microprocessor Design” M.Sc. Thesis, Uni...
	[10] Chung, S-H., “The Design of a Branch Target Cache for an Asynchronous Microprocessor”, MPhil...
	[11] Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A. “Petrify: a tool ...
	[12] Bardsley, A. “Balsa: An Asynchronous Circuit Synthesis System”, MPhil Thesis, University of ...
	[13] Furber, S.B., “ARM System Architecture”, Addison Wesley Longman, 1996. ISBN 0-201-40352-8.
	[14] Takamura, A.,Kuwako M., Imai, M., Fujii, T., Ozaw, M., Fukasaku, I., Ueno, Y. Nanya, T. “TIT...
	[15] Martin, A.J., Lines, A., Manohar, R., Nystrom, M., Penzes, P., Southworth, R., Cummings, U.,...
	[16] Paver, N.C., “The Design and Implementation of an Asynchronous Microprocessor”, PhD Thesis, ...

