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Abstract. Recently, there has been a resurgence of interest in asynchronous design
techniques. Asynchronous logic provides a solution to the clock-related timing prob-
lems of synchronous systems and can offer higher performance and lower power
consumption. This paper presents an approach for modeling and simulating asyn-
chronous computer architectures using occam as a description language.

1. Introduction

Conventional synchronous architectures use design techniques based on global clocking whereby
all the functional units operate in lockstep under the control of a central clock. As VLSI tech-
nology advances and systems become larger, faster and more complex, timing problems be-
come increasingly severe and account for more and more of the design and debugging ex-
pense. Increased clock speeds make on-chip clock skew significant and interchip skew a ma-
jor problem. One solution to clock-related timing problems is to use asynchronous design
techniques without any global synchronization signals to control the rate at which different
elements operate [20]. Another potential advantage of asynchronous logic, which recently
has led to a resurgence of interest in its use, is lower power consumption.

In order to investigate the potential of asynchronous logic for low power systems, the
AMULET group (University of Manchester, UK) has designed and implemented a completely
asynchronous version of the ARM RISC processor [8] as part of the ESPRIT OMI-MAP (Open
Microprocessor systems Initiative-Microprocessor Architecture Project).

The absence of a global synchronization scheme introduces a problem unique to the asyn-
chronous world, namely the problem of deadlocks. The concurrent, nondeterministic nature
of asynchronous architectures makes their verification particularly difficult. In this case simu-
lation can be an invaluable aid. It is extremely important to have a methodology that provides
for the rapid production of simulation models and their fast execution so that possible dead-
locks in the asynchronous design are detected at an early stage of the design process. This
paper describes such a methodology.

2. Asynchronous logic

An asynchronous system may be designed as a set of functional modules each operating at its
own rate and cooperating through communication. The communication protocol synchronizes
the modules involved in the communication and allows data to be shared between them. There
exist many different approaches for designing asynchronous systems [10]. Delay-insensitive
designs make no assumptions about delays within the system; any gate or interconnection
may take an arbitrary time to propagate a signal. Speed-independent systems are tolerable
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Figure 1: Event processing blocks
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to variations in gate speeds but assume instantaneous transmission along wires. Regarding
the communication protocol, a system may use dual rail encoding or data bundling; in dual
rail encoding each boolean is implemented by two wires, something that allows the value and
the timing information to to be communicated for each data bit. Bundled data has one wire
for each bit and a separate wire to indicate the timing. Furthermore an asynchronous circuit
may use level encoding, where different logic values are represented by different voltages, or
transition signaling (referred to as event signaling) where only changes (“events”) in the level
(and not the actual level) of signals are taken into account. Figure 1 shows some of the basic
event processing blocks that can be used to build control circuits for transition signaling.

In his influential 1989 Turing Award lecture, Sutherland presented an asynchronous de-
sign approach called “Micropipelines” [22]. A micropipeline is a simple data processing pipeline
whose stages operate asynchronously. This approach uses bundled data with an event-signaled
handshake protocol. Figure 2 shows the interface between a sender and a receiver. The sender
puts a data bundle on the data wires and then produces a transition on the Request wire; once
the data has been used by the receiver, a transition is produced by the receiver on the Acknowl-
edge wire. This sequence of events is presented in figure 3. Once this protocol sequence is
enforced, a micropipeline is delay insensitive.

2.1. The AMULET1 processor

Following Sutherland’s micropipelining approach, the AMULET group have designed and
implemented an asynchronous version of the ARM processor, namely the AMULET1. Fig-
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ure 4 shows the top level interface of the AMULET1. The processor produces output bundles
consisting of memory addresses, output data and control information; in response, the memory
sends bundles of input data back to the processor (the actual implementation is more compli-
cated for there is an MMU unit to handle memory faults). The internal organisation of the
processor is depicted in figure 5[8]; all the separate functional modules are implemented as
micropipelines.

3. Hazards of asynchronous architectures

The concurrent nature of such systems along with the absence of a global clock for synchro-
nization introduces a problem, common in asynchronous, parallel structures, namely the prob-
lem of deadlocks. Deadlocks are a high-level issue of the design, and occur when at least one
functional module becomes indefinitely blocked as a result of a particular sequence of events
in the system.

In the general case, the sequence of events in an asynchronous architecture is nondeter-
ministic. This is mainly due to the behaviour of the arbiters and the delay-insensitivity of the
system. An arbiter will serve request events according to their arrival order. If two requests ar-
rive at the same time, the choice will be nondeterministic; the arbiter can reach a metastable
state in which case a decision will take an arbitrary, nondeterministic amount of time. The
delay insensitivity of the hardware allows variable delays within the different functional ele-
ments, which will affect the order in which independent events arrive at the arbiter. The correct
functionality of the asynchronous architecture should not depend on the ordering of indepen-
dent streams of events in the system; a correct design should be deadlock free for all possible
combinations of events.

Verifying that an asynchronous design is deadlock free is not a trivial issue [23]. Existing
formal techniques are not mature enough to tackle systems of the complexity of computer
architectures, although research is ongoing in this area [24].
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In practice, it is generally possible to identify, and thus avoid, design desisions that are
susceptible to deadlock [21]. However the complexity and the nondeterministic behaviour of
the designs do not allow intuition to guarantee the correctness of a design. Simulation can be
an invaluable aid for this problem. The approach is to run the simulation model of the archi-
tecture more than once, each time with a different set of delays in the component modules.
Changing the internal delays of the functional elements changes the order in which events are
produced. Consequently, the order in which events from different data streams arrive at the
arbiters changes. Since delays dictate event orderings, following this approach the design can
be tested for possible deadlocks. The degree of confidence that a design is deadlock free is
proportional to the number of runs of the simulation model. The speed of simulation here
plays a crucial role; a fast simulator, would allow the delay insensitivity of the architecture to
be rigorously and extensively tested for a large number of possible combinations of events.

This technique requires a modeling approach that would allow the rapid production of
executable models of the architecture at a high-level so that possible deadlocks are located at
an early stage of the design process.

4. Simulation of asynchronous architectures

Assuming a correct implementation of the communication protocol, at the Register Trans-
fer (or higher) level, an asynchronous architecture can be viewed as a network of concurrent,
communicating modules. The communication is synchronous and unbuffered; a sender and
a receiver must wait for each other to reach a common control state before they physically
exchange data via wires, which are memoryless media. The modules are data-driven; each
module will start computation when data is available on its input wires, and will signal when
the result has been computed.

Several simulation techniques, both sequential [5] and parallel [7] have been developed.



Distributed, event driven, simulation provides a natural and efficient way for simulating asyn-
chronous, concurrent, process-based systems [6]. Using such an approach the simulation model
consists of a network (topologically identical to the physical system) of concurrent logical
processes that communicate with each other by exchanging timestamped messages. This ap-
proach exploits the parallelism of the physical system allowing the concurrent execution of
events at different points in simulated time, thus yielding high performance.

However, this technique introduces synchronization problems related to the correct mod-
eling of time. The fundamental problem is guaranteeing that causality constrains are not vio-
lated. To achieve this, the simulation model must ensure that each logical process consumes
and processes events in increasing timestamp order. Several mechanisms have been devel-
oped to address the problem of modeling time correctly. These mechanisms broadly fall into
two categories: conservative [3]and optimistic [15].

These attempts to maintain absolute timing precision increase the complexity of the sim-
ulation model and reduce its performance. Indeed, the accurate time modeling would require
the implementation of sophisticated mechanisms in the model, increasing thus the complexity
of the modeling process. Furthermore, any synchronization would not allow any process to
be temporally more advanced than the slowest independent process in the whole simulator.

The simulation approach proposed in this paper does not attempt to enforce timing accu-
racy. Using a distributed parallel language that supports synchronous unbuffered interprocess
communication, an asynchronous architecture can be modeled as a set of concurrently exe-
cuting processes. Time is not required for synchronization. The processes of the simulation
model are entirely data-driven and self-scheduling and are synchronised by the communica-
tion protocol of the language employed in the same way that the communication protocol im-
plemented in the architecture synchronizes the different functional modules. Each process will
always consume event messages as soon as they become available, and it will always wait for
subsequent messages if the messages it has generated has been successfully forwarded. How-
ever time is still needed to provide an indication of the performance of the design, and since
no mechanism for correct timing modeling is employed, one should expect that the simulation
model has no temporal resemblance to architecture. As explained in later sections this is not
necessarily true.

The proposed approach is appropriate for making simulation models of the architecture
at the Register Transfer (or higher) level. For the modeling of the architecture at lower lev-
els of abstraction no assumptions should be made concerning the communication protocol of
the design; instead, explicit modeling of the protocol to verify its correctness is required. In
the asynchronous circuit, communication occurs over individual wires while message passing
necessarily involves lower level communication for synchronization of the processes involved
and therefore it is inappropriate to describe the behaviour of the system at this level. Message
passing may still be used for the communication of the low-level processes (gates or event
processing elements) but at this level, time is essential for the synchronization and the correct
operation of the simulation model.

CSP [11] provides a natural way for describing the concurrent, nondeterministic behaviour
of asynchronous circuits and several CSP-like notations have been devised for this purpose
[1]. Occam1 [12], a CSP based language, is particularly suitable for implementing asynchronous
architectural simulation models. It supports a distributed, process-based model of computa-
tion where message passing is done over fixed, synchronized and unbuffered channels, and
is ideal for describing pipeline structures. It allows explicit description of parallel as well as
sequential computation. This explicit control of concurrency which extends to the command

1Occam is a registered trademark of INMOS Group of Companies
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  BUNDLE.TYPE message:
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Figure 6: Micropipeline without processing: the register model
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PROC register(CHAN OF BUNDLE Rin,Rout,
              CHAN OF ACK Ackin, Ackout)
  BUNDLE.TYPE message:
  ACK.TYPE Ack:
  SEQ
    Rin?message
    WHILE TRUE
      SEQ
        PAR
          Rout!message
          Ackin!ack
        PAR
          Rin?message
          Ackout?ack
:

c) occam register  model

Figure 7: Micropipeline with processing

level, along with its simple but powerful syntax and “send” and “receive” commands, makes
occam ideal for describing digital systems.

5. The case of micropipelined architectures

Following the approach proposed in the previous section and using occam as a description
language, the production of simulation models for micropipelined systems is straightforward.
Figure 6 shows how the functional modules depicted in figure 2 are modeled assuming that
they are simple registers. The Request and Acknowledge signals are used in the circuit to
synchronise the two registers. In the model, these signals are actually part of the semantics of
occam, therefore no extra channels are required for them. Since the circuit is delay insensitive,
transmission and communication interference is not allowed to happen. The sender will never
produce a second request until the previous request has been acknowledged. Furthermore,
absence of computational interference guarantees that the receiver will always be ready to read
an event on the request signal. The semantics of the ? and ! occam operators accurately model
this behaviour. Figure 7a presents a general case of a micropipe with processing. The sending
register outputs its contents (data and control) onto the data bus and produces a request event.



The control information is used by the control logic to direct the request event to its correct
destination, activating if necessary the data processing elements (DPE) of the pipeline. Data
passes through the DPEs and are either modified or propagated unchanged to the next stage.

This circuit at the Register Transfer level can be modeled as three processes, two for the
registers and one for the control/data logic (figure7b). Since the data are bundled with the re-
quest they may be viewed as “following” the request signal. Therefore only one occam chan-
nel is required for the request/data bundle. The control logic and the DPE may be modeled as
one process, with the DPE being a procedure called by the control process.

The control process in the simulation model decouples the registers, introducing a third
pipeline stage. As the design of the AMULET1 has shown, the number of stages in a pipeline
is directly relevant to the occurrence of deadlocks. If the simulation model is to describe
the architecture accurately, the occam register processes should remain tightly coupled. To
achieve this, an extra channel is required to model the acknowledge event; figure 7c presents
the generic register occam model.

The control logic is inherently concurrent; different parts of the circuit operate concur-
rently while, within each part events take place in a deterministic sequential order, i.e. the
control logic implements a partial ordering of events. The simulation model should have the
same degree of concurrency as the physical circuit. The control logic may be implemented as
a network of communicating processes, with the occam PAR and SEQ commands being used
within each process to implement the partial ordering of events of the circuit. The number of
these processes depends on the degree of modularity and fidelity required in the simulation
model. Channels that are used to transfer between control processes data that are not part of
a request/acknowledge communication protocol should be buffered to prevent deadlock situ-
ations in the simulation model.

Adopting a data-driven approach to model asynchronous architectures, it is essential to
have a mechanism for describing the functionality and the nondeterministic behaviour of ar-
biters. The occam ALT construct, which is based on Dijkstra’s guarded commands [4], pro-
vides for the nondeterministic choice of messages from different channels and therefore may
effectively model the behaviour of an arbiter [13].

5.1. Timing issues

Each occam process of the simulation model has its own local clock variable which advances
as the process consumes and processes timestamped messages. The local clocks advance at
completely different and independent rates. Each process tries to consume messages as fast
as possible and no synchronization mechanism is incorporated into the simulation model to
ensure that time is modeled accurately. In distributed simulations, causality errors may occur
if merge modules consume and process input messages from different channels in nonincreas-
ing timestamp order. In a micropipelined architecture, micropipelines may be merged in one
of the following ways:

� Synchronous merge. A functional module has to wait for all input data to become
available before it starts its operation. This is the case when a Muller-C element is used
for the corresponding request events. In the simulation model, the occam process has
to wait for all input channels to “fire”. The message with the greatest timestamp is used
to advance the local clock variable of the process and therefore the causality principle
is preserved.

� Data dependent merge. The functionality of the system dictates the order in which
messages from different source processes should be consumed and processed. This sit-



a)  Recursive calculation of timestamps within a register process
     (see figure 7c)

PROC synchronise.control.process(CHAN OF BUNDLE In1,In2,Out,
                              CHAN OF ACK Ackin1,Ackin2,Ackout)

  SEQ
    WHILE TRUE
      SEQ
        PAR
          In1?in1.data      --Muller-C element
          In2?in2.data
        process.data(data.delay)
        out.data(timestamp):=max(in1.data(timestamp),
        in2.data(timestamp))+data.delay
        Out!out.data
        Ackout?ack
        ack(timestamp):=ack(timestamp)+ack.delay
        PAR
          Ackin1!ack
          Ackin2!ack
:

c) Timestamps within a synchronising process.

timestamp( )=timestamp(               )=timestamp( ) + d

timestamp( )=timestamp( )=
max(timestamp( ), timestamp( )+d

clock=timestamp( )

d: the propagation delay of the register.

Rout1 Rin1

Routn Ackinn

Rinn Ackoutn 1−

Ackinn

Ackin1

PROC arbiter.control.process(CHAN OF BUNDLE In1,In2,Out,
                         CHAN OF ACK Ackin1,Ackin2,Ackout)

  SEQ
    clock:=0
    WHILE TRUE
      SEQ
        ALT                 --arbiter
          In1?in1.data
            SEQ
              process1.data(data1.delay)
              out.data(timestamp):=max(in1.data(timestamp),
              clock)+data.delay
              Out!out.data
              Ackout?ack
              clock:=ack(timestamp)+ack1.delay
              ack(timestamp):=clock
              Ackin1!ack

          In2?in2.data
            SEQ
              --process in2.data in a similar way
:

d) Timestamps within an arbiter process

PROC single.in.control.process(CHAN OF BUNDLE In,Out,
                              CHAN OF ACK Ackin, Ackout)

  SEQ
    WHILE TRUE
      SEQ
        In?in.data
        process.data(data.delay)
        out.data(timestamp):=in.data(timestamp)+data.delay
        Out!out.message
        Ackout?ack
        ack(timestamp):=ack(timestamp)+ack.delay
        Ackin!ack
:

b) Timestamps within a data dependent merge or single input  process

Figure 8: Message timestamps

uation is implemented in hardware using a combination of a select and a call or xor. The
process in this case behaves as a single input module, hence causality is not violated.

� Arbitrated merge. The order of arrival defines the order of consumption. If events
from two micropipelines arrive at the same time, an arbitrary choice is made. In the
circuit, arbiters are used to achieve this behaviour.

In the proposed simulation approach, an arbiter is modeled by the occam ALT command.
The order in which the ALT construct will consume messages in the simulation model does
not adhere strictly to the order in which events arrive at the corresponding arbiter in the phys-
ical circuit; it merely depends on the order in which the corresponding input occam channels
are selected and not on the timestamps of simulated time that these messages carry. There-
fore, in the general case, messages will be consumed by the ALT construct in a nonincreasing
timestamp order and therefore the causality principle is violated.

This violation does not affect the correct functionality of the model; the very presence
of an arbiter in the design implies that the order of consumption may be arbitrary. However it
introduces an error in the simulated time and, consequently, in the performance evaluation of
the simulated architecture. Nevertheless, the characteristics of the asynchronous architectures
and the distributed nature of the simulation suggest that the inaccuracy in simulated time will
be insignificant and therefore tolerable at this high level of simulation.

Each process will execute as soon as the data becomes available. The fundamental na-
ture of the architectures, which are self regulating systems, will balance the throughput of the
distributed processes preventing thus the local clocks from becoming too skewed. A similar
approach adopted for the simulation of dataflow architectures has produced some encouraging
results regarding the magnitude of the timing error [18]. Furthermore, the behaviour, the size
and the cost of arbiters, make their use undesirable, therefore a typical design will contain a



very small number of such elements (the AMULET1 has only two).
Figure 8 describes the calculation of message timestamps by register and control pro-

cesses. Data dependent (eg call) merge processes are treated as single input processes since
only one of the input channels will be selected, while for synchronous merge processes, the
input message with the greater timestamp is taken into account for the update of the clock.
For arbitrated merge processes, the current clock is also taken into account so as to avoid pre-
emptions on the output channel.

5.2. Delay Insensitivity

As explained in section 4, the asynchronous architecture can be tested for deadlocks by exe-
cuting the simulator more than once, with a different event order each time. In a time driven
simulation approach (sequential or parallel), where the simulated time is the synchronizing
force, it is the actual delays (in simulated time) within the processes of the simulator that need
to be modified in order to change the order in which events will occur in the simulation model.
In the simulation approach proposed, the occam processes of the simulator are entirely data
driven. The order in which the ALT construct, that models an arbiter, consumes messages
is completely independent of the timestamps of the messages. Therefore changing the simu-
lated time delays of the processes of the occam model would have no effect on the ordering
of events in the simulation. The ordering of events can be changed by using the real execu-
tion time to affect the scheduling of the occam processes, i.e. the order in which the different
processes are executed and produce messages. Occam supports a very simple mechanism for
this, namely the Timers. Timers are special purpose channels that may be used to return the
value of the local real time clock, or to delay the execution of the process until some time in
the future. For example the statement clock?time (where clock is a Timer channel) returns the
value of the local clock in the variable time, while the command clock?AFTER T will cause
the process to be delayed until the value of the real-time clock is greater or equal to T. This
technique does not allow full control of the process scheduling mechanism as the time that a
process can be delayed is only approximate. Nevertheless, this approach provides a flexible
mechanism for testing the delay insensitivity of the design. By using different benchmark pro-
grams, different paths of the design may be activated. By altering the order in which occam
processes are executed for a particular benchmark, possible deadlock situations in the design
can be located.

6. OCCARM: An occam simulation model of the asynchronous ARM

Using the approach described in the previous sections, a simulation model of the AMULET1
processor has been developed. The model consists of a hierarchy of occam processes; it has
the same degree of parallelism as the microprocessor and executes ARM machine code. Fig-
ure 9 shows the top level of the simulation model. The Address Interface operates autonomously
and produces memory addresses starting from address 0; these addresses are synchronised
within the Data Interface with output data from the Register Bank and are sent to memory.
Input data from memory is directed to its appropriate destination depending on whether it is a
data value or an instruction. The datapath control consists of three decode stages. Each stage
includes a number of PLAs which generate the control signals required for the operation of
the system; in the simulation model the PLAs are implemented as arrays of boolean values.
Decode1 controls the operation of the Register Bank while Decode2 controls both the Shifter
and the Multiplier(DPEs). Decode3 controls the operation of the ALU; this is where the con-
dition flags are checked, possibly changing the program flow. Invalid prefetched instructions
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following a branch are identified by comparing a parity flag in the ALU (the PCpar, changed
every time a branch is taken) with the corresponding flag of the instruction. To make this
mechanism more efficient an event is sent to Decode1 each time the parity changes so that in-
structions are discarded at the top of the pipeline. In the original design of Decode1 the timing
characteristics of the processor ensured that the parity event would reach Decode1 before the
instruction stream changes. However the nondeterministic nature of the occam model can not
guarantee this; the PCpar channel may fire after the instruction stream changes thus discarding
valid instructions. In this case, the modeled design of this particular piece of the architecture
had to change to eliminate the time dependent behaviour and ensure asynchronous operation.
The Register Bank has been a challenging part of the design; the concurrent, asynchronous
nature of the processor introduces numerous operational problems: a) there may be multi-
ple outstanding write operations, b) reads from registers with pending writes must be blocked
and c) asynchronous reads and writes must interact correctly. A novel mechanism has been
designed to resolve all these problems, namely the lock fifo [19] (figure 10a [8]). The lock fifo
keeps decoded write register addresses, each address containing at most one “1” whose posi-
tion indicates the locked register; by OR-ing a column the status of the corresponding register
can be decided. It is clear that this mechanism is based on the global state of the lock fifo.
The simulation model should effectively describe the asynchronous operation of the Regis-
ter Bank at the same level of concurrency, and accurately model the behaviour of the locking
mechanism. This is not straightforward as the distributed nature of occam does not allow pro-
cesses to share global variables. The solution adopted for the implementation of the model is
shown in figure 10b where the complete Register Bank model is depicted. An extra occam
process (ReadLock) is used to hold information regarding the contents of the lock fifo and
thus to achieve the register locking. Each time a write address enters the lock fifo, it is also
sent to ReadLock process by the first process of the lock fifo; the process will not acknowledge
back until the address has been received by the ReadLock. Similarly the last process of the
lock fifo will signal the removal of its contents from the ReadLock once the write has been
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completed. This way, ReadLock always includes a local copy of the locked addresses and
reads and writes can be performed concurrently and asynchronously when there is no interde-
pendency. Since the simulation model is identical to the architecture in terms of concurrency,
number of stages and interconnection pattern, the correct operation of the network of occam
processes implies the correctness of the corresponding network of micropipelined stages. A
deadlock in the simulation model directly points to a deadlock in the processor design.

6.1. Timing

The two arbiters of the system reside in the Write Control, where the data streams from the
memory and the execution unit are merged, and in the Address Interface, where addresses
from the prefetch unit(Incrementer/PC Pipe) are merged with addresses produced by the exe-
cution unit for branches or load/store operations. Figure 11 presents the model of the Address
Interface (the merge for the Apipe and the LSMreg is completely data dependent and therefore
deterministic). The Marreg register holds the address being sent to the memory. If the address
is a PC value it is also circulated through the prefetch unit back to the AddC. The local clocks
of the processes for the execution and prefetch units will become too skewed (and thus the tim-
ing error large) only if the ALT in the AddC process selects the same source channel a large
number of times before accepting a message from the other one (assuming of course that both
the corresponding units of the processor produce requests). However the self regulating na-
ture of the design will prevent such a situation. The prefetch unit stops sending messages to
the AddC when the PC Pipe becomes full. The PC Pipe acts as a throttle with its length (N=2)
determining the maximum number of instructions that can be outstanding at any particular
time (N+3). If the execution unit is stalled as a result of its output not having been read by the
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AddC, the PC Pipe will become full after issuing 5 instruction addresses, allowing the ALT
in the AddC to select its other input channel.

Similarly, even in the case of many consecutive load/store instructions, the AddC will
not accept more than 5 consecutive messages from the execution unit as this is the maximum
number of outstanding instructions allowed. Therefore, even in these worst case scenarios the
timing error will be small and limited. In the general case the timing error will be even smaller,
as the processes of the simulation model will be evenly scheduled and executed and thus the
production of messages will be balanced.

Similar arguments apply for the arbiter in the Write Control process, but in this case the
pipes of the Data Interface and Register Banks act as throttles.



7. Simulator environment

The interface to the OCCARM model is depicted in figure 12. The I/O process serves as the
interface to the outside world since, within the INMOS occam toolset environment, only one
occam process may have access to the host machine [14]. An extra Monitoring process is used
to collect monitoring information provided by OCCARM.

7.1. Monitoring

To evaluate the performance of the architecture being modeled, values such as occupancy, uti-
lization and throughput as well as idle and overload states of the pipelines in the design need
to be measured. These values are calculated by the processes of the model and are sent to
the Monitoring process over extra monitoring channels. Idle and overload situations of regis-
ters can be detected by comparing the timestamps of the incoming request and acknowledge
messages: if timestamp

�
Rn

in ��� timestamp
�
Ackn � 1

out � , the register has been idle for the period
timestamp

�
Rn

in ��� timestamp
�
Ackn � 1

out � . An overload situation has occured if timestamp
�
Rn

in ���
timestamp

�
Ackn � 1

out � .
The occupancy of a N stage pipeline indicates the proportion of time the pipeline has

0,1,2,..N values in it. Its calculation requires knowledge about both the input and output rates
of the pipeline, which is not directly available since occam does not support global variables.To
overcome this problem a solution has been devised whereby request messages entering the
pipeline carry with them an extra timestamp denoting the time of their entry. Using this infor-
mation, the calculation of the pipeline occupancy by the control process at the output side is
straightforward.

For deadlock detection, it is essential to know the state of the processes of the model at
the time when the deadlock occurred. One way to achieve this is to keep traces regarding the
communication activity of the occam processes. In the OCCARM model, each process sends
to the monitoring process messages regarding the success of its communication operations
(e.g “waiting on channel x” or “received from channel x”). The detection of deadlocks using
these messages is straightforward. In order to decide the cause of a deadlock, only the imme-
diate past of the processes needs to be known. For this reason, circular buffers are used within
the monitoring process to hold the most recent messages. If the monitoring process does not
receive any messages for a certain period of time as a result of a deadlock, the contents of the
buffers are flushed through the I/O process to a log file. An occam variant protocol allows
different types of messages to be transmitted over the monitoring channels.

7.2. Host machine

The system used to host the simulation model is the ParSifal T-Rack [2], a reconfigurable 64-
Transputer2 machine, which has been developed at the University of Manchester to support
the parallel simulation of computer architectures (figure 13). Two of the four links from each
transputer of the T-Rack (link0 and link1) are permanently hardwired to form a processor chain
known as the necklace. The off-necklace links(link2 and link3) may be connected by means of
a crossbar switch, into a configuration which is appropriate for the code being executed. The
crossbar switch is built using twenty six INMOS C004 switch chips housed on two boards (S1
and S2).

2Transputer is a registered trademark of INMOS Group of Companies
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Figure 13: The T-Rack

8. Distributed Implementation

For the distribution of the OCCARM model onto the transputers of the T-Rack a number of
issues need to be considered. The four links of the transputer limit the maximum number of
processes with which any process at the top level of an occam program can communicate. To
make the mapping of the OCCARM onto the transputers of the T-Rack feasible, the top level
of the OCCARM model as depicted in figure 9 should be modified so that each process has
at most four neighbours. Figure 14b depicts the modified top level process structure graph of
the simulator (as derived from the table of figure 14a) where every process has at most four
neighbors; the traffic on each edge of the graph(i.e. number of messages) is also presented.

8.1. Load Balancing

Since the top level process structure graph of the simulator is fixed and, in this particular case,
unique, the load balancing criteria which were used for the mapping of the simulator onto the
T-Rack in order to achieve high performance are:

� maximum processor utilization: occupy as many processors as possible.

� balanced communications: In the T-Rack, the hardwired links of the necklace are twice
as fast as the links connected through the crossbar switch. Therefore channels with high
traffic or channels that are part of the critical path of the asynchronous architecture (e.g
channel “H” in figure 14b, via which the abort signals are sent from memory) should
be mapped onto hardwired links.

Following these criteria and taking into account the T-Rack restrictions regarding the fixed
links of the necklace and the limited connectivity of the switched links [17], the mapping de-
picted in figure 15 can be obtained.
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Figure 14: OCCARM Process Interconnections

8.2. Monitoring path

To collect monitoring information within the distributed environment, the monitoring process
of figure 12 has been replicated so that a copy of it resides on each of the transputers used.
Extra multiplexing/demultiplexing processes have been introduced to allow the sharing of the
transputer links. The monitoring information impose an extra communication burden to the
simulator. To minimise the communication bottlenecks due to the monitoring messages, the
characteristics of the T-Rack may be exploited. Since the tadpole transputer where the I/O
process resides is connected to both ends of the necklace, the I/O operations of the OCCARM
can be performed via one end of the necklace while the monitoring messages may follow the
other direction towards the other end of the necklace. Figure 16 presents this scheme.

8.3. Performance

OCCARM executes an average of 20 ARM machine instructions per second when it runs on a
single transputer of the T-Rack. This number is only slightly greater than that of an equivalent
sequential simulator written in ASIM, the ARM’s in-house simulation language, and execut-
ing on a SPARC3 processor. This is an expected performance, for the execution of the parallel
processes on a single Transputer is actually sequential and the large number of processes in
the model make the context switching overhead in the Transputer significant.

The distribution of OCCARM onto the seven Transputers of the T-Rack yields an aver-
age speedup of 1.7. This figure may be attributed to a number of factors related to the char-
acteristics of both, the simulated architecture and the machine that hosts the simulator. The
requirement for instruction compatibility with the synchrononous ARM, has resulted in an
asynchronous design with very low parallelism (and thus limited parallelism to be exploited in
accordance with Amdahl’s law) and very complex modularity; the performance of AMULET1

3SPARC is a registered trademark of Sun Microsystems, Incorporated
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is indeed lower than that of the synchrononous ARM by a factor of 0.4 [9]. Asynchronous ar-
chitectures are communication bound systems, therefore the efficiency of the communication
system is crucial; the complex irregural interconnection pattern of AMULET1’s functional
modules and the extra multiplexing/demultiplexing processes required due to the connectiv-
ity constrains of the Transputer and the T-Rack severely reduce communication efficiency.
Currently a number of asynchronous architectures are under development with high degree
of parallelism and regural interconnection patterns [16]. These characteristics coupled with
the communication efficiency of the T9000 Transputer will allow the development of high
performance distributed occam models.

9. Conclusions

This paper has described an approach for building parallel distributed models for asynchronous
computer architectures. This approach exploits the parallelism inherent in the asynchronous
design as well as the close relation between the semantics of the occam programming language
and the structure and behaviour of asynchronous systems to allow the rapid development of
distributed simulation models.

Occam can describe asynchronous circuits at a fairly low level and can provide guidance
for the realization of the design (e.g. an IF statement will correspond to a SELECT block, a
PAR of input commands will be implemented using a Muller-C block etc).

Furthermore, the parallel, distributed nature of occam forces the designer to think in “asyn-
chronous terms” and to perceive its design as indeed a distributed, asynchronous structure
where a global state does not exist.
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