
TOWARDS A FRAMEWORK FOR THE DISTRIBUTED SIMULATION
OF ASYNCHRONOUS HARDWARE

G. THEODOROPOULOS

School of Computer Science
The University of Birmingham

Birmingham B15 2TT
United Kingdom

gkt@cs.bham.ac.uk

D. EDWARDS

Department of Computer Science
University of Manchester

Oxford Road, Manchester, M13 9PL
United Kingdom

doug@cs.man.ac.uk

Abstract: Synchronous VLSI design is approaching a critical point, with clock distribution becoming an increasingly costly
and complicated issue and power consumption rapidly emerging as a major concern. The last decade has witnessed a resur-
gence of interest in asynchronous logic which promises to liberate digital design from the inherent problems of synchronous
systems. This activity has revealed a need for modelli ng and simulation techniques suitable for the asynchronous design
style. The concurrent process algebra Communicating Sequential Processes (CSP) is particularly suitable for the specifica-
tion of asynchronous systems. This paper discusses a framework for the distributed simulation of asynchronous hardware,
adopting Balsa, a CSP-like notation, as a hardware description language.

Keywords: Asynchronous hardware, modelli ng, distributed simulation

1. INTRODUCTION

A digital system is typically designed as a collection of
subsystems, each performing a different computation and
communicating with its peers to exchange information.
Before a communication transaction takes place, the sub-
systems involved need to synchronise, namely to wait for a
common control state to be reached, which guarantees the
validity of data exchanged.  In synchronous systems, this
synchronisation is achieved by means of a global clock
whose transitions define the points in time when communi-
cation transactions can take place.  The operation of a syn-
chronous system proceeds in lockstep, with the different
subsystems being activated to perform their computations
in a strict, predefined order.  Synchronous VLSI design
however is approaching a critical point, with clock distri-
bution becoming an increasingly costly and complicated
issue and power consumption rapidly emerging as a major
concern.

Another digital design philosophy, which promises to alle-
viate these problems, allows subsystems to communicate
only when it is necessary to exchange information. The
operation of the system does not proceed in lockstep, but
rather is asynchronous; each sub-system operates at its
own rate synchronising with its peers only when it needs to
exchange information by means of a handshake communi-
cation protocol (such as the two-phase bundled data hand-
shake protocol ill ustrated in Figure 1). The last decade has
witnessed a resurgence of interest in asynchronous design
techniques [Birtwistle,1995] and a number of asynchro-
nous architectures have been developed [Werner,1997],

including a series of asynchronous implementations of the
ARM RISC processor (AMULET1, AMULET2e and
AMULET3i) developed  by the AMULET group at the
University of Manchester [AMULET,2001].

Figure 1: Handshake Protocol

This paper addresses issues related to the modelli ng and
distributed simulation of asynchronous hardware systems.

2. MODELLING ASYNCHRONOUS SYSTEMS

Simulation modelli ng languages and tools for synchronous
logic design have underpinned the development of ever
more complex synchronous VLSI circuits. In the case of
asynchronous systems, the role of simulation is even more
crucial as their concurrent, non-deterministic behaviour
makes any attempt to reason about their correctness and
performance a very complicated task. This complexity

Sender Receiver

Request

Acknowledge

Data

Request

Acknowledge

Data

Sender’s Action

Receiver’s Action



renders modelli ng and simulation essential tools in the
endeavour to gain an insight and understanding of the be-
haviour of asynchronous systems. However, although syn-
chronous languages and tools can and indeed have been
used for asynchronous hardware too, their application in
that context is proving awkward and ineff icient. Funda-
mentally, conventional, sequential, synchronous hardware
description languages  are not suitable for describing con-
current non-deterministic asynchronous behaviour. Thus,
the recent interest in asynchronous design has fuelled an
intense research activity aiming to develop techniques ap-
propriate for modelli ng and simulating asynchronous
systems. I-Nets [Molnar,1983], Petri Nets [Corta-
della,1997], Signal Transition   Graphs [VERSIFY,1998],
State Transition Diagrams [Davis,1995], and CCS
[Liu,1993] are some of these tools and formalisms that
have been  employed in asynchronous logic design.

Communicating Sequential Processes  (CSP)
[Hoare,1985],  in particular,  the concurrent process alge-
bra developed by Tony Hoare  for the specification of par-
allel systems, has been extensively advocated as a suitable
means for describing  asynchronous behaviour. Several
asynchronous modelli ng approaches and systems have
been developed which use CSP-based notations, including
[Martin,1990; Hulgaard,1994; Brunvand,1991; Dill ,1989;
Josephs,1990; vanBerkel,1991; Gopalakrishnan,1993].

In the context of the AMULET work at the University of
Manchester, two different independent activities have used
CSP-based notations for the modelli ng and simulation of
asynchronous hardware: Balsa/LARD and Occarm.

3. BALSA AND LARD

Balsa [Bardsley,2000; Bardsley,2000a] is a language for
synthesising asynchronous circuits. It builds on the Tan-
gram work of the Phili ps Research Labs [vanBerkel,1991].
Both Tangram and Balsa use similar CSP like languages to
express design descriptions in terms of channel communi-
cations and fine grain concurrent and sequential process
decomposition. Descriptions of designs are translated into
implementations in a syntax directed-fashion with lan-
guage constructs being mapped into networks of param-
eterised instances of "handshake components" each of
which has a concrete gate level implementation.

A Balsa description of a modulo-10 counter is given in
Figure 2. Each procedure in Balsa corresponds to a hand-
shake circuit (comprising  basic handshake components).
The interface to its environment is by means of the chan-
nels in the procedure declaration. In the example above,
aclk is a dataless handshake channel, whereas count is an
output handshake data-bearing channel (of width 4 bits).

Balsa designs can be simulated by translating (automati-
cally) into the language LARD [Endecott,2001]. LARD
provides mixed sequential and parallel commands with

channel communication as a basic language feature. LARD
resembles a concurrent programming language, being built
around a shared memory, time-slice multi -threaded virtual
machine.

Figure 2: A Balsa Example (Modulo-10 Counter)

Communication primitives are built on top of this machine
and function by signalli ng data validity through an element
of a shared memory structure. On top of LARD, an ex-
panded channel li brary is used to provide pull channels
and pull channel enclosure primitives.

4. OCCARM: PARALLEL SIMULATION WITH
OCCAM

The simulation of digital systems in general, and computer
architectures in particular, has long been categorised
among the highly computation intensive applications. In
the case of asynchronous systems, the requirement of
multiple executions of the simulation model of the system,
in order to test the system for deadlocks and evaluate its
performance for different sets of delays in the component
sub-systems [Furber,1995;Theodoropoulos,2001b] render
simulation speed even more crucial. Although the primary
initial motive for using CSP is the need to capture and
model the concurrent, asynchronous, non-deterministic
behaviour of asynchronous hardware, and almost all work
undertaken so far in this area has placed emphasis on pro-
ducing specifications to be used as input to sili con compil-
ers rather than for parallel simulation, the exploitation of
the inherent parallelism and the execution of the CSP
models on multiprocessor platforms can potentially
achieve high simulation performance and can contribute in
reducing the duration and cost of the design cycle.

Asynchronous hardware systems are an excellent candidate
for distributed simulation. The concurrent operation of the
different subsystems of an asynchronous system, the inher-
ent parallelism within each subsystem and the lack of any
global synchronisation, are characteristics which support
the concurrent execution of events in a simulation model.
In his flashback simulation approach [Sutherland,1993],

type C_size is 4 bits
constant max_count = 9

procedure count10(sync aclk; output
count: C_size) is
 variable count_reg : C_size
 variable tmp : C_size
 begin
  loop
   sync aclk;
   if count_reg /= max_count then
     tmp := (count_reg + 1 as C_size)
   else
     tmp := 0
   end || count <- count_reg ;
   count_reg := tmp
  end
 end



Sutherland attempts to exploit these characteristics of
asynchronous systems and allow “out-of-order" processing
of events to increase simulation speed; however, his simu-
lation retains its sequential nature, and is intended for exe-
cution on conventional von Neumann computers.

To exploit the potential of  CSP for distributed simulation,
the use of occam [Inmos,1988], the executable counterpart
of CSP, for the modelli ng and parallel simulation of com-
plex asynchronous architectures has been investigated in
the context of the AMULET work.  As part of this project,
a generic modelli ng methodology has been proposed
[Theodoropoulos,2000]; occarm, an occam simulation
model of the AMULET1 asynchronous microprocessor
[Woods,1997] has been developed [Theodoropou-
los,1995]; and issues related to synchronisation [Theo-
doropoulos,2001a] and the execution of the occam models
on transputer platforms [Theodoropoulos,2001b] have
been addressed.

Figure 3: Occarm: The Register Model

Occam is primarily a general purpose programming lan-
guage, and thus, a specification developed using occam is
automatically an executable simulation model of the asyn-
chronous system. No extra simulation engine is required.
Within occarm, the system is modelled as a a network of
concurrent occam processes, topologically identical to the
asynchronous system, with each occam process corre-
sponding to a different functional module of the system,
and communicating with its peers via timestamped mes-
sages. Each register is modelled as a separate occam proc-
ess, while the control logic may be implemented as a net-
work of communicating processes, with the occam PAR
(parallel execution) and SEQ (sequential execution) com-
mands being used within each process to implement the
partial ordering of events  of the circuit. Figure 3 ill ustrates
the modelli ng of a register in occarm (micropipeline).

5. THE NEED FOR AN ALTERNATIVE PARALLEL
SIMULATION  APPROACH

A number of conclusions were drawn from the work with
Occarm which suggest the need for an alternative approach

to the distributed simulation of asynchronous hardware.  A
central element in this argument relates to synchronisation.

In the modelli ng and simulation of computer systems,
simulated time plays a dual role: as a synchronising agent,
to drive the simulation engine, and as a quantifier, to pro-
vide the means for the performance evaluation of the ar-
chitecture.

The exploitation of the relationship between CSP/occam
semantics and asynchronous hardware systems, assumes
and implies a data-driven operation of the processes of the
model. The execution of a model consisting of data-driven
processes which describe the modelled hardware at the
Register Transfer (or higher) level is straightforward.
Since at these levels, the correct operation of the asyn-
chronous hardware system does not depend on a global
clock, simulated time is not required for the synchronisa-
tion of the CSP/occam processes.  Processes can be en-
tirely data-driven and self-scheduling, and be synchronised
by the protocol employed in the communication semantics
of occam, in the same way  that the communication proto-
col employed in the asynchronous system synchronises the
different functional  modules.

This however is not true for models at lower levels of ab-
straction. One can certainly use occam to produce textual
descriptions of gates and event processing blocks. How-
ever, the data-driven operation of an occam model whose
concurrent processes model gates and event processing
blocks with level sensitive inputs may lead to deadlocks or
incorrect results . In this case, the simulated time is needed
to act as the synchronisation agent in the model.

Even at the Register Transfer (or higher) level, however,
simulated time is still needed as a quantifier, to provide for
the performance evaluation of the simulated asynchronous
system, but the exploitation of the relationship between
CSP/occam and asynchronous hardware systems to per-
form simulation, trades temporal accuracy for ease of
modelli ng. Although the topological characteristics of the
modelled hardware system map naturally onto the model,
the temporal characteristics generally do not, a situation
that, in the presence of arbiters in the hardware system,
may lead to causality errors in the model. These errors
compromise the accuracy of any time-based evaluation of
the simulated system.  A quantitative analysis has shown
that the timing error introduced in the model may be quite
significant [Theodoropoulos,2001a].

The requirement to test the architecture for potential
deadlocks by modifying the delays in the system to achieve
different event orderings [Furber,1995; Theodoropou-
los,2001b] renders the need for synchronisation even more
intense: if the simulated time is not the synchronization
agent in the simulator, different event orderings may only
be achieved by using occam real time Timers to change the
relative scheduling of the occam processes. In this case,

Rout

AoutRin

Ain

DoutDin

C

D
in

Pd

P

D
ou

t

Cd

C
R

eg
is

te
r

DELAY

Register

RDin RDout

Ain Aout

PROC Register(CHAN OF BUNDLE RDin,RDout,
              CHAN OF ACK Ain, Aout)
  SEQ
    RDin ? Data
    WHILE TRUE
      SEQ
        PAR             -- fork
          RDout ! Data
          Ain   ! any
        PAR             -- Muller-C
          RDin? ? Data
          Aout  ? any
:

RDout

RDin

fork



small delays cannot guarantee the intended effects and
behaviour in the model, while large delays have a severe
effect on the performance of the simulator.

In other words, the exploitation of the CSP/occam seman-
tics facilit ates the specification and modelli ng of asyn-
chronous systems but does not ensure time-accurate dis-
tributed simulation. It is generally possible to introduce
additional functionality in the occam model to ensure tem-
poral accuracy, but this imposes an extra burden to the
modeller and increases the complexity of the model, forc-
ing it to depart from its original philosophy (namely, the
exploitation of the CSP semantics).

The complexity of the model is further increased by the
need to address monitoring, mapping and load balancing
issues, which in the case of occam are all the responsibilit y
of the programmer.

Thus, what is required, is an alternative approach, which
would separate modelli ng and simulation: for the former it
would support a CSP-like notation, while for the latter it
would utili se a distributed simulation kernel, optimised for
the simulation of asynchronous hardware.

As a modelli ng notation we propose Balsa/LARD. Balsa is
demonstrably capable of describing complex hardware
strucures such as the DMA controller for the AMULET3i
asynchronous microprocessor macrocell [Bardsley,200b].
LARD is a language specifically designed for modelli ng
asynchronous systems with an automatic translation route
from the Balsa description.

The underlying simulation kernel will execute the model,
taking care of partition, load balancing and synchronisa-
tion. The kernel should also provide faciliti es for moni-
toring the simulation execution, enabling the debugging
and well as the evaluation of the performance of the simu-
lated system.

6. PARTITIONING AND LOAD BALANCING

The envisaged underlying simulation kernel is a decen-
tralised event-driven system based on the “Logical Proc-
ess” paradigm [Fujimoto,2000]. This approach seeks to
divide the simulation model into a network of concurrent
Logical Processes (LPs), each maintaining and processing
a disjoint portion of the state space of the system. State
changes are modelled as timestamped events in the simu-
lation. From an LP's point of view, two types of events are
distinguished; namely internal events which have a causal
impact only to the state variables of the LP, and external
events which may also have an impact on the states of
other LPs.  External events are typically modelled as time-
stamped messages exchanged between the LPs involved.

It is envisioned that once the  Balsa specification of the
asynchronous system  has been produced,  it will be trans-

lated and partitioned in subsets of state variables which
will be assigned to different LPs.

Translating from Balsa into LARD is reasonably straight-
forward and proceeds from the compiled handshake level
description. A library of handshake component behav-
ioural descriptions forms the functional core of each
simulation. LARD provides type-polymorphic features
which  make the description of parameterisable handshake
circuits simple, there is no need to create specific instances
of the required components for each differing set of pa-
rameters. A minor inelegance in the current version arises
because LARD's  int type only allows 32 bit numbers to
be represented and so to implement the multi-precision
arithmetic of Balsa a different type must be used for simu-
lated channels. The current mechanism for doing this how-
ever is somewhat ineff icient.

Partitioning should aim to balance the communication and
computation load of the simulation system   [Norman,
1993]. Finding an optimal partition for a given circuit is an
NP-complete problem [Johnson,1979] and various heuris-
tics have been developed to address this problem
[Lin,1970; Mattheyses,1982; Newton,1991;Guetaff ,1998].
The applicabilit y and suitabilit y of these algorithms for
asynchronous hardware should be further examined.   In
the context of the proposed approach, the partitioning al-
gorithm should take into account the characteristics of the
underlying simulation platform, the simulation kernel, and
the simulated system (such as the critical path of a simu-
lated microprocessor).

7. SYNCHRONISATION

In decentralised, event-driven distributed simulation, each
LP maintains a local clock with the current value of the
simulated time, Local Virtual Time (LVT).  This value
represents the process's local view of the global simulated
time and denotes how far in simulated time the corre-
sponding process has progressed.  An LP will repeatedly
accept and process messages arriving on its input links,
advancing its LVT and possibly generating, as a result, a
number of messages on its output links.  The timestamp of
an output message is the LVT of the LP when the message
was sent. A fundamental problem in event-driven distrib-
uted simulation is to ensure that the LPs always process
messages in increasing timestamp order, and hence faith-
fully and accurately implement the causal dependencies
and partial ordering of events dictated by the causality
principle in the modelled system.

It has been shown [Lamport,1978] that a distributed sys-
tem consisting of asynchronous concurrent processes will
not violate the causality principle if each merge process
consumes and processes event messages in non-decreasing
timestamp order (the local causality constraint; the arrival
of an out of order event is referred to as a preemption).



At the Register Transfer level, three types of merging are
encountered:

�  Synchronous merge. A functional module has to wait
for all  input data to become available before it starts
its operation. This is the case when a  Muller-C ele-
ment is used for the corresponding request events. In
the simulation model, the LP has to wait for all i nput
channels to ̀ `fire'' and therefore no preemption occurs
as the process is in the position to select the message
with the smallest timestamp.

�  Data dependent merge. The functionality of the sys-
tem  dictates  the order in which messages from dif-
ferent source processes should be consumed and proc-
essed.  This situation is implemented in hardware us-
ing a combination  of a Select and a Call or  Xor. The
LP in this case behaves as a single input module,
hence causality is not violated.

�  Arbitrated merge. The order of arrival defines the
order of consumption. If events from two sub-
components arrive at the same time, an arbitrary
choice is made.  This is the case where causality errors
may occur if the order in which messages arrive at the
arbiter process in the model is not the same as the or-
der of events in the simulated system.

At  lower levels, gates and event processing blocks with
level sensitive inputs complicate the synchronisation
problem introducing  more types of merge processes.

Two main approaches have been developed to ensure that
the local causality constraint is not violated is asynchro-
nous simulation, namely conservative and optimistic [Fu-
jimoto,2000]. The good lookahead  properties of asyn-
chronous VLSI systems,  and the static nature (partition
and configuration) of the distributed model suggest that the
conservative approach would be suitable and suff icient for
the simulation of asynchronous hardware, rendering the
substantial extra complexity of optimistic approaches un-
necessary.

In the context of Occarm,  the concept of Instruction Loo-
kahead was introduced and the Program Driven Synchro-
nization Protocol (PDSP), a conservative,  deadlock
avoidance framework was developed to address the syn-
chronisation problem at  the Register Transfer level
[Theodoropoulos,2001a]. PDSP could form the basis for
the synchronisation mechanism of the proposed simulation
kernel, however, its generality as well as  its applicabilit y
for models at lower levels of abstraction should be further
investigated.

8. MONITORING

Monitoring the runtime behaviour of the simulation model
and collecting information regarding the characteristics of
the simulated system is one of the main objectives of the
simulation process. Monitoring is essential for the testing

and performance evaluation of the simulated system as
well as for the debugging of both the simulated system and
the simulation model. The inherent properties of distrib-
uted asynchronous systems make monitoring a diff icult
and complicated issue for which sequential techniques are
insuff icient. The fundamental problem is the diff iculty to
deal with causality and obtain snapshots in a distributed
environment [Lamport,1978; Chandy,1985; Babaoglou,
1993]. To determine the system state, all the different local
process as well as channel states need to be taken into ac-
count; the monitoring system should be able to correlate
the histories of the different processes and put them in a
global temporal perspective. The main issues which stem
out of this fundamental problem and which an ideal dis-
tributed monitoring system should address include the
multiple threads of control, intrusiveness, non-determinism
and the need to cope with (i.e. generate, transport and
analyse) a vast amount of monitoring data. For a detailed
discussion of these issues the reader is referred to e.g.
[Joyce,1987; Riek,1993].

Figure 4: Event Traces

In the case of asynchronous hardware, the simulation has
two main objectives, namely  the testing and debugging of
the system and the evaluation of the system’s performance.
For the debugging of the architecture (as well as the simu-
lation model) it is necessary to monitor both the flow of
control and the flow of data in each of the different LPs  in
the model; this could be achieved by collecting traces re-
garding the execution and data events of the processes
respectively (Figure 4a,b). For the detection of deadlocks,
it is essential to know the state of the channels in the sys-
tem when the deadlock occurred. For this purpose, the
parallelity events, which correspond to communication
actions, need to be monitored (Figure 4c). These should
appear in pairs, one for the sending and one for the re-
ceiving process. The absence of one parallelity event from
a pair in the final trace indicates the occurrence of a dead-
lock.

A deficiency of the current LARD simulation system is
that check-pointing is not supported. Since maintenance of
state in a distributed environment is essential, adding
check-pointing to the simulation environment is essential i f
the language is to be usable for large designs and it should
come as a byproduct of the work envisaged here.

Processprocess_name: instruction instruction_type was executed at timeclock

Processprocess_name: variablevariable_name hasthevalueval at timeclock

Processprocess_name: sendingvalueval to processproc onchannelchan at timeclock

Processprocess_name: receiving valueval from processproc onchannelchan at timeclock

(a) Execution event trace

(b) Data event trace

(c) Parallelity event traces



9. HLA COMPLIANCE

Traditionally, hardware systems are evaluated by (meta)
executing benchmark suites on the simulation model.
However, VLSI circuits such as microprocessors are in-
creasingly used as embedded controllers, incorporated in
other devices (e.g. in a car to control the car’s brakes).
This is particularly true for asynchronous systems as their
inherent power-eff iciency, electromagnetic compatibilit y
and modularity renders them ideal for embedded applica-
tions [Furber,1997]. In such systems, the asynchronous
controller interacts with a complex environment and needs
to respond rapidly and predictably to events in the outside
world.

For this type of applications, the traditional evaluation
approach of mere benchmark execution appears insuff i-
cient, as in this case what would be desirable is the
evaluation of the controller design within the environment
that it will operate, by incorporating the simulation model
in some hardware-in-loop simulation, or by enabling it to
interact with a simulation model of the environment.   Such
an evaluation approach may be achieved through the High
Level Architecture (HLA), the simulator interoperabilit y
framework developed by USA DoD/DMSO [HLA,2001].
It  is therefore proposed that the simulation kernel should
be HLA-compliant.

10. EPILOGUE

Asynchronous logic is being viewed as an increasingly
viable alternative digital design approach which promises
to liberate VLSI systems from clock skew problems, offer
the potential for low power and high performance and en-
courage a modular design philosophy which makes incre-
mental technological migration a much easier task. Model-
ling and simulation, being at the heart of the digital design
process, may perform a catalytic role in the quest for the
realisation of the potential benefitsoffered by asynchro-
nous logic. The concurrent, non-deterministic behaviour of
asynchronous digital designs renders simulation speed
crucial.

Capitalising on previous experience using two different
CSP-like languages, this paper has revisited the problem of
distributed simulation of asynchronous hardware, and has
argued for the need of an alternative approach, which sepa-
rates modelli ng from simulation: for the former it adopts
Balsa/LARD, a CSP-like asynchronous hardware descrip-
tion language, while for the latter it envisages the utili sa-
tion of a decentralised, event-driven simulation system
based on the “Logical Process” paradigm. The paper has
discussed issues that need to be addressed for the realisa-
tion of this approach.

REFERENCES

AMULET 2001, The AMULET Group, University of Manches-
ter U.K. URL: www.cs.man.ac.uk/amulet/

Babaoglou  O. and Marzullo  K. 1993, “Consistent Global States
of Distributed Systems: Fundamental Concepts and Mecha-
nisms”, Technical Report UBLCS-93-1, Laboratory for Com-
puter Science, University of Bologna.

Bardsley A. 2000, “ Implementing Balsa Handshake Circuits” ,
Ph.D. Thesis, University of Manchester.

Bardsley  A. and Edwards  D.A. 2000, “The Balsa Asynchronous
Circuit Synthesis System”, Proceedings of Third International
Forum on Design Languages, Tubingen, Germany September,
pp. 37-44

Bardsley A. and Edwards  D. 2000, “Synthesising an Asynchro-
nous DMA Controller with Balsa”, Journal of Systems Archi-
tecture, December, pp. 1310-1319.

Birtwistle G. and Davis A. 1995, “Asynchronous Digital Circuit
Design” , Springer Verlang,

Brunvand  E. and Starkey  M.  1991, “An Integrated Environ-
ment for the Design and Simulation of Self Timed Systems”,
Proceedings of VLSI 1991, pp. 4a.2.1-4a.3.1.

Chandy K. M. and Lamport  L. 1985, “Distributed Snapshots:
Determining Global States of Distributed Systems”, ACM Trans-
actions on Computer Systems, 3(1), pp. 63–75

Cortadella  J. et. al., 1997, “Petrify: A Tool for Manipulating
Con-current Specifications and Synthesis of Asynchronous Con-
trollers” , IEICE Transactions on Information and Systems,  E80-
D(3), pp. 315-325.

Davis S. and Nowick M 1995, “Synthesizing Asynchronous
Circuits: Practice and Experience”, in [Birtwistle,1995], pp. 104-
150.

Dill D. L. 1989, “Trace Theory for Automatic Hierarchical Veri-
fication of Speed-Independent Circuits” , ACM Distinguished
Dissertations, MIT Press.

Endecott P. B. 2001, The LARD Documentation Home Page:
URL: http://www.cs.man.ac.uk/amulet/projects LARD

Fujimoto R. 2000, “Parallel and Distributed Simulation Sys-
tems”, John Wiley & Sons.

Furber S. B. 1995, “Computing Without Clocks” ,  in [Birtwis-
tle,1995], pp. 211-262.

Furber S.B. et. al., 1997, “Asynchronous Embedded Control” ,
Journal of Integrated Computer-Aided Engineering, Wiley,
Vol.5 No.1 pp.57-68

Gopalakrishnan  G. and Akella V. 1993, “Specification, Simula-
tion, and Synthesis of Self-Timed Circuits” , Proceedings of the
26th Hawaii International Conference on System Sciences, pp.
399-408.

Guetaff A and Bazargan-Sabet P. 1998, “Using Node Replication
to Improve Circuit’s Partition in Distributed Logic Simulation” ,
Proceedings of the 12th European Simulation Multiconference,
SCS, June, Manchester, pp. 235-237

HLA 2001, High Level Architecture, Defense Modeling and
Simulation Off ice, U.S. Department of Defense. URL:
http://www.dmso.mil/hla

Hoare C.A.R. 1985, “Communicating Sequential Processes” ,
Prentice Hall International.



Hulgaard H.and Burns S. M. 1994, “Bounded Delay Timing
Analysis of a Class of CSP Programs with Choice”, in Proceed-
ings of the International Symposium on Advanced Research in
Asynchronous Circuits and Systems.

Inmos 1988, “Occam 2 Reference Manual” , Prentice Hall Inter-
national.

Johnson D.S. and Garey M. 1979, “Computer and Intractabilit y:
A Guide to the Theory of NP Completeness” , Freeman.

Josephs M. B. and Udding J. T. 1990, “Delay-Insensitive Cir-
cuits: An Algebraic Approach to their Design, in Lecture Notes
in Computer Science, Vol. 458, pp. 342-366.

Joyce J. et al., 1987, “Monitoring Distributed Systems”, ACM
Transactions on Computer Systems, 5(2), pp. 121 150.

Lamport L. 1978, “Time, Clocks and the Ordering of Events in
Distributed Systems”. Communications of the ACM, 21(7),  pp.
558–565

Lin S. and Kernigan W., 1970, “An Eff icient Heuristic Procedure
for Partitioning Graphs” , Bell System Technical Journal, Vol 49,
pp. 291-307.

Liu Y. at al.,  1993, “ Designing Parallel Specifications in CCS”,
in Proceedings of the Canadian Conference on Electrical and
Computer Engineering, Vancouver.

Martin A. J. 1990, “Synthesis of Asynchronous VLSI Circuits” ,
J.Staunstrup, editor, Formal Methods for VLSI Design, North
Holland.

Mattheyses R. M. and Fiduccia C. M., 1982, “A Linear Time
Heuristics For Improving Network Partitions” , Proceedings of
the 19th Design Automation Conference, pp. 175-181.

Molnar C. E.and Fang T-P. 1983, “Synthesis of Reliable Speed-
Independent Circuit Modules: I. General Method for Speci fica-
tion of Module-Environment Interaction and Derivation of a
Circuit Realisation” , Technical Report 297, Computer Systems
Laboratory, Institute for Biomedical Computing, Washington
University, St. Louis.

Newton R. and Kring C. 1991, “A Cell -Replicating Approach to
Mincut-Based Circuit Partitioning” , 1991 International Confer-
ence on Computer Aided Design, pp. 2-5.

Norman M. G. and Thanisch P. 1993, “Models of machines and
Computation for Mapping in Multicomputers” . ACM Comput-
ting Surveys, 25, September, pp. 263–302.

Riek M. Tourancheau B. and Vigouroux X. F. 1993, “Monitor-
ing of Distributed Memory Multicomputer Programs”, Technical
Report UT-CS-93-204, University of Tennessee, October

Sutherland I. E. 1993, “Flashback Simulation” , Research Report,
SunLab 93:0285, Sun Microsystems Laboratories, Inc., August.

Theodoropoulos G. 1995,  “Strategies for the Modelli ng and
Simulation of Asynchronous Computer Architectures” , Ph.D
Thesis, Department of Computer Science, University of Man-
chester, 1995.

Theodoropoulos G. 2000, “Modelli ng and Distributed Simula-
tion of Asynchronous Hardware”, Simulation Practice and The-
ory Journal, 2000, 7:741-767.

Theodoropoulos G. 2001, “Distributed Simulation of Asynchro-
nous Hardware: The Program Driven Synchronisation Protocol,
Journal of Parallel and Distributed Computing, Special Issue on
Distributed Simulation, editor C. Tropper, to appear.

Theodoropoulos G. 2001, “Simulating Asynchronous Hardware
on Multiprocessor Platforms”, Concurrency Practice and Experi-
ence Journal, J. Wiley, to appear.

van Berkel K. 1993, “Handshake Circuits - An Asynchronous
Architecture for VLSI Programming”, Cambridge University
Press.

VERSIFY Release 2.0, Department d' Arquitectura de Computa-
dors, Universitat Politècnica de Catalunya, Barcelona, Spain,
November 1998, URL:  http://www.ac.upc.es/vlsi/versify/

Werner T. and Venkatesh A. 1997, “Asynchronous Processor
Survey” , IEEE Computer, 30(11), pp. 67-76.

Woods J.V et al. 1997, “AMULET1: An Asynchronous ARM
Microprocessor” , IEEE Transactions on Computers, 46(4), pp.
385-398.

AUTHOR BIOGRAPHIES

Dr Georgios Theodoropoulos  received a Diploma degree in
Computer Engineering from the University of Patras, Greece in
1989 and MSc and PhD degrees in Computer Science from the
University of Manchester, U.K. in 1991 and 1995 respectively.
In 1991-1995 he was a member of the AMULET group. Since
February 1998 he has been a Lecturer in the School of Computer
Science, University of Birmingham, U.K. teaching courses on
Hardware Engineering and Computer Networks.  His research
interests include parallel and distributed systems, computer and
network architectures and modelli ng and distributed simulation.

Dr Doug Edwards is a Senior Lecturer in Computer Science at
the University of Manchester. Previous research interests have
included the physics of  heterojunction structures, high speed
optical fibre networks and hardware accelerators for CAD. He is
currently a member of the AMULET group researching asyn-
chronous systems.


