TOWARDSA FRAMEWORK FOR THE DISTRIBUTED SIMULATION
OF ASYNCHRONOUSHARDWARE

G. THEODOROPOULOS

Schoadl of Computer Science
The University of Birmingham
Birminghbem B15 ZTT
United Kingdom
gkt@cs.bham.acuk

D. EDWARDS

Department of Computer Science
University of Manchester
Oxford Road, Manchester, M13 9PL
United Kingdom
doug@cs.man.ac.uk

Abstract: Synchronous VLSI designis approaching a aiticd point, with clock distribution becoming an increasingly costly
and complicated isaue and power consumption rapidly emerging as a major concern. The last decale has witnessed a resur-
gence of interest in asynchronous logic which promises to liberate digital design from the inherent problems of synchronous
systems. This adivity has reveded a need for modelling and simulation techniques suitable for the asynchronous design
style. The @ncurrent processalgebra Communicaing Sequential Processes (CSP) is particularly suitable for the spedfica
tion of asynchronous g/stems. This paper discusses a framework for the distributed simulation of asynchronous hardware,
adopting Balsa, a CSP-like notation, as a hardware description language.

Keywords: Asynchronous hardware, modelli ng, distributed simulation

1. INTRODUCTION

A digital system is typicdly designed as a wlledion of
subsystems, ead performing a different computation and
communicaing with its pees to exchange information.
Before a ommunication transadion takes place the sub-
systems involved need to synchronise, namely to wait for a
common control state to be readed, which guarantees the
validity of data exchanged. In synchronous g/stems, this
synchronisation is achieved by means of a global clock
whose transitions define the points in time when communi-
cdion transadions can take place The operation of a syn-
chronous g/stem proceads in lockstep, with the different
subsystems being adivated to perform their computations
in a strict, predefined order. Synchronous VLS| design
however is approaching a aiticd point, with clock distri-
bution becoming an increasingly costly and complicated
isaue and power consumption rapidly emerging as a major
concern.

Another digital design phil osophy, which promisesto alle-
viate these problems, allows subsystems to communicae
only when it is necessary to exchange information. The
operation of the system does not proceed in lockstep, but
rather is asynchronous, ead sub-system operates at its
own rate synchronising with its pee's only when it nealsto
exchange information by means of a handshake communi-
caion protocol (such as the two-phase bundled data hand-
shake protocol ill ustrated in Figure 1). The last decale has
witnessed a resurgence of interest in asynchronous design
techniques [Birtwistle, 1999 and a number of asynchro-
nous architedures have been developed [Werner,1997,

including a series of asynchronous implementations of the
ARM RISC procesor (AMULET1, AMULET2e ad
AMULETSIi) developed by the AMULET group at the
University of Manchester [AMULET,2001.

Request

Data

Sender Receiver

Request

Data

Acknowledge

\ Sendess Action

+ Receters Action

Figure 1: Handshake Protocol

This paper addresses isales related to the modelling and
distributed simulation of asynchronous hardware systems.

2. MODELLING ASYNCHRONOUSSYSTEM S

Simulation modelli ng languages and toadls for synchronous
logic design have underpinned the development of ever
more complex synchronous VLSI circuits. In the cae of
asynchronous g/stems, the role of ssimulation is even more
crucial as their concurrent, non-deterministic behaviour
makes any attempt to reason about their corredness and
performance a very complicaed task. This complexity

renders modelling and simulation essential tools in the
endeavour to gain an insight and understanding of the be-
haviour of asynchronous s/stems. However, although syn-
chronous langueges and todls can and indeed have been
used for asynchronous hardware too, their applicaion in
that context is proving awkward and inefficient. Funda-
mentally, conventional, sequential, synchronous hardware
description languages are not suitable for describing con-
current non-deterministic asynchronous behaviour. Thus,
the recent interest in asynchronous design hes fuelled an
intense reseach adivity aiming to develop techniques ap-
propriate for modelling and simulating asynchronous
systems. |-Nets [Molnar,1983, Petri Nets [Corta-
della,1997, Signal Transition Graphs [VERSIFY,1999,
State Transition Diagrams [Davis, 1995, and CCS
[Liu,1993 are some of these tods and formalisms that
have been employed in asynchronous logic design.

Communicating Sequential Processs (CsP)
[Hoare, 1989, in particular, the concurrent processage-
bra developed by Tony Hoare for the spedficaion of par-
alel systems, has been extensively advocated as a suitable
means for describing asynchronous behaviour. Several
asynchronous modelling approaches and systems have
been developed which use CSP-based notations, including
[Martin,1990 Hulgaad,1994 Brunvand, 1991 Dill ,1989
Josephs, 1990 vanBerkel ,1991; Gopal akrishnan,1993.

In the context of the AMULET work at the University of
Manchester, two dfferent independent adiviti es have used
CSP-based notations for the modelling and simulation of
asynchronous hardware: Balsa/LARD and Occarm.

3. BALSA AND LARD

Balsa [Barddey,2000 Bardsley,200(] is a language for
synthesising asynchronous circuits. It builds on the Tan-
gram work of the Phili ps Research Labs [vanBerkel,1991].
Both Tangram and Balsa use similar CSP like languages to
expressdesign descriptions in terms of channel communi-
caions and fine grain concurrent and sequential process
decompasition. Descriptions of designs are trandated into
implementations in a syntax direded-fashion with lan-
guage onstructs being mapped into networks of param-
eterised instances of "handshake amponents’ ead of
which has a mncrete gate level implementation.

A Balsa description of a modulo-10 counter is given in
Figure 2. Each procedure in Balsa aorresponds to a hand-
shake drcuit (comprising basic handshake components).
The interfaceto its environment is by means of the dhan-
nels in the procedure dedaration. In the example aove,
adk is a dataless handshake dhannel, whereas court is an
output handshake data-beaing channel (of width 4 hits).

Balsa designs can be simulated by trandating (automati-
cdly) into the language LARD [Endett,200]]. LARD
provides mixed sequential and parallel commands with

channel communicaion as abasic languege feaure. LARD
resembles a concurrent programming language, being built
around a shared memory, time-slice multi-threaded virtua
machine.

type Csize is 4 bits
constant max_count = 9

procedure count 10(sync acl k; out put
count: Csize) is
variabl e count_reg :
variable tnp : C_size

C si ze

begi n
| oop
sync acl k;
if count_reg /= max_count then
tnp := (count_reg + 1 as C size)
el se
tnmp := 0
end || count <- count_reg ;
count_reg := tnp
end
end

Figure2: A Balsa Example (M odulo-10 Counter)

Communication primitives are built on top d this machine
and function by signalli ng data validity through an element
of a shared memory structure. On top o LARD, an ex-
panded channel library is used to provide pull channels
and pull channel enclosure primitives.

4. OCCARM: PARALLEL SIMULATION WITH
OCCAM

The simulation of digital systemsin general, and computer
architedures in particular, has long been categorised
among the highly computation intensive gplicaions. In
the cae of asynchronous gstems, the requirement of
multi ple exeautions of the simulation model of the system,
in order to test the system for deadlocks and evaluate its
performance for different sets of delays in the component
sub-systems [Furber,1995Theodaropaulos,2001 render
simulation speed even more aucial. Although the primary
initial motive for using CSP is the need to capture ad
model the ncurrent, asynchronous, non-deterministic
behaviour of asynchronous hardware, and aimost all work
undertaken so far in this areahas placal emphasis on pro-
ducing spedficaions to be used as input to silicon compil-
ers rather than for paralel simulation, the exploitation of
the inherent paralelism and the exeaution of the CSP
models on multiprocesor platforms can potentialy
adhieve high simulation performance and can contribute in
reducing the duration and cost of the design cycle.

Asynchronous hardware systems are a excdlent candidate
for distributed simulation. The concurrent operation of the
different subsystems of an asynchronous g/stem, the inher-
ent parallelism within ead subsystem and the lad of any
global synchronisation, are tharaderistics which suppart
the concurrent exeaution of events in a simulation model.
In his flashback simulation approach [Sutherland, 1993,

Sutherland attempts to exploit these daraderistics of
asynchronous g/stems and all ow “out-of-order" processng
of events to increase simulation speed; however, his smu-
lation retains its sequential nature, and is intended for exe-
cution on conventional von Neumann computers.

To exploit the potential of CSP for distributed simulation,
the use of occam [Inmos,1989, the exeautable counterpart
of CSP, for the modelling and perallel simulation of com-
plex asynchronous architedures has been investigated in
the mntext of the AMULET work. As part of this projed,
a generic modeling methoddogy has been propcsed
[Theodaropaulos,200(Q; occarm, an occan simulation
model of the AMULET1 asynchronous microprocesor
[Wo0ds,1997 has been developed [Theodaropou-
[05,1995; and isaues related to synchronisation [Theo-
doropaulos,20013] and the exeaution of the occam nmodels
on transputer platforms [Theodaropaulos,2001 have
been addres=d.

RDin

PROC Regi st er (CHAN OF BUNDLE RDi n, RDout ,
CHAN OF ACK Ain, Aout)

SEQ
RDin ? Data
WHI LE TRUE
SEQ
PAR -- fork

RDout ! Data
An ! any
PAR -- Mller-C
RDin? ? Data
Aout ? any

Figure 3: Occarm: The Register M odel

Occan is primarily a general purpose programming lan-
guage, and thus, a spedfication developed using occam is
automaticdly an exeautable simulation model of the asyn-
chronous g/stem. No extra ssmulation engine is required.
Within occam, the system is modelled as a a network of
concurrent occam processes, topdogicdly identicd to the
asynchronous g/stem, with ead occan process corre-
sponding to a different functional module of the system,
and communicding with its peas via timestamped mes-
sages. Eadh register is modell ed as a separate occam proc-
ess while the control logic may be implemented as a net-
work of communicding processes, with the occam PAR
(parallel exeadtion) and SEQ (sequential exeaution) com-
mands being used within ead processto implement the
partial ordering of events of the drcuit. Figure 3 ill ustrates
the modelli ng of aregister in occam (micropipeline).

5. THE NEED FOR AN ALTERNATIVE PARALLEL
SIMULATION APPROACH

A number of conclusions were drawn from the work with
Occam which suggest the need for an dternative goproach

to the distributed simulation of asynchronous hardware. A
central element in this argument relates to synchronisation.

In the modelling and simulation of computer systems,
simulated time plays a dua role: as a synchronising agent,
to drive the smulation engine, and as a quantifier, to pro-
vide the means for the performance evaluation of the a-
chitedure.

The eploitation of the relationship between CSP/occam
semantics and asynchronous hardware systems, asaimes
and implies a data-driven operation of the processs of the
model. The exeaution of a model consisting of data-driven
processes which describe the modelled hardware & the
Register Transfer (or higher) level is draightforward.
Since d these levels, the wrrea operation of the ayn-
chronous hardware system does not depend on a global
clock, simulated time is not required for the synchronisa-
tion of the CSP/occan processes. Processes can be en-
tirely data-driven and self-scheduling, and be synchronised
by the protocol employed in the mmmunication semantics
of occam, in the same way that the communicaion proto-
col employed in the asynchronous g/stem synchronises the
different functional modules.

This however is not true for models at lower levels of ab-
stradion. One can certainly use occam to produce textual
descriptions of gates and event processng blocks. How-
ever, the data-driven operation of an occam model whose
concurrent processees model gates and event procesing
blocks with level sensitive inputs may lead to deadlocks or
incorred results . In this case, the smulated time is needed
to ad as the synchronisation agent in the model.

Even at the Register Transfer (or higher) level, however,
simulated time is gill needed as a quantifier, to provide for
the performance evaluation of the simulated asynchronous
system, but the eploitation of the relationship between
CSP/occan and asynchronous hardware systems to per-
form simulation, trades temporal acaracy for esse of
modelling. Although the topdogicd charaderistics of the
modelled hardware system mep naturally onto the model,
the temporal charaderistics generally do not, a situation
that, in the presence of arbiters in the hardware system,
may lead to causdlity errors in the model. These erors
compromise the acerracy of any time-based evaluation of
the simulated system. A quantitative analysis has gown
that the timing error introduced in the model may be quite
significant [Theodoropaul 0s,20013).

The requirement to test the achitedure for potentia
deadlocks by modifying the delays in the system to achieve
different event orderings [Furber,1995 Theodaopaou-
l0s,2001H renders the neead for synchronisation even more
intense: if the simulated time is not the synchronizaion
agent in the simulator, different event orderings may only
be adieved by using occam red time Timersto change the
relative scheduling of the occam processes. In this case,

small delays cannot guarantee the intended effeds and
behaviour in the model, while large delays have asevere
effed on the performance of the simulator.

In other words, the exploitation of the CSP/occan seman-
tics fadlitates the spedficaion and modelling of asyn-
chronous g/stems but does not ensure time-acarate dis-
tributed simulation. It is generaly possble to introduce
additional functionality in the occan model to ensure tem-
poral acaracy, but this impaoses an extra burden to the
modell er and increases the cmplexity of the model, forc-
ing it to depart from its original phil osophy (namely, the
exploitation of the CSP semantics).

The complexity of the model is further incressed by the
neel to address monitoring, mapping and load balancing
isaues, which in the cae of occam are dl the responsibility
of the programmer.

Thus, what is required, is an alternative gproad, which
would separate modelli ng and simulation: for the former it
would suppat a CSP-like notation, while for the latter it
would utili se adistributed simulation kernel, optimised for
the simulation of asynchronous hardware.

As amodelling rotation we propcse Balsa/LARD. Balsais
demonstrably capable of describing complex hardware
strucures guch as the DMA controller for the AMULET3i
asynchronous microprocesor macaocdl [Bardsey,2004.
LARD is a language spedficdly designed for modelling
asynchronous g/stems with an automatic translation route
from the Bal sa description.

The underlying simulation kernel will exeaute the model,
taking care of partition, load balancing and synchronisa-
tion. The kernel should also provide fadliti es for moni-
toring the simulation exeaution, enabling the debuggng
and well as the evaluation of the performance of the simu-
lated system.

6. PARTITIONING AND LOAD BALANCING

The envisaged underlying simulation kernel is a decen-
tralised event-driven system based on the “Logicd Proc-
ess paradigm [Fujimoto,200Q. This approach seeks to
divide the simulation model into a network of concurrent
Logical Processes (LPs), eath maintaining and processng
a digoint portion of the state space of the system. State
changes are modelled as timestamped events in the simu-
lation. From an LP's paint of view, two types of events are
distingushed; namely internal events which have a casa
impad only to the state variables of the LP, and external
events which may also have an impad on the states of
other LPs. External events are typicadly modell ed as time-
stamped messages exchanged between the LPs involved.

It is envisioned that once the Balsa spedficaion of the
asynchronous g/stem has been produced, it will be trans-

lated and partitioned in subsets of state variables which
will be adgned to dfferent LPs.

Trandating from Balsa into LARD is reasonably straight-
forward and proceeds from the compiled handshake level
description. A library of handshake component behav-
ioural descriptions forms the functional core of ead
simulation. LARD provides type-polymorphic feaures
which make the description of parameterisable handshake
circuits smple, thereis no need to crede spedfic instances
of the required components for ead differing set of pa-
rameters. A minor inelegance in the arrent version arises
becaise LARD's i nt type only allows 32 kit numbers to
be represented and so to implement the multi-predsion
arithmetic of Balsa adifferent type must be used for smu-
lated channels. The aurrent mechanism for doing this how-
ever is mewhat inefficient.

Partiti oning should aim to balance the communicaion and
computation load of the simulation system [Norman,
1993. Finding an optimal partition for agiven circuit is an
NP-complete problem [Johnson,1979 and various heuris-
tics have been developed to address this problem
[Lin,197Q Mattheyses, 1982 Newton,1991;Guetaff,1999.
The gplicability and suitability of these dgorithms for
asynchronous hardware should be further examined. In
the context of the propased approad, the partitioning al-
gorithm should take into acount the tharaderistics of the
underlying simulation platform, the simulation kernel, and
the simulated system (such as the aiticd path of a simu-
lated microprocesor).

7. SYNCHRONISATION

In decentralised, event-driven distributed simulation, eadh
LP maintains a locd clock with the aiurrent value of the
simulated time, Locd Virtual Time (LVT). This value
represents the processs locd view of the global simulated
time and denotes how far in simulated time the rre-
sponding process has progressed. An LP will repeaedly
accet and process messages arriving on its input links,
advancing its LVT and passbly generating, as a result, a
number of messages on its output links. The timestamp of
an output message isthe LVT of the LP when the message
was @ent. A fundamental problem in event-driven distrib-
uted simulation is to ensure that the LPs always process
messages in increasing timestamp order, and hence faith-
fully and acarately implement the causal dependencies
and pertial ordering of events dictated by the casdity
principle in the modell ed system.

It has been shown [Lamport,1979 that a distributed sys-
tem consisting of asynchronous concurrent processes will

not violate the causality principle if eadcy merge process
consumes and processes event messages in non-deaeasing
timestamp order (the local causality constraint; the arival

of an out of order event isreferred to as a preemption).

At the Register Transfer level, threetypes of merging are
encountered:

= Synchronous merge. A functional module has to wait
for al input datato become available before it starts
its operation. This is the cae when a Muller-C ele-
ment is used for the wrresponding request events. In
the simulation model, the LP has to wait for al input
channels to “fire" and therefore no preemption occurs
as the processis in the position to seled the message
with the small est timestamp.

= Data dependent merge. The functionality of the sys-
tem dictates the order in which messages from dif-
ferent source processes ould be consumed and proc-
esed. This dtuation is implemented in hardware us-
ing acombination of a Seled and a Call or Xor. The
LP in this case behaves as a singe input module,
hence causality is not violated.

= Arbitrated merge. The order of arrival defines the
order of consumption. If events from two sub-
components arrive & the same time, an arbitrary
choiceismade. Thisisthe cae where caisality errors
may occur if the order in which messages arrive & the
arbiter processin the model is not the same & the or-
der of eventsin the simulated system.

At lower levels, gates and event processng blocks with
level senstive inputs complicate the synchronisation
problem introducing more types of merge processes.

Two main approaches have been developed to ensure that
the locd causdlity constraint is not violated is asynchro-
nous smulation, namely conservative and optimistic [Fu-
jimoto,200Q. The good lookahead properties of asyn-
chronous VLSl systems, and the static nature (partition
and configuration) of the distributed model suggest that the
conservative gproac would be suitable and sufficient for
the simulation of asynchronous hardware, rendering the
substantial extra complexity of optimistic gpproaces un-
necessy.

In the mntext of Occam, the ancept of Instruction Loo-
kahead was introduced and the Program Driven Synchro-
nization Protocol (PDSP), a wnservative, deadlock
avoidance framework was developed to address the syn-
chronisation problem at the Register Transfer level
[Theodaropaulos,2001a]. PDSP could form the basis for
the synchronisation mechanism of the propased simulation
kernel, however, its generality as well as its applicability
for models at lower levels of abstradion should be further
investigated.

8. MONITORING

Monitoring the runtime behaviour of the simulation model
and colleding information regarding the charaderistics of
the simulated system is one of the main objedives of the
simulation process Monitoring is esential for the testing

and performance evaluation of the simulated system as
well asfor the debuggng of both the simulated system and
the smulation model. The inherent properties of distrib-
uted asynchronous g/stems make monitoring a difficult
and complicaed isaue for which sequential techniques are
insufficient. The fundamental problem is the difficulty to
ded with causality and oltain snapshots in a distributed
environment [Lamport,1978 Chandy,1985 Babaoglou,
1993. To determine the system state, all the different locd
processas well as channel states neal to be taken into ac-
count; the monitoring system should be ale to correlate
the histories of the different processes and put them in a
global temporal perspedive. The main isales which stem
out of this fundamental problem and which an ided dis-
tributed monitoring system should address include the
multi ple threads of control, intrusiveness non-determinism
and the need to cope with (i.e. generate, transport and
analyse) a vast amount of monitoring data. For a detailed
discusgon of these isaies the reeder is referred to e.g.
[Joyce 1987 Riek,1993.

‘ Processprocess_name: instructioninstruction_type was eecuted at timelock ‘

(a) Bxecution eent trace

‘ Procesprocess_name: variablevariable name hasthevalueval attime clock ‘

(b) Data gent trace

‘ Processprocess name: sendingvalueval to procesgroc onchannekhan attime clock ‘

‘ Processprocess name: receving valueval from processgroc onchannekhan attime clock ‘

(c) Parallelity event traces

Figure 4: Event Traces

In the cae of asynchronous hardware, the simulation has
two main objedives, namely the testing and debuggng of
the system and the evaluation of the system’s performance.
For the debuggng of the achitedure (as well as the simu-
lation model) it is necessary to monitor both the flow of
control and the flow of datain ead of the different LPs in
the model; this could be adieved by colleding traces re-
garding the execution and data events of the processes
respedively (Figure 4a,b). For the detedion of deadlocks,
it is esential to know the state of the dhannels in the sys-
tem when the deallock occurred. For this purpose, the
parallelity events, which correspond to communication
adions, neal to be monitored (Figure 4c). These should
appea in pairs, one for the sending and one for the re-
ceving process The asence of one paralelity event from
apair in the final traceindicates the occurrence of a dead-
lock.

A deficiency of the aurrent LARD simulation system is
that chedk-pointing is not supparted. Since maintenance of
state in a distributed environment is esential, adding
chedk-painting to the simulation environment is essential if
the language is to be usable for large designs and it should
come & abyproduct of the work envisaged here.

9.HLA COMPLIANCE

Traditionally, hardware systems are evaluated by (meta)
exeauting benchmark suites on the simulation model.
However, VLSl circuits such as microprocesors are in-
creasingy used as embedded controllers, incorporated in
other devices (e.g. in a ca to control the ca’s brakes).
This is particularly true for asynchronous g/stems as their
inherent power-efficiency, eledromagnetic compatibility
and modularity renders them ided for embedded applica
tions [Furber,1997. In such systems, the aynchronous
controller interads with a cmplex environment and needs
to respond rapidly and predictably to events in the outside
world.

For this type of applicdions, the traditional evaluation
approach of mere benchmark exeaution appeas insuffi-
cient, as in this case what would be desirable is the
evaluation of the controller design within the environment
that it will operate, by incorporating the simulation model
in some hardware-in-loop simulation, or by enabling it to
interad with a simulation model of the environment. Such
an evaluation approach may be adieved through the High
Level Architedure (HLA), the simulator interoperability
framework developed by USA DoD/DMSO [HLA,200].
It istherefore proposed that the smulation kernel should
be HLA-compliant.

10. EPILOGUE

Asynchronous logic is being viewed as an increasingly
viable dternative digital design approach which promises
to liberate VLS| systems from clock skew problems, offer
the potential for low power and high performance and en-
courage amodular design phil osophy which makes incre-
mental technologicd migration a much easier task. Model-
ling and simulation, being at the heat of the digital design
process may perform a cdalytic role in the quest for the
redisation of the potential benefitsoffered by asynchro-
nous logic. The mncurrent, non-deterministic behaviour of
asynchronous digital designs renders smulation speed
crucial.

Capitalising on previous experience using two dfferent
CSP-like languages, this paper has revisited the problem of
distributed simulation of asynchronous hardware, and has
argued for the nead of an aternative gproach, which sepa-
rates modelling from simulation: for the former it adopts
Balsa/lLARD, a CSP-like asynchronous hardware descrip-
tion language, while for the latter it envisages the utili sa-
tion of a decentralised, event-driven simulation system
based on the “Logicd Process’ paradigm. The paper has
discussed isales that need to be addressed for the redisa
tion of this approach.

REFERENCES

AMULET 2001 The AMULET Group, University of Manches-
ter U.K. URL: www.cs.man.ac uk/amulet/

Babaoglou O. and Marzullo K. 1993 “Consistent Global States
of Distributed Systems: Fundamental Concepts and Mecha
nisms’, Technical Report UBLCS93-1, Laboratory for Com-
puter Science, University of Bologna.

Bardsley A. 2000 “Implementing Balsa Handshake Circuits’,
Ph.D. Thesis, University of Manchester.

Bardsey A.andEdwards D.A. 200Q “The Balsa Asynchronows
Circuit Synthesis System”, Proceedings of Third International
Forum on Design Languages, Tubingen, Germany September,
pp. 37-44

Bardsley A. and Edwards D. 200Q “Synthesising an Asynchro-
nous DMA Controller with Balsa”, Journal of Systems Archi-
tecture, Decenber, pp. 13101319

Birtwistle G. and Davis A. 1995 “Asynchronous Digital Circuit
Design”, Springer Verlang,

Brunvand E. and Starkey M. 1991, “An Integrated Environ-
ment for the Design and Simulation d Self Timed Systems’,
Proceedings of VLSl 1991, pp. 4a.2.1-4a.3.1.

Chandy K. M. and Lamport L. 1985 “Distributed Snapshats:
Determining Global States of Distributed Systems’, ACM Trans-
actions on Computer Systems, 3(1), pp. 63—-75

Cortadella J. et. a., 1997, “Petrify: A Tod for Manipulating
Con-current Spedficaions and Synthesis of Asynchronouws Con-
trollers’, |EICE Transactions on Information and Systems, E80-
D(3), pp. 315325

Davis S. and Nowick M 1995 “Synthesizing Asynchronows
Circuits: Pradice and Experience”, in [Birtwistle, 1995, pp. 104
150

Dill D. L. 1989 “TraceTheory for Automatic Hierarchicd Veri-
ficaion d Speed-Independent Circuits’, ACM Distinguished
Dissertations, MIT Press

Endecott P. B. 2001, The LARD Documentation Home Page:
URL.: http://www.cs.man.acuk/amulet/projeds LARD

Fujimoto R. 2000 “Paralel and Distributed Simulation Sys-
tems’, JohnWiley & Sons.

Furber S. B. 1995 “Computing Without Clocks’, in [Birtwis-
tle, 1999, pp. 211-262

Furber SB. et. a., 1997 “Asynchronows Embedded Control”,
Journal of Integrated Computer-Aided Engineering, Wiley,
Vol.5No.1 pp57-68

Gopalakrishnan G. and AkellaV. 1993 “Spedfication, Simula
tion, and Synthesis of Self-Timed Circuits’, Proceedings of the
26th Hawaii International Conference on System Sciences, pp.
399408

Guetaff A and Bazagan-Sabet P. 1998 “Using Node Replicéaion
to Improve Circuit’s Partition in Distributed Logic Simulation”,
Proceedings of the 12th European Simulation Multiconference,
SCS, June, Manchester, pp. 235237

HLA 2001, High Level Architedure, Defense Modeling and
Simulation Office U.S. Department of Defense. URL:
http://www.dmso.mil/ hla

Hoare C.A.R. 1985 “Communicaing Sequentia Processs’,
Prentice Hall International.

Hulgaad H.and Burns S. M. 1994 “Bounced Delay Timing
Analysis of a Classof CSP Rograms with Choice”, in Proceed-
ings of the International Symposium on Advanced Research in
Asynchronous Circuits and Systems.

Inmos 1988 “Occam 2 Reference Manual”, Prentice Hall Inter-
national.

Johnson D.S. and Garey M. 1979 “Computer and Intradability:
A Guide to the Theory of NP Completeness’, Freeman.

Josephs M. B. and Udding J. T. 199Q “Delay-Insensitive Cir-
cuits: An Algebraic Approach to their Design, in Lecture Notes
in Computer Science, Vol. 458, pp. 342-366.

Joyce J. et a., 1987 “Monitoring Distributed Systems’, ACM
Transactions on Computer Systems, 5(2), pp. 121 150

Lamport L. 1978 “Time, Clocks and the Ordering of Events in
Distributed Systems’. Communications of the ACM, 21(7), pp.
558-565

Lin S. and Kernigan W., 1970 “An Efficient Heuristic Procedure
for Partitioning Graphs’, Bell System Technical Journal, Vol 49,
pp. 291-307.

LiuY.atd., 1993 “ Designing Parallel Spedficaionsin CCS’,
in Proceedings of the Canadian Conference on Electrical and
Computer Engineering, Vancouver.

Martin A. J. 199Q “Synthesis of Asynchronouws VLS| Circuits’,
J.Staunstrup, editor, Formal Methods for VLS Design, North
Holland.

Mattheyses R. M. and Fiducda C. M., 1982 “A Linea Time
Heuristics For Improving Network Partitions’, Proceedings of
the 19th Design Automation Conference, pp. 175181

Molnar C. E.and Fang T-P. 1983 “Synthesis of Reliable Speed-
Independent Circuit Modues: |. General Method for Sped fice
tion d Modue-Environment Interadion and Derivation o a
Circuit Redisation”, Technical Report 297, Computer Systems
Laboratory, Institute for Biomedicd Computing, Washington
University, St. Louis.

Newton R. and Kring C. 1991, “A Cell-Replicaing Approach to
Mincut-Based Circuit Partitioning”, 1991 International Confer-
ence on Computer Aided Design, pp. 2-5.

Norman M. G. and Thanisch P. 1993 “Models of macdines and
Computation for Mapping in Multicomputers’. ACM Comput-
ting Surveys, 25, September, pp. 263-302

Riek M. Tourancheau B. and Vigouroux X. F. 1993 “Monitor-
ing of Distributed Memory Multicomputer Programs’, Technical
Report UT-CS-93-204, University of Tennesseg October

Sutherland I. E. 1993 “Flashbad Simulation”, Research Report,
SunLab 93:0285, Sun Microsystems Laboratories, Inc., August.

Theodaopodos G. 1995 “Strategies for the Modelling and
Simulation o Asynchronows Computer Architedures’, Ph.D
Thesis, Department of Computer Science, University of Man-
chester, 1995

Theodaropodos G. 200Q “Modelling and Distributed Simula-
tion d Asynchronouws Hardware”, Smulation Practice and The-
ory Journal, 200Q 7:741-767.

Theodaropoudos G. 2001, “Distributed Simulation d Asynchro-
nouws Hardware: The Program Driven Synchronisation Protocol,
Journal of Paralel and Distributed Computing, Spedal Issue on
Distributed Simulation, editor C. Tropper, to appea.

Theodaropodos G. 2001, “Simulating Asynchronous Hardware
on Multi processor Platforms’, Concurrency Pradice and Experi-
enceJournal, J. Wiley, to appea.

van Berkel K. 1993 “Handshake Circuits - An Asynchronows
Architedure for VLSl Programming”, Cambridge University
Press

VERSIFY Release 2.0, Department d' Arquitedura de Computa
dors, Universitat Politémica de Catalunya, Barcdona, Spain,
November 1998 URL: http://www.acupc.es/vlsi/versify/

Werner T. and Venkatesh A. 1997, “Asynchronows Processor
Survey”, |[EEE Computer, 30(11), pp. 67-76.

Woods 1V et a. 1997, “AMULET1: An Asynchronows ARM
Microprocessor”, |EEE Transactions on Computers, 46(4), pp.
385398

AUTHOR BIOGRAPHIES

Dr Georgios Theodoropoulos receved a Diploma degree in
Computer Engineaing from the University of Patras, Greecein
1989 and MSc and PhD degrees in Computer Science from the
University of Manchester, U.K. in 1991and 1995respedively.
In 199121995 te was a member of the AMULET group. Since
February 1998 te has been a Ledurer in the Schod of Computer
Science University of Birmingham, U.K. teading courses on
Hardware Engineaing and Computer Networks. His reseach
interests include parallel and dstributed systems, computer and
network architedures and modelli ng and dstributed simulation.

Dr Doug Edwards is a Senior Ledurer in Computer Science d
the University of Manchester. Previous reseach interests have
included the physics of heterojunction structures, high speed
opticd fibre networks and herdware accéerators for CAD. Heis
currently a member of the AMULET group reseaching asyn-
chronows s/stems.

