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A globally shared bus increasingly
cannot meet the demands of system-on-a-chip
(SOC) interconnects because the high wire
loads and resistance levels result in slow signal
propagation. A popular alternative, using uni-
directional point-to-point connections, and
multiplexers, requires even more chip space and
still suffers from many of the same problems
(for example, difficulties in timing validation
and connecting devices running from unrelat-
ed clocks). Furthermore, to continue increasing
the number and variety of macrocells embed-
ded on a single chip will require interconnects
with greater flexibility than today’s synchro-
nous, core-specific system buses.

The adoption of on-chip networks as the
solution to growing SOC interconnect
demands, presented by both current and pro-
jected integration levels,1 raises the question of
which clocking strategy to use. A higher clock
frequency produces better performance, but by
definition, the global interconnect spans the
entire chip—exactly the situation that leads to
clock skew problems. Clock management of
such a network is problematic at best.

Using self-timed techniques for the network
on a chip eliminates these problems. This
leaves only the issue of interfacing synchro-
nous and self-timed circuits, which is a well
understood discipline for which standard
solutions exist.2

One-hot encoding
Our network on a chip, Chain, uses a delay-

insensitive data encoding combined with a
return-to-zero signaling protocol, on links
with one acknowledge wire and five forward-
going wires. Table 1 shows this one-of-five
data encoding where only one wire in a group
is allowed to signal data at any one time
(known as one-hot encoding). During nor-
mal data transmission, one of the wires (d3,
d2, d1 or d0) transmits two bits per cycle. The
end-of-packet (EOP) signal separates consec-
utive data blocks. This encoding requires only
a simple five-input OR gate to detect valid
data at the receiver. Multiple parallel links can
satisfy higher bandwidth requirements.

Design advantages
Rather than sharing an acknowledge wire

across many bits of forward-going data, our
approach runs a dedicated acknowledge wire
for each one-of-five signaling group (giving
six wires for every link). This additional wiring
avoids the need for trees of gates in the criti-
cal path to merge multiple acknowledges into
a single wire.

Interconnect delays and crosstalk are
becoming worse with every CMOS process
shrink, and repeaters have to be inserted at
intervals along long wires to repower the
links.3 Using pipeline latches instead of buffers
allows bandwidth improvement of such links
with little impact on their latency.

Buffer and pipeline techniques apply equal-
ly to clocked and asynchronous circuits. With
or without clocks, performance is limited by
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the slowest stage. The key difference is that
with a synchronous approach, the entire inter-
connect must be operated from the same clock,
or a multiple thereof, whereas the asynchro-
nous approach is self-regulating, operating as
fast as the paths allow. The “Self-timed cir-
cuits” sidebar (next page) gives a detailed expla-
nation of how asynchronous circuits work.

The pipe latches in Figure 1 represent the
self-timed latch stages for the one-hot links.4

The loop between these latches can be
thought of as a ring oscillator, interlocked with
the preceding and following stages via the
Muller C-elements, with the minimum oscil-
lation period determined by the two C-ele-
ments, the OR gate, the inverter, and the
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Table 1. One-of-five data encoding.

End-of-packet signal d3 wire d2 wire d1 wire d0 wire Information transferred

1 0 0 0 0 End of packet
0 1 0 0 0 Two-bit data value 11
0 0 1 0 0 Two-bit data value 10
0 0 0 1 0 Two-bit data value 01
0 0 0 0 1 Two-bit data value 00
0 0 0 0 0 Idle state
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lengths of the wire between the latch stages.
The other modules shown in Figure 1 are
derivatives of this simple latch stage intro-
duced to perform switching functions.

Crosstalk
Using a return-to-zero, one-hot code has the

further advantage of minimizing crosstalk. The
increasing importance of this issue is apparent
when you consider that the variation in signal

delay (for 0.35-micron technology) on a 10-
millimeter wire is between 0.5 and 2.5 nanosec-
onds (ns) depending on the behavior of its
environment.5 First, only one wire in a link can
transition at a given time, meaning that signals
within a link will never transition in opposing
directions at the same time. Second, detri-
mental interaction between physically adjacent
one-of-five links will occur infrequently because
of sparse coding and asynchronicity, which
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Self-timed (asynchronous) circuits exchange information using a hand-
shake to explicitly indicate the validity and acceptance of data. This is in
contrast to the synchronous design style, which uses a globally distributed
clock signal to indicate moments of stability of the data.

There are a number of alternative asynchronous design styles differ-
ing in how they indicate data validity.1-3 The fabrication of a range of large-
scale designs proves the viability of these approaches.4,5 Some styles
base the handshake upon a matched-delay path representing the slow-
est part of the data path, but these suffer from the same timing valida-
tion problems as synchronous design. We use, in Chain, the
delay-insensitive style in which the validity is transmitted implicitly in the
data encoding. This avoids much of the need for timing analysis, giving
designs that operate correctly regardless of the delay in the intercon-
necting wires, although coming with an increased resource cost. Many
data encoding schemes can be used in this manner,3 including the simple

dual-rail approach, which uses two signal wires per data bit; for our exam-
ple we will call the wires d0 and d1. The idle state is when both signals
are low and convey no information. If d0 is asserted then a logic 0 is trans-
mitted; if d1 is asserted then a logic 1 is transmitted. At any time, at most
one of the signals can be asserted, conveying both the data value and, by
its assertion, indicating data stability. The receiver uses another wire, the
acknowledge, to signal receipt of the data, and then in a return-to-zero
phase the data and the acknowledge wires return to the idle state.

Usually, many pairs of data wires share a single acknowledge. The chan-
nel cost of this approach for an n-bit data path is 2n + 1 wires, n2-input OR
gates and an n-input Muller C-element tree. This is the price paid to avoid
post-layout timing analysis and validation. A Muller C-element is like a state-
ful AND gate. Its output is asserted when both inputs are high; and deassert-
ed when both inputs are low. With differing inputs, the gate output retains
its previous value. Although this requires state in the gate, they are still fair-
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makes it unlikely that adjacent links will tran-
sition at exactly the same time.

Link speed
On 0.35-micron technology, simulations

show a throughput of around 700 megabits
per second (Mbps) per link, with more than
1 Gbps per link projected for 0.18-micron
CMOS technology—using suitable link
lengths to minimize end-to-end latency. This
corresponds to 120 Mbps per wire on 0.35-
micron CMOS technology and 160 Mbps per
wire on 0.18-micron CMOS technology.

Switched Chain networks
Switched networks require additional cir-

cuitry to handle steering, multiplexing, arbi-
tration, and route setup and teardown. We
can easily adapt the basic one-of-five pipeline
latch to support these functions, and distrib-
ute them throughout the interconnection sys-
tem illustrated in Figure 1.

To pass data from a sender to a receiver
through a network of links connected through
pipeline, multiplexing, and steering latches, a
route has to be determined. Figure 1 shows
how a modified latch allows the multiplexing
of one of two inputs onto an output. If the
environment cannot guarantee mutual exclu-
sivity of activity on the incoming links, a link
arbiter (also shown in Figure 1) is required
immediately prior to the multiplexer. This
arbiter’s operation is entirely self-timed, using
a mutual exclusion element6 to resolve

metastability. Figure 1 shows the correspond-
ing implementation of the steering unit for
directing a symbol to one of two alternative
outputs.

Route setup
In our Chain implementation, each sender

has full knowledge of the network topology and
can thus determine the routing. This informa-
tion is then encoded in a series of routing sym-
bols at the start of the transmitted packet.

Figure 1 shows a suitable circuit fragment
for tapping-off the first incoming symbol to
the steering unit and using it to direct the sub-
sequent symbols, resetting on detection of the
EOP symbol. This circuit fragment imposes
a small additional delay on route setup but
does not impede performance for subsequent
data symbols; this is also the case for the
arbiter module. To support packet-based
operation the arbiter ensures that packets
remain intact (not fragmented). Hence, arbi-
tration can only occur following reset or pas-
sage of an EOP symbol.

Route teardown
After a group of symbols forming a packet

passes through a network node, that node can
be released to service a new incoming packet.
This occurs when the node observes an EOP
symbol, transmitted on the EOP wire. In the
early stages of Chain’s development, we exper-
imented with using only four forward-going
data wires, using fixed-length packets, and thus
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ly inexpensive, with a two-input C-element requiring only eight transistors.
Figure A shows a sender connected to a receiver through two pipeline

latch stages using the dual-rail signaling scheme. Each latch stage has two
key parts: the C-elements providing storage and synchronization of the
data path with the acknowledge flow-control signal from the following
stage; and the completion detection tree, composed of OR gates feeding
into a C-element to generate the acknowledge signal for use by the pre-
vious stage. The C-elements behave like AND gates except that, once
asserted, their output remains so until ALL of the inputs are low (not just
one of them). This behavior means that we can think of circuits such as
that shown in Figure A as a series of interlocked ring oscillators, as is
apparent if one follows the signal flow from the upper Stage 1 C-element
output through the uppermost Stage 2 C-element to the Stage 2 comple-
tion detector and the Stage 1 inverter back to the other input of the upper
Stage 1 C-element – a loop with a total of nine logical inversions. As such,
the circuits are self-regulating, their speed determined by the slowest
stage without the use of a global clock to regulate every stage.
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eliminating the need for the EOP wire. That
scheme, however, resulted in significantly more
complex switching circuits that had to count
the number of symbols they passed.

Packet length
Our current Chain implementation accom-

modates variable length packets through the
explicit EOP signaling. For route setup we dis-
tribute as much of the control as possible, so
every packet must carry routing information
at its head. Figure 2 shows this packet format.

Parameterizable performance
Although individual Chain links deliver sig-

nificant throughput, many systems require
greater than the 700 Mbps available over a sin-
gle link (on 0.35-micron CMOS technolo-
gy). Bandwidth is improved in the Chain
architecture by ganging links together. The
packet is mapped onto a gang of links with
the ROUTE and EOP fields transmitted
down every link, and the BODY field divid-
ed across the links.

A 32-bit packet body transmitted over 16
links in parallel incurs only the route setup
time and the end-to-end latency. At the other

extreme, transmitting the same packet over a
single link as 16 sequential symbols incurs an
additional 48 ns of latency (around 3 ns per
symbol on 0.35-micron technology).

The multiplexing and demultiplexing
required to transmit a packet body serially is
derived from the multiplexer and steering cir-
cuits, shown in Figure 1, by adding a few gates
in the acknowledge paths to alternate between
the two available ports. This multiplexing
simplicity, combined with self-timed links,
which always run as fast as the source and des-
tination allow, means that we can seamlessly
tailor the bandwidth of different parts of the
network to suit the units connected to them.

System-on-a-chip interconnect
Designers can use a switched network archi-

tecture to create networks of any topology,
including rings, meshes, and multiplexer/
demultiplexer systems that approximate the
behavior of a shared bus.

Current SOC designs require the connec-
tion of macrocells such as processors, direct
memory access controllers, test interfaces, and
a hoard of peripherals (memories, universal
asynchronous receiver/transmitters or UARTs,
and so on). The interconnect must pass com-
mands from the initiator to the target device,
and then return a response in the opposite
direction. The open core protocol neatly spec-
ifies this, albeit using a clock signal.8 A proces-
sor reads data from a memory by transmitting
an address and the memory responds with the
read data. For performance reasons, most on-
chip bus implementations transmit the com-
mand and response over separate pathways.9,10

With Chain, as Figure 3 illustrates, this cor-
responds to two separate switched networks
that are minimally coupled at the initiator and
target through the use of split transactions for
all operations—inexpensive and easy to
achieve in an asynchronous design.10

Message format
Higher-level protocols can be layered upon

the basic connectivity provided by the switch-
ing of variable-length packets we have described.
Several message formats are thus defined, all
comprising a 16-bit header followed by payload
information (rounded to a multiple of 16 bits),
as shown in Figure 4. Some of the shorter mes-
sages have no payload, just a message header.
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Figure 2. Chain’s packet format.
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Currently we use five different types of mes-
sages with Chain:

• Command—sends the address and write
data (if any) to the target.

• Normal response—returns success con-
firmation and read data (if any) to the
transaction initiator.

• Notify error—indicates trouble at the
target.

• Notify accept—indicates transaction
accepted by a slow target.

• Notify defer—indicates that the target
rejected the transaction.

In normal operation, the initiator issues a
command (including an address and optional-
ly, write data) that a target accepts for process-
ing. Upon completion of the processing, the
target replies with a normal response to indicate
success and to return any requested read data.

In the (hopefully rare) situations when the
target encounters problems in processing the
command, the notify-error message aborts the
operation precisely, which tells the initiator
exactly which command caused an exception.

For slow targets, the notify-accept message
lets the target inform the initiator that the
command will require extra time to process.

The notify-defer message has a very specific
use (and in many designs might not be
required). It lets the target reject a command,
thus signaling a temporary failure. This behav-
ior is useful when a network deadlock scenario
arises; such as when using a multiplex/demul-
tiplex network topology connected through a
bridge to another multimaster system inter-
connect—such as the AMBA bus from
ARM9—or another Chain network. However,
this type of hardware retry mechanism results
in inefficient power and network bandwidth
use and should be avoided whenever possible.

Multimessage packets
Atomic sequences of messages can be passed

across a Chain fabric using a multimessage
packet. Each message has a header and possi-
bly a payload (depending on the message).
The full packet format, where [ ] represents
options and ∗ represents repetition, is then:

ROUTE HEADER [PAYLOAD 
[HEADER] ] ∗ EOP.

Multimessage packets are required to support
semaphore operations. They also reduce the
impact of the route setup stage on overall
throughput, although this can increase laten-
cy for other waiting senders.

Prototype implementation
Our first implementation of Chain is in a

smart card chip (in fabrication at the time of
publication).11 This low-performance system
uses a fairly simple Chain network with:

• two ganged links (12 wires per pipeline
stage) for each of the forward (command)
and reverse (response),

• a multiplexer/demultiplexer topology,
and

• one outstanding command per initiator.

In this chip, all of the clients connected to
Chain are asynchronous macrocells, includ-
ing the two synthesized processor cores and
the external UART—although the UART
uses a clock for its external connection. Fig-
ure 5 (next page) shows the full network con-
figuration for the command path. The
response path is a mirror image of this, with
steering blocks replaced by arbiter/multiplex-
er combinations and vice versa.

The system shown in Figure 5 has three ini-
tiators: the two ARM instruction-set-com-
patible microprocessors, and an external test
interface allowing fabrication test access to the
embedded macrocells via the network. Test-
ing the processors consists of loading code into
the RAM and then running it.

The bare off-chip interface in the system
allows direct connection of the processors to
an off-chip memory subsystem for test pur-
poses. This interface only uses one Chain link
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in each direction, whereas the rest of the net-
work uses two ganged links throughout. For
normal on-chip operation, this link is unused
and has no impact on performance.

Network costs
The network fabric components are rela-

tively simple, around 20 gates each. Table 2
shows a summary of these costs (as a transis-
tor count) and those of the initiator and tar-
get interfaces.

The whole Chain logic for the smart card
system implementation, including the address
decoders, the fabric, three initiator interfaces,
and seven target interfaces uses 115,000 tran-
sistors. These are scattered throughout the lay-
out, each interface place-and-routed with its
associated device.

Performance
The worst-case performance of the smart

card’s network configuration occurs when the
processor core is accessing one of the flash
memory blocks, requiring the command and
response packets to pass through the most
hops and travel the greatest distance. At the

1-Gbps per link rate of the 0.18-micron
CMOS implementation, command route
setup incurs 4 ns of latency in addition to the
transit time for the signal to propagate
through the logic and wires. A read-command
message containing a 16-bit header and 32
bits of address requires an additional 24 ns,
whereas a write command with an additional
32 bits of write-data would require an addi-
tional 40 ns instead.

The latency imposed by the network on
returned read data, in addition to the basic
propagation delay, is due to three arbitrations,
one route-setup symbol, and the passage of
the 16-bit message header and the 32 bits of
read data. This gives a total time of 26 ns.

With only one outstanding command
issued at a time by the processor, the maxi-
mum memory access rate to the flash memo-
ry blocks is about 20 million transfers per
second. This limits the processor to fewer than
20 million instructions per second (once the
flash access time is taken into account), which
is more than sufficient for current smart card
applications.

This smart card system uses only two
ganged links for each of the forward and
return paths, giving modest performance at
low cost. With wider gangs of links, our pro-
jections show that Chain gives better through-
put compared to current synchronous
interconnect operating at frequencies over 100
MHz,9 and, of course, the latency also
improves with wider gangs. For example, a
48-wire gang of eight links would give 1-
Gbytes/s throughput. Our approach achieves
this while avoiding clock skew problems and
eliminating the need for post-layout timing
validation.
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Table 2. Chain component sizes.

Component No. of transistors

Steering 250
Arbiter 250
Multiplexer 100
Pipeline-latch repeater 70
Initiator interface 10,250
Target interface 11,000
Initiator address decoder/route encoder 1,250
Command and response (two-link wide) fabric 9,500



Although the first implementation of
Chain is in an entirely asynchronous sys-

tem, techniques for interfacing synchronous
and asynchronous systems are well known.2

Wrappers, based on synchronization or pausi-
ble clocking techniques, can connect syn-
chronous IP blocks to a self-timed
interconnect such as Chain. It is now possible
to construct large-scale SOCs without encoun-
tering the problems of synchronous intercon-
nects. Of course, this also opens the door for
using a mixture of synchronous and self-timed
macrocells on the same SOC. MICRO
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