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Amulet timeline
❍ Amulet1 1993 1.0 µm

❍ ‘ARM6’ microprocessor

❍ Amulet2 1996 0.5 µm

❍ ‘ARM7’ processor + ca

❍ Amulet3 2000 0.35 µm

❍ ‘ARM9’ Processor SoC

❍ async. bus, RAM, ROM, DMA, DRAM interfa

❍ … + synchronous peripherals



ICECS 2009

MANCHESTER
T

he
 U

ni
ve

rs
ity

of
 M

an
ch

es
te

r

1824

This talk …
❏ Amulet processors are history:

❍ ‘hard’ processor cores

❍ local timing assumptions in implementation

❍ engineering detail no longer relevant

❏ Attempt to highlight still-useful aspects

❍ microarchitectural features

❍ implementation choices

❏ How it has influenced our subsequent work
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Some ‘differences
with asynchronous de

❏ Pipelining is easy – perhaps too easy?

❏ Long-range interaction is difficult

❏ Stage timing can be data-dependent

❏ System may behave non-deterministically
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Two-phase or four-ph
Without a clock, systems communicate via
handshakes:

Handshakes can be edges (two-phase) …

❍ faster, lower power

… or levels (four-phase)

❍ logic much simpler

❏ Amulet1 used two-phase signalling on and o

❏ Subsequent devices used four-phase signall

But for a recent, GALS device we have used two-phase for

Req

Ack

Req

Ack
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Flushing a pipelin
❏ Problem: prefetch has fetched unwanted inst

❍ possibly an unknown number

❏ Cannot discard for a known number of cycles

❏ Solution: ‘colour’ the instruction flows

❍ committing to a branch means the current 

❍ stream from branch target fetched in a diffe

❍ two colours adequate in simple system

❏ Extensible

❍ Amulet3 uses another colour to allow late d
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Deadlocks

Arbitrated resource (e.g. memory

Arbitrated resource (e.g. memory
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Deadlocks
In the preceding example:

❏ A deadlock can occur … but only in certain c

❍ hard to reproduce in simulation

❏ The reachable state space can be very large

❍ much larger than in a synchronous machin

❍ too large for formal tools?

Rule: don’t start a ‘process’ (‘lock’ a
unit) until it’s guaranteed that it will
complete

Mechanism parallel token pipes act as
‘throttle’
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Synchronisation
❏ A clocked system relies on the clock to synch

❏ An asynchronous system synchronises local

❍ transmitter is ready to transmit

❍ receiver is ready to receive

❍ one-to-one correspondence is maintained

❏ Sometimes it is not predictable whether a co
required

Example:

add r2, r1, r0
sub r4, r3, r2 ; dependency on preceding

❍ The add  is not aware that it should forward

❍ Forwarding occurs to ‘zero or more’ followi
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Synchronisation
Another form of synchronisation can be provided with a sim

In a defined interval:

❏ IF one input can be guaranteed to change m

❏ … any number of handshakes on the other in

❍ the first may be delayed

Examp
cache
fetche

Line fetch

wait latest fetch

Cache array

start

Fetch
cycle

La
te

st
?

M
is

s?
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Reorder buffer
Example, using many of the preceding techniques

❏ The different stages are only synchronised w

❍ e.g. forwarding and writeback are independ

Read

Look-up WriteWrite

Write

Read

Registers

CAM

R
en

de
zv

ou
s

Reorder

buffer
Instruction

input
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More recent work 

❏ Asynchronous language development contin

❍ ‘Teak’ offers better (“more conventional”) a

❏ Processor development using Balsa synthes

❍ “nanoSPA” achieves ~50% ARM performan

❏ GALS networking on- and off-chip

❍ Silistix networking used in new SpiNNaker

❍ Low-power, noise tolerant, two-phase off-c
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Conclusions
❏ Can duplicate sophisticated architectural fun

❍ similar architectures give similar performan

❏ Deadlocks are a threat

❍ requires careful state-space analysis

❏ Design process has similarities with asynchr

❍ such as operating system development

❏ Four-phase good, two-phase bad

❍ (mostly)

❏ There are real opportunities, especially for E

❏ For fine-grain, super-fast pipelines in process
manufacturing variability there may be no alte
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