
ICECS 2009

MANCHESTER
T

he
 U

ni
ve

rs
ity

of
 M

an
ch

es
te

r

s:
ent for
cessors

building
ystems
1824

The Amulet Chip
Architectural Developm

Asynchronous Micropro

or

Some experiences of
large asynchronous s

ICECS 2009

MANCHESTER
T

he
 U

ni
ve

rs
ity

of
 M

an
ch

es
te

r

che + interfaces

ce
1824

Amulet timeline
❍ Amulet1 1993 1.0 µm

❍ ‘ARM6’ microprocessor

❍ Amulet2 1996 0.5 µm

❍ ‘ARM7’ processor + ca

❍ Amulet3 2000 0.35 µm

❍ ‘ARM9’ Processor SoC

❍ async. bus, RAM, ROM, DMA, DRAM interfa

❍ … + synchronous peripherals

ICECS 2009

MANCHESTER
T

he
 U

ni
ve

rs
ity

of
 M

an
ch

es
te

r

1824

This talk …
❏ Amulet processors are history:

❍ ‘hard’ processor cores

❍ local timing assumptions in implementation

❍ engineering detail no longer relevant

❏ Attempt to highlight still-useful aspects

❍ microarchitectural features

❍ implementation choices

❏ How it has influenced our subsequent work

ICECS 2009

MANCHESTER
T

he
 U

ni
ve

rs
ity

of
 M

an
ch

es
te

r ’
sign
1824

Some ‘differences
with asynchronous de

❏ Pipelining is easy – perhaps too easy?

❏ Long-range interaction is difficult

❏ Stage timing can be data-dependent

❏ System may behave non-deterministically

ICECS 2009

MANCHESTER
T

he
 U

ni
ve

rs
ity

of
 M

an
ch

es
te

r ase?

ff chip

ing

 inter-chip communication

Req

Ack
1824

Two-phase or four-ph
Without a clock, systems communicate via
handshakes:

Handshakes can be edges (two-phase) …

❍ faster, lower power

… or levels (four-phase)

❍ logic much simpler

❏ Amulet1 used two-phase signalling on and o

❏ Subsequent devices used four-phase signall

But for a recent, GALS device we have used two-phase for

Req

Ack

Req

Ack

ICECS 2009

MANCHESTER
T

he
 U

ni
ve

rs
ity

of
 M

an
ch

es
te

r e
ructions

colour is no longer accepted

rent (acceptable) colour

ata aborts
1824

Flushing a pipelin
❏ Problem: prefetch has fetched unwanted inst

❍ possibly an unknown number

❏ Cannot discard for a known number of cycles

❏ Solution: ‘colour’ the instruction flows

❍ committing to a branch means the current

❍ stream from branch target fetched in a diffe

❍ two colours adequate in simple system

❏ Extensible

❍ Amulet3 uses another colour to allow late d

IC
E

C
S

2009

M
A

N
C

H
E

S
TE

R
The University
of Manchester
1824

B
R

A

TIME

ICECS 2009

MANCHESTER
T

he
 U

ni
ve

rs
ity

of
 M

an
ch

es
te

r

)

)

Oops!
1824

Deadlocks

Arbitrated resource (e.g. memory

Arbitrated resource (e.g. memory

ICECS 2009

MANCHESTER
T

he
 U

ni
ve

rs
ity

of
 M

an
ch

es
te

r

ircumstances

e

1824

Deadlocks
In the preceding example:

❏ A deadlock can occur … but only in certain c

❍ hard to reproduce in simulation

❏ The reachable state space can be very large

❍ much larger than in a synchronous machin

❍ too large for formal tools?

Rule: don’t start a ‘process’ (‘lock’ a
unit) until it’s guaranteed that it will
complete

Mechanism parallel token pipes act as
‘throttle’

ICECS 2009

MANCHESTER
T

he
 U

ni
ve

rs
ity

of
 M

an
ch

es
te

r

ronise data transfers

ly

mmunication will be

 instruction

 its result when it is issued

ng instructions

C
Muller C-element
1824

Synchronisation
❏ A clocked system relies on the clock to synch

❏ An asynchronous system synchronises local

❍ transmitter is ready to transmit

❍ receiver is ready to receive

❍ one-to-one correspondence is maintained

❏ Sometimes it is not predictable whether a co
required

Example:

add r2, r1, r0
sub r4, r3, r2 ; dependency on preceding

❍ The add is not aware that it should forward

❍ Forwarding occurs to ‘zero or more’ followi

ICECS 2009

MANCHESTER
T

he
 U

ni
ve

rs
ity

of
 M

an
ch

es
te

r

ple AND gate

onotonically 0⇒1 …

put may be attempted

le: reading words from a
line concurrently being

d (Amulet2)
1824

Synchronisation
Another form of synchronisation can be provided with a sim

In a defined interval:

❏ IF one input can be guaranteed to change m

❏ … any number of handshakes on the other in

❍ the first may be delayed

Examp
cache
fetche

Line fetch

wait latest fetch

Cache array

start

Fetch
cycle

La
te

st
?

M
is

s?

ICECS 2009

MANCHESTER
T

he
 U

ni
ve

rs
ity

of
 M

an
ch

es
te

r

Decode/issue

Execution
completion

Writeback/
committal

hen necessary

ent
1824

Reorder buffer
Example, using many of the preceding techniques

❏ The different stages are only synchronised w

❍ e.g. forwarding and writeback are independ

Read

Look-up WriteWrite

Write

Read

Registers

CAM

R
en

de
zv

ou
s

Reorder

buffer
Instruction

input

ICECS 2009

MANCHESTER
T

he
 U

ni
ve

rs
ity

of
 M

an
ch

es
te

r …

ues

synchronous circuit synthesis

iser

ce

 chip

hip links
1824

More recent work

❏ Asynchronous language development contin

❍ ‘Teak’ offers better (“more conventional”) a

❏ Processor development using Balsa synthes

❍ “nanoSPA” achieves ~50% ARM performan

❏ GALS networking on- and off-chip

❍ Silistix networking used in new SpiNNaker

❍ Low-power, noise tolerant, two-phase off-c

ICECS 2009

MANCHESTER
T

he
 U

ni
ve

rs
ity

of
 M

an
ch

es
te

r

ctions without a clock

ce to synchronous chips

onous software

MC

es with high
rnative!
1824

Conclusions
❏ Can duplicate sophisticated architectural fun

❍ similar architectures give similar performan

❏ Deadlocks are a threat

❍ requires careful state-space analysis

❏ Design process has similarities with asynchr

❍ such as operating system development

❏ Four-phase good, two-phase bad

❍ (mostly)

❏ There are real opportunities, especially for E

❏ For fine-grain, super-fast pipelines in process
manufacturing variability there may be no alte

ICECS 2009

MANCHESTER
T

he
 U

ni
ve

rs
ity

of
 M

an
ch

es
te

r ts

de of development

rojects from
e

1824

Acknowledgemen

❏ The whole Amulet team throughout the deca

❍ too numerous to list here

❏ The European Commission

❍ much of this work was funded by various p
the Open Microprocessor Systems Initiativ

Questions?

	The Amulet Chips: Architectural Development for Asynchronous Microprocessors
	or
	Some experiences of building large asynchronous systems
	Amulet timeline
	Amulet1 1993 1.0 mm
	‘ARM6’ microprocessor

	This talk …
	Amulet processors are history:
	‘hard’ processor cores
	local timing assumptions in implementation
	engineering detail no longer relevant

	Attempt to highlight still-useful aspects
	microarchitectural features
	implementation choices

	How it has influenced our subsequent work

	Some ‘differences’ with asynchronous design
	Pipelining is easy – perhaps too easy?
	Long-range interaction is difficult
	Stage timing can be data-dependent
	System may behave non-deterministically

	Two-phase or four-phase?
	Without a clock, systems communicate via handshakes:
	Handshakes can be edges (two-phase) …
	faster, lower power

	… or levels (four-phase)
	logic much simpler

	Amulet1 used two-phase signalling on and off chip
	Subsequent devices used four-phase signalling
	But for a recent, GALS device we have used two-phase for inter-chip communication

	Flushing a pipeline
	Problem: prefetch has fetched unwanted instructions
	possibly an unknown number

	Cannot discard for a known number of cycles
	Solution: ‘colour’ the instruction flows
	committing to a branch means the current colour is no longer accepted
	stream from branch target fetched in a different (acceptable) colour
	two colours adequate in simple system

	Extensible
	Amulet3 uses another colour to allow late data aborts

	Deadlocks
	Deadlocks
	In the preceding example:
	A deadlock can occur … but only in certain circumstances
	hard to reproduce in simulation

	The reachable state space can be very large
	much larger than in a synchronous machine
	too large for formal tools?
	Rule: don’t start a ‘process’ (‘lock’ a unit) until it’s guaranteed that it will complete
	Mechanism parallel token pipes act as ‘throttle’

	Synchronisation
	A clocked system relies on the clock to synchronise data transfers
	An asynchronous system synchronises locally
	transmitter is ready to transmit
	receiver is ready to receive
	one-to-one correspondence is maintained

	Sometimes it is not predictable whether a communication will be required
	Example:
	add r2, r1, r0 sub r4, r3, r2 ; dependency on preceding instruction
	The add is not aware that it should forward its result when it is issued
	Forwarding occurs to ‘zero or more’ following instructions

	Synchronisation
	Another form of synchronisation can be provided with a simple AND gate
	In a defined interval:
	IF one input can be guaranteed to change monotonically 0ﬁ1 …
	… any number of handshakes on the other input may be attempted
	the first may be delayed
	Example: reading words from a cache line concurrently being fetched (Amulet2)

	Reorder buffer
	Example, using many of the preceding techniques
	Decode/issue
	Execution completion
	Writeback/ committal
	The different stages are only synchronised when necessary
	e.g. forwarding and writeback are independent

	More recent work …
	Asynchronous language development continues
	‘Teak’ offers better (“more conventional”) asynchronous circuit synthesis

	Processor development using Balsa synthesiser
	“nanoSPA” achieves ~50% ARM performance

	GALS networking on- and off-chip
	Silistix networking used in new SpiNNaker chip
	Low-power, noise tolerant, two-phase off-chip links

	Conclusions
	Can duplicate sophisticated architectural functions without a clock
	similar architectures give similar performance to synchronous chips

	Deadlocks are a threat
	requires careful state-space analysis

	Design process has similarities with asynchronous software
	such as operating system development

	Four-phase good, two-phase bad
	(mostly)

	There are real opportunities, especially for EMC
	For fine-grain, super-fast pipelines in processes with high manufacturing variability there may b...

	Acknowledgements
	The whole Amulet team throughout the decade of development
	too numerous to list here

	The European Commission
	much of this work was funded by various projects from the Open Microprocessor Systems Initiative

	Questions?

