Balsq:
A Tutorial Guide.

Doug Edwards, Andrew Bardsley,
Lilian Janin & Will Toms

Contents

1 INEFOAUCHION.......eeeiiieieeeeeee e 1
1.1. Introducing BalSa ... 1
WHhat 1S BalSAToouiiiiiiiiiiiee e e 1

BaSIC COMCEPLS ..ottt sttt ettt et s e e b sae b e e saeen 1

1.2. Tool set and design flOWccccouviiininiriee e 3
1.3, Changes in TeIEASES...........ccoveiriiieieieee e 4
Deprecated or eliminated CONSIUCES/TIIESoevveeviiriiiirieniiinieeiece e 5

INEW CONSITUCES ..euviiuriiieiieieetietett et ste ettt et st et e sat et sas et eese bt easesseennesaeesnesaeennesanen 5
Changed DENAVIOUTc.eoviiiiiiiiieeieeie ettt st e e e s 6
BalSA-INET .ottt ettt sttt e b et s 6

COSt ESHIMALOTeiiiiiiiiiiieiiciieeetcet ettt ettt et sae e e s aesaeen 6
SiMulation ENVIFONIMENTccveviuiiiiierieeiieeieeste et et et enteebeesitesbeesaeesbeesrteenseesaees 6
CRhanNE] VIBWET ...c..cooiiiiiiiiiiiiiieicicet ettt st et 6
Back-end teChNOIOZIEScc.eeviuiiriiieiiiiieiieeee e st 6

The ManUalc..cocoooiiiiiiiiiiiicee ettt s s saeen 6

2 Getting Sarted.........cooovveeieeiieeeeeeee e 7

2.1, A single-place BUer ... 7
DESCTIPLION «..veeeiieiiieiie ettt ettt ettt ettt st et e sabe e baesabeebaesabeenbeesaseenseessseenseenseean 7
Commentary 0N the COAEcciiriiriiiiniiiiiiie ettt ettt et e seeesaeessbeeseesaee s 7
RESEIVEA WOTAS ...coeiiiiiiiiieiieiietee ettt s 8
ComPiling the CITCUIL ..ieviirieeiiierieeieite ettt ettt ettt e st e e saeessteebeesaee s 8
The SyNthesiSEd CITCUIL. ...ccuviviiierieeiieiieeieerte et erite et erite ettt e e teebeesbeenaeesebeeseesaeean 9

2.2, TWO-Place DULTETSccoouiiiieiiic s 9
ISEAESIZIN woeevinieiieiieiieteetee ettt ettt sttt et e et 9
200 AESIZN .ottt ettt ettt et b et sttt h e bbb et et eate b enee 10

2.3. Parallel composition and module reuse.............c.coovuvruririererreirinieeene. 10
Commentary 0on the COAEc.ooiiiimiiiiiniiiiiieeeeeeec e 10

2.4. Placing multiple SLIUCLUTESooriiiiriieiiriinieeie e 11
Commentary 0N the COAEcccuiriiiiniiriiiiieeiterie ettt ettt e saeesbaessseesee e 11

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 i

2.5.

2.6.

2.7.

3.1.

3.2

3.3.

3.4.
3.5.

USING DAISA-INET ...t 11
Creating @ NEW PIOJECT ..ccveiuieiietieieetieteettenteette et eetesteetesbeetesbe et e sbeestesbeeneesbeentesseenes 12
Compiling @ deSCIIPHIONeveeuiiiieiietieieeitete ettt ettt ettt sb et sae e 13
COMPILALION CITOISeetiiiiitieiietieieet ettt te et e et e sttt e sbe et e bt et e b e est et e entesbeeneesaeenes 14
Handshake Circuit Sraphcccooeeiieieniinieniiiee e 15
CATCUIE COSE ..ttt ettt ettt ettt et et et e et e st e e st e sbe e st e s bt e et e bt emte b e entenbeentenaeenes 15
Saving WiIndOW CONLENLScccueitieriirtieieeiienieetenie et e et e et et e siee st sseenbeeaeesaeenee 16
Flattened vs non-flattened VIEWcccoecieririieniiiinieieneeeee e 16
SIMUIATION. ..o 18
Adding a test FIXTUIE.ocevieiiiiiiiieieiieeee e 19
Text-only SIMUIATIONcc.eiiviiiriiiiieieieeeeee ettt 20
Graphical Simulation TOOLSccceerieiiiiiiiiiiieiteeeee et 21
Compilation and Simulation OPtioNS...........ccoceireiririninceeeseseens 26
Flattened vs hierarchical cOmMpPilationcccccoecuirrieriieinienieerie e 26
Direct Simulation vs Breeze fi Lardcocooeniriiniiiininiiniccicneecceecene 27
Lard sSimulation OPLIONScecveeeiierieriiienieeieenieeieesteeieesteesieeseteesaeesareesbeessseenseesns 27
Structural vs behavioural SIMUIAtIONcccccoieviinirniiniinirieneeeeeeeer e 27

DAt TYPES ...t 29
INUIMIETIC LYPES wevvenveintenieiiieniieitenteeteett et sttt st et it et st e sbe st e s bt et e bt eaae s bt estenbeeatenaeenee 29
ENUMETAted [YPES ..eeuveteiieitieiiniieteeieete ettt sttt sttt st st b ettt et 30
RECOTA EYPES .ttt sttt ettt 30
ATTAY EYPS -eenveiteteenteteeitent ettt et et ettt e et bt e tesbtenaesbtenbe s bt e s bt eat e beesae bt esbenbeentenbeenee 31
CONSTANTS ...ttt ettt ettt ettt et s be et s bt e besbeenbe s bt e beeat e beebsenbeesbenbeeneenbeenee 31
ATrayed ChaNDEIScoueiiiiiiiiiiieieeeete ettt 32
Data TyPing ISSUES.........ovoieirieirieeiei et 32
CASES ettt ettt ettt e b ettt et h e st e s bt e et e sh et e bt e eate e b e e sare e bee e 32
Bit ordering and padding in aITayscccccceeeeveeeeienierineneneneneneeeeeeeeeeee e 33
AUL0-ASSIZNIMENT ...ooveviiiriirtintietententetetet ettt et et st e saesaete e eseeeese et eneesesaesaeas 34
Control Flow and Commands............cccceurininiiisininnneeesseseeneeenes 34
SYIIC ettt ettt et ettt b e et e e bt e s a b e et e st e e beesate e beesabeenbes 35
Channel aSSIZNMENTcevvuiiriiiiierieeieerte ettt ettt e st e e bt e sabeesbeesabeeseesas 35
Variable aSSIZNIMENTcooviiriiiriiiiierieeiee ettt ettt e st saee st e e baesaeeenbs 35
SEQUENCE OPETALOTeeueieiiieniieniieeieesteeteesibeeteesaeeesbtesiteesbeesabesbeesabeesseesaseensaessseenses 35
Parallel COMPOSIHONcc.eivuiiriiiiiierieeieerte ettt sttt et et e esabeebee e 35
Continue and Haltcccoiiiiiiiiiiiiiiceee et 35
LOOPING CONSIIUCTS ...euveiuriiieiriiieienieetieieeteeieeteeeeesreeitesteearesbeeenebeeene bt eesesseensesaeenne 36
Structural TETALIONcccovueeriiriieiirieierteeetete ettt ettt sbe s sneene 36
Conditional EXECULIONeouteiiriiiiiniieiireee ettt ettt eresreeere e ene 37
Binary/Unary OPETatorsccocvcueueeereniiniineieieeesiesiseisesseeessesessessesesensens 38
DesSCription STIUCTUTE...........c.ouiiiieieeiceie et 38
FLE SLIUCLULEeiiiiiiieiieie ettt ettt ettt ettt ettt ettt et be et e bt et e st e et esbe et e sseenes 38
| Tl 2 4 o) 1 SRS SRR 39
PrOCEAUIESconiiiiiiieeie ettt sttt st et e e 39
Shared ProCEAUIEScoiiviiriiiiiiiiiiii ettt 40
FUNCLIONS ...t ettt ettt et ettt e st e et et e sae e 40
Conditional ports and declarationsc.cccceeeeeeeererrerinenieneneneneeeeereeeeeeseenens 40
Conditional POTEScoeeuiruiriiriirieniertetetetetet ettt sttt saee 41

ii

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

VarIaDIE POTLS ...viiiiieiieiieiieeite ettt ettt ettt e s tesbeessbeeaeesateebaesaseenbeesnsaenseenns 41

3.6, EXAMPIES....iiiiiiiiiiice e 42
MOAUIO-16 COUNLET ...ouviiiiiieiiitieieeteete ettt ettt sttt e bbb et e st et e saeenee 42
Removing auto-assiZNMENTtccccoeieriirienirienieetenie ettt ettt see e 42
MOAUIO-10 COUNLET ..ottt ettt ettt st b et sb ettt et eseeenee 43
A loadable Up/dOWN COUNLETcccuiruieiiriieiieiente ettt sttt sb et see e 43
Sharing RATAWATEccceeiiiiiiiiiii ettt 44
A “While” 100P dESCIIPLION ..ecuvertiiiiriieiiriieiteitenie ettt sttt sttt sae e 45
Pitfalls in 100P termMinationscceeeruerieririenentene ettt 46
The danger of “fOr” L0OPSeevirrieriiiieieetee ettt 46
Selecting ChaNNELScoouiiiiiiiiiiiee e ettt 47

4 Parameterised & Recursively Defined Circuits......... 49

A1 SUIMIMATY oottt 49
4.2. Parameterised deSCIIPLIONScoovuruiveieeieieiieieie et 49
A variable width buffer definitionccoceevenirieniniiniineeeee 49
Pipelines of variable width and depthccccoociiiiiiiiiiiii e 50
4.3, Recursive defiNItIONS........ccooieuiirieiiieieieieeiee e 51
AN N-WaY MUILIPIEXET ...eouiiiiiiiiiiiiieiieeeeee ettt ettt 51
Commentary On the COAEccuiriiiimiiiiiiiirtee ettt 52
A DalSa teSt NAIMESSoviiiiiiieiiiieeeieeeetee ettt 52
Handshake MUItIPHETcoeeviiiiiiiiniiiinieeeeeetee et 52
4.4. Pitfalls with Parameterised Procedures.cccocoovininienenininicee, 53

5 Handshake ENCIOSUIeooveeeeeeeeeeeeeeeeeeeeeeeeee e 55

S.1. SUMMATY ..ottt 55
5.2, SYStOlIC COUNLETScumiiiiieiiiee et 55
A SYStOlic MOAUIO-11 COUNLET ...ocuvieiieeiieriiieiieie ettt ettt eaeesbeesveeeee e 57
AJLEVEN CEIIS oot ee e e et e e e eeare e e e eesareeeeeeennnes 57
AJLOAA CEIIS vttt et e e eee e e e eeaareeeeeesarereeeeennnes 58
A decoupled all @VEN CEILcouiviiiiiiiiieiiecec et 59
ParameteriSEd VEISIONc.ueviiiiiiiivriieieeiirieeeeeeeieeeeeeeeaee e e e eeetaeeeeeeenareeeeeesnarereeeeennnes 60
5.3, ACHVE EINCLOSUIE ...ttt ee e ee s 60
5.4. Use of enclosed Channels.coooiiiiiiiceeeeeeeeeeeee e 61

6 Balsa Design EXamples..........ccooeveeecveeeeeciieeeeeneeeen 65

6.1, SUMMATY ...t 65
6.2. A Population COUNLET..........cccoviuiuiirieienineeee st 65
Commentary On the COAEccuiriiiimiiiiiiiiitee ettt 67
Enclosed SEIECtIONcccociiiriiiiiniiniiiiicicieietcce e 67
AvOIding deadlOCK:c..eoviiiiiiiiniiiiirieete e 67
6.3. A Balsa Shifter. ... e 67

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 1ii

6.4.
6.5.

6.6.

Testing the SHITIET ...ccc.eiiiiiiieie et ees 69

AN ATDIEET TT@E ... 69
A Stack DeSCIIPHON...........ooeieiiiieeeee et 71
Commentary 0N the COAEccuiriiiriiiiiiiiiieeteet ettt 72
A Simple Processor — The Manchester SSEM (The Baby)..................... 72
SSEM LYPES weevreeiieiieeiiesiieeiteeteettesiteeteeseteebeeseteesbeessteebeesssesnseesabeeseessseesaessseenses 73
Channel and Variable Declarationsccoccecevereenernienennienennieneeieneereneereseeenne 74
Useful functions and shared proCedurescocceevvervueereeriieenieenieenienieeneesveeneenns 74
Decode and eXCUte PrOCEAUIEcccveervierieeriienieeiieenieesieesteesieesteesieesaeesbeessseenseesns 75
INAIN DOAY ceentiiiiiiiiiieieeie ettt ettt ettt e st e st esbeess b e esaeesaseenseesasesnbeesnsesnseenas 75
SIMULALION ..ottt ettt sttt et et eare b 75

7 Building test harnesseswith Balsa............................. 77

7.1.

7.2.

7.3.

7.4.

7.5.

7.6.

1.7.

OVETVIEW ... 77
BUIILIN EYPES ettt ettt ettt ettt 77
Builtin FUNCHIONSc.couiiiiiiiiiiiiiciectccceeeee et 78
SEEINES ettt ettt ettt e at ettt bt et bt e b s bt et b b e bt e b bt e b e 78
Summary of Library FUnctions.cccoocoivinirrnrnneecseeees 79
EYPES.DULILIN .ottt sttt e 79
SIIMLSEIINE cuvevititetetetet ettt ettt ettt ettt b e sttt s ettt e e e et et eneeaeeseeueeaeebesuesaea 79
Ry 100 1 1 (o TSRS 80
SIIMLITICITIOTY ..uteutententententententeaeenteueeuteutese et ebesbesae et e be s e e e et este st eneent et eneeseeueeueeueeuesuenaeas 81
SIILPOTEIO .ttt ettt ettt e et eb et s bt sae et et s e et et et eseemt et eneeseeaeeneeaeebesaesaeas 82
R 10 R 1+ o S S PRSP 84
Writing your own builtin funcCtions.............cccoeeeeieirnieieieoereeeeseenns 84
The Balsa and C codecooiiiiiiiiiiiiiiiiiiiiiiecceeee e 84
Registering the fUNCHONcooiiiiiiiniiiiieiee et 84
Compiling HETIOWOTLAooviiiiiiiiiiiiie et 85
Invoking HEIIOWOTIAcoouiiiiiiiiiieeiieeeee ettt 86
HelloOWOrld in VETIIOEZcooviiiiiiiieiieeiieciteeeeere ettt sttt et 86
USING DALSA-TIIET ©..nviiiiiiiieiieeie ettt ettt ettt et et ebeesaaesbeesabeeseesas 86
Builtin functions with argumentsc.cccovereeerninineneeeeernssereenens 87
Builtin typed argUMENLScc.coeeviirieriinieieeeenie ettt 89
RELUIN VAIUES ...ooviiiiiiiiiiiiececctce e 90
Functions with parameterised argumentsc.ccoccereereererrieneenieneenieneeenieeeeseeene 90
Object Reference Countingccovveeeerinieninieieneseeees e eseeees 91
Variable aSSIZNIMENL «....cc.ceiruiriirerertetetetetetetee ettt et sae e se et ene e e saesaeas 91
FUNCtiON ODJECES AITAYevvirvirririenienteteieieieitet ettt sttt saea 91
Predefined tyPes. ... 92
BalSASIIING c.neeeeeiiiiieeieee ettt et et e e 92
BalSaFIle ..o 93
Example Custom Test Harnesses ..., 93
Data FOrMAttiNgccceiieierieiinieieeeeeeitete ettt sttt ettt 93
FIIETO ittt ettt e 95
MEMOTY MOAEIS ...veiuiiniiiiiiriieitiieetee ettt ettt ettt et see e 96
A Processor Test HAmesscoevvevveieieieiiiiiiiiiinnseseseseeeeeeeee e 98

v

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

8 Implementations.............ccoocveieeiieiecee e 99

8.1.

8.2.

INErOAUCHION ...t 99
TECRNOIOZIES ...ttt 99
YOS ettt ettt bbbt et b e bbbt be e 99
OPLIONS ettt ettt ettt ettt et b e bt b et s bt et sbe et e sbeenaesbee bt saaenbesanens 100
Creating an implementationcccorerinririnieieineee e 101

9 Adding Technologiesto Balsa.............ccccocvveveennneen. 103

9.1.

9.2.
9.3.
94.
9.5.
9.6.

9.7.

9.8.
9.9.

9.10.

The Balsa backend ..o 103
Technologies and StyIEsc.coceoiioiiriiiiniiiieeeeeeeee e 103
DITECLOTY STIUCTULEoevieiiiiieitieieeiieieente et ettt ettt st sne e sneenesaeennes 104
The technology configuration file ..., 105
Handshake component declarationscococcernincnencnecernnnenenenn. 107
Handshake component implementation descriptions...........c.ccccceeueeee. 108
Adding a new teChNOIOZY ..o e 109
The abs 1angUAZEccccviiiiiriicc e 110
BUNAIES .ttt et 110
CRANNEIS ...ttt ettt s 110
STICES .ttt ettt ettt b e et h et b ettt et sh et sae et sa e e bt satenbeeanen 111
GALE OPETALOTSeuviiuietieiieetieteettente et e st et e s et et e sae et e sbe e be s bt e beebtenbeeatenteeaeesbeeneesaeenees 112
EXAMPLE ...ttt ettt 113
INGLIISES .ottt 115
POTES ittt ettt ettt ettt ettt et ettt et e sa e e s et e e s a e e e s a et b e ae e n e esn e e e saeennes 116
1] SRR 116
TIISTATICES .uvvieevreeeierieeeteeeeitteeesreeesteeessseeessseaessseeeassseesssseeesssesenssseessseeessssesnsseennsnes 116
AUTIDULES ..viiiiiieeiiieeeeee et et te et e et e e ettt e e e et eeseaee e ebeaessseeeenssaesnsseeessseeeansseesnsseens 117
The BALSATECH environment variable...........c.cccooooevrvinieieiiinnnn 117
The ABS GIrammar............cccooceiiueiiieiieiie e 118
COMPONEIIES ..cnvtiiiiieeiieiite ettt sttt ettt ettt e sabeesbee st e sbeesabeesbeeesseebeesaseenseesaneas 118
YOS ettt ettt she et st st e bt st e b eanens 118
GALES weeveeiteeteeeet ettt ettt st ettt e bt et e b et et e bt s b e e nbeesatean 118
STICES .ttt ettt ettt b et b et b et a et s he et sa e be et e besatenbeeanens 120
INCIUAE ettt et sb e s 120
TYPS ettt sttt st ettt et et be e s e nree st es 120
EXPIESSIONS -.uviiuiitiiiitieieet ettt ettt ettt ettt et s b et e b et e bt et et e bt et e saeenees 121
INEtlist FOIMAL.........ccooviiieieie e 122
5] 18] AP 122

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 \%

10.2. Setting the BALSATECH environment variablecccccocovvvincunne. 126

1 1 The Balsa Language Definition...............ccccveeennee. 127
SUIMIMATY ettt ettt ettt et s bt et sbee et saeenaesbeenbesaaenbesanens 127

T1.1. ReSEIVed WOTIASo.oiuieiiiieii et 127

11.2. Language Definition..........ccccooviueieieiniiniinieieieeceie e 127

1 2 The Breeze Language Definition............cc.cccoeueee... 133
SUMIMATY ettt ettt ettt ettt e saeesne st esnesae e nesanenesanens 133

1 3 REFEIENCES......ceveeee et 137

Vi

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

What is Balsa?

Basic
concepts

INntfroduction

1.1. Introducing Balsa

This document describes version 3.4 of the Balsa system. This release adds significant changes in
the capabilities of the simulation tools. File I/O, string handling and memory models are included.

Version 3.3 of the Balsa system was a major upgrade from previous versions although some of the
extra functionality had been available in the various snapshots that have been downloadable from
the Balsa website. Significant changes were introduced in all aspects of the system: language,
simulation environment, back-end target technologies and not least in the documentation itself.
Existing users of Balsa shoulf be aware of the changes which are summarised in the section
“Changes in releases” on page 4. Whilst most existing Balsa descriptions should compile without
problems, changes to the syntax of the whil e construct may cause existing descriptions not to
compile. Most users should not be affected by the changes, since while loops, although available in
earlier releases, were not described in the previous version of the manual.

The tools described here can be run on any POSIX environment with X11 and at least 32bit integers
(Linux, FreeBSD, MacOS X, Solaris). However, in order to produce a concrete implementation in
either silicon or FPGA form, vendor specific tools are required: for example Xilinx design software,
or the Cadence design framework with an appropriate cell library technology.

Balsa is the name of both a framework for synthesising asynchronous (clockless) hardware systems
and the language for describing such systems. The approach adopted is that of syntax-directed
compilation into communicating Handshaking Components and closely follows the Tangram [1]
system of Philips. The advantage of this approach is that the compilation is transparent: there is a
one-to-one mapping between the language constructs in the specification and the intermediate
handshake circuits that are produced. It is relatively easy for an experienced user to envisage the
architecture of the circuit that results from the original description. Incremental changes made at the
language level result in predictable changes at the circuit implementation level. This is important if
optimisations and design-tradeoffs are to be made easily at teh source level and contrasts with a
VHDL description in which small changes in the specification may make radical alterations to the
resulting circuit.

A circuit described in Balsa is compiled into a communicating network composed from a small
(~45) set of Handshake components. The components are connected by channels over which

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 1

1.1. Introducing Balsa

communications or handshakes take place. Channels may have datapaths associated with them (in
which case a handshake involves the transfer of data), or may be purely control (in which case the
handshake acts as a synchronisation or rendez-vous point).

Each channel connects exactly one passive port of a handshake component to to one active port of
another handshake component. An active port is a port which initiates a communication. A passive
port responds (when it is ready) to the request from the active port by an acknowledge signal

Data channels may be push channels or pull channels. In a push channel, the direction of the data
flow is from the active port to the passive port, corresponding to a micropipeline style of
communication. Data validity is signalled by request and released on acknowledge. In a pull
channel, the direction of data flow is from the passive port to the active port. The active port
requests a transfer, data validity is signalled by an acknowledge from the passive port. An example
of a circuit composed from handshake components is shown in Fig. 1.1.

request acknowledge

0 request

request request

-———
acknowledge
request

acknowiédge /ac’l(nowledge

e
1 acknowledge

"0:q"

bundled data

Figure 1.1: Two connected handshake components

Here a Fetch component, also known as a Transferrer, (denoted by “—") and a Case component
(denoted by “@”) are connected by an internal data-bearing channel. Circuit action is activated by a
request to the Fetch component which in turn isues a request to its environment (on the left of the
diagram). The environment supplies the demanded data, indicating its validity by the
acknowledgement signal. The Fetch component presents a handshake requests and data to the Case
component using an active port (shown as a filled circle) which the Case component receives on its
passive port (shown as an unfilled circle). Depending on the data value, the Case component issues
a handshake to its environment on either the top right or bottom right port. Finally, when the
acknowledgement is received by the case component, an acknowledgement is returned along the
original channel and terminating this handshake. The circuit is ready to operate once more.

Data follows the direction of the request in this example and the acknowledgement to that request
flows in the opposite direction. In this figure, individual physical request, acknowledgement and
data wires are explicitly shown. Data is carried on separate wires from the signalling (it is “bundled”
with the control although this is not necessary with other data/signalling encoding schemes.

The bundled data scheme illustrated in Fig. 1.1 is not the only implementation possible.
Methodologies exist (DI codes, dual rail encoding, NULL Convention Logic [2]) to implement
channel connections with delay-insensitive signalling where timing relationships between individual
wires of an implemented channel do not affect the functionality of the circuit. Handshake circuits
can be implemented using these methodologies which are robust to naive realisations, process
variations and interconnect delay properties. Version 3.4 of Balsa supports bundled data, and DI
dual rail and 1-of-4 back-ends.

Normally, handshake circuits diagrams are not shown at the level of detail of Fig. 1.1, a channel
being shown as a single arc with the direction of data being denoted by an arrow head on the arc and
control only channels, comprising only request/acknowledge wires, being indicated by an arc
without an arrowhead.

The circuit complexity of handshake circuits is often low: for example, a Fetch component may be
implemented using only wires. An example of a handshake circcuit for a modulo-10 counter [see

2 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

1.2. Tool set and design flow

“Removing auto-assignment” on page 42] is shown in Fig. 1.2. The corresponding gate level

activate

Figure 1.2: Handshake circuit of a modulo-10 counter

implementation is shown in Fig. 1.3.

activate —| >0

(no ack)

Control sequencing components (3 gates each)

~

i

Compare. |1
#=9?
a
R

L]

\

latch

Figure 1.3: Gate level circuit of a modulo-10 counter

Note that the compilation function results in circuit fragments in which both input and output ports
are active. Since passive ports can only connect to active ports and vice-versa, circuits constructed
from compositions of compiled circuit fragments must have their interconnecting ports connected
by passivator components. A passivator synchronises requests from input and output ports and
arranges the overlapping of the two handshakes (one push, one pull) such that the data-valid phases
of the two data-validity protocols overlap.

1.2. Tool set and design flow

Balsa comprises a collection of tools, some of the more important are listed below.

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 3

1.3. Changesin releases

e balsa-c: the compiler for the Balsa language. The ouput of the compiler is an intermediate
language breeze.

e balsa-netlist: produces a netlist appropriate to the target technology/CAD framework from
a Breeze description.

* breeze?ps: a tool which produces a postscript file of the handshake circuit graph.

* breeze-cost: a tool which gives an area cost estimate of the circuit.

e balsa-md: a tool for generating makefiles

e balsa-mgr: a graphical front-end to balsa-md with project management facilities.

e balsa-make-test: automatically generates test harness for a Balsa description.

e breeze-sim: the preferred simualtor working at the handshake component level

e breeze-sim-control: a graphical front-end to the simulation and visualisation environment
Obtainable in separate packages are:

e gtkwave: a waveform viewer

* balsa-verilog-sim: a package which makes Verilog simulation of Balsa descriptions easier
by providing wrapper scripts for common simulators and by supporting user-written builtin
functions which can be called from Balsa

A balsa-mode is also available for xemacs providing automatic syntax-based indentation of Balsa
descriptions

An overview of the Balsa design flow is shown in Fig. 1.4

A Balsa description of a circuit is compiled using balsa-c to an intermediate breeze description.
Most of the Balsa tools are concerned with manipulatng the breeze handshake intermediate files.
Breeze files can be used by back-end tools implementations for Balsa descriptions, but also contain
procedure and type definitions passed on from Balsa source files allowing breeze to be used as the
package description format for Balsa.

Behavioural simulation is provided by breeze-sim. This simulator allows source level debugging,
visualisation of the channel activity at the handshake circuit level as well as producing conventional
waveform traces that can be viewed using the waveform viewer gtkwave. The target CAD system
may also be used to perform more accurate simulations and to validate the design. breeze-simis still
under active development: the facilites and user interface provided may be differ in detail from that
described in this manual.

1.3. Changes in releases

Version 3.4
This release adds “builtin” types [see “Builtin types” on page 77] — file I/O, string handling and
memory models are included adding significant changes in the capabilities of the simulation tools.

Interfaces to a number of Verilog simulators have been included.

Version 3.3

The changes listed here are the major changes since the first version of the Balsa manual. Some of
these changes have however appeared in various snapshots that were published on the Balsa website
and some were described a text book [3] produced to promote the European Low-Power Initiative
for Electronic System Design.

4 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

1.3. Changesin releases

Deprecated or
eliminated
constructs/
files

New
constructs

Balsa description

‘breeze2ps’
‘breeze-cost’

Breeze description y

(HC netlist) N\

Balsa behavioural
simulation system

‘balsa-c’

synthesis
reuse

Simulation
‘balsa—-netlist’ results
v Behavioural
Gate-level sim.
Gate-level netlist » Functional
Commercial Si
or FPGA P&R
Layout sim.
Layout / bitstream » Timing
Key:
‘Balsa tool’ / Automated process
Object / File » Object / File

Figure 1.4: Design Flow

e publicand privat e keywords have been eliminated
* el se clauses of whi | e statement are no longer supported

e the keyword | ocal is not required for declarations which immediately follow procedure
declarations.

e .shreezefiles are no longer generated as part of the compilation process. A modified .breeze
format now replaces both .breeze and .sbreeze files.

* Ports to procedures can now be connected to variables to allow communications on the
procedure’s ports to perform reads and writes to the variable [see “Variable ports” on
page 41].

e amulticast keyword has been added to prefix channel/sync declarations to supress
warning about multicast channels. The “-c warn-multicast” option to balsa-c now does
nothing — it is enabled by default.

* implicants and don’t care values may be used more widely in expressions; see “implicants”
on page 32, and “case statements” on page 37.

* ports, local and global declarations may be conditional [see “Conditional ports” on
page 41].

* new loop constructs have been added [see “Looping constructs” on page 36].

e case statements may be parameterised [see “Conditional execution” on page 37]

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 5

1.3. Changesin releases

Changed
behaviour

Balsa-mgr
Cost Estimator

Simulation
environment

Channel
viewer

Back-end
technologies

The Manual

* simulation time printing is now supported by the pri nt command [see “Control Flow and
Commands” on page 34]

e a bit-array-cast operator, #, has been added as syntactic sugar to simplify array slicing and
casting.

* active input enclosure commands have been added

* the syntax of parameterised procedure calls has changed

* the syntax of the whi | e command has been changed. Existing programs may no longer
compile [see “Looping constructs” on page 36] for more details.

* should multiple guards be true (ini f and whi | €) commands, the earliest command in the
guard list is executed — previously the command chosen was undefined.

e i f commands, ports and declarations now correctly fail to evaluate subsequent commands
if an earlier guard is true.

* breeze files must be regenerated — they are no compatible with the latest version, sbreeze
files are obsolete.

The GUI to the Balsa system, balsa-mgr, is now stable and is the recommended way of driving the
tool set.

The cost estimator now handles hierarchical circuits correctly.

LARD is no longer the recommended functional simulation route. A new simulation engine operating
on the breeze description of circuits simulates directly and gives a speed improvement of 25,000
times. Co-simulation with existing lard test harnesses is still possible, but with reduced
performance. Lard support for Balsa is no longer part of the main distribution, but is available as a
separate package, balsa-lard.

The LARD channel viewer is now longer used for a graphical representation of channel activity.
Although impressive for small demonstration purposes, it was very slow, it was difficult to restrict
the view to “important” channels, snapshots could not be saved and restarted etc. The new
simulation viewer is based on a conventional waveform viewer derived from GTKWave.

A wide range of backend technologies and styles are supported and easily controlled via balsa-mgr.
Users can select between single rail (bundled data), dual rail, 1-of-4 and NCL styles each with
different latch implementations. A Xilinx technology and a generic Verilog netlist are distibuted.
For users with appropriate licensing arrangements, a number of silicon technologies, e.g. AMS
0.35uwm and ST 01.8um are available.

The format of the manual has changed. A more complete definition of the language is included.
There is now a section on how to create different back-end technologies and styles. The example
descriptions have been extended. The emphasis of the manual has changed: the previous version
over-emphasised passive enclosed selection. Many users were misled into believing that this
descriptive style was good practice. It is hoped that this version separates the issue of passive versus
active ports from that of enclosed handshakes and encourages a more natural style of description.

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

Getting Started

Summary In this chapter, simple buffer circuits are described in Balsa introducing the basic elements of a
Balsa description. The GUI to the Balsa system, balsa-mgr, is used to hide the complexity of the
underlying command line tools. All the examples illustrated here can be found in the Examples
directory of this documentation.

If the Balsa system has been compiled from source, it should only be necessary to include the binary
directory in the user’s search path. Users using binary only distributions, should source the
apttools.sh script located in the distribution package.

Previous users of the system should note that since LARD is no longer the preferred simulation route,

2.1. A single-place buffer

Description A Balsa description, in buffer1la.balsa, of a byte-wide, single place buffer is:
buffer 1la.balsa (-- Balsa programdefining an 8 bit wide single place buffer
This is an exanple of a muilti-line (-- nested --) comment

)

-- Single line cooments are also all owed
i nport [bal sa.types. basi c]

procedure bufferl (input i : byte; output o : byte) is
variable x : byte
begi n
| oop
i ->x -- I nput communication
; -- Sequence oper at or
0 < X -- Qutput communi cation
end
end

Commentary This Balsa description builds a single-place buffer, 8 bits wide. The circuit requests a byte from the

on the code environment which, when ready, transfers the data to the register. The circuit signals to the
environment on its output channel that data is available and the environment reads it when it
chooses. The description introduces:

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 7

2.1. Asingle-place buffer

Reserved
words

Compiling the
circuit

comments: Balsa supports both multi-line and single line comments; both types may be nested.

modular compilation: Balsa supports modular compilation. The inport statement in this

example includes the definition of some standard data types such as byt e, ni bbl e, etc.!. A full list
of the current definitions is given in <BalsalnstallDir>/share/bal sa/types/basic.breeze. The search
path given in the i nport statement is a dot separated directory path similar to that of Java except
multi-file packages are not implemented. The import statement may be used to include other pre-
compiled balsa programs thereby acting as a library mechanism. The i nport statements must
precede other declarations in the files. The import statement is included in this example for
completeness only. None of the types defined in basic.breeze are actually used this example so the
i mport statement could have been omitted.

procedures. The procedur e declaration introduces an object that looks similar to a procedure
definition in a conventional programming language. In Balsa, a procedure is compiled to handshake
circuit comprising a network of handshake components. The parameters of the procedure define the
interface to the environment outside of the circuit block. In this case, the module has an 8-bit input
datapath and an 8-bit output datapath. The body of the procedure definition defines an algorithmic
behaviour for the circuit; it also implies a structural implementation. In this example, a vari abl e
X (of type byt e and therefore 8 bits wide) is declared implying that a 8-bit wide storage element
will be appear in the synthesised circuit.

The behaviour of the circuit is obvious from the code: 8-bit values are transferred from the
environment to the storage variable, x, and then sequential output from the variable to the
environment. This sequence of events is continually repeated (I oop ... end).

channel assignment: the operators “- > and “<- ” are channel input and output assignments and
imply a communication or handshake over the channel. Because of the sequencing explicit in the
description, the variable X will only accept a new value when it is ready; the value will only be
passed out to the environment when requested. Note that the channel is always on the left-hand side
of the expression and the corresponding variable on the right-hand side.

sequencing: The “;” symbol separating the two assignments is not merely a syntactic statement
separator, it explicitly denotes sequentiality. The program has been formatted somewhat artificially
to emphasise the point. The contents of X are transferred to the output port after the input transfer has

completed. Because a *“;” connects two sequenced statements or blocks, it is an error to place a “;
after the last statement in a block.

Care must be take to avoid using Balsa’s keywords as variable or procedure names. Usually, this is
not a difficult restriction to remember, but a common mistake, especially for beginners
experimenting with the language, is to name an input channel i n. Unfortunately, i n is a reserved
word and will generate a Balsa compile error.

bal sa-c bufferila

The description in buffer1a is compiled producing an output file bufferla.breeze. This is a file in an
intermediate format which can be imported back into other balsa source files (thereby providing a
simple library mechanism). The file extension (.balsa) of the source filename is optional and
contains no special significance to the compilation system. However, if a different file extension is
used, the file name including the extension must be given as the argument to the balsa-c command.
The file extension .breezeis of significance to the compilation system

Breeze is a textual format file designed for ease of parsing and therefore somewhat opaque. A
primitive graphical representation of the compiled circuit in terms of handshake components can be
produced (in buffer1a.ps) by:

breeze2ps bufferla

1. there is, of course, no predefined type wor d

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

2.2. Two-place buffers

The The resulting handshake circuit is shown in Figure 2.1. Note that this is not actually taken from the
synthesised
c".cu't- " 866 X/ Balsa Project Manager

::| Project File Selected ltem Miew Build C¥E Tools Help]

R
D RO Gl X e "
| Files HAdd Files into Praject T

Narme / Dofled path | Det

X| File Selection

L

Narme In Project 7|

bufferia.halsa
hufferza.halsa
hufferzh.balsa
bufferzc.balsa
huffer_n.balsa

= 1

Impart Mews Path... oK Cancel

~Li
s.

Figure 2.1: Handshake Circuit for a single place buffer

output of breeze2ps, but has been redrawn to make the diagram more readable. Although it is not
necessary to understand the exact operation of the compiled circuit, a knowledge of the structure is
helpful for an understanding of how to describe circuits which can be efficiently synthesised using
Balsa. A brief description of the operation of the circuit is given below. The circuit has been
annotated with the names of the various handshake elements.

The port at the top of the Loop (“#”) component is an activation port which encloses (see
“Handshake Enclosure” on page 55) the behaviour of the circuit. It can be thought of as a reset
signal which, when released, initiates the operation of the circuit. All compiled Balsa programs
contain an activation port.

The activation port starts the operation of the Loop which initiates a handshake with the Sequencer
(“s). This component first issues a handshake to the left-hand Fetch component “—” causing data
to be moved to the storage element in the Variable element (marked “x” to match the variable
name). The Sequencer then handshakes with the right-hand Fetch component causing data to be read
from the Variable element. When these operations are complete, the Sequencer completes its
handshake with the repeater which start the cycle again.

2.2. Two-place buffers

1st design Having built a single place buffer, an obvious goal is a pipeline of single buffer stages. Initially
consider a two-place buffer; there are a number of ways we might describe this. An obvious way is
to define a circuit with two storage elements:

buffer2a.balsa -- buffer2a: Sequential 2-place buffer with assignment between variabl es
i nport [bal sa.types. basi c]

procedure buffer2 (input i : byte; output o : byte) is
variabl e x1, x2 : byte
begi n
| oop
i -> x1; -- input conmunication
X2 = X1, -- inplied comunication
0 <- x2 -- output communi cation
end

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 9

2.3. Parallel composition and module reuse

2nd design
buffer 2b.balsa

Commentary
on the code

end

In this example in we explicitly introduce two storage elements, x1 and x2. The contents of the
variable x1 are caused to be transferred to the variable x2 by means of the assignment operator “:=".
However, transfer is still effected by means of a handshaking communication channel. This
assignment operator is merely a way of concealing the channel for convenience.

The implicit channel can be made explicit as shown in buffer2b.bal sa:

-- buffer2b: Sequential version with an explicit internal channel
i nport [bal sa.types. basi c]

procedure buffer2 (input i : byte; output o : byte) is
variabl e x1, x2 : byte
channel chan : byte

begi n
| oop
i -> x1; -- input communication
chan <- x1 || chan -> x2; -- transfer x1 to x2
0 <- x2 -- out put comunication
end
end
The channel, which was in the previous example, concealed behind the use of the “: =" assignment

operator has been made explicit. The handshake circuit produced (after some simple optimisations)
is identical to buffer2a. The “II” operator is explained in the next example

It is important to understand the significance the operation of the circuits produced by buffer2a and
buffer2b. Remember the ““;” is more than a syntactic separator: it is an operator denoting sequence.
Thus, first the input, i, is transferred to x1. When this operation is complete, x1 is transferred to x2
and finally the contents of x2 are written to the environment. Only after this sequence of operations
is complete can new data from the environment be read into x1 again.

2.3. Parallel composition and module reuse

The operation above is unnecessarily constrained: there is no reason why the circuit cannot be
reading a new value into X1 at the same time that X2 is writing out its data to the environment. The
program in buffer2c achieves this optimisation.

-- buffer2c: a 2-place buffer using parallel conposition
i nport [bal sa.types. basi c]
i nport [bufferla]

procedure buffer2 (input i : byte; output o : byte) is
channel ¢ : byte
begi n

bufferl (i, c) ||
bufferl (c, o)
end

In the description above, a 2-place buffer is composed from 2 single-place buffers. The output of the
first buffer is connected to the input of the second buffer by their respective output and input ports.
However, apart from communications across the common channel, the operation of the two buffers
is independent

The deceptively simple program above illustrates a number of new features of the balsa language:

modular compilation: The import mechanism is used to include the bufferla circuit described
earlier.

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

2.4. Placing multiple structures

buffer_n.balsa

Commentary
on the code

connectivity by naming: The output of the first buffer is connected to the input of the second
buffer because of the common channel name (c) in the parameter list in the instantiation of the
buffers.

parallel composition: The “II” operator specifies that the two units which it connects should
operate in parallel. This does not mean that the two units may operate totally independently: in this
example the output of one buffer writes to the input of the other buffer creating a point of
synchronisation. Note also that the parallelism referred to is temporal parallelism. The two buffers
are physically connected in series.

2.4. Placing multiple structures

If we wish to extend the number of places in the buffer, the previous technique of explicitly
enumerating every buffer becomes tedious. What is required is a means of parameterising the buffer
length (although in any real hardware implementation the number of buffers cannot be variable and
must be known before-hand). The f or construct together with compile-time constants may be used.

-- buffer_n: an n-pl ace paraneterised buffer
i nport [bal sa.types. basi c]

i nport [bufferila]

constant n = 8

procedure buffer_n (input i : byte; output o : byte) is
array 1 .. n-1 of channel ¢ : byte
begi n
bufferl (i, c[1]) || -- first buffer
bufferl (c[n-1], o) || -- last buffer
for || i inl1l.. n-2then -- buffer i
bufferl (c[i], c[i+1])
end
end

constants: the value of an expression (of any type) may be bound to a name. The value of the
expression is evaluated at compile time and the type of the name when used will be the same as the
original expression in the constant declaration. Numbers can be given in decimal (starting with one
of 1...9), hexadecimal (0x prefix), octal (0 prefix) and binary (0b prefix).

arrayed channels: procedure ports and locally declared channels may be arrayed. Each channel
can be referred to by a numeric or enumerated index [see “Arrayed channels” on page 32], but from
the point of view of handshaking, each channel is distinct and no indexed channel has any
relationship with any other such channel other than the name they share.

for loops: afor loop allows iteration over the instantiation of a subcircuit. The composition of the
circuits may either be parallel composition — as in the example above — or sequential. In the latter
case, “;” should be substituted for “II” in the loop specifier. The iteration range of the loop must be
resolvable at compile time.

A more flexible approach uses parameterised procedures and is discussed later [see “Parameterised
descriptions” on page 49].

2.5. Using balsa-mgr

Bal sa- ngr is project manager environment which acts as a front-end to the Balsa commands such
as bal sa- ¢ and breeze2ps. It hides much of the complexity of the various command-line options
that more complicated compilation and simulation scenarios demand. The use of the project
manager is best illustrated by using it to rerun the compilation of the single place buffer described in
buffer 1a [“bufferla.balsa” on page 7]

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 11

2.5. Using balsa-mgr

Creatinganew The command bal sa-ngr invokes the project manager. Select “Project => New” from the pull-
project

‘800 [X| Balsa Project Manager

ifJ_Eroject FEile Selected Item Miew Build CW¥s Tools Help

f Mew shectn IEE L e
Operi.. % Shi+CHeO 5

Open Recent =

Save Shit+Ct+5

Save A

Cloze

Eroject Op
Environment Options...

Quit Cll+@
B

Figure 2.2: Creating a new project.

down menu as shown in Figure 2.2 to display the dialogue box shown in Figure 2.3. A default name

8086 X Project Options

Mame and paths 1 Compilation options | Deﬂnitionsl

Froject Mame | Froject Name I

File Import Path |

Save as default templatei (0]:8 i Cancel]

4

Figure 2.3: The New Project Dialogue Box.

for the project is generated; this may be over-ridden to something more meaningful. The “Project
Directory” text box specifies the root directory: a file named “Project” is created here containing
information about the project. The button to the right of the text box activates a file browser for
graphically selecting the required directory. The “File Import Path” text box allows the directory in
which the source Balsa files reside to be specified. By default, this is the current directory (relative
to the root of the project) but may be changed either by directly typing in the text box or by using the

12 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

2.5. Using balsa-mgr

Compiling a
description

file browser activated by clicking on the button to the right of the text box. More directory import
paths can be added by means of the “New” button.

Only one project is allowed per directory but each project may have several compilation targets. The
options in the other tabbed panes, “Compilation options” and “Definitions” are described later.

The source files to be compiled must be specified. Either select “Files = Add Files into Project”
from the pull-down menu, or the keyboard accelerator Ctrl-A, or click on the icon as shown in

Figure 2.4. Pick buffer 1a.balsa and click “OK”. The filename should appear in the left-hand pane of

‘800 [X| Balsa Project Manager
:5| Project FEile Selected ltem Miew Build CYS Tools Help 1

© a0 @l% X ®
Files “.ﬁ.dd Files into Project B

Nare / Dotted path | Det § bufier

X! File Selection

1

MName In Project ¥]

halsa
hufferzb.halsa
hufferzc.halsa
huffer_n.balsa

-]

Import Mew Path... (0]:8 Cancel

SLL

Figure 2.4: Adding Files to the Project Manager.

the project manager together with the name of any procedures listed in that file. Clicking on the file
or procedure name will cause the contents of the file to be listed in the right hand edit pane as shown
in Figure 2.5. The file may be edited in-situ in the pane or by an external editor (defined in the
environment options pane assessable by the “Project = New” pull-down menu) which can be
invoked by clicking on the edit icon above the edit pane.

Files that have not been compiled will have a warning symbol against them. Users should be aware
that until the file has been compiled, the list of procedures displayed uder any filename is the result
of a simplistic parsing of the source file and may occassionally be misleading: for example
procedures that have been commented out and parameterised procedure definitions (see
“Parameterised descriptions” on page 49) will be shown erroneously . Further, conditionally
declared procedures (see “Conditional ports and declarations” on page 40) are missing. Upon a
successful compilation, the procedures will be correctly displayed.

In order to compile the circuit, either middle click on the file name or click on the Makefile tab in
the left-hand pane. The new view, Figure 2.6, reveals the actions available. Click on the Compile
button to compile the description. If the project has been changed since the user last saved it, a save-
project dialogue box appears. A new window, the execution window, is spawned which records
various stages in the compilation process.

Behind the scenes, bal sa- ngr analyses the dependencies in the sources files in the project, creates
a Makefile that reflects these dependencies and generates rules in the Makefile to invoke the various
Balsa commands. If the initial Balsa description is syntactically incorrect in such a way as to make
impossible the determination of dependencies, the Makefile will not be correctly generated.

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 13

2.5. Using balsa-mgr

Compilation
errors

Breeze-sim-ctrl <test-testl>

File Simulation Debug

Trace options | S
b - Breeze-sim Oplions - |4 0 otion:14700 &
-~ Trace All channels

. -|— + Trace Procedure ports anly »

-- GTKWave Options --
+ Wiew All traced channels
+ Wiew Procedure ports anly
“ Wiew Named ports only
+ Wiew MNone

[Ceveloper Options]
+ Procedure Structure
« Thread Structure

« Behaviour Structure

Figure 2.5: Displaying a file in the Edit Pane.

‘806 |X| Balsa Project Manager

| Project File Selected Item Wiew Build CWS Tools Help
Project" Project Mame— | Files—
cCaed e a:“ﬁ é@ O @ @ ® tfﬁ =

butfer! a.balsa |

| Files [Wakefie |

Tests

{— Balsa program defining an & bit wide single place buffer
This is an example of a multi-line (— nested —) comment

— Single line comments are also allowed

Wi import [balsa.types.basic]

procedure buffert {input i : byte; output o : byte)

Files
is
hutfer] a.balsa Selected \-’griah]e % 1 byte
huffer] a.breeze Compile begin
S Toop
cost Run 1= — Input communication
e : H — sequence operator
hufferla.ps hake \.-"IEWi 04— — Output communication
end
whRGii e e e R o
Others
Clean intermediate files tdake Tidy |

Clean intermediate and
test-harness files

hake Clean

Figure 2.6: The Makefile Pane.

Running Balsa from the command line allows more flexibility than from within balsa-mgr, however
balsa-mgr is much more convenient for the majority of tasks. Since describing a GUI is
exceptionally tedious, users are encouraged to browse the various icons and pull-down menus
themselves. Note that right-clicking in the various panes brings up various context sensitive menus.

If errors are found during the compilation of a circuit, the errors, together with the line number and
character position of the error, are reported in the output pane of the execution window. Clicking on

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

2.5. Using balsa-mgr

the displayed error message causes the offending code to be highlighted in red in the edit pane
window.

1. Start balsa-mgr and select the project defined previously for the circuit bufferla
2. Add the file buffer2b to the project

3. Compile the circuit by clicking on the Compile button for buffer2b.breeze. The circuit should
compile OK

“”’7 [T L

4. Change the parallel composition operator “II”” to the sequential operator “;

Save the file and recompile buffer2b.breeze

6. An compile time error should now be reported in the execution window:

buf f er 2b. bal sa: 11: 16: unbal anced channel usage; can't perform<wite> ; <read> on channel
*chan'

7. Click on the message. The offending code should be displayed in red in the edit-pane window
on line 11 starting at character position 16. If tabs are used in the source file, the tab size must
be known in order for the character position to be correctly reported. VI users may set the value
in their ~/.exrc file which is consulted by balsa-c. Alternative, -t <t absi ze> may be passed
as an option to balsa-c from the Compilation Options pane from the Project Options menu.
Quite apart from illustrating the mechanics of error reporting within the balsa-mgr framework,
this example demonstrates why designing asynchronous circuits requires a deeper understand-
ing the design process than does the design of synchronous circuits. It is important to realise
why the compiler objects to the circuit description. Line 11 contains two statements. In the
first, data is output from variable X1 to the internal channel chan. The next statement, because
of the sequence operator “;” cannot start until the previous statement has completed which
requires data to be taken on the channel to be acknowledged. It is this second statement trans-
ferring data from the channel chan to the variable X2 which would cause the data transfer on to
the channel to be acknowledged. In other words, the first statement is waiting for the second
statement, but the second statement can not start until the first has terminated.

In this particular case, the compiler can spot the problem. However, conceptually similar dead-
lock situations can arise at higher levels of system specification. In such cases, the circuit will
compile satisfactorily, but will deadlock in operation.

8. Correct the error before proceeding further.

Handshake Click on the View button opposite the label “bufferla.ps”. If necessary, the circuit will be compiled
circuit graph and a PostScript viewer will appear displaying the handshake circuit graph just as it did when the
viewer was invoked via the command line.

Circuit cost The area cost of a circuit may be found by determined by clicking on the Run button opposite the
cost label. Doing so will cause the execution window (Figure 2.7) to display the area cost of the
circuit. This cost is only a guideline figure assuming a particular back-end implementation.
Nevertheless, the cost figure is useful for gaining quick feedback on how changing the description
of a circuit affects its size. The output from breeze-cost needs some interpretation: each handshake
circuit is listed together with its cost, name, data width, and the internal channel identifiers to which
the component is connected. Note that the cost of the Fetch component is zero. This is because in the
back-end assumed for the cost function, a Fetch component is a wire only element.

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 15

2.5. Using balsa-mgr

Saving
Window
Contents

Flattened vs
non-flattened
view

80e [X| Execution Window
Frocess Mame Cutput State
halsa-md -p "/Users/doug/Documents/Dn Err Finished
make -n bufferla.breeze Cut
L halsa Finished

Err+Out Finished

Cutput StdErr

| _ _ _l_ [breeze—cost: Breeze cost estimation]
|13 ==t =t = U3 I (0 1988, The University of Manchester

\[L0 T component "§BrzFetch™ (B) (54 311)
||t20.75 Ccomponent "$BrzLoop” (3 (1 8310
||t49.5 Ccomponent "$BrzSequence” (23 (8 {7 53330

10192, 0 {component "$BrzVariable” (2 1 "=[0..7]1") (6 {433 {at 10 3 "bufferta.balsa" 0310

[[Total cost: 2B8.25

[[Total costs:
||buffer1 = 288.25

Figure 2.7: Execution window, showing the cost of bufferla

The ouputs logged in the StdErr or StdOut panes can be edited or saved to a file by right-clicking in
the pane. When editing, either the internal editor in the Balsa-mgr edit pane or an external editor as
defined in the environment options can be nominated.

When a circuit is composed hierarchically, there is a choice of whether the resulting circuit is
generated in a hierarchical or flattened manner. Balsa-mgr allows either representation.

1. Start balsa-mgr and select the project defined previously for the circuit bufferla

2. Delete the file buffer2b from the project by selecting it in the file pane and right clicking to
choose “Delete” from the pop-up menu. This step isn’t actually necessary but buffer2b is not
used again

Add the file buffer2c to the project.

4. Click on the Makefile tab in the left-hand pane of the balsa-mgr window. A set of compilation
actions for buffer2c (see Figure 2.8) has been added to those for buffer 1a.

5. View the handshake circuit by clicking on the View button for buffer2c.ps. A hierarchical view
of the composed circuit is shown in Figure 2.9.

6. Determine the cost of the circuit: a cost of 558.75! should be reported. The cost is reported for
the total of the hierarchical circuit and for the individual components.

Figure 2.9 shows the extra components required to compose the two instances of the single place
buffer.. The Fork component activates the two single place buffers in parallel. The Passivator
component. The Passivator component connects two active ports: the output port of the first buffer
and the input port of the second buffer.

The description of buffer2c can be flattened during compilation by passing the appropriate flag
through to the command line of the compilation tool. Balsa-mgr allows this to be done without
detailed knowledge of the command line tools.

1. Click on the “Project Options” icon or select “Project = Options” from the pull-down menu.

1. The exact cost may vary between different releases of Balsa.

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

2.5. Using balsa-mgr

8086

X Balsa Project Manager

l Project File Selected [tem Wiew Build CV35 Tools

Help

rProject * Project Name————————————— | Bttt

PO R8s |

: byte; output o

| FJ
DB GE XS
| Files Makeﬂl9| bufrer1a.ba|sa|buﬁeer.balsa buffierzc balsa
| import [balsa.types.basic]
Tests import [bufferial
Implementations 1p;ocedure bufferz Cinput i
: begin
e |F|Ies buffert (i, <) |1
HIERE S oe buffert fc, o)
hufferl a.hreeze Compile end
cost Run
hufferl a.ps hake
hufferZc.balsa Selected
hufferZc.hreeze Compile
cost Run
hufferZc.ps hake
Others

byted

— bufferzc: 2-place buffer using parallel composition

Figure 2.8: Buffer2c actions added to Makefile pane

activate

buffer2c

C1: @10:18
o

Fork Component

Passivator

Figure 2.9: Hierarchical view of buffer2c handshake circuit graph.

2. Click on the “Compilation Option” tab on the project dialogue window that appears (see

Figure 2.3)

3. Check the check-box marked Flattened Compilation in the compilation option pane (see
Figure 2.10). The exact layout of this window and the set of options available may be different

from that shown because of developments in the Balsa system.

4. Rerun the view of the of the handshake circuit graph. A flattened view should be obtained as

shown in Figure 2.11.

5. Restore the compilation settings to the default “Hierarchical Compilation”

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

17

2.6. Smulation.

f 8eoe X Project Options

Mame and paths Compilation options | Deﬂnitionsl

~Lard Simulation—
|| Interpreted Simulation

o Lard -=

rBreeze Simulation—

Direct Simulation

Ereeze -= Lard

Structural Simulation

Eehavioural Simulation

kFIa\tlened Compilation

'l‘—HerarchicaI Compilation

BALSACOPTS = |-

LCDOPTS =

1
BREEZELINKOPTS = I
1
|

BZLOFTS = |-5

Figure 2.10: The Compilation Options pane

activate

C1: @10:18

o

buffer2c

Figure 2.11: Flattened view of buffer2c

2.6. Simulation.

Apart from the various simulation possibilities available once the design has been converted to a
silicon layout, there are three strategies for evaluating/simulating the design from Balsa.

18

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

2.6. Smulation.

Default test harness.

A default test harness can be generated. The default test harness exercises the target Balsa
block by repeatedly handshaking on all external channels; input data channels receive auser
defined value on each handshake, although it is possible to associate an input channel with a
data file. Data sent to output channels appears on the output pane of the execution window.
Note that if the interface to procedure under test is changed, a new test-harness must be gener-
ated. By default, the Makefile can not check this dependency: the test-harness file must either
be removed manually or by running make cl ean.

Balsa test harness

If a more sophisticated test sequence is required, Balsa is a sufficiently flexible language in its
own right to be able specify most test sequences. A default test harness can then be generated
to exercise the Balsa test harness: see “Building test harnesses with Balsa” on page 77.

Custom LARD test harness.

For some applications, it may be necessary to write a custom test harness in a language such as
LARD. However, LARD is no longer supported as part of the Basla system.

Adding a test To simulate a circuit description. using Balsa’s simulation facilities, a test fixture has to be added to
fixture. the design framework. The easiest way is to automatically generate a default test harness.

1.
2.

e

Make sure that buffer2 is selected in the Files pane.

Pick “Select Item = Add Test Fixture” from the pull-down menu or right-click in the left-hand
“File” pane. A window for creating a text fixture is spawned [Figure 2.12]

06 [%] Test Options

Fort Types 1 Deﬂnitionsl

Top-level Procedure 1buffer2

Test Fixture Mame

Test Fixture File]buﬁech.baIsa

Type | Poris) Parameter(s) Deletei
I8 o

rComponent Type— (Component Properties —————

| w sYNC | | Port Mame ii |
| ~inputfromfle || Filename [t daf ||

| o input value
|« output to file |
| « output to stdout | |

|

<undefineds |

Ok Cancel

Figure 2.12: The test fixtures pane

Change the name of the test fixture from the default (testl) to something more meaningful, e.g.
buff2c

Select the Port Name “i ”

Change the active radio button in the “Component Type” pane from “input value” to “input
from file”

Some test values (in a variety of representations: decimal, hex and binary) have been provided
in the file thl.dat in the directory containing the example. Set the value of the filename in the

Balsa: A Tutorial Guide.

V3.4.2 - 2/1/05 19

2.6. Smulation.

Text-only
simulation

7.

“Port Value/Filename” text box to thl.dat either by typing directly into the text box or by
clicking on the file browser button immediately to the right of the text box.

Note that data values can be specified in various notations (binary, octal, hexadecimal, deci-
mal). The format of data files is line based: Only one data items is allowed per line and com-
plex data types values should not be split across lines. Anything after a data item is treated as a
comment and is passed to the simulation.

Dismiss the window by clicking OK.

In order to run the test, click on the Makefile tab. The Makefile view shown in Figure 2.15 now

Figure 2.13: Test Harness added to Makefile pane

[X| Balsa Project Manager

0086

Help

1 Project File Selected ltem Miew Build CW¥5 Tools

rProject ® Project Mame-—

th1.dat 1

S e WS

Tests
huffZc

sim-huffZc
sim-win-buffZc

hake
hake

Run

Run

Files
| lhuffert abalsa

bufferl a breeze
cost

hufferl a.ps

Implementations

Compile

Run

hake

View]

1
0x10

022
Oba11101
5

shows two actions added under the Tests” subpane. Clicking on the Run button for sim-buff2c
generates the following output in the execution window. The numbers reported on the left hand side
of each channel activity are simulation times — either the time at which data is presented at an input
channel from the external environment or the time at which data is presented on an output channel to
the external environment. Note however that the simulator has a very simplistic timing model, so
these values should be treated with caution.

20

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

2.6. Smulation.

ene [X| Execution Window
Frocess Mame Cutput] State A
Balsa-c -B -1 . [esFiest] Firished
hreeze-sim - . test-test Err+0Out Finished
make -n sim-test1 Cut
L breeze-sim -1 . test-tast] Err+0Out Finished
make -n sim-test1 Cut
L breeze-sim -1 . test-tast] Err+0Out Finished
make -n sim-test1 Cut ~|
b B-5itn -| . £
i =

| Stop Processi

| Cutput StdErr
[{Activity finished at time 737

l149: chan 'o' reading 1 |
Me?: chan "1' writing 0x10 Hex: Decimal 16 |
fi251: chan "' writing 022 Octal: Decimal 18 |
[[258: chan ‘o' reading 16 |
f257: chan '1' writing 0b011101 Binary: Decimal 29 |
3672 chan 'o' reading 18 |
466: chan '1' writing 0b1101_0100 Binary: Decimal 212 |
l76: chan ‘o' reading 29 |
=75: chan '1' writing -5 Decimal 25118 |
l[525: chan 'a' reading 212 |
[[E94: chan 'o' reading 251 |

2|

= A

Figure 2.14: The ouput from a text-only simulation

; 8086 X Project Options

Mame and paths Compilation options | Deﬂnitionsl

[Breeze Simulation— Lard Simulation—

A Direct Simulation ||+ Interpreted Simulation

v Breeze -= Lard ;v Lard -= C

|~ Structural Simulation

|+ Behavioural Simulation

!|AkFlattened Compilation

;Vmierarchical Compilation

BALSACOPTS =

BREEZELINKOPTS =

LCDOPTS =

BZLOFTS =

Figure 2.15: Test Harness added to Makefile pane

Capturing output ~ The contents of the output window of the execution window can be captured by right-clicking in the
output pane; alternatively the output can be directed to a file when defining or editing the test

harness.
Graphical In the previous examples, the output of the simulation is textual appearing in the output pane of the
Simulation execution window. The simulation may also be viewed in a conventional style waveform viewer or
Tools the channel activity can be viewed directly on a representation of the handshake circuit graph. To

activate the viewers, switch to the Makefile pane of Balsa-mgr and click on Run button for
sim-win-buff2c. This will generate any intermediate files required and bring up a window
breeze-sim-ctrl (Figure 2.16) which controls the simulations and animations.

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 21

2.6. Smulation.

Breeze-sim-
controller icons

Generating the
simulation trace

simulation

simulation rn simulaion stop simulation speed simulation existing simulation
button

button controller length file: waming icon

X/ Breeze-sim£ctr]l <test-testl

options Simulation ~ Debug

7 14
Slow Fast Duration:14700 &/

£ 2
\ waveform viewer H/S drouit source code
icon graphicon wiewer icon

status

Figure 2.16: The Simulator Controller

The controller allows:

a new simulation file for a design to be produced and displayed in a waveform viewer
(GTKWave).

an existing simulation file to be viewed in the GTKWave viewer.
the speed of the simulation to be varied.

the handshake circuit graph to be displayed, animated and analysed.
the source code to be displayed.

the associations between handshake circuit channels and source code constructs to be
displayed.

If an existing simulation file is detected when the controller is started, a warning triangle
icon is displayed to alert the user to the possibility that this file could be overwritten (the
file has the extension of .hhh).

An existing simulation file may be viewed without it being regenerated by clicking on the
waveform viewer icon at the bottom of the controller window. If the waveform viewer is
active, clicking on the icon kills the viewer.

The coloured button at the bottom left of the controller window indicates the status of the
simulation: red means the simulation is stopped, green that the simulation is running and
blue that the simulation is paused.

A new simulation trace file can be generated and displayed by clicking on the simulation
run/pause button at top-left of the controller window. The simulation can be terminated by
means of the simulation stop button to the right of the run/pause button. The simulation is
displayed in the GTKWave viewer as the simulation file is produced. The speed of the
simulation can be slowed down by means of the speed slider control.

The two icons at the bottom right of the window reveal further functionality: the left icon
reveals a graph of the handshake circuit and the right button opens a window onto the
source code.

Although breeze-sim-ctrl can be used to view the static handshake circuit (in order, for example, to
analyse the associations between the handshake elements and the Balsa description), its aim is to
graphically control the simulation process and display the simulation events in various ways. Before
any visualisation, it is necessary to generate a simulation trace. The presence of a simulation trace is
indicated by the Duration indicator, showing the total length of the actual simulation. You can
generate a new simulation (.hhh) trace file by running the simulation with the Play button. The
simulation is generating events very quickly, and the trace file can quickly become very large. If
your simulation is too long, you may want to keep the simulation trace short by slowing the
simulation speed down with the slider control and by stopping the simulation with the Stop button
when it reaches the desired size (the Duration indicator of the simulation is updated in real time).

22

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

2.6. Smulation.

Which simulated events are saved in the trace file can be chosen from the Trace options menu, in the

Breeze-sim options section (Figure 2.17). The choice is between tracing all the channels or tracing

File Trace options| Simulation Debug

b -- Breeze-sim Options —
-~ Trace All channels

|— + Trace Procedure ports anly
- GTEWave Options -

+ Wiew All traced channels

+ Wiew Procedure ports anly

“ Wiew Named ports only

+ Wiew MNone

[Ceveloper Options]
+ Procedure Structure
« Thread Structure

« Behaviour Structure

Figure 2.17: Trace options menu

only the procedure ports. Tracing all the channels results in a large trace file containing all the
necessary information for any kind of visualisation or post-analysis. Tracing only the procedure
ports is useful for keeping the trace file small, while still being able to view in GTKWave the events
happening at the interface of your procedures. This is often enough for checking that high-level
communications are behaving as expected without going into the details of the implementation.

GTKWave, the
Waveform Viewer

Clicking on the waveform viewer icon or the simulation run button will start the GTKWave viewer
(this automatic launch of GTKWave when a simulation is runned is the default behaviour, and can

be overriden by placing an empty file named nogtkwave in the project directory). A list of channels

is displayed in the right-hand pane as shown in Figure 2.18. Request signals are shown in red and

X! GTKWave

| File Edit Traces Time Markers

Help

wm m X B

Add.. Show all Cut Faste

iQ@l@lWWQ@@SwW@é

Fram: 10 g To: 1194 ng Primary marker: 24 ns Cursar: 176 ns
| Time
| bufferz.1=t-a-

| bufferz.bufferi#1.5 =r+a-
| bufferz buffer1#1.:5 =r-a-
| bufferz bufferi#l 7 =r+a-
| bufferz bufferi#1 5 =r+a-
| hufferz buffer#1 <4 =r-a- 0

hufferZ buffer1#1 x:6 =r-a- 0

Ej{ [

I

Figure 2.18: Channel viewer window.

acknowledge signals are shown in green. Data bearing channels have the data value displayed under

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

23

2.6. Smulation.

Viewing and
animating the
handshakecircuit
graph.

the request/acknowledge signals. Clicking in this pane will display a vertical timeline cursor in the
window.

Which channels are viewed at the launch of GTKWave can be chosen from the Trace options menu,
in the GTKWave options section (Figure 2.17). The four possible choices are View all traced
channels, View procedure ports only, View named ports only and View none. They are self-
explanatory, except perhaps the third one: Named ports correspond to all the procedure ports but the
activation signals associated to every procedure (these signals do not have any name in the breeze
file).

The left-hand pane shows the channel names and the state of the request/acknowledge signals and
data values at the cursor point. It is necessary to click in the waveform display pane to get the
channel names to display correctly in the first instance. GTKWave is highly configurable: a detailed
description of its operation is not given here, rather a summary of its capabilities is provided below.

* The display of the traces passed to the viewer from the simulation controller can be
configurable by use of the add or add all buttons. The former allows signals to be chosen
from a pick-list or by a regular expression description together with range specifiers —
useful for specifying buses.

* Traces can be removed or repositioned by means of the cut and paste buttons.
e Traces can be sorted in a number of different ways.

* The traces can be zoomed in or out at the mid point of the display window by means of the
zoom buttons.

» Specific areas of the display can be zoomed by right-click, drag in the display window.

* The display can be stepped by a fixed number of nsecs at a time or by the width of the
display window.

e Data may be displayed in a number of formats.
* Markers can be added to the display.

e The various menubars and toolbars can be hidden by means of the icons at the bottom right
of the window.

* The various menubars and tool bars are detachable. Click and drag on the gripper at the
left-hand end of the bar to detach it. To return it to the window, drag it back to its correct
place in the window or, more simply, double click on the gripper.

Note: the features described in this section are experimental and arelikely to changein future
releases. Not all buttons/controls are described — in the main this is because they are for
internal developer use only.

If the handshake circuit graph icon (at the bottom-right corner of the controller window) is clicked,
the controller window changes to that shown in Figure 2.19. It shows a graph representation of the
handshake circuit compiled, and is intended to display the activity (events) happening on the various
channels during the simulation.

First, you might want to change the layout style, especially if your graph does not appear nicely
when using the default layout. This is done by selecting the check box entitled “Layout uses control
flow”, near the bottom left corner of the window. When this check box is selected, the layout
hanshake circuit graph is laid out with the control flows going from top to bottom. When the check
box is unselected, the graph is laid out based on data flows, with data flowing from top to bottom.
The default style (data flow-based) gives a good visualisation of large circuit, especially when
associated with the “Control: Gray” button (located above the check box). However, for small
circuits, organising the data flow vertically does not always result in a nice layout.

Then, you might want to customise the appearance of the graph. For this, you can:

e drag&drop components or groups.

24

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

2.6. Smulation.

X/| Breeze-sim-ctrl <test-testl>

File Trace options Simulation Debug

P | siow Fast Duration:14?00&

Selection Animate| Slow Fast Time17 —

O

{buffer2}
' <D

<root>

{hufferd #1

Delete| Dilate| Ruril| Fallow]|

ShowiHide| Capture

Handshake circuit graph
Control: »~ Elack . Gray @

Data: -~ Elack .. Gray

I Layout uses contral flow '
Max Dev| Half Devy J@@ ’@ @@ J j |

Figure 2.19: Channel tree and handshake circuit graph revealed.

* resize groups with Shift+drag&drop.

* pan the display by dragging the background.

* zoom in/out by using the zoom icons.

* toggle the channel names and their values by using the next toggle icons.

* reduce/develop groups to show their components and sub-groups with middle-click and
right-click (Right-clicking on a group reduces/develops its sub-groups; Middle-clicking on
a group hides/shows its handshake components. You typically need to use right-click to
fully develop groups and middle click to fully reduce them).

* make a group become the main viewed group by using Ctrl+Left click. Ctrl+Shift+click
sets the parent of the selected group to be the main viewed group, and you can use
successive Ctrl+Shift+clicks on successive parents to go back to a higher level view of the
circuit.

On the left, a group of controls offer you to gray some parts of the circuit out, in order to visualise
more effectively either the control flow or the data flow. The Max Dev button recursively develops
every group in the circuit.

Pressing the empty icon button under the graph view develops a new button bar for accessing
developpers’ functionalities. The first button, “Screen Shot”, may be useful to you, as it generates a
screenshot.ps file in the current directory, containing a postscript version of the viewed graph
(however, the graph is usually not centered on the page and needs post-processing).

The circuit is then animated by clicking on the Animate button. The speed of the animation can be
modified by means of the slider control next to the button. The animation may be stepped by means
of the up/down arrows next to the current time value. As a short-cut, right-clicking on the arrows
will take the simulation to the start/end of the animation. This feature is useful for rerunning the
animation. The two buttons next to the time-controlling up/down arrows are stepping the animation
to the next/previous viewable event.

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 25

2.7. Compilation and Smulation Options

Debugging a
deadlock

Source Code
Viewer

Flattened vs
hierarchical
compilation

Clicking on a channel selects it for a list of action available in the left-hand pane entitled
“Selection”:

¢ “Delete” unselects a channel(s).
e “Dilate” expands the selection to the surrounding channels.
e “Run’til” runs the simulation until some activity appears on the selected channel(s).

* “Follow” runs until some activity on the channel and then looks for activity on the
surrounding channels and expand the selection to those newly activated surrounding
channels.

When “Capture” is pressed, hovering the mouse over a handshake channel automatically selects it.
Associated with the source code viewer, one can quickly see what source code corresponds to each
channel.

Finally, the text box next to the Capture button is a search box that selects/unselects all the channels
whose name contain the entered string (the search is run when the user presses the Return key). This
search box is useful, for example, when dealing with Verilog files generated from the Balsa
description: The channel numbers being the same in Verilog and in Breeze, specific Verilog channel
numbers can be searched and viewed on the handshake circuit graph (or in the source code viewer,
in order to link Verilog back to the original Balsa description).

If your simulation ends up in an unexpected deadlock, you can try our “deadlock debugging helper”,
currently in development (i.e. if it does not work for you, it is kind of normal). Select the channel
corresponding to the latest event that happened during your simulation and run the deadlock
analysis by selecting “Highlight Deadlock™ in the Debug menu. It should highlight (and add in the
Selection box) a list of channels which are thought to be related to the deadlock. The most useful
channels for debugging the deadlock are those where a change of channel activity happens, for
example when the string of highlighted channels passes from a channel where no event happened to
a channel blocked with a “Request Up” event pending. You can follow this string of highlighted
channels and use the source code view to locate the position of some of them, as explained below.

Clicking the source code viewer icon brings up a separate (initially empty) window. It is advised to
click on “Show All Channel Positions”, in order to load every file and colorise keywords according
to the handshake channels that are referred to in the compiled circuit. Once the source code window
is open, any channel selection from the main window is reported at the bottom of the source code
window. A subsequent click on the “Goto Source” button highlights the source code that correspond
to the selected channel. In the other way around, it is possible to select channels that correspond to a
keyword from the source code by right-clicking after the first letter of the desired keyword and
choosing “Select Channels” in the contextual menu (the algorithm searches backwards from the
selected character until it finds a matching channel). When the checkbox next to the “Goto Source”
button is selected, any newly selected channel will be automatically reported inside the source code,
as if the user pressed the “Goto Source” button after selecting the channel. Unselecting “Notebook
style” displays every opened file simultaneously, next to each other.

2.7. Compilation and Simulation Options

These options are reached by clicking on the “Project Options” icon or selecting “Project =
Options” from the pull-down menu.s and selecting the compilation pane.

As discussed in earlier (see “Flattened vs non-flattened view” on page 16), this option allows a
choice of flattening the design during the compilation process or maintaining the hierarchy. A
flattened design allows a slightly greater degree of peephole optimisation to take place, but at the
expense of exposing the internal channels and losing the hierarchy at later stages of the design
process. The hierarchical view is more appropriate for most users and this is the default setting in the
balsa-mgr.

26

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

2.7. Compilation and Smulation Options

Direct
Simulation vs
Breeze = Lard

Lard
simulation
options

Structural vs
behavioural
simulation

Users are strongly recommended to use only the direct simulation route. This uses the new breeze
simulation engine and GTKWave channel viewer environment which has been described earlier.
Checking the Breeze = Lard box will enable the old deprecated LARD simulation environment.

If the Breeze = Lard route is (against all advice) chosen, users have two choices:

Interpreted Simulation: This is the default option and works with the existing LARD channel
viewer. It is however very slow.

Lard = C: This option considerably speeds simulation times (by up to two orders of magnitude
compared to an interpretedsimulation), but can not be used with the LARD channel viewer, nor can it
currently be used under MacOS X. The speed is still significantly slower than the new Breeze
simulation engine.

This option only applies to users who are still persisting with the deprecated LARD simulation route.
It will be removed in subsequent releases of the Balsa system.

Users may choose whether to use behavioural or structural simulation. Behavioural simulation (the
default) is much faster. However the timings are not necessarily representative of relative channel
activity. Structural simulation allows the interaction between the handshake components to be
explored more accurately and is useful as a teaching aid to understanding the behaviour of fine
grained asynchronous circuits. However, as the overall timings are still very approximate, users only
interested in functional simulation are recommended to use the behavioural option.

Users may wish to explore the significance of the various options by simulating buffer2c with
various combinations of switches.

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 27

2.7. Compilation and Smulation Options

28 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

Summary

Numeric types

The Balsa Language

The previous chapter introduced Balsa, but was mostly concerned with the auxiliary tools that
support the Balsa environment. The language itself is small and in this section most of its major
features and constructs are introduced. Later chapters discuss more advanced topics such as
parameterisation and recursively defined structures (“Parameterised & Recursively Defined
Circuits” on page 49) and the enclosed semantics of the choice operator (“Handshake Enclosure” on
page 55). A more formal and complete, BNF style, language description can be found in Table 11.1
on page 127.

3.1. DataTypes

Balsa is strongly typed with data types based on bit vectors. Results of expressions must be
guaranteed to fit within the range of the underlying bit vector representation. There are two classes
of anonymous types: numeric types which are declared with the bi t s keyword and arrays of other
types. Numeric types can be either signed or unsigned. Signedness has an effect on expression
operators and casting. Only numeric types and arrays of other types may be used without first
binding a name to those types. Balsa has three separate namespaces: one for procedure and function
names, a second for variable and channel names and a third for type declarations.

Numeric types incorporate numbers over the range [0, 2" — 1] or [-2m1, 2ml _) depending on
whether they represent either unsigned or signed and where n € [1, INT_MAX]; on a 32-bit machine

n € [1, 2% - 1]. Named numeric types are just aliases of the same range. An example of a numeric
type declaration is:

type word is 16 bits

This defines a new type wor d which is unsigned (there is no unsi gned keyword) covering the range

[0,2'-1). Alternatively, a signed type could have been declared as:
type sword is 16 signed bits

which defines a new type swor d covering the range [-213, 21511,

Some predefined types are available in <BalsalnstallDir>/share/bal sa/types/basic.balsa. including
byt e, ni bbl e, bool ean and car di nal as well as the constants t rue and f al se. Other predefined

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 29

3.1. Data Types

types may be added from time to time. Users are advised to consult the contents of the file in their
particular release of the Balsa system.

Enumerated Enumerated types consist of named numeric values. The named values are given values starting at
types zero and incrementing by one from left to right. Elements with explicit values reset the counter and
many names can be given to the same value, for example:
type Colour is enuneration
Bl ack, Brown, Red, Cange, Yellow, Geen, Blue, Violet
Purple=Violet, Qey, Gay=Gey, Wite
end
The value of the Vi ol et element of Col our is 7, as is Purpl e. Both G ey and G- ay have value 8.
The total number of elements is 12. An enumeration can be padded to a fixed size by use of the over
keyword:
type SillyExanple is enuneration
el=1, e2
over 4 bits
Here 2 bits are sufficient to specify the 3 possible values of the enumeration (0 is not bound to a
name, el has the value 1 and e2 has the value 2). The over keyword ensures that the representation
of the enumerated type is actually 4 bits.
Occasionally, it is necessary when referring to an element of an enumeration to indicate the type to
which that element belongs. The notation Col our’ Purpl e specifically indicates the identifier
Pur pl e as being a member of Col our . Most users will never need this notation; about the only time
it is required is when using elements of enumerations within casts and even in that case there are
more transparent ways of achieving the same effect.
Enumeration types must be bound to names by a type declaration before use.
Record types Records are bitwise compositions of named elements of possibly different (pre-declared) types with
the first element occupying the least significant bit positions, e.g.:
type Resistor is record
Fi rstBand, SecondBand, Multiplier : Col our;
Tol erance : Tol eranceCol our
end
Resi st or has four elements: Fi r st Band, SecondBand, Mul ti pl i er of type Col our and Tol er ance
of type Tol eranceCol our (both types must have been previously declared). Fi r st Band is the first
element and so represents the least significant portion of the bitwise value of a type Resi stor.
Selection of elements within the record structure is accomplished with the usual dot notation. Thus
if RI5 is a variable of type Resistor, the value of its SecondBand can extracted by
R15. SecondBand.
A record can be constructed by listing its fields as a list within braces. Thus if RAK7 is a record
variable of type Resistor, its value may be set:
RAK7 := {Yellow, Violet, Red, ol d}
As with enumerations, record types can be padded:
type Flags is record
carry, overflow zero, negative, int_en : bit
over hyte
The 5-bit record is padded to 8 bits by use of the over keyword. Even in those cases where padding
is not required such as in the example below, specification of the data-type required is useful
because the compiler will enforce error checking to ensure that the structure is in fact what it is
believed to be.
type Flags is record
30 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

3.1. Data Types

Array types

Constants

carry, overflow, zero, negative : bit
over 4 bits

Arrays are numerically indexed compositions of same-typed values. An example of the declaration
of an array type is:

type RegBank_t : array 0..7 of byte

This introduces a new type RegBank_t which is an array type of 8 elements indexed across the range
[0, 7], each element being of type byt e. The ordering of the range specifier is irrelevantarray 0..7
is equivalent to array 7.. 0. In general a single expression, expr, can be used to specify the array
size: this is equivalent of a range of 0. . expr-1. Anonymous array types are allowed in Balsa, so
that variables can be declared as an array without first defining the array type:

vari abl e RegBank : array 0..7 of byte

Arbitrary bit-fields within an array can be accessed by an array slicing mechanism e.g. a[5. . 7]
extracts elements a5, a6, and a7. As with all range specifiers, the ordering of the range is irrelevant.
In general Balsa packs all composite typed structures in a least significant to most significant, left to
right manner. Array slices always return values which are based at index O.

Arrays can be constructed by means of a list constructor or by concatenation of other arrays of the
same base type:

variable a, b, ¢, d, e ,f: byte
variable z2 : array 2 of byte
variable z4 : array 4 of byte
variable z6 : array 6 of byte

z4:= {a, b, c, d} -- array construction
26:= z4 @{e, f} -- array concatenation
z2:= (z4 @{e, f}) [3..4] -- elenent extraction by array slicing

In the last example, the first element of z2 is set to d and the second element is set to e. The
parentheses are necessary to satisfy the precedence rules. Note that array slices always return values
which are based at index 0. Thus in the following rather bizarre example, the first element of z2 is
assigned to ¢ and the second element to d:

z2:= (({a, b, c, d} @f{e, f}) [1..4])[1..2]-- returns {c,d}

Array slicing is useful to allow arbitrary bitfields to be extracted from other datatypes. In general,
the original datatype has to be cast into an array first before bitfield extract and then cast back again
into the correct datatype. See “Casts” on page 32 for concrete examples.

Constant values can be defined in terms of an expression resolvable at compile time. Constants may
be declared in terms of a predefined type otherwise they default to a numeric type. However, sting
constants are not allowed. Valid examples are:

constant mnx =5

constant nmaxx = mnx + 10
constant hue = Red : Col our
constant col our = Col our’ G een

Complex data type (array and record) constants may be defined:

constant InitArray = {1, 2, 3, 4} : MArrayType
constant RAK7 = {Yellow, Violet, Red, Gold} : Resistor

The two examples above may also be written:

constant InitArray = MArrayType {1, 2, 3, 4}
constant RAK7 = Resistor {Yellow, Violet, Red, Gold}

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 31

3.2. Data Typing Issues

implicants

Arrayed
channels

Casts

Integer constants may be specified in decimal (e.g. 42), binary (e.g. 0b00101010) octal (e.g. 052) or
hexadecimal (e.g. 0x2a). Note that leading zero signifies an octal constant. The underscore character
“_” is allowed within numbers to improve readability (e.g. Ob_0010_1010).

Implicants — values containing don’t cares— are allowed as normal expression types and be used to
define both simple numeric constants and complex data type constants. The symbol “x” denotes a
single don’t care digit, and the value “?” yields an implicant matching all values of the expected
type. Not all operators may be used with such implicants, working operators include as, array and
record construction and #. Examples of the use of implicants are:

constant QddNum = Obx1
constant DataProclnst = {?, 0bOOx, ?, ?} : InstructionFornat

The latter could be used in decoding an instruction formatted into four fields in which it is known
that data-processing type instructions are uniquely identified by the value 000 or 001 in the second
field.

The main use of implicants is in matching case guards [see “case statements” on page 37].

Channels may arrayed, that is they may consist of several distinct channels which can be referred to
by a numeric or enumerated index. This is similar to the to the way in which variables can have an
array type but in the case of arrayed channels, each channel is distinct for the purposes of
handshaking and each indexed channel has no relationship to the other channels in the array other
than the single name they share. The syntax for arrayed channels is different to that of array typed
variables making it easier to disambiguate arrays from arrayed channels. As an example:

array 4 of channel XYZ : array 4 of byte

declares 4 channels, XYZ[0] to XYZ[3], each channel is a 32-bit wide type array 0..3 of byte.
An example of the use of arrayed channels was shown previously when discussing the placement of
multiple structures [see “Placing multiple structures” on page 11].

3.2. DataTyping Issues

As stated previously, Balsa is strongly typed: both left-hand and right side of assignments are
expected to have the same type. The only form of implicit type-casting is the promotion of numeric
literals and constants to a wider numeric type. In particular care must be taken to ensure that he
result of an arithmetic operation will always be compatible with the declared result type. Consider
the assignment statement x : = x + 1. This is not a a valid Balsa statement because potentially the
result is one bit wider than the width of the variable x. If the potential carry-out from the addition is
to be ignored, the user must explicitly force the truncation by means of a cast.

If the variable x was declared as 32 bits, the correct form of the assignment above is:
X :=(x +1as 32 bits)

The keyword as indicates the cast operation. The parentheses are a necessary part of the syntax to
make the precedence of as more obvious. If the carry out of the addition of two 32-bit numbers is
required, a record type can be used to hold the composite result:

type AddResult is record
Result : 32 bits;
Carry : bit;

end

variable r : AddResul t

r :=(a+ b as AddResul t)

The expression r. Car ry accesses the required carry bit, r. Resul t yields the 32-bit addition result.
Casts are required when extracting bit fields. Here is an example from the instruction decoder of a

32

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

3.2. Data Typing Issues

Bit ordering
and padding in
arrays

simple microprocessor. The bottom 5 bits of 16-bit instruction word contain an 5-bit signed
immediate. It is required to extract the immediate field and sign-extend it to 16 bits:

type Word is 16 signed bits
type Imb is 5 signed bits

variable Instr : 16 bits-- bottom5 bits contain an i nmedi at e
variable Imil6 : Wrd
Imml6 := (((Instr as array 16 of bit) [0..4] as Immb) as Wrd)

First, the instruction word, | nst r, is cast into an array of bits from which an arbitrary subrange can
be extracted:

(Instr as array 16 of bit)

Next the bottom (least significant) 5 bits must be extracted:
(I'nstr as array 16 of bit) [O..4]

The extracted 5 bits must now be cast back into a 5-bit signed number:
((I'nstr as array 16 of bit) [0..4] as |nmb)

The 5-bit signed number is then signed extended to the 16-bit immediate value:
(((I'nstr as array 16 of bit) [0..4] as Imb) as Wrd)

The double cast is required because a straight forward cast from 5 bits to the variable | mn6 of type
Wrd would have merely zero filled the topmost bit positions even though Wrd is a signed type.
However, a cast from a signed numeric type to another (wider) signed numeric type will sign extend
the narrower value into the width of the wider target type.

Extracting bits from a field is a fairly common operation in many hardware designs. In general, the
original datatype has to be cast into an array of bits first before bitfield extraction. The smash
operator # provides a convenient shorthand for casting an object into an array of bits. Thus the sign
extension example above is more simply written

((#nstr [0..4] as Im®b) as Wrd)

Whilst anonymous array types are allowed, it is not always possible for the compiler to be able to
deduce the appropriate type of an array constructor during a cast operation:

type Wrd32 is 32 hits

variable a, b, c, d: byte

vari abl e I m82: Wrd32

ImmB82 := ({a, b, ¢, d} as Wrd32)-- can’t deternine type of array

The compiler has to be given a hint by specifying the type of the array constructor:

type At is array 4 of byte
ImB82 := (A4t {a, b, ¢, d} as Wrd32)

Here, A4_t indicates the type of the array constructor. Note that a previously declared type must be
used: the following statement results in (many) compile time errors:

ImB2 := (array 4 of byte {a, b, ¢, d} as Wrd32) -- error
The following snippets illustrate the relationship between the bit ordering in array constructors and
their numeric values represented by those arrays:

constant x = (2 as 4 bits)
print "x is: ", x, " ", # ;

x is defined a being a 4 bit value; printing it as an array of bits (using the # operator) gives:

x is: 2{0,1,0,0}

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 33

3.3. Control Flow and Commands

The most-signifcant bit is the rightmost bit element of the array — note this is contary to the normal
representation of bits in a binary number where binary 0110 would represent decimal 4.
Concatenating x with another array of bits

y:= (#x @{0,1} as 8 bits);
print "yis: ", y, " ", #y;

gives:

y is: 34 {0,1,0,0,0,1,0,0}

Auto- Statements of the form
assignment X 1= ()

are allowed in Balsa. However, the implementation generates a temporary variable which is then
assigned back to the variable visible to the programmer — the variable is enclosed within a single
handshake and cannot be read from and written to simultaneously. Since auto-assignment generates
twice as many variables as might be suspected, it is probably better practice to avoid the auto-
assignment, explicitly introduce the extra variable and then rewrite the program to hide the
sequential update thereby avoiding any time penalty. An example of this approach is given in
“Removing auto-assignment” on page 42.

3.3. Control Flow and Commands

Balsa’s sparse command set is listed in Table 3.1. A more formal definition of the command syntax
is given in Table 11.2. on page 127.

command Notes
sync Control only (dataless) handshake
< handshake data transfer from an expression to an output
port
-> handshake data transfer to a variable from an input port
= assigns a value to a variable
; sequence operator
Il parallel composition operator
continue a null command
halt causes deadlock
loop ... end repeat forever

loop ... while ... then ... also

nd conditional loop with optional initial command.
..

for...in ... then ... end structural (not temporal) iteration

. conditional execution, may have multiple guarded
if ... then ... else ... end y p &

commands
case ... of ... end conditional execution based on constant expressions
select ... end non-arbitrated choice operator

Table 3.1: Balsa Commands

34 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

3.3. Control Flow and Commands

Sync

Channel
assignment

Variable
assighment

Sequence
operator

Parallel
composition

Continue and
Halt

command Notes

arbitrate ... end arbitrated choice operator

if Ist arg is one of fatal, error, warning, report, print
subsequent args at compile time at the appropriate error
level. If 1st arg is runtime (the default) evaluate and print
args during a simulation

print <args>

allows inclusion of local definitions around a command and
<block> the overriding of the precedence of command composition.
See Table 11.1 on page 127.

Table 3.1: Balsa Commands

sync <channel > awaits a handshake on the named channel. Circuit action does not proceed until
the handshake is completed.

<channel _out> <- <expression> The result of the expression (commonly,
the value of a variable) is transferred to the
named output channel.

<channel _in> -> <vari abl e> Data from the named input channel is
transferred to a variable.

<channel _in> -> <channel _out> Data from the named input channel is
transferred to the named output channel.

<channel _in> -> then <comand> end The handshake on the named input channel
encloses the command block. Thus the data
remains valid until the command block
terminates. Data on the input channel can be
read more than once or assigned to multiple
channels.

<vari abl e> : = <expr essi on> transfers the result of an expression into a variable. The result type
of the expression and that of the variable must agree.

[T 1]

;7 separating two commands is not merely a syntactic operator, it explicitly denotes sequentiality.
Because a semicolon connects two sequenced statements of a block, it is an error to place a
semicolon after the last statement in a block. Doing so is a common beginner’s error and may result
the error message:

expected one of tokens ‘ident [{ sync | ocal begin continue halt [oop while if
case for select arbitrate print ’

“”n

composes two commands such that they operate concurrently and independently. Both
commands must complete before the circuit action proceeds. Beware of inadvertently introducing
dependencies between the two commands so that neither can proceed until the other has completed.
The “II” operator binds tighter than “;”. If that is not what is intended, then commands may be
grouped in blocks as shown below

[OWdSeql ; OndSeq2] || OmdParl
Note the use of square brackets to group commands rather than parentheses. Alternatively, the

keywords begi n ...end may be used.

continue is effectively a null command. It has no effect, but may be required for syntactic
correctness in some instances. The command hal t causes a process thread to deadlock.

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 35

3.3. Control Flow and Commands

Looping
constructs

Structural
iteration

The | oop command causes an infinite repetition of a block of code. An example, summarised
below, was given in the description “A single-place buffer” on page 7.

loopi ->x; 0<- x end

Finite loops may be constructed using the | oop whil e construct'. An example of its use with a
single guard is:

| oop while x < 10 then
X 1= (x+1 as byte)
end

Multiple guards are allowed in as shown below:

| oop while

X <10 then x := (x + 1 as hyte)
| x >=10 then x := 0
end

A variation on the whi | e construct uses the al so keyword to allow a final command which is
executed at the end of each loop iteration if any of the guards is satisfied:

| oop while
X < 10 then x := (x+1 as byte)
| x >=10 then x : =0
also print "Value of xis ", X
end -- |oop

Loops with an initial command before the guard test — similar to a do ... whi | e loop found in other
languages — are supported. The example below illustrates such a repetitive loop using both multiple
guards and the al so statement. Both are optional as in the previous while loops

| oop
i ->x
whil e
X <10 then print x, " is less than 10"
| x <100 then print x, " is > 10 and < 100"
al so print "about to read another val ue"
end,
print "exiting loop - value of x is: ", X

The example above also illustrates the ordering in the evaluation of the guards. For values of x less
than 10, both guards are satisfied, however the language guarantees that only the command
associated with the first in the list of guards will be executed. Note that the loop exits when a value
greater or equal to 100 is read from the input channel i .

The equivalent of arepeat ... until orado ... whil eloop can be specified as a simpler form of the
construct above, thus:

| oop
print "value of x is: ", Xx;
X:=(x+1las 4 bits)
while x <= 10

end

Balsa has a for loop construct. Beware, in many programming languages it is a matter of
convenience or style as to whether a loop is written in terms of a f or loop or a whi | e loop. This is
not so in Balsa. The for loop is similar to VHDL’s for ... gener at e command and is used for
iteratively laying out repetitive structures. An example of its use was given earlier [see “Placing
multiple structures” on page 11]. An illustration of the inappropriate use of the f or command is

1. Note that previous releases of Balsa used a different syntax for the while command; descrip-
tions that used while loops will no longer compile correctly

36

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

3.3. Control Flow and Commands

given in “The danger of “for” loops” on page 46. Structures may be iteratively instantiated to
operate either sequentially or concurrently with one another.

Conditional Balsa has i f and case constructs to achieve conditional execution. The if ... then ... el se
execution statement allows conditional execution based on the evaluation of expressions at run-time. Its syntax
is somewhat similar to that of the whi | e loop.

if statements if conditionl then command
| condition2 then comrand
| condition3 then comrand
el se OmD
end

If more than guard (condition) is satisfied, then just as for a whi | e loop, the command associated
with the first mentioned guard is the one chosen. The el se clause is optional.

The case statement is a multi-way decision maker that tests whether an expression matches one or
more possible values.

case statements Balsa’s case statement is similar to that in a conventional programming language. A single guard
may match more than one value of the guard expression.

case x+y of

1.. 4 then o < X
| 5.. 10then o < y
else o <- z

end

Case guards may be generated by means of a f or statement case guard generator.

case s of
for j inl1l.. 3 then
ofj] < i

| O then
print "Handling port O specially" ||
o[0] < i-1

end

The code above is equivalent to:

case s of

1then o[1] < i
| 2 then o[2] <- i
| 3then o[3] <- i

| O then
print "Handling port O specially" ||
o[0] < i-1

end

The case matches in the f or loop can be any general expressions resolvable at compile time. Only
one for iteration variable is allowed per guard and the case matches must be disjoint from one
another.

The form of case expansion illustrated in the example above is not particularly useful. It finds more
application in defining the behaviour of parameterised components.

Implicants (or don’t care conditions) [see “Constants” on page 31] may be used in case statements:

procedure inpl is

begi n
for ; i in1l .. 15 then
case i of
Obx1x then print “don’t care guard: “, i
el se

print “covering case: “, i

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 37

3.4. Binary/Unary Operators

File structure

end
end
end

3.4. Binary/Unary Operators

Balsa’s binary operators are shown in order of decreasing preference in Table 3.2

: Valid
Symbol Operation Notes
types
record indexing record
takes value from any type and
smash any . Y .yp
reduces it to an array of bits
0 array indexin arra non-const index possible, can
indexi
Y & Y generate lots of hardware
A exponentiation numeric only constants
log only works on constants,
not, returns the ceiling: e.g. log 15
log, unary operators numeric returns 4
— (unary) — returns a result 1 bit wider than
the argument
multiply, divide, . .
* 1, % p Y numeric only applicable to constants
remainder
. results are one or 2 bits longer than
+,— add, subtract numeric
the largest argument
@ concatenation arrays
. o numeric
<, >, <=, >= inequalities .
enumerations
/ equals, 1 comparison is by sign extended
=, /= a . .
not equals value for signed numeric types
Balsa uses type 1 bits for if/
and bitwise and numeric while guards so bitwise and
logical operators are the same.
or, Xor bitwise or numeric

Table 3.2: Balsa binary/unary operators

3.5. Description Structure

A typical design will consist of several files containing procedure/type/constant declarations which
come together in a a top-level procedure that composes the overall design. This top-level procedure
would typically be at the end of a file which imports all the other relevant design files. This
importing feature forms a simple but effective way of allowing component reuse and maps simply
onto the notion of the imported procedures being either pre-compiled handshake circuits or existing
(possibly hand crafted) library components. Declarations have a syntactically defined order (left to
right, top to bottom) with each declaration having its scope defined from the point of declaration to

38

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

3.5. Description Structure

the end of the current (or importing) file. Thus Balsa has the same simple “declare before use” rule
of C and Modula, though without any facility for prototypes. Each Balsa design file has the

following simplified structure of Table 33l A complete syntax for the Balsa language is given in
Table 11.1 on page 127.

(file)

(dotted-path)

(i mport [(dotted-path)])* (outer-declarations)

(identifier) (. (identifier))*

(outer-declarations) ({outer-declaration))*

(outer-declaration) t ype (identifier) i s {type-declaration)
I const ant (identifier) = (expression) (: (type))?
I pr ocedur e (identifier) i s (identifier) (((procedure-formals)))?
I pr ocedur e (identifier) (((procedure-formals)))?i s
(1 ocal)? (inner-declarations) begi n (command) end
funct i on (identifier) (((function-formals)))? =
(expression) (: (type))?
i f (expression)t hen (outer-declarations)
(] (expression) t hen (outer-declarations))*
(el se {outer-declarations))?
end

Table 3.3: Balsa File Structure

Declarations Declarations, shown in Table 3.3, introduce new type, constant or procedure names into the global
namespaces from the point of declaration until the end of the enclosing block (or file in the case of
top-level declarations). There are three disjoint namespaces: one for types, one for procedures and a
third for all other declarations. At the top level, only constants are this last category, however,
variables and channels are included in procedure local declarations. Where a declaration within an
enclosed/inner block has the same name as one previously made in an outer/enclosing context, the
local declaration will hide the outer declaration for the remainder of that inner block.

Procedure names may be aliased. This feature is useful when instantiating particular instances of
parameterised procedure definitions [see “A variable width buffer definition” on page 49].

Procedures Procedures form the bulk of the a Balsa description. Each procedure has a name, a set of ports and
an accompanying behavioural description. Procedure declarations follow the pattern of Table 3.4 (a

(procedure-formals) ::= (formal-parameters)
I (formal-ports)

I (formal-parameters) ; (formal-ports)

(formal-parameters) :: par anet er (identifiers) : (type)

(; paranet er (identifiers) : (type))*

(formal-ports) (formal-port) (; (formal-port))*

Table 3.4: Procedure Port Declarations

1. An extended form of BNF is used to describe the syntax. A terms (&) * denotes zero or more
repetitions of the term a and (&)? indicates that the term a is optional

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 39

3.5. Description Structure

Shared
procedures

Functions

Conditional
ports and
declarations

(formal-port) == (array (range)of)? (i nput | out put) (identifiers) : (type)
| (array (range) of)? sync (identifiers)

I i f (expression)t hen (formal-ports)
(| (expression) t hen (formal-ports))*
(el se ({formal-ports))?
end

(range) = (expression)
I (expression) . . {(expression)

I over (type)
(inner-declarations) ::= ((inner-declaration))*

(inner-declarationy ::= (outer-declaration)
I vari abl e (identifiers) : (type)
[(chan-opts) (ar r ay (range) of)? channel (identifiers): (type)
I (chan-opts) (ar r ay (range) of)? sync (identifiers)

I shar ed (identifier) i s (1 ocal)? (inner-declarations)
begi n (command) end

i f (expression)t hen (inner-declarations)
('] {expression) t hen (inner-declarations))*
(el se (inner-declarations))?
end

Table 3.4: Procedure Port Declarations

complete syntax for the Balsa language is given in Table 11.1 on page 127). Each procedure may
have a number of ports each of which can be connected to a channel. The sync keyword introduces
nonput (dataless) channels. Both nonput and data bearing channels can be members of “arrayed
channels”. Arrayed channels allow numeric/enumerated indexing of otherwise functionally separate
channels. Examples of their use can be found in “Pipelines of variable width and depth” on page 50.

Procedures can also carry a list of local declarations which may include other procedures, type and
constants. The keyword | ocal is optional for declarations which immediately follow the procedure
declaration since the semantics of the Balsa language ensure that they must be local to the procedure
in question.

Normally each call to a procedure generates separate hardware to instantiate that procedure. A
procedure may be shared, in which case calls to that procedure access common hardware thereby
avoiding duplication of the circuit at the cost of some multiplexing to allow sharing to occur. An
example of the use of a shared procedure is given in “Sharing hardware” on page 44.

In many programming languages, functions can be thought of as procedures without side affects
returning a result. However, in Balsa there is a fundamental difference between functions and
procedures. Parameters to a procedure define handshaking channels that interface to the circuit
block defined by the procedure. Function parameters on the other hand are merely typed identifiers.
Balsa’s functions return results in a manner similar to functions in other programming languages.

Declarations, including procedure and port declarations may be conditional. Examples are shown
below.

constant debug = true

i f debug then

40

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

3.5. Description Structure

Conditional
ports

Variable ports

procedure plis
begi n
print "this is the debug version of procedure pl"
end
el se
procedure pl is
begi n
print "this is the production version of procedure pl"
end
end

Two definitions of p1 are provided: the actual definition used depends on the value of the constant
debug.

Port declarations and variables may also may be conditional. The next example is a the 2-place
buffer described in “Parallel composition and module reuse” on page 10. Internal channels such as
that connecting the two 1-place buffers are not visible. It is occasionally necessary for debugging
purposes to make an internal channel visible. It must therefore be included as a port in the procedure
declaration. A conditional port declaration allows a single procedure definition to be used for both
debugging and production purposes.

constant debug = true

procedure bufl (input i : byte ; output o : byte) is
variable x : byte
begi n
| oop
i ->x; o< Xx
end -- |oop
end -- procedure bufl

procedure buf2 (
input i : byte;
if debug then output ¢ : byte end,;
output o : byte
) is
if not debug then channel ¢ : byte end
begi n
buf 1(i,c) || bufl(c, o)
end -- procedure buf?2

The guard expressions must in all cases be constant at compile time/parameterised procedure
expansion time.

Ports to procedures can be connected directly to variables to allow communications on the
procedure’s ports to perform reads and writes to the variable.

procedure wite zero(output o : byte) is
begin o <- 0 end

variable v : byte
wite_zero(-> v)

In this example, zero is written into the variable v. Variable read/writes can be used as an
abbreviated way of passing expressions to a procedure. For example:

cl <- exprl ||
c2 <- expr2 ||
c3 ->varl ||
procl(cl, c2, c3)

can be replaced by

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 41

3.6. Examples

procl(<- exprl, <- expr2, -> var)

One advantage of this form of port connection is the ability for the value of the expression to be read
an arbitrary (including zero number of times) number of times. For example:

c <- expr || proc(c)

If proc attempts to read ¢ more than once, deadlock will occur (because of course the write to
channel ¢ from expr will only occur once). A way round the problem is the description:

loop ¢ <- expr end || proc(c)

However the resulting composition is permanent even if pr oc itself is non-permanent. A permanent
circuit is one that never returns — the consequence being that sequential compositions of such
circuits are liable to deadlock, thus the following form may be preferred:

proc(<- expr)

This form of description is more efficient because of pull-style of Balsa implementations.

3.6. Examples

In this section various designs of counter are described in Balsa. In flavour, they resemble the
specifications of conventional synchronous counters, since these designs are more familiar to
newcomers to asynchronous systems. More sophisticated systolic counters, better suited to an
asynchronous approach are described in “Systolic counters” on page 55. In this example below, the
role of the clock which updates the state of the counter is taken by a dataless sync channel, named
aclk. The counter issues a handshake request over the sync channel., the environment responds with
an acknowledge completing the handshake and the counter state is updated.

Modulo-16 -- count 16a. bal sa: nodul o 16 counter
counter i nport [bal sa.types. basi c]
procedure count16 (sync aclk; output count : nibble) is
variabl e count_reg : nibble
begi n
| oop
sync aclk ;
count <- count_reg ;
count _reg := (count_reg + 1 as nibble)
end
end
This counter interfaces to its environment by means of two channels: the dataless sync channel and
the channel count which outputs the current value of the counter. The internal register implied by the
variable count_reg and the output channel are of type ni bbl e (4 bits) which is predefined in
balsa.types.basic. After count_reg is incremented, the result must be cast back to type nibble. Note
that issues of initialisation/reset have been ignored. The Balsa simulator gives a warning when
uninitialised variables are accessed.
Removing The auto-assignment statement in the example above, although concise and expressive, hides the
auto- fact that in most back-ends, a temporary variable is created so that the update can be carried out in a
assignment race-free manner. By making this temporary variable explicit, advantage may be taken of its
visibility to overlap its update with other activity as shown in the example below.
-- count 16b. bal sa: wite-back overl aps output assignnent
i nport [bal sa.types. basi c]
procedure count16 (sync aclk; output count : nibble) is
variabl e count_reg, tnp : nibble
begi n
| oop
42 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

3.6. Examples

sync acl k;
tmp := (count_reg + 1 as nibble)]||
count <- count_reg;
count_reg := tnp
end
end

In this example, the transfer of the count register to the output channel is overlapped with the
incrementing of the temporary shadow register. There is some slight area overhead involved in
parallelisation and any potential speed-up may be minimal in this case, but the principal of making
trade-offs at the level of the source code is illustrated.

Modulo-10 The basic counter description above can be easily modified to produce a modulo-10 counter. A
counter simple test is required to detect when the internal register reaches its maximum value and then to
reset it to zero.

-- count 10a. bal sa: an asynchronous decade counter
i nport [bal sa.types. basi c]

type Csize is nibble
constant max_count = 9

procedur e count 10(sync acl k; output count: Csize) is
vari abl e count _reg : C size
variable tnp : Csize
begi n
| oop
sync acl k;
if count_reg /= max_count then
tnp := (count_reg + 1 as C size)
el se
tnp :=0
end || count <- count_reg ;
count _reg : = tnp
end -- |oop
end -- begin

A loadable up/ This example describes a loadable up/down decade counter. It introduces many of the language

down counter features discussed earlier in the chapter. The counter requires 2 control bits, one to determine the
direction of count, and the other to determine whether the counter should load or inc(dec)rement on
the next operation. The are several valid design options; in this example, countl0b below, the
control bits and the data to be loaded are bundled together in a single channel, in_sigs.

-- count 10b. bal sa: an asynchronous up/ down decade counter
i nport [bal sa.types. basi c]

type Csize is nibble
constant max_count = 9

type dir is enuneration down, up end
type node is enuneration |oad, count end

type In_bundle is record
data : Csize ;
node : node;
dir : dir

end

procedur e updownl1lO (input in_sigs: In_bundle; output count: Csize) is
variabl e count _reg : C size
variable tnp : In_bundl e

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 43

3.6. Examples

Sharing
hardware

begi n
| oop
in_sigs ->tnp; -- read control +data bundl e
if tnp.node = count then
case tnp.dir of
down then -- counting down
if count _reg /= 0 then
tnp.data := (count_reg - 1 as C si ze)

el se
tnp. data : = max_count
end
| up then -- counting up

if count_reg /= nmax_count then
tnp.data := (count_reg + 1 as C si ze)
el se
tnp.data := 0
end
end -- case tnp.dir
end;
count <- tnp.data || count_reg:= tnp.data
end
end

The example above illustrates the use of i f ...then ...el se and case control constructs as well the
use of record structures and enumerated types. The use of symbolic values within enumerated types
makes the code more readable. Test harnesses which can be automatically generated by the Balsa
system [see “Simulation.” on page 18] can also read the symbolic enumerated values. For example,
here is a test file which initialises the counter to 8, counts up, testing that the counter wraps round to
zero, counts down checking that the counter correctly wraps to 9.

{8, load, up} load counter with 8
{0, count, up} count to 9

{0, count, up} count & wap to 0

{0, count, up} count to 1

{0, count, down} count down to O

{0, count, down} count down to 9

{0, count, down} count down to 9

{1, load, down} | oad counter with 1
{0, count, down} count down to O

{0, count, down} count down & wap to 9

In Balsa, every statement instantiates hardware in the resulting circuit. It is therefore worth
examining descriptions to see if there any repeated constructs that could either be moved to a
common point in the code or replaced by shared procedures. In countlOb above, the description
instantiates two adders: one used for incrementing and the other for decrementing. Since these two
units are not used concurrently, area can be saved by sharing a single adder (which adds either +1 or
-1 depending in the direction of count) described by a shared procedure. The code below illustrates
how count10b can be rewritten to use a shared procedure. The shared procedure add_sub computes
the next count value by adding the current count value to a variable, inc, which can take values of +1
or -1. Note that to accommodate these values, inc must be declared as 2 si gned bits.

The area advantage of the approach is shown by running breeze-cost: count10b has a cost of 2141
units, whereas the shared procedure version has a cost of only 1760. The relative advantage becomes
more pronounced as the size of the counter increases.

-- count 10c. bal sa: introduci ng shared procedures
i nport [bal sa.types. basi c]

type Csize is nibble
constant max_count = 9

44

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

3.6. Examples

type dir is enuneration down, up end
type node is enuneration |oad, count end
type inc is 2 signed bits

type In_bundle is record
data : Csize ;
node : node;
dir : dir

end

procedur e updownl1lO (input in_sigs: In_bundle; output count: Csize) is
variable count_reg : Csize
variable tnp : In_bundle
variable inc : inc

shared add_sub is

begi n
tnp.data: = (count_reg + inc as C size)
end -- begin
begi n
| oop
in_sigs ->tnp; -- read control +data bundl e

if tnp.mode = count then
case tnp.dir of
down then -- counting down
if count_reg /= 0 then
inc:=-1
add_sub()
el se
tnp. data : = max_count
end -- if
| up then -- counting up
if count_reg /= max_count then
inc := +1
add_sub()
el se
tnp.data := 0
end -- if
end -- case tnp.dir
end; -- if
count <- tnp.data || count_reg:= tnp.data
end -- |oop
end -- begin

In order to guarantee the correctness of implementations, there are a number of minor restrictions on
the use of shared procedures

* shared procedures can not have any arguments
* shared procedures can not use local channels

e if a shared procedure uses elements of the channel referenced by a sel ect statement [see
“Handshake Enclosure” on page 55], the procedure must be declared as local within the
body of that sel ect block.

A “while” loop An alternative description of the basic modulo-10 counter employs the whi | e construct:

description -- count 10d. bal sa: nodul o 10 counter alternative inpl enentation

i nport [bal sa.types. basi c]

type Csize is nibble
constant max_count = 10

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 45

3.6. Examples

procedure count 10(sync acl k; output count: Csize) is
vari abl e count _reg : C size
begi n
| oop
| oop while count_reg < max_count then
sync acl k;
count <- count_reg;
count _reg: = (count_reg + 1 as C size)
end; -- loop while
count_reg:= 0
end -- |oop
end -- begin

Pitfalls in loop Users should be be vigilant in specifying loop termination conditions correctly. The finite bit length
terminations of variables inherent in Balsa descriptions can cause problems for the unwary. Consider the
following code that iterates around the loop 10 times with x taking values from O ... 9.

variable x: 4 bits

begi n
| oop while x <= 9 then
print "value of x is: ", Xx;
X :=(x +1as 4 bits)
end
end

Suppose it is now required to loop round all values of x, i.e. from O ... 15. Simply changing the
comaprison constant causes the code never to terminate:

variable x: 4 bits

begi n
loop while x <= 15 then -- never termnates
print "value of x is: ", Xx;
X:=(x +1as 4 bits)
end
end

The condition is always satisfied because x can only be in the range O ... 15 wrapping round back to
0. There are two solutions:

variable x: 4 bits

begi n
| oop
print "value of x is: ", X
while x < 15 then continue
also x :=(x +1 as 4 bits)
end
end

A more elegant solution that relies on recognizing and exploiting the wrapping back to 0 is:

variable x: 4 bits

begi n
| oop
print "value of x is: ", Xx;
X :=(x +1as 4 bits)
while x /=0
end
end

The danger of In many programming languages, whi | e loops and f or loops can be used interchangeably. This is
“for” loops not the case in Balsa: a f or loop implements structural iteration, in other words, separate hardware
is instantiated for each pass through the loop. The following description, which superficially appears

46 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

3.6. Examples

very similar to the while loop example of count10d previously, appears to be correct: it compiles
without problems and simulation appears to give the correct behaviour. However, breeze-cost
reveals an area cost of 11577, a factor 10 increase. It is important to understand why this is the case.
The f or loop is unrolled at compile time and 10 instances of the circuit to increment the counter are
created. Each instance of the loop is activated sequentially. The handshake circuit graph that be
produced is rather unreadable; setting max_count to 3 will be produce a more readable plot.

-- count 10e. bal sa: beware the “for” construct
i nport [bal sa.types. basi c]

type Csize is nibble
constant max_count = 10

procedure count 10(sync acl k; output count: Csize) is
vari abl e count _reg : Csize
begi n
| oop
for ; i in1 .. max_count then
sync acl k;
count <- count_reg;
count _reg:= (count_reg + 1 as C size)
end; -- for ; i
count _reg:= 0
end -- |oop
end -- begin

If, instead of using the sequential f or construct, the parallel f or construct (for || ...)isused, the
compiler will give error message complaining about read/write conflicts from parallel threads. In
this case, all instances of the counter circuits would attempt to update the counter register at the
same time leading to possible conflicts. If you understand the resulting potential handshake circuit,
then you are well on the way to a good understanding of the methodology.

Selecting The asynchronous circuit described below merges two input channels into a single output channel, it

channels may be thought of a self selecting multiplexer. The sel ect statement chooses between the two input
channels a and b by waiting for data on either channel to arrive. When a handshake on either a or b
commences, data is held valid on the input and the handshake not completed until the end of the
sel ect ... end block. This is an example of handshake enclosure and avoids the need for an internal
latch to be created to store the data from the input channel; a possible disadvantage is that because of
the delayed completion of the handshake, the input is not released immediately to continue
processing independently. In this example, data is transferred to the output channel and the input
handshake will complete as soon as data has been removed from the output channel. An example of
a more extended enclosure can be found in the code for the population counter [see “A Population
Counter” on page 65].

-- mergel. bal sa: unbuffered Merge
i nport [bal sa.types. basi c]

procedure nerge (input a, b : byte; output ¢ : byte) is

begi n
| oop
select athen c <- a -- channel behaves |ike a variable
| bthenc < b -- ditto
end -- select a
end -- |oop
end -- procedure nerge

The system designer must ensure that inputs a and b never arrive simultaneously. In many cases,
this is not a difficult obligation to satisfy. However, if a and b are truly independent, the possibility
of metastability failure arises just as in a synchronous system. In this case, sel ect can be replaced
by arbitrate which allows an arbitrated choice to be made. In this case, in contrast to a

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 47

3.6. Examples

synchronous implementation, there is no possibility of failure, the delay-insensitive handshake
circuit paradigm ensures that no matter how long the arbiter takes to resolve, the circuit will still
operate correctly. Arbiters are relatively expensive both in area and speed and may not be possible
in some gate array technologies and so should not employed unnecessarily.

-- nerge2. bal sa: unbuffered arbitrated MJX
i nport [bal sa.types. basi c]
procedure nmerge2 (input a, b :byte; output c :byte) is
begi n
| oop
arbitrate a then c <- a -- channel behaves |ike a variable
| b thenc < b -- ditto
end -- arbitrate
end -- |oop
end -- begin

48

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

Parameterised & Recursively
Defined Circuits

4.1. Summary

Parameterised procedures allow designers to develop a library of commonly used components and
then to instantiate those structures later with varying parameters. A simple example is the
specification of a buffer as a library part without knowing the width of the buffer. Similarly, a
pipeline of buffers can be defined in the library without requiring any knowledge of the depth of the
pipeline when it is instantiated.

4.2. Parameterised descriptions

A variable The example pbuffer 1below defines a single place buffer with a parameterised width:
width buffer

definition - pbufferl. bal sa - paraneterised buffer exanple

i nport [bal sa.types. basi c]

-- single-place, paraneterised-width buffer definition
procedure Buffer (
parameter X : type ;
input i @ X
output o : X
) is
variable x : X
begi n
| oop
i ->x;
0 <- X
end -- |oop
end -- procedure Buffer

-- now define a byte-w de buffer
procedure Buffer8 is Buffer(byte)

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 49

4.2. Parameterised descriptions

-- now use the definition
procedure test1(input a : byte; output b : byte) is

begi n
Buf f er 8(a, b)
end -- procedure testl

-- alternatively
procedure test2(input a : byte; output b : byte) is

begi n
Buf fer (byte, a,b)
end -- procedure test2

The definition of the single place buffer given previously [see “A single-place buffer” on page 7] is
modified by the addition of the parameter declaration which defines X to be of type t ype. In other
words X is identified as being a type to be refined later. Once an abstract parameter type has been
declared, it can be used in later declarations and statements: for example, input channel i is defined
as being of type X. No hardware is generated for the parameterised procedure definition itself.

Having defined the procedure, it can be used in other procedure definitions. Buf f er 8 defines a byte
wide buffer that can be instantiated as required as shown, for example, in procedure test1.
Alternatively, a concrete realisation of the parameterised procedure can be used directly as shown in
procedure t est 2. Note that a test harness can be attached directly to the definition Buf f er 8 with
implied ports i and o.

Pipelines of The next example illustrates how multiple parameters to a procedure may be specified. The
variable width parameterised buffer element is included in a pipeline whose depth is also parameterised.

and depth -- pbuffer2. balsa - paraneterised pipeline exanple

i nport [bal sa.types. basi c]
i nport [pbufferi]

-- BufferN a n-place paraneterised, variable wdth buffer
procedure BufferN (

parareter n : cardinal

parameter X : type ;

input i @ X;
output o : X
) is
procedure buffer is Buffer(X)
begi n
if n=1then -- single place pipeline
buffer(i, o)
| n >=2then -- parallel evaluation
local array 1 .. n-1 of channel c : X
begi n
buffer(i, c[1]) [| -- first buffer
buffer(c[n-1], o) || -- last buffer
for || i in1..n-2 then
buffer(c[i], c[i+1])
end
end
el se print error, "zero | ength pipeline specified"
end
end

-- Now define a 4 deep, byte w de pipeline.
procedure Buffer4 is BufferN (4, byte)

Buffer is the single place parameterised width buffer of the previous example and this is reused by
means of the library statement i mpor t [pbuf f er 1] . In this code, BufferN is defined which in a very

50 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

4.3. Recursive definitions

An n-way
multiplexer

similar manner to the example described in “Placing multiple structures” on page 11, except that the
number of stages in the pipeline, n, is not a constant but is a parameter to the definition of type
cardinal. Note that this definition includes some error checking. If an attempt is made to build a zero
length pipeline during a definition, an error message is printed.

4.3. Recursive definitions

Balsa allows a form of recursion in definitions (as long as the resulting structures can be statically
determined at compile time). Many structures can be elegantly described using this technique which
forms a natural extension to the powerful parameterisation mechanism. The remainder of this
chapter illustrates recursive parameterisation, “Balsa Design Examples” on page 65 gives other
interesting examples.

An n-way multiplexer can be constructed from a tree of 2-way multiplexers. A recursive definition
suggests itself as the natural specification technique: an n-way multiplexer can be split into two n/2-
way multiplexers connected by internal channels to a 2-way multiplexer.

inPO I:> inp0 :
LR —

inp
out n2-10) out

outl
inp
—
inp inp
n-1) n-1)
Before Decomposition After Decompostion

Figure 4.1: Decompostion of an n-way Multiplexer

--- Prruxl. bal sa: A recursive paraneteri sed MJXX definition
i nport [bal sa.types. basi c]

procedure PMix (
parameter X : type;
parameter n : cardinal;
array n of input inp: X
output out : X)) is
begi n
if n=0then print error,"Parameter n should not be zero
| n=1then
| oop
select inp[0] then
out <- inp[0]
end -- select
end -- |oop

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 51

4.3. Recursive definitions

| n=2then
| oop
select inp[0] then
out <- inp[Q]
| inp[1] then
out <- inp[1]
end -- select
end -- |oop
el se
| ocal
channel outO, outl : X
constant md = n/2
begi n
PMux (X, md, inp[0..md-1], outQ) ||
PMUX (X, n-md, inp[md..n-1], outl) ||
PMux (X, 2, {outO, outl}, out)
end -- begin
end -- if
end -- begin

-- Here is a 5-way mul tipl exer
procedure PMix5Byte is PMux(byte, 5)

Commentary The multiplexer is parameterised in terms of the type of the inputs and the number of channels n.

on the code The code is straightforward. A multiplexer of size greater than 2 is decomposed into two
multiplexers half the size connected by internal channels to a 2-1 multiplexer. Notice how the
arrayed channels, outO and outl are specified as a tuple. The recursive decomposition stops when
the number of inputs is 2 or 1 (specification of a multiplexer with zero inputs generates an error).

A balsa test The code below illustrates how a simple Balsa program can be used as a test harness to generate test
harness values for the multiplexer. The test program is actually rather naive.

-- test_pnux.balsa - A test-harness for Pnuxl
i nport [bal sa.types. basi c]
i nport [prux1]

procedure test (output out : byte) is
type ttype is sizeof byte + 1 bits
array 5 of channel inp : byte
variable i : ttype
begi n
begi n
i:=1;
loop while i <= 0x80 then
inp[0] < (i as byte);
inp[1] <- (i+l1 as byte);
inp[2] < (i+2 as byte);
inp[3] < (i+3 as hyte);
inp[4] < (i+4 as byte);
i:=(i +1i as ttype)

end
end || PMix5Byte(inp, out)
end
Handshake Consider a procedure that for each handshake on an input port generates n handshakes on an output
multiplier port. A simple solution would use the for construct, but a more elegant (and less expensive)

approach is to use the recursive approach.

If n is even, the repeater can be composed from two n/2 repeaters. If n is odd, the repeater can be
composed from two n/2 repeaters together with an additional extra handshake.

52 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

4.4. Pitfalls with Parameterised Procedures.

-- GenHS. A recursive procedure generating n Handshakes for each call
i nport [bal sa.types. basi c]

procedure repeat (paraneter n : cardinal; sync o) is

begi n
if n=0 then
print error, "Repeat n nust not be 0"
| n=1then
sync o
el se
| ocal
shared doNext is begin repeat(n/2, o) end
begi n
if (nas bit) then -- nis odd
sync o
end ;
doNext () ; doNext ()
end
end
end

procedure Genll is repeat (11)

procedure test (sync i, 0) is

begi n
| oop
sync i;
Genll(o) -- Cenerate 11 Handshakes
end -- |oop
end

A shared procedure doNext is responsible for the recursive call of repeat with half the repetiton
count. Note that doNext is local to the main r epeat procedure.

4.4, Pitfalls with Parameterised Procedures.

A parameterised procedure often contains a choice in its body to instantiate one of several options
depending on parameters that are defined in its call. It is possible that compile time errors in the
parameterised procedures will not be revealed until particular parts of the code are required. Thus, in
the following example, if ppr oc is compiled as library component no error is reported; further if it is
instantiated with n=1, the code is also compiled without error. However, if the procedure is called
with n=2 as in procedure p2, a compile error will be reported. The code is a precis of code that
existed in an example in previous editions of the Balsa Manual. The point is that errors in the
descriptions of parameterised procedures may not reveal themselves immediately.

pr ocedur e pproc(
paraneter n : cardinal ;
parareter w cardinal
output o : whits

) is
begi n
if n=1then
0 <- (1 as whits)
el se
0<- (2asw) -- Note this should give a conpile tine error
end
end

-- procedure pl is pproc(l, 8) -- this will conpile
-- procedure p2 is pproc(2, 8) -- this will not conpile

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 53

4.4. Pitfalls with Parameterised Procedures.

54 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

Handshake Enclosure

5.1. Summary

Normally handshakes are points of synchronisation for assignments between channels or
assignments between channels and variables. A transfer is requested and when all parties to the
transaction are ready, the transfer completes. After completion of the handshake, the data provider is
free to remove the data. If the data on a channel is required more than once, it must be stored in a
variable. Balsa has two language constructs that allow the handshake on a channel to be held open
whilst a sequence of actions completes. The handshake is said to enclose the other commands.

There are several implications of handshake enclosure:

* since data is not removed until the end of the handshake enclosure, intermediate storage of
the data is not required

» data does not have to be read once and only one: it may be read many times or indeed never
at all without causing deadlock.

» the enclosing handshake does not complete until all its enclosed commands complete: this
has performance implications since the tree of handshakes connected to the enclosing
handshake cannot themselves complete.

Handshake enclosure can be achieved by use of the sel ect command or by assigning channels into
a command using the syntax: <channel s> -> then command end. An example of the use of
sel ect was illustrated in the description of a merge circuit in “Selecting channels” on page 47. In
this example, the fact that the handshake on the chosen input channel is held open allows a buffer-
free description to be used — a more natural description of the mux-like structure than one which
includes a storage element. One side effect of the sel ect command is that a subcircuit with passive
ports is generated — Balsa normally generates active ported circuits.

5.2. Systolic counters

A more complex example illustrating handshake enclosure is a description of systolic counters
originally described by Kees van Berkel [1]. These elegant counters possess the properties of
constant response time and a constant upper bound on power consumption regardless of the length

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 55

5.2. Systolic counters

of the counter. The basic idea is to recursively divide a modulo-n counter into a head counter and a
tail n/2 counter as shown in Figure 5.1.

counter n

5 a_right

counter n/2
b_right

Figure5.1: Counter Decomposition

The derivation of the cells is given in van Berkel. The head cell is either a Count-Odd cell (CO) for
odd n or a Count-Even cell (CE) for even n. For CE cells, the head cell effectively doubles each
a_right communication of the n/2 counter over its left-hand a_left channel then passing
b_ri ght over b _left after the n communications along a._left A Count-Odd cell issues an extra
handshake to its left prior to handshake from b_right to b_left. A special base case count-1 cell
initiates a handshake on its a_left port followed by a handshake on its b_left port.

Note that ports a_left and b_left are active ports whereas a_right and b_right are passive ports. The
counter is “primed” by handshakes flowing from right to left from the count-1 cell. The head cell
chooses between handshakes arriving on a_right and b _right. The sequencing implicit in the
description guarantees mutually exclusive use of the channels so that a non-arbitrated select
construct may be used to implement the choice. The architecture of the counter is somewhat similar
to that described in Section, “Handshake multiplier,” on page 52.

The descriptions of the basic cells are:

-- count -even cell
procedure ce(sync a_left, aright, b left, b_right) is
begi n
| oop
select a_right then
sync a_left ; sync a_left
| b_right then
sync b_left
end
end
end

-- count-odd cell
procedure co(sync a_left, aright, b left, b_right) is
begi n
| oop
select a_right then
sync a_left ; sync a_left

| b_right then
sync a_left ; sync b_left
end
end
end
-- count-1 cell

procedure cl(sync a, b) is

56

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

5.2. Systolic counters

begi n
| oop
sync a; sync b
end
end
A systolic Consider the case of a modulo-11 counter. It can be decomposed as:
modulo-11 _ _ _
11 = 1 + 2%5 = 1 + 2%(1 + 2%2) = 1 + 2%(1 + 2*%(2*1))
counter

The composition of the basic cells is shown in Figure 5.2. The description of the counter is simple:

a0 al a2 a3

CO CE Cl
b0 €O bl b2 b3

Figure 5.2: Modulo-11 Systolic Counter

procedure count1l(sync a0, b0) is
sync al, bl, a2, b2, a3, b3
begi n

co(a0, al, b0, bl)||

co(al, a2, bl, b2) ||

ce(a2, a3, b2, b3) ||

cl(a3, b3)
end

The behaviour of the circuit is shown in the trace of Figure 53! An intriguing feature of this
description is that there appears to be no state-holding variables defining the current state of the
counter. The answer to this paradox is that the state of the counter is distributed over the control
logic defined by the circuit description.

: i N GTKWave
i From:iD 3 To: |434 ns Primary fparker: 326 ns Cursor: 287 ns
Slgnals.
Time

| count11.a0:2 =i
[zount11.al2=1
| countll.az:3=1
| countl1.a3:6=1
| count11.h0:3 =1
|zountt1.b1:11=1
| count11.bz:8 =1
| count 1 hd3:5=1

Figure 5.3: Behaviour of a Modulo-11 Systolic Counter

All even cells The enclosed, non-buffered, semantics of the Balsa select statement may leads to interesting patterns
of behaviour. This is not obvious from the previous modulo-11 counter example. However, it is

1. The traces have been rearranged vertically to make the behaviour clearer.

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 57

5.2. Systolic counters

All odd cells

exposed by a modulo-8 counter composed entirely from count-even stages (plus a count-1 stage).
Each CE module awaits a handshake on its right-hand a port. Upon initiation of this handshake, the
module issues a handshake to its left-hand a port. However, this handshake cannot immediately
complete because the left-hand receiving port handshake encloses a command to issue a handshake
to its left. Thus the operation proceeds from the count-1 cell at the extreme right issuing a handshake
which ripples through to the interface a port on he extreme left. The acknowledgement ripples back
to the count-1 cell whereupon the handshake on the b channel ripples from right to left. As can be

seen in Figure 5.4, the result is a highly sequential mode of operation.

8086 Y [X] GTKWave

‘ From:]D § To: | 367 ns Primary marker: 276 ns Cursor: 45 ns
E-Signals----------- |

Time

| countd.al:Z =

countd.al:Z1=
| countd.az:d=
| countf.ad’=
| countdho:3=
| countg.b1:20=
| counts.bzi13=
| countd b6 =

T =

Figure5.4: Behaviour of a Modulo-8 Systolic Counter

A modulo-15 counter composed entirely from count-odd stages exhibits similar behaviour as shown
in Figure 5.5. However, it is possible to rewrite the description of the count-odd stage to introduce

extra concurrency:

8686 [X| GTKWave
1 From: iD H To: {535 ns Primary marker: 448 ns Cursor: 388 ns
| Time

| counti5.an:z
| count1s.a1:12
| count15.22:9
| count!5.a3:6
| count15.b0:3
| count15.h1:11
| count15.h2:3
| count15b3:5

=

Figure5.5: Behaviour of a Modulo-15 Systolic Counter

procedure coDec(sync a_left, a right, b_left, b right) is
begi n
| oop
sync a_left;
sel ect a_right then
sync a_left
| b_right then

58

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

5.2. Systolic counters

sync b_left
end
end

Here the extra handshake to the left has been taken outside of the select command. All stages can
simultaneously issue a handshake to their left and then await the incoming handshake which just
been initiated on its right. As can be seen from Figure 5.6, there is a significant ichange in the
pattern of behaviour. Whetehr or not this translates to a change in performance depends on the

relative speeds of the handshake components in the synthesised circuits..

X/ GTKWave

‘ From: 10 § To: |423 ns Primary marker: 352 ns Cursor: 358 ns

Slgnals.
Time

|:ountl 5v2.a0:2
junt15%z.a1:12
|:ount1 5v2.a2:9
|:ount15¥2 a3:6
:ount1 5V e b0:3
| Rt 3%z 11
:ount1 5V e bz:g
:ount1 5V e ba:s

Figure5.6: Behaviour of a Modulo-15 Systolic Counter

A decoupled The effects of the enclosed behaviour of the sel ect command may be mitigated by decoupling the

all even cell reading of the selected channel from subsequent actions. It is necessary to record which of the two
channels a or b the handshake actually arrived on. This may be done by identifying the channel in a
single bit register as shown below:

procedure ceVar(sync a_left, a right, b_left, b right) is
variable x : bit
begi n
| oop
sel ect a_right then
x:=0
| b right then
x:=1
end ;
case x of
0 then sync a_left ; sync a_left
| 1 then sync b_|eft
end
end
end

Substituting this new version of the count-even cell in the modulo-8 counter results in the behaviour
of Figure 5.7. As can be seen, the channel activity has an entirely different characteristic from the
counter of Figure 5.4.

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 59

5.3. Active enclosure

Parameterised
version

CEARS X/ GTKWave o
& k
l From:]D § To: |650 ns Primary marker: 448 ns Cursor: 536 ns
| Time

countdvz.al
| countdv2.al:
| countdyz.az:
| countgve.ald
| countdvz.ho
| countdyz.bi:
| countdve he:
| countivehd

| = —————

Figure5.7: Behaviour of Non-Enclosed Modulo-8 counter

The previous examples explicitly enumerated the constituent modules to emphasise how the
counters were composed. A more generic approach is to define a parameterised counter. The
example below also uses a conditional declaration to choose between a count-even module with

enclosed behaviour and one with a decoupled behaviour. It also offers a choice between decoupled
and non-decoupled implementations.

-- paraneterised systolic counter with choice of decoupl ed nodul es.
procedure count N (

parameter isDecoupled : bit
parameter n : cardinal

sync a, b
) is
sync a_int, b_int
begi n
if n=0then print error, “Paraneter n should not be zero”
| n=1then cl(a, b)
el se

if (nas bit) then -- odd
i f isDecoupl ed then
coDec(a, a_int, b, b_int)

el se
co(a, a_int, b, b_int)
end -- if isDecoupled
el se

i f isDecoupl ed then
ceDec(a, a_int, b, b_int)

el se
ce(a, a_int, b, b_int)

end -- if isDecoupled

end || count N(i sDecoupl ed, n/2, a_int, b_int)
end -- if n=0
end -- procedure countN

procedure Count 11PND i s count N(true, 11)
procedure Count11PD i s count N(f al se, 11)

5.3. Active enclosure

The sel ect command provides a means of choosing between a number of input channels. It also
has two significant side effects

60

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

5.4. Use of enclosed channels.

e an input port attached to a sel ect command is a passive rather than an active port. The
ability to coerce a port to be passive (rather than active) should normally be of little concern
to users except when interfacing to external circuits.

* the handshake behaviour, as discussed earlier, has enclosing semantics bringing the
advantages of unbuffered channel access and the ability to read a channel multiple times as
well as the disadvantages illustrated in the previous examples.

Since selection can be applied to any number channels (including a single channel), users trying to
exploit the advantages of enclosed selection may be tempted to use select promiscuously. Resist the
temptation, there are some disadvantages: constructs such as:

select a then cndl ; select a then cnd2

results in non delay-insensitive behaviour. Furthermore there are inefficiencies associated with the
use of passive-ported structures within the generally pull-driven circuits generated by Balsa. Better
is to use active enclosure and to reserve the use of sel ect for those occasions when choice is
genuinely required.

Active enclosure — so called because it generates an active-ported structure — is of the form:
<channel s> -> then <comand> end

As example, consider a channel bearing the flags from the ALU of a processor. The conditions
corresponding to various conditional branches can be computed as shown below.

type Flags is record
V, C Z N: bit
end

type Conditions is record
Lower Or Sane, CarrySet, Zero, Overflow, Pl us, LessThan : bhit
end

procedure SetConditions (

input flags : Flags;

out put conditions : Conditions
) is
begi n

| oop

flags -> then
conditions <- {
flags. N or flags.Z,

flags. C
flags. Z,
flags.V,
not flags.N
(not flags.N and flags.V) or (flags.N or not flags.V)
}
end
end

end

5.4. Use of enclosed channels.

Enclosed channels act rather like variables; there are pitfalls in their use: they may be assigned to
other channels

procedure ex2 (
input i : byte ;
output ol : byte ;
output o2 : byte

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 61

5.4. Use of enclosed channels.

) is
variabl e x1, x2 : byte
begi n
| oop
select i then
ol <- i;
02 <- i
end
end
end

When copying the value on an enclosed channel to a variable, an assigment operator must be used:

procedure ex3 (

input i : byte
) is
variabl e x1, x2 : byte
begi n
| oop
select i then
x1 :=i;
X2 :=i;
print "vars are: ", x1, " ", x2
end
end
end

Because enclosed channels act like variables, the following description is not correct:

-- this exanple illustrates incorrect of channels
-- variables can't read themin the nornal way

-- see exanpl e ex3.balsa for the correct nethod.
procedure ex4 (

input i : byte
) is
variable x1, x2 : byte
begi n
| oop
select i then
i -> x1; -- incorrect
i -> x2; -- incorrect
print "vars are: ", x1, " ", x2
end
end
end

Channels within an active enclosed block also act like variables:

procedure ex6 (

input i : byte
) is
variabl e x1, x2 : byte
begi n
| oop
i ->then
x1 :=1i;
X2 1=1i;
print "vars are: ", x1, " ", x2
end
end
end

62 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

5.4. Use of enclosed channels.

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 63

5.4. Use of enclosed channels.

64 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

Balsa Design Examples

6.1. Summary

In this chapter, several moderate size examples are presented that illustrate many of the language
features that have been discussed previously. Many of these descriptions are taken from larger
examples that have been fabricated.

6.2. A Population Counter

This design counts the number of bits set in a word. It comes from the requirement in an AMULET
processor to know the number of registers to be restored/saved during LDM/STM (Load/Store
Multiple) instructions.

The approach taken is to partition the problem into two parts as shown in Figure 6.1. Initially,
adjacent bits are added together to form an arrray of 2-bit channels representing the numbers of bits
that are set in each of the adjacent pairs. The array of 2-bit numbers are then added in a recursively
defined tree of adders

-- popcount: count the nunber of bits set in a word
i nport [bal sa.types. basi c]

procedure AddTree (
pararet er inputCount : cardinal;
parareter inputSize : cardinal;
parareter outputSize : cardinal;

array inputCount of input i : inputSize bits;
output o : outputSize bits

) is

begi n

if inputCount = 1 then
i[0] ->then o0 <- (i[0] as outputS ze bits) end
-- or one of the following (since i & o channels are the same w dth)
-- i[0] ->then o <- i[0] end
-- i[0] ->o0
| inputCount = 2 then
i[0], i[1] -> then

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 65

6.2. A Population Counter

#i[O]‘ #i[1]‘ #i[2]‘ #i[3]‘ #i[4]‘ #i[S]‘ #i[B]‘ #i[7]‘

o S S e A e

. AddTr ee

Figure 6.1: Structure of a bit-population counter

0 <- (i[0] +i[1] as outputSize bits)
end
el se
| ocal
constant | owHal f 1 nput Count = input Count / 2
constant hi ghHal f1 nput Count = i nput Count - |owHal f I nput Count

channel lowQ highO: outputSize - 1 bits
begi n
AddTree (I owHal f I nput Count, inputSize, outputSize - 1,
i[0..lowHal flnputCount-1], lowQ ||
AddTree (hi ghHal f I nput Count, inputSize, outputSize - 1,
i [owHal f I nput Count . .input Count-1], highQ ||
AddTree (2, outputSize - 1, outputSize, {IlowQ highG, o)
end
end
end

procedur e Popul ati onCount (
parareter n : cardinal;

input i : n bits;

output o: log (n+l) bhits
) is
begi n

if n%2 =1 then
print error, "nunber of bits nust be even"
end; -- if
| oop
i ->then
if n=1then
0 <- i
| n=2then
o<- (#i[0] + #[1]) -- add bits 0 and 1
el se

66 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

6.3. A Balsa shifter

Commentary
on the code

Enclosed
Selection

Avoiding
deadlock:

| ocal
constant pairCount = n - (n/ 2)
array pairCount of channel addedPairs : 2 bits
begi n
for || cin O..pairCount-1 then
-- add bits ¢c*2 and c*2 +1
addedPairs[c] <- (#i[c*2] + #i[(c*2)+1])

end ||
AddTree (pairCount, 2, log (n+l), addedPairs, o)
end -- begin
end -- if
end -- sel ect
end -- |oop
end -- begin

procedur e PopCount 16 i s Popul ati onCount (16)
procedur e PopCount?2 i s Popul ati onCount (2)

procedur e PopCount 14 i s Popul ati onCount (14)
-- procedure PopCount3 is Popul ati onCount (3)

Procedures AddTr ee and Popul at i onCount are parameterised. Popul at i onCount can used to count
the number of bits set in any sized word. AddTr ee is parameterised to allow a recursively defined
adder of any number of arbitrary width vectors.

The semantics of the enclosed handshake of sel ect allow the contents of the input i to be referred
to several times in the body of the sel ect block without the need for an internal latch. An in-depth
discussion of the implications of enclosed selection is given in “Handshake Enclosure” on page 55.

Note that the formation of the sum of adjacent bits is specified by a parallel f or loop.

for || ¢cin O..pairCount-1 then
addedPairs[c] <- (#i[c*2] + #i[(c*2)+1])

It might be thought that a serial f or ; loop could be used at, perhaps, the expense of speed. This is
not the case: the system will deadlock illustrating why designing asynchronous circuits requires
some real understanding of the methodology. In this case the adder to which the array of addPai r s
is connected requires pairs of inputs to be ready before it can complete the addition and release its
inputs. However, if the sum of adjacent bits is computed serially, the next pair will not be computed
until the handshake for the previous pair has been completed -- which is not possible because
AddTr ee is awaiting all pairs to become valid: result deadlock!

6.3. A Balsa shifter

General shifters are an essential element of all microprocessors including the AMULET processors.
The following description forms the basis of such a shifter. It implements only a rotate right
function, but it is easily extensible to other shift functions. The main work of the shifter is local
procedure rorBody which recursively creates sub-shifters capable of optionally rotating 1, 2, 4, 8 etc
bits. The structure of the shifter is shown in

i nport [bal sa.types. basi c]
procedure ror (

paranmeter X : type;
input d : sizeof X bits;

input i @ X
output o : X
) is
begi n
| oop

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 67

6.3. A Balsa shifter

#d[log distance] |
ror St age)

\
|
|
1
|
|
I

rorBody (1),

rorBody (2),
rorBody (4))

ror (8 bits)

|
|
|
1
!
|
|
1
|
|
|
|
|
|
|
I

Figure6.2:

sel ect d then
| ocal
constant typeWdth = sizeof X

procedure rorBody (
pararmet er di stance : cardinal;
input i : X
) is
output o : X
) is
) is
| ocal
procedure rorStage (
output o : X
) is
begi n
select i then
if #d[1og distance] then
0 <- (#i[typeWdth-1..distance] @
#i [di stance-1..0] as X)

el se
0<-i
end -- if
end -- select
end -- begin
channel ¢ : X

begi n
if distance > 1 then
rorStage (c) ||
rorBody (distance / 2, c, 0)
el se
ror Stage (0)
end -- if
end -- begin
begi n
rorBody (typeWdth / 2, i, o)
end -- begin
end -- select

68 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

6.4. An Arbiter Tree

end -- |oop
end -- begin

procedure ror32 is ror (32 bits)

Testing the Another small Balsa test routine for exercising the shifter:
shifter i nport [bal sa.types. basi c]
i nport [ror]
--test ror32
procedure test_ror32(output o : 32 hits)
is
variable i : 5 bits

channel shiftchan : 32 bits
channel distchan : 5 bits
begi n
begi n
i:=1;
| oop
shiftchan <- 7 || distchan <- i
i:=(i+1l as 5 bits)
while i < 31 end
end || ror32(distchan, shiftchan, o)
end -- begin

6.4. An Arbiter Tree

This example builds a parameterised arbiter. This circuit forms part of a simple DMA controller

described by Bardsley [5]. The architecture of an 8-input

arbiter is shown. ArbFunnel is a

parameterisable tree composed of two elements: ArbHead and ArbTree. Pairs of incoming sync
requests are arbitrated and combined into single bit decisions by ArbHead elements. These single
bit channels are then arbitrated between by ArbTree elements. An ArbTree takes a number of
decision bits from each of a number of inputs (on the i ports) and produces a rank of 2-input arbiters
to reduce the problem to half as many inputs each with 1 extra decision bit. Recursive calls to
Ar bTr ee reduce the number of input channels to one (whose final value is returned on port 0).

-- ArbHead: 2 way arbcall: with channel
procedure ArbHead (
sync i0, il;
output o : bit
) is begin |oop
arbitrate i0O then 0o <- 0
| iltheno<- 1
end end end

-- ArbTree: a tree arbcall which outputs a channel
-- prepended onto the input channel's data. (invokes itself

-- recursively to make the tree)
procedure ArbTree (
pararet er inputCount : cardinal;

paraneter depth : cardinal; -- bits to carry frominputs
array inputCount of input i : depth bits;
output o : (log inputCount) + depth bits

) is

begi n

case input Count of

0, 1 then print error, "can't build an ArbTree with fewer than 2 inputs"

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

69

6.4. An Arbiter Tree

i[0] if] if2] if3] i[4] i[5] i[6] i[71

e el M et s B it
\Arbll—lead/ \Arbll—lead/ \Arbll—lead/ \Arbll—lead/

-

Figure 6.3: 8-input arbiter

| 2 then | oop
arbitrate i[0] then o <- (#(i[0]) @#0 as depth + 1 bits)
[i[1] then o <- (#(i[1]) @#1 as depth + 1 bits)
end
end
el se | ocal
constant hal fCount = inputCount / 2
constant hal fBits = depth + | og hal f Count
channel |, r : halfBits bits
begi n
ArbTree (bhal fCount, depth, i[O .. halfCount-1], 1) ||
ArbTree (inputCount - hal fCount, depth,

i[hal fCount .. inputCount-1], r) ||
ArbTree (2, halfBits, {I,r}, o)
end -- |ocal
end -- case input Count
end -- procedure ArbTree

-- ArbFunnel : build a tree arbcall
procedure ArbFunnel (
paramet er input Count : cardinal;
array inputCount of sync i;
output o : log inputCount bits

) is
constant hal fCount = inputCount / 2
begi n
if (2" log(inputCount)) /= inputCount then
print fatal , "No of Inputs (", inputCount, ") rmust be a power of 2"
end; -- if (log (inputCount) 2) /= inputcount

if inputCount < 2 then

print error, "can't build an ArbFunnel with fewer than 2 inputs"
| inputCount = 2 then

ArbHead (i[O], i[1], o)
| inputCount > 2 then

| ocal

70 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

6.5. A Stack Description

array hal fCount + 1 of channel |i : bit
begi n
for || j in 0O .. halfCount - 1 then
ArbHead (i[j*2], i[j*2+1], li[j])
end ||
ArbTree (hal fCount, 1, 1i[O0 .. hal fCount-1], o)
end -- |ocal
end -- if inputCount < 2
end -- procedure ArbFunnel

A description allowing arbitrary sized arbiters can be found in (Further Ex/ArbTree/arbgen.balsa).

6.5. A Stack Description

An n-place stack can be decomposed into a single place buffer at the head of the stack together with
a n-1 stack as shown Figure 6.4.

i(pushDat&C next | — — — — —
| >C

o (popDat a) next O
X
l‘/

pop next Pop

@)

stack(n)-1

st ack(n)

Figure 6.4: A Recurslively Defined Stack

Operations on the stack consist of either pushing daa on channel i or popping data on channel o. The
operations are assumed to be sequenced, so no arbitration is required between a push and a pop. A
first sight, it appears as if a sel ect command choosing between requests on the push channel, i, and
the pop channel, o, is what is needed. Unfortunately, Balsa does not support output selection, that
the ability to choose between ouput channels. It is therefore necessary to supply an extra sync
channel to indicate that a pop is required. The stack therefore waits for either a push request implicit
in the pushData channel, i , or a pop request on the sync channel “pop”. In the latter case, data is
transferred to the popData channel. o, from the top of stack buffer and the pop request is propogated
down the stack.

i nport [bal sa.types. basi c]

-- The stack description
procedure stack (
parareter depth : cardinal ;
input i : byte ;
output o : bhyte ;

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 71

6.6. A Smple Processor — The Manchester SSEM (The Baby)

Commentary
on the code

sync pop
) is
variable x : byte
begi n
if depth = 1 then
| oop
select i then
X =i
| pop then
0 <- X
end -- select i
end -- | oop
el se | ocal

channel nextl, nextO: byte
sync next Pop
begi n
stack (depth - 1, nextl, nextQ nextPop) ||
| oop
sel ect i then
nextl <- x ;

X =i
| pop then
0<- X ;

sync nextPop || nextO -> x
end -- select i

end -- |oop
end -- |ocal
end -- if depth =1
end -- procedure stack

procedure stack8 is stack(8)

A single-place stack is just a simple buffer and this case is tested first, otherwise the stack is
decomposed into the parallel composition of a single buffer and a stack of depth n-1. The
decomposition stops when a single-place stack is reached. The top of stack buffer and the internal
stack are connected by local channels nextl, nextO and nextPop. Notice that in the case of a pop
request, the request is forwarded to the internal stack (sync next Pop) in parallel with reading the
output of that internal stack (next O - > x).

6.6. A Simple Processor — The Manchester SSEM (The Baby)

This example describes a simple processor — the SSEM.

The Small-Scale Experimental Machine, known as SSEM, or the "Baby", was designed and built at
the University of Manchester, and made its first successful run of a program on June 21st 1948. It
was the first machine that had all the components now classically regarded as characteristic of the
basic computer. Most importantly it was the first computer that could store not only data but any
(short!) user program in electronic memory and process it at electronic speed. (Also, the electronic
memory was a true Random Access Memory (RAM). A photograph of a reconstruction of the
original machine is shown in Figure 6.5. More details of the history of the machine can be found in
<www.computer50.org>.

The machine is a 32 bit processor with 2’s complement number representation allowing up to 256
banks of a 32 word memory .Each memory bank was in the form of a CRT, there being only one
bank in the original implementation. The machine possessed a single register accumulator, a
program counter (referred to in the original design as CI, although the description below uses the
more usual of name of PC) and an instruction register IR which went under the name of PI in the
original design.

72

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

6.6. A Smple Processor — The Manchester SSEM (The Baby)

SSEM types

Figure 6.5: A rebuild of the orginal SSEM

The original machine had only 7 instructions:

JWP ; = M Addr] indirect junp
JRP ; PC :PC+ M Addr] relative junp
LDN ; ACC 1= -M Addr] | oad negative
STO ; MAddr] := ACC store result
SUB ; ACC := ACC - M Addr] subtract
TEST ; if ACC<0 then PC := PC +1; skip

STCP ; hal t

The format of the instruction word is shown in Figure 6.6:

31 30 20 19 18 17 16 15 14 13 12 11 10 8 8 6 5 4 3 2 1

Figure 6.6: SSEM instruction format

The CRT address referes to the CRT bank and is always 0O in this description. The line address is the
memory address. The operation of the machine is as follows:

PC := PC +1
= IR P]
Decode and execute instruction
— menory operand fetch if required
Repeat until STCOP instruction

Note that the first instruction is at address 1.

-- Basic types
type word is 32 bits

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 73

6.6. A Smple Processor — The Manchester SSEM (The Baby)

type LineAddress is 5 bits
type CRTAddress is 8 bits

-- SSEM function types
type SSEMFunc is enuneration

IMP, JRP, -- Abs. and rel. junps
LD\, STQ -- Load negative and store
SUB, SWB alt, -- Two encodi ngs for subtract
TEST, STCP -- Skip and stop ;)

end

-- Conpl ete instruction encodi ng
type SSEMnst is record

Li neNo : Li neAddress;

CRTNo : CRTAddress;

Func : SSEMFunc

over word
Channel and procedure SSEM (
Variable -- Menory interface, MenA MenRAW MenR, MenW
Declarations out put MemA : LineAddress;

out put MemRNW: bit;
input MenR @ word;
out put MenmW: word ;
-- Signal halt state
sync hal ted

) is

vari abl e ACC, ACC slave : word
variable IR: word

variabl e PC PC step : LineAddress
variable MOR : word

variable Stopped : bit

Useful -- Extract an address froma word

functions and function Extract Address (wordval : word) =
shared (wordVal as SSEM nst). Li neNo

procedures

shared WiteExtractedAddress is begin
MemA <- ExtractAddress (IR end

-- Menory operations, shared procedures

shared MenoryWite is

begin MenRNW<- 0 || WiteExtractedAddress ()
|| MemV<- ACC sl ave end

shared MenoryRead is
begin MenRNW<- 1 || WiteExtractedAddress ()
|| MenR -> MDR end

-- Fetch an instruction IR := M PQ
procedure InstructionFetch is
begin MemRNW<- 1 || MenA <- PC|| MenR -> IR end

shared ZeroACC is begin ACC := 0 end
shared ZeroPCis begin PC:= 0 end
shared SUB i s begin
MenoryRead (); ACC slave := (ACC - MDR as word)
end

-- Modify the programme counter PC

74 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

6.6. A Smple Processor — The Manchester SSEM (The Baby)

shared IncrementPC i s begin
PC := (PC + PC step as LineAddress) end
shared AJAMDRTOPC i s begin
PC step := Extract Address (MDR); IncrenentPC () end

Decode and --mssing instrcution aliased to sub
excute procedur e DecodeAndExecutelnstruction is
procedure begi n

case (IR as SSEM nst). Func of

JMP then MenoryRead (); ZeroPC (); AddMDRTOPC ()
| JRP then MenoryRead (); AddMDRTOPC ()
| LDN then ZeroACC (); SUB ()
| STO then MermoryWite ()
| SUB .. SUB alt then SUB ()
| TEST then

if #ACC [31] -- -ve?

then IncrementPC () end -- PC step should already be 1
| STCP then Stopped :=1
end ;
ACC : = ACC sl ave
end

main body begin
ZeroACC () || ZeroPC () ||
Stopped :=0; -- reset initialisation
| oop while not Stopped then
PC step := 1;
I ncrenent PC ();
I nstructionFetch ();
DecodeAndExecut el nstruction ()
end ; -- |loop
sync hal t ed
-- halt -- STCP instruction effect
end

Simulation The processor has to be coupled to a memory model containing a program for it to be simulated..
Section, “Memory models,” on page 96 explains how this may be done and contains a test harness
for running the gcd program that was the first program to be executed on the original SSEM.

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 75

6.6. A Smple Processor — The Manchester SSEM (The Baby)

76

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

Building fest harnesses with Balsa

7.1. Overview

When simulating Balsa descriptions, a test harness is usually necessary to provide input stimuli and
to display output results. In previous versions of Balsa, these test harnesses have usually either been
written in LARD (with the old LARD based simulation system) or been described in a test
description file for breeze-sim. Neither of these solutions has offered a seamless route for simulating
Balsa together with a realistically complicated test harness. To address this problem, additions have
been made to the Balsa language to allow test harnesses to be constructed entirely using Balsa. The
simple test harness construction capabilities present in balsa-mgr have similarly been changed to
generate Balsa test harnesses (rather than LARD or .testdesc based test harnesses) using a new
utility: balsa-make-test.

In order to allow Balsa to be used to capture the kind of complicated test harnesses which were only
previously possible with LARD, two major additions have been made to the Balsa language and
simulation systems: builtin types and builtin functions.

Builtin types A new class of types known as bui | ti n has been introduced to represent simulation objects such as
files and strings. For example, the declaration:

type File is builtin

can be found in the new library file [balsa.sim.fileio]. This declaration introduces a new type Fi | e
which represents a file access object in a similar way that the type FILE * represents a file in C.
Builtin functions can be declared which generate values of builtin types. These values can then be
passed around the Handshake Circuit generated by balsa-c as 64bit pointer values which, in
simulation, are pointers to a BalsaObject structure (described later). Builtin-typed values are
reference counted by the simulation system and so need not be explicitly deallocated by the user. In
most respects, builtin types and their values can be handled just like any other type or value in Balsa,
they can be used as parameters, as types of parameters, ports, and variables and also as the return
type for functions. There are a few restrictions on the use of values of builtin types, however. Such
values can never be cast to another type or have any arithmetic operation performed on them. These
restrictions allow builtin values to never be interchanged with non-builtin values. Such an
interchange could have disastrous results for a simulation.

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 77

7.1. Overview

Builtin
Functions

Strings

In order to manipulate builtin typed values, a new form of function declaration has been introduced
to allow Balsa language functions to have underlying C language implementations for the purposes
of simulation. The mechanism for calling these C functions allows the same compiled C description
to be used by both breeze-sim and by netlist simulation tools which support compiled plugin
modules. So far, interfaces (using the new Balsa tool balsa-sim-verilog) to the Verilog simulators
Icarus Verilog, Verilog-XL, NC Verilog, Modelsim and Synopsys VCS have been implemented.

Each builtin function must have a declaration in Balsa as well as a definition in C. In Balsa, a typical
builtin function declaration looks like this:

function FileQpen (fileNane : String; nmode : FileMdde) is builtin: File

This function is provided by the [balsa.simfileio] and is the sole function responsible for creating
File type objects. A typical use of File and FileOpen might be:

variable f : File
...begin ...
f := FileQpen (“ny_file”, read)

Notice that there is now a “true” string type in Balsa, and that a value of this type is used as the
fileName argument to FileOpen. Redefinition of strings as builtin typed-values allows them to be
much more useful in Balsa than their previous role of literal arguments to the “print” statement. The
type FileMode used for the argument mode is just a simple Balsa enumeration type, showing that
both builtin and simple bitwise types values can be passed into builtin functions.

In the Balsa distribution, the file share/balsa/simvfileio.c provides the implementation for FileOpen
(and the other file manipulation functions). The HelloWorld example later in this section will
explain the structure of such a C file. Balsa-mgr can be used to produce Makefiles which can
compile both the Balsa and the C, this is demonstrated in a later section.

Builtin functions can also have parameters in the same way as parameterised procedures to allow the
typing of their ports to be varied between instanced of the function. The simulation system handles
these parameters by passing C language representations of Balsa values and types to the simulation
C code. In this way it is possible to define builtin functions which can process arbitrarily
complicated aggregate types. This feature is used by the function ToString provided by
[balsa.types.builtin].

The String type is unusual in that the user can insert literal strings into a Balsa description without
explicitly calling a function. For example:

variable s : String
...begin ...
s = “AN

must create a string containing the text “AA” and then assign that String-typed object into the
variable s. To create the string, a call to a builtin function is necessary as the simulation system must
create an object to hold the string. To allow this close coupling of the String type with the compiler,
String is defined in the library [balsa.types.builtin] which is implicitly imported into all Balsa
descriptions. String typed values are created by a call to the “String” function (notice that this name
is distinct from the type String as Balsa has separate name-spaces for types and function names).
The print statement in Balsa has also been modified to make use of builtin functions rather than
specialised simulation handshake components. A statement such as:

print “Hello”, v
is now implemented as (not showing the calls to String, the “sink” keyword is explained elsewhere):
sink WiteMessage (StringAppend (“Hello”, ToString (vs_type, V)))

The functions “WriteMessage”, “StringAppend” and “ToString” are all defined in
[balsa.types.builtin] and can be also be explicitly called by the user. Other String functions, which
balsa-c does not rely on, are defined in [balsa.sim.string].

78

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

7.2. Summary of Library Functions.

7.2. Summary of Library Functions.

A number of libraries are supplied in the standard Balsa library set to help with test harness
construction. These (listed by their import path declaration) include:

[balsa.types.builtin]: Functions and type necessary for balsa-c functionality.
[balsa.typestype]: Type comprehension functions.

[balsa.sim.string]: Other String handling functions.

[balsa.sim fileio]: File I/O.

[balsa.sim.memory]: Functions and types to implement memory models.

[balsa.sim.portio]: Port file/console I/O used by balsa-make-test.

[balsa.sim.sim]: Simulator specific operations such as time and command line argument access.

Guidance for using these libraries can be found in the comments in the appropriate .balsa files in the
Balsa source distribution share/balsa/types and share/balsa/sim directories. A summary of some of
those library functions that are most useful to users are given below.

types.builtin -- create a string object froma string
function String (paraneter string : String) is builtin: String

-- append str2 to strl returning a string object
function StringAppend (strl, str2 : String) is builtin: String

-- Convert a value of (nearly) any type to a default fornmatted string
-- used by the conpiler to inplement runtime printing

function ToString (parameter X : type; value : X) is builtin: String

-- wite aruntime printing message string, returning 1
function WiteMessage (str : String) is builtin: bit

sim.string -- StringLength : returns the length of the given string
-- (0 for an enpty or uninitialised string)

function StringLength (string : String) is builtin : cardinal

-- SubString : returns a sub-string of the given string between
-- character indices “index’ and “index + length - 1’
-- If length = 0 or index >= StringlLength (string) then
-- returns an enpty string,
-- If “index + length’ > StringLength (string) then returns a
-- sub-string of “string between indices “index’ and StringLenth (string) - 1
function SubString (

string : String;

index : cardinal;

length : cardinal
) is builtin: String

-- StringEqual : returns 1 if two strings or equal.
function StringEqual (strl, str2 : String) is builtin: bit

-- FronBtring : parse a value of the given type (in the default fornatting)

-- fromthe given “source’ string and return the remainder of the string in

-- “remainder’. Note that the nost common way of calling this function will be
-- with the sane string as source and renai nder. To discard the renai nder,

-- just pass a constant (or unused) string as renainder.

function FronString (
parameter X : type;

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 79

7.2. Summary of Library Functions.

source : String;
remai nder : String
) is builtin: X

’)

-- RepeatString : make a string with “n’ occurences of source string “str
function RepeatString (str : String; n: cardinal) is builtin: String

-- FitStringTowdth : pad or clip a given string to create a string which is
-- exactly "width' characters long. “justification chooses whether strings
-- shorter than "width' shoul d be packed at the start (left) or end (right) of
-- the result string
type StringJustification is enuneration left, right end
function FitStringTowdth (

str @ String;

width : cardinal;

justification : StringJdustification
) is builtin: String

-- NunberFronString : parse a nunber of the given radix (assuming there will
-- be no radi x prefixes) fromthe given string. Radix is an el enent of [2,36]
function NunberFronstring (

parameter X : type;

source : String;

radix : 6 bits
) is builtin: X

-- NunberToString: nake a string representation of the given nunber in the
-- given radi x. Insert underscores at the specified distance apart (except
-- where underscoreSpacing is 0)
function Nunber ToString (

paranmeter X : type;

value : X radix : 6 bits;

under scoreSpacing : 8 hits;

showLeadi ngZeroes : bit
) is builtin: String

-- TokenFronftring : parse a whitespace delimted string token fromthe start

-- of “string and return that token as the return value and the remains of the
-- string in “remainder’. Note that this is not the same as FronBtring

-- (String, ...) as that would require quotes around the string to be parsed.

functi on TokenFronString (
string : String;
remai nder : String

) is builtin: String

-- Chr : convert the given 8b value into a single character string
function Chr (value : byte) is builtin: String

-- Od : returns the character value of the first character in the given
-- string. If the string is enpty, returns O

function Od (char : String) is builtin : byte

sim.fileio type File is builtin
type FileMde is enuneration
read, wite,
witeUnbuffered, -- unbuffered file witing
writelLineBuffered -- flushes after each line
over 3 bits
-- FileQpen : open a file in the appropriate node
80 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

7.2. Summary of Library Functions.

function FileQpen (fileNane : String; nmode : FileMbde) is builtin: File

-- FileReadLine : read upto an end of line and return a string without that
-- trailing NL
function FileReadLine (file : File) is builtin : String

-- Filewite : wite a stringto a file, returns the file object
function FileWite (file : File; string : String) is builtin: File

-- FileECF : returns 1 if fileis at the end of a file
function FileECF (file : File) is builtin: bit

-- Filedose : close the file stream
function FileQose (file: File) is builtin: File

sim.memory type Bal saMenory is builtin

-- Bal saMenoryParans : paraneters bundl e, can add others

type Bal saMenoryParans i s record
addressWdth, datawdth : cardinal
end

-- Bal saMermor yNew : make a new menory object, this is separate fromthe

-- procedure Bal saMenory so we can, for exanpl e have a dunp-nenory routine
-- external to that procedure. You could can Bal saMenory with:

-- BalsaMenory (16, 32, <- Bal saMenoryNew (), ...)

function Bal saMenoryNew i s builtin : Bal saMenory

-- Bal saMenory{Read, Wite} : sinple access functions
functi on Bal saMenor yRead (

paraneter parans : Bal saMenoryPar ans;

menory : Bal saMenory;

address : parans. addressWdth bits
) is builtin : parans.dataWdth bits

functi on Bal saMenoryWite (paraneter parans : Bal saMenoryPar ans;
nmenory : Bal saMenory; address : params. addressWdth bits;
data : parans.dataWdth bits) is builtin : Bal saMenory

-- BalsaMermory : a single read port nenmory conponent, reads a Bal saMenory
-- object as it is initialised and then waits for an i ncom ng address and
-- rNwindication

procedur e Bal saMenory (
paranet er parans : Bal saMenoryPar ans;
i nput menory : Bal saMenory;
i nput address : parans. addressWdth bits;
input rNw: bit;
input wite : parans.dataWdth bits;
output read : parans.dataWdth bits

) is

vari abl e nenory_v : Bal saMenory
begi n

menory -> menory_v;

| oop

address, rNw -> then
if rNwthen -- read
read <- Bal saMenoryRead (parans, nenory_v, address)
else -- wite
wite -> then
sink Bal saMenmoryWite (parans, nenory v, address, wite)

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 81

7.2. Summary of Library Functions.

sim.portio

end
end
end
end
end

procedure B1632 is Bal saMenory ({16, 32})

-- BalsaPrintSyncPortActivity : “ “ *

procedure Bal saPrint SyncPortActivity (
parameter portName : String;
sync s
) is
begi n
| oop
sync s;
print Bal saSi nul ationTine (),
end
end

”

sync ", portNanme

[

-- BalsaWitelLogLine : wite alog line for sone channel activity

procedure Bal saWiteLogLi ne (
par anet er port Nane,
activity : String;
input message : String
) is
begi n
nmessage -> then
print BalsaSinulationTine (), ": chan ™", portNanme, "' ", activity, " ",
message
end
end

-- BalsaQutput Port ToLog : print activity on the output port of sone
-- conponent in the default format

pr ocedur e Bal saQut put Port ToLog (
paraneter X : type;
parareter portName : String;
input i : X
) is
begi n
| oop
i ->then
Bal saWi t eLogLi ne (portNane, "reading", <- ToString (X 1))
end
end
end

-- Bal saQut put Port ToLogWthFormat : print activity on the output port of some
-- conponent in the specified format
pr ocedur e Bal saQut put Port ToLogWt hFor mat (
paranmeter X : type;
paraneter portNane : String;
parareter radix : 6 bits;
par arret er under scoreSpacing : 8 hits;
par anet er showLeadi ngZeroes : bit;
input i : X
) is
begi n
| oop

82

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

7.2. Summary of Library Functions.

i ->then

Bal saWi t eLogLi ne (portNane, "reading",
<- NunberToString (X i, radix, underscoreSpaci ng, show_.eadi ngZeroes))

end
end
end

-- BalsaQutputPortToFile : print activity on the output port of sone

-- conponent in the default format

procedur e Bal saQut put Port ToFil e (
paranmeter X : type;
parameter portName : String;
input file : File;
input i @ X
) is
variable line : String
begi n
file -> then
| oop
i ->then
line := ToString (X i);
sink FileWite (file, line);
sink FileWite (file, "\n");

Bal saWi t eLogLi ne (portName, "reading",

end
end
end
end

<- line)

-- BalsaPrintlnputPortFronVal ue : supply the given value to the port “0” each

-- time an input happens on that port

procedur e Bal sal nput Port FronVval ue (
paranmeter X : type;
paraneter portNane : String;
input value : X
output o : X
) is
begi n
val ue -> then
| oop
0 <- val ue;

Bal saWit eLogLi ne (portNarme, "writing",

end
end
end

<- ToString (X value))

-- BalsalnputPortFronfile : source values for port o fromthe given file

procedur e Bal sal nput Port FronFile (
parameter X : type;
parareter portNanme : String;
input file: File;
output o : X
) is
variable line : String
variable value : X
begi n
file -> then
loop while not FileECF (file) then
line := FileReadLine (file);
value := FronBtring (X, line, line);

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

83

7.3. Writing your own builtin functions

sim.sim

The Balsa and
C code

Registering
the function

0 <- val ue;
if StringLength (line) /=0 then
Bal saWi t eLogLi ne (portName, "comment", <- line)
end;
Bal saWi teLogLi ne (portNane, "witing", <- ToString (X value))
end
end
end

-- BalsaSinulationTine : get the current simulation tine as a string.
-- This function nust be provided genuinely builtin by any sinulation system

function BalsaSimulationTime is builtin : String

-- Bal saGet ConmandLi neArg : get the value of a keyed command |ine argument
-- fromthe sinulator based on the key
-- This function nust be provided genuinely builtin by any sinulation system

function Bal saGet CommandLi neArg (key : String) is builtin: String

7.3. Writing your own builtin functions

To show the stages necessary to use a user-written builtin function, we will present a small example
function, HelloWorld, written in a block hello.balsa with a C implementation in hello.c. The code
for this example can be found in examples/simulation directory of the distribution. The example
below is described stage by stage in order to highlight the Balsa tools used, but the process is greatly
simplified by using balsa-mgr described in “Using balsa-mgr” on page 86.

Every builtin function must have both a Balsa declaration and a C language definition. In writing
your own builtin functions it is best to write the Balsa declaration first. For example:

function HelloWrld is builtin: bit

declared a builtin function with no arguments and a single bit return value. Note that functions must
have return values (to operate correctly in the Balsa type system) even when the implementation of
the function may be considered to have a “void” return type. It is usual to use the return type bi t and
return the value 1 when the return value is not important. In Balsa, the si nk keyword can then be
used to call such a function and discard the return value. In some functions, one of the arguments
could make a useful return value to allow function calls to be enclosed within each other. The Write
function in [balsa.simfileio] is an example of such a function, it returns the File object passed to it
to allow chains of Writes to be formed as a single expression.

Each function must have a C implementation of the form (continuing the HelloWorld example with
a very simple body):

static void Hell oWorld (BuiltinFunction *functi on,
Bui | ti nFuncti onl nst anceDat a *i nst ance)

{
}

The two arguments, “function” and “instance”, pass to the builtin function information about the
port structure, instance parameter values and per-call argument values of the Balsa function.
“function” contains information common to all instances of the function and “instance” contains
instance specific data. Note that as builtin functions can have parameters, and that port typing can be
influenced by typing, port structure information should be read from the “instance” argument rather
than the “function” argument.

fprintf (stderr, “Hello, Balsa user\n”);

To register a builtin function with the simulation system, a «call to
Bal saSi m Regi sterBui | ti nFunction is necessary. Each shared library which contains C
implementations of builtin functions should declare a function with the name

84

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

7.3. Wkiting your own builtin functions

Compiling
HelloWorld

Bal saSi m Bui | ti nLi brary_<li braryname> (where <l i br ar yname> is the last component of the
dotted path to that libraries Balsa/Breeze file) to call this function and to perform any other
initialisation necessary for that library. A macro, BALSA_SIM_REGISTER_BUILTIN_LIB, is
provided to insert the head of this initialisation function. The complete C file for the HelloWorld
example is:

#i ncl ude <stdio. h>

#i ncl ude <bal sasi m builtin. h>

static void HelloWrld (BuiltinFunction *function,
Bui | ti nFuncti onl nst anceDat a *i nst ance)

{
fprintf (stderr, “Hello, Balsa user\n”);
i nstance->resul t->words[0] = 1; /* Ignore this for now */ }
BALSA SI M REQ STER BU LTIN LI B (hel | 0)

{

Bal saSi m Regi sterBui | ti nFunction (“Hellowrld’, 0, O,
Hel loWrld, 1, NUL, 0);
}

The header file balsasinvbuiltin.h provides the definitions of the types used in the file and the
prototype for BalsaSim_RegisterBuiltinFunction. This file (which can be found in the src/libs/
balsasim directory of the Balsa distribution and include/balsasim of a Balsa installation) also
includes the files balsasim/object.h, balsasinVparameter.h and (through parameter.h) balsasim/
types.h. These three files provide declarations for types and functions for manipulating BalsaObject
objects, C descriptions of Balsa parameters and C descriptions of Balsa types respectively.

This example only registers one function using Bal saSi m Regi st er Bui | ti nFuncti on: namely
HelloWorld. The seven arguments passed to cause that registration are (in order):

name: Balsa name of the function being registered (“HelloWorld”).

parameter Count: number of parameters taken by the Balsa function (in this example, 0).
arity: argument count of the Balsa function (again, 0).

function: pointer to the C function containing the top level of the implementation.

resultWidth: number of bits in the result value of the function, or 0 if the width varies by instance
(see Section, “Return values,” on page 90).

argumentWidths: an array of “arity” unsigned ints, one per argument in order, which specify the
widths in bits of their respective arguments. Each of these can be 0, as with resultWidth, to indicate
that the widths are resolved on an instance-by-instance basis. This can be set to NULL (as in this
example) when their are no arguments to the function.

objectCount: number of BalsaObject objects created by a call to this function. (see Section,
“Object Reference Counting,” on page 91).
With the C implementation in file hello.c and the Balsa declaration in file hello.balsa. The C
implementation can be compiled with:

bal sa- make-builtin-lib hello hello.c

This should create hello.la, hello.o, hello.a and either hello.so... or hello.dylib... files depending on
your machine architecture. The Balsa declaration file can be compiled with:

bal sa-c hello

Note that the C and Balsa descriptions are not checked against each other when being compiled. For
this reason it is important that the parameters passed to BalsaSim_RegisterBuiltinFunction are
correct to ensure correct operation of the builtin functions in simulation.

With both the shared library and the Breeze file for the HelloWorld function, that function is ready
to be used.

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 85

7.3. Writing your own builtin functions

Invoking A short Balsa description such as:
HelloWorld i mport [hell o]
procedure try is
begi n
sink HelloWrld ()
end
can be used to test HelloWorld. The description can be compiled, a Balsa top-level test harness
generated, and the resulting test harness run. If the test description listed above is found in the file
SimDemo.balsa, the folllowing commands generate a default test harness.
bal sa-c¢ Si nDeno
bal sa- nake-test -d SinDeno try
The last command generates a Balsa test harness, test-SmDemo_try.balsa with a top level precedure
name of bal sa. Although not strictly necessary for this example, it is a good habit to get into to
always generate such a test harness. The next two commands compile the balsa test harness file and
then run the simulation.
bal sa-c test-Si nDeno_try
breeze-simtest-Si nDenmo_try
Breeze-sim will pick up the shared library for the block [hello] by noting that the file hello.la was in
the same directory as the Breeze file hello.breeze. Files with the extension .la are GNU libtool
library information files. They contain the path of the shared library which bears the same name as
the .1a file.
HelloWorld in It is possible to use a Verilog simulator as shown below: A
Verilog BALSATECH=exanpl e
export BALSATECH
Use “setenv BALSATECH exanpl €” in csh/tcsh
bal sa-netlist -s -d -f -i helper test-S nDeno_try
bal sa- nake-inpl -test -o \test test-S nbDeno_try bal sa
bal sa-siminpl -B test-S nDeno_try West
The BALSATECH environment variable specifies a Verilog target implementation. Particular
implementation styles, as well as the Verilog simulator to be used, can be specified as described in
“Setting the BALSATECH environment variable” on page 126.
If the balsa test harness file has not been generated, the command bal sa-c test-S nDeno_try
must be run first..
bal sa- net | i st produces a Verilog netlist for the test harness: test-SmDemo_try.v.
bal sa- make-i npl -t est produces a top-level Verilog file Vtest.v.
bal sa-si mi npl runs the Verilog simulation.
Using balsa- Balsa-mgr can be used to perform all the steps of the HelloWorld example and considerably
mgr simplifes the process. In the description that follows, it is assumed that the files hello.balsa
(containing the builtin balsa declaration), hello.c (containing the builtin C language definition) and
SmDemo.balsa (containing the Balsa test example) already exist.
1. Add the .balsa files to the project as shown in Figure 7.1.
2. In the file pane of balsa-mgr, right-click on the hello.balsa filename and select the Add Builtin
Library option. In the resulting popup dialogue shown in Figure 7.2, add hello.c to the list of
source files using the new button. The library should then be visible in the file pane as shown in
Figure 7.3.
3. In the file pane of balsa-mgr, right-click on the try procedure in SmDemo.balsa and select the
the “Add Test Fixture” option. Accept the defaults in the resulting dialogue box.
86 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

7.4. Builtin functions with arguments

-
0606 X/ Balsa Project Manager

I Project FEile Selected ltem Wiew Build CY35 Tools Help

rProject ® Project Mame————

CRAGE XA

» [
FiIes‘MakeﬂIel
| Name/Dotted path | Ditails

hello balsa .
| L i Helloworld procedure

SimDemo.balsa
L g try procedure

Figure 7.1: The simulation balsa files.

‘@806 % Builtin Library Options

MName |he|l0

Compile Options1

Source Files hello.ck Mew...
Remove

(01:8 I Cancel 1

4

Figure 7.2: Adding the C language description file.

4. Click on the Makefile tab to switch to the Makefile pane and clicking on the run button for
sim-test]l in the Tests subpane will build the library and run the simulation as shown in
Figure 7.4

Verilog simulation can be achieved within the framework of basla-mgr. To do this, an
implementation has to be attached to the test harness (rather than to the procedure itself).

5. In the file pane of balsa-mgr, right-click on the testl test fixture name attached to the try
procedure and select “Add Implementation”. The Verilog implenetation is added to the testl
test harness.

6. Click on the Makefile tab in the left-hand pane in the balsa-mgr window. A new test action has
been added to test1 in the Tests subpane.

7. Click on the Run button for sim-test1-impl: the test harness will be run as a Verilog simulation.

7.4. Builtin functions with arguments

Builtin functions, like other Balsa functions, are passed per-call arguments. These arguments can be
of builtin types or normal Balsa bitwise data values. In both cases, values are passed into C as multi-
precision integer values packed into FormatData structures. The FormatData type contains two
elements:

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 87

7.4. Builtin functions with arguments

‘806

[X| Balsa Project Manager

I Project File Selected ltem Wiew Build CYS Tools

Help

rProject * Project Mame-—

Cao G X CPO B ;
Files | Makeﬂlel SimDemo.balsa hello.balsa] |
| Name / Dotted path 1 function HelloWarld is builtin @ hit |
hello balsa .
| g/ HellaWarld procedure
| hello builtin lib
SimDemo.balsa .
Lty procedure |
k
| A
Figure 7.3: Project with library added
eoe [X| Execution Window g
Frocess Mame Cutput] State A
balza-make-makefle -b -p 7Usersidoug Finished
make -n sim-test] Out
halsa-make-huiltin-lib hello hello.c Out Finished
halsa-c -b -1 . hello Finished
halsa-c -h -1, SimDemo Finished
halsa-make-test-b -1 . -t-p . testl Finished
halsa-c -h -1 . test-testl Finished
i 2511 i Finished i
... — 1

| Stop Processi
;Heﬂo, Balsa user
[{Activity finished at time 20

Cutput StdErr

Figure 7.4: Running the simulation.

wordCount : the length of the value in multiples of the size of the type unsi gned int in C

words. an array of unsigned ints containing the value, with the least significant word of the value
in words[0].

Signed bitwise values are passed as though they were unsigned values with the same bitwise
representation as the original signed value and are not sign extended to the end of a word or to the
end of the bitwise length of the value. Result values from builtin functions are passed back to Balsa
from C in a FormatData structure also. A simple function to add 15 to a 16b number looks like this
in C:

88 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

7.4. Builtin functions with arguments

‘8606 [X| Balsa Project Manager

I Project File Selected ltem Wiew Build CV5 Tools Help
el GE XA Ceo LS

Files | Makeﬂlel SimDemo.balsa | hella.balsa |

Name / Dotted path { import [hellol

hello.balsa .
g/ Hello¥orld procedure
hello huiltin liby
L hello.c
SimDemo.balsa
B [try procedure
EHtestl

|| lprocedure try is
begin

sink HellowWorld (2
end

Figure 7.5: A test verilog test harness added.

static void Add15 (BuiltinFunction *function,
Bui | ti nFuncti onl nst anceDat a *i nst ance)

{
Format Data *i = i nstance->ar gunent s[0] - >wor ds[0] ;
i nstance->resul t->words[0] =i + 15;

}

for a function with a Balsa description of:
function Add15 (i : 16 bits) is builtin : 16 bits
and is equivalent to the “pure” Balsa function:
function Add15 (i : 16 bits) = (i + 15 as 16 bits) : 16 bits

As can be seen in this example, the result and argument FormatData structures can be accessed as
elements “result” and “arguments” of the BuiltinFunctionInstanceData passed to the C function. The
arguments element is an array of length f uncti on->ari ty (which will be the same value as passed
to the BalsaSim_RegisterBuiltinFunction function as the “arity” argument), with the first argument
at index 0. The FormatData structures for arguments and results values are pre-allocated by the
simulation system and so should only ever be read or modified, never replaced by a different
FormatData. Note that the above example passed its return value back and processed its arguments
by directly accessing the first word of the i nstance->result and i nstance->ar gunent s[0]
FormatData structures. This is a perfectly valid way of approaching FormatData handling. The
definition of the type FormatData and a library of functions to act on that type can be found in the
header file src/libs/format/data.h in the Balsa distribution and include/format/data.h in a Balsa

installation.
Builtin typed Builtin types can have any simulator-internal representation that the author of builtin functions
arguments which process that type desires. For example, the File type defined in the header file balsasinvbfile.h

and used by block [bal sa. simfileio] is defined as:

t ypedef struct

{

FI LE *file;

char *fil enane;

Bal saFi | eMbde node;
}

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 89

7.4. Builtin functions with arguments

Return values

Functions with
parameterised
arguments

Bal saFi | e;

Values of builtin types are passed around in Balsa, and to and from C, as pointers to BalsaObject
structures. Using BalsaObject to encapsulate a pointer to a real value allows all builtin typed values
to be handled consistently with respect to memory allocation management.

Builtin typed values are packed into argument and result FormatData structures as a 64 bit pointer
value to the BalsaObject structure which encapsulates the pointer to that value’s real data. The
BalsaObject pointer can be extracted from a FormatData structure using the function
FormatDataGetBalsaObject. The pointer to that value’s real data can then be extracted as the “data”
element of that BalsaObject. For example, the FileEOF function in [balsa.simfileio] extracts a File
object from index O of its first argument and places the pointer to the BalsaFile structure into “file”
(“BALSA_FILE” is just a C preprocessor macro for a cast to type BalsaFile; this macro is defined in
balsasimvbfile.h

static void Fileio FileECQF (BuiltinFunction *function,
Bui | ti nFuncti onl nst anceDat a *i nst ance)

{
Bal saChj ect *fil eChject =

For mat Dat aGet Bal saChj ect (i nstance->argunents[0], 0);
Bal saFile *file = BALSA FILE (fil e(oject->data);

Builtin typed values can similarly be returned by packing the pointer to a BalsaObject into a
FormatData using FormatDataSetBalsaObject. FileOpen in [balsa.sim/fileio] does this like so:

For mat Dat aSet Bal saChj ect (i nstance->result, instance->objects[0], 0);

Notice that the object packed into i nst ance- >resul t is also an element of the instance structure.
This is necessary because Balsa must track the location of builtin typed values at all times in order
for the reference counting system used to deallocate unused objects to work correctly. To make the
reference counting work effectively, the user must only use the BalsaObject structures contained in
the instance—>objects array (whose size is selected by the objectCount argument to
BalsaSim_RegisterBuiltinFunction) and never any BalsaObject which is manually allocated. The
simulation system monitors the reference counts of each object in i nst ance—>obj ect s for each call
of each builtin function, and will handle the deallocation/reassignment of objects without the user
having to worry about explicit reference counting. As the BalsaObject structure only contains a
pointer to the “real” data associated with a builtin typed value, calls to FormatDataSetBalsaObject
are usually preceeded with a function call to pack that real data pointer into the BalsaObject and to
nominate a function to be used to deallocate that data if the object ceases to be useful. In FileOpen,
this call looks like:

Set Bal sa(hj ect (i nstance->obj ects[0], bal saFil e,
(Bal saDestructor) Del eteBal saFile);

On deallocation of the object in i nst ance—>obj ect s[0] , DeleteBalsaFile will the called on the
pointer “balsaFile’ (which will become stored in i nst ance—>obj ect s[0]), in order to deallocate it.
If NULL is passed to SetBalsaObject as destructor for this object, deallocation of that object will
result in a call to free(3) on the real data pointer.

Parameters passed to a builtin function can be used to parameterise the types of arguments passed to
calls of those functions. For example, the ToString function, used to render string representations of
Balsa values of any type, has as a parameter the expected type of the argument to the function.
ToString’s declaration in Balsa (which can be found in [balsa.type.builtin]) is:

function ToString (parameter X : type; value : X) is builtin: String

As previously explained, the instance->paraneters array can be used to comprehend the
parameter passed to a builtin function in C. For builtin functions with arguments which are not fixed
in the Balsa declaration, this array must be used to determine the correct argument and result widths.
To allow this to happen, simulation systems using the Balsa builtin function system must make an

90

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

7.5. Object Reference Counting

Variable
assighment

Function
objects array

“initialising’ call to the builtin function’s C function in order to resolve any uncertain argument and
result widths. This function call is initiated by the simulation system noticing that the user has
passed a width of O as the resultWidth argument, or 0 as any element of the argumentWidths
argument to BalsaSim_RegisterBuiltinFunction. ToString’s registration looks like this (notice the
{0} passed as argumentWidths):

Bal saSi m Regi sterBui |l ti nFunction (“ToString”, 1, 1, Builtin_ToString,
64, (unsigned []) {0}, 1);

In order to distinguish the initialising call to the C function (here this function is called
Builtin_ToString) from “genuine” calls, the i nst ance—>port W dt hsAr eResol ved will be false
during the initialising call. This leads to a generalised form of C implementation of a builtin function
with an enclosing if statement around it’s body. ToStri ng resolves its port width with this code
(with error checking removed):

static void Builtin_ToString (BuiltinFunction *function,
Bui | ti nFuncti onl nst anceDat a *i nst ance)

{
if (! instance->portWdthsAreResol ved)
{
i nst ance- >ar gurent Wdt hs[0] =
ABS(i nst ance- >par arret er s[0] - >i nf 0. t ype- >si ze) ;
} else {
}
}

Note that the ar gurrent W dt hs array which is modified is the array within the instance structure and
not the one within the function structure which must be invarient across instances of the builtin
function. A function which has its result width changed during an initialising call must similarly
change the i nst ance—>r esul t Wdt h value rather than any element of function. Any remaining
argument or result widths which remain O after the initialising call are flagged as error by the
simulation system and will cause the simulation to terminate.

7.5. Object Reference Counting

Allocation of BalsaObjects in simulation is done by counting the number of times an object
becomes assigned to either a Balsa variable or an element of the i nst ance—>obj ect s array in a
function. The reference counting scheme used to implement this assignment counting is very
conservative and only deallocates an object when that object’s place in a variable or
i nst ance- >obj ect s array must be overwritten. For a variable, this occurs on each assignment and
for a function’s objects array this occurs each time the function is called.

Objects are always held in a special variable handshake component, BuiltinVariable, inside a Breeze
description. This special component is similar to a normal Variable handshake component but
includes simulation mechanisms to hand the reference counting of stored and incoming data. Each
time an assignment occurs on a BuiltinVariable, two events occur: Firstly, the object already
residing in the variable (if any) is to be discarded and so has its reference count decremented and the
object (and its “—>data” payload) is deallocated if the reference count reaches 0. Secondly, the
pointer to the new object being assigned is loaded into the variable’s latches and its reference count
is incremented to indicate that it has been successfully stored.

The objects array in each function’s “instance” data is used to store objects which have not yet been
assigned to variables or which will never end up in a variable (such as intermediate Strings in a
chained StringAppend operation, for example). Each object is initialised with a reference count of 1
indicating that it is stored in exactly one place. As objects are passed out of the function as return
values, those objects may have their reference counts increased to indicate that they have been
stored elsewhere. On the next call to the function, each of the objects previously allocated must be

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 91

7.6. Predefined types

BalsaString

replaced by a new object for the current call. A loop decrements each of the reference counts of the
instance—>objects elements and then checks the decremented reference count against 0. Objects
with a O reference count then have their “—>data” payload deallocated using the appropriate
destructor function and the BalsaObject structure is reused (with a new reference count of 1) for the
current call’s object. Objects with a reference count greater than O are stored elsewhere in the system
and so should not be deallocated. Those objects’ elements in the i nst ance- >obj ects array are
therefore overwritten by pointers to newly allocated BalsaObject structures (with initial reference
counts of 1 again) and the task of deallocating the original object then falls to the last
BuiltinVariable or other builtin function to hold a reference to the object.

7.6. Predefined types

As previously stated, the “data” element of a BalsaObject can be used as a pointer to any value
which the user wishes to use as the basis of a builtin-typed value in Balsa simulation. The builtin
libraries which are provided with Balsa for string and file manipulation make use of the C
BalsaString and BalsaFile types to represent those values. It is very likely that user-defined builtin
functions will need to work with those predefined functions, and so it is important to understand the
mode of operation of those types.

Strings are represented in Balsa simulation as char arrays encapsulated in dynamically allocated
instances of the BalsaString struct defined in balsasinvbstring.h. Each instance of a String in Balsa
is represented by a unique BalsaString in C. It is, however, possible for different String values to
share their underlying char arrays in order to make sub-string operations (which are common when
parsing files) more efficient. The BalsaString structure contains 4 elements:

char *allocatedString: a pointer to the first element of the allocated char array which represents
this string. Note that this pointer refers to the malloced array for the string, which may be shared
with other BalsaStrings, and may not point to the first character of this particular string.
BalsaStrings sharing a common char array must have the same value of allocatedString.

char *string: a pointer to the character in allocatedString which corresponds to the first character
of this BalsaString’s “real” string. For example, when tokenising the line “Hello, world” from a file,
a BalsaString may be created which is a sub-string of the whole line and so has its allocatedString
element pointing to the “H” in “Hello” and its string element pointing to the “w” in “world”

[T}

indicating that that BalsaString represents part of the string starting with the “w”.

unsigned length: the number of significant characters (between string[0] and string[length-1])
which comprise the string being represented. BalsaString strings are not required to be NUL
terminated (although for safety it is good practice to make allocatedString one char longer and place
a NUL in the final character) and so when passing the ->string element of a BalsaString to a C
function, it is advisable to make a temporary copy of the string. int *refCount: a (pointer to the)
count of the number of BalsaStrings which share the same allocatedString as this one. When
deallocating a BalsaString, care must be taken to avoid mistakenly deallocaing the allocatedString
when other BalsaStrings may depend on it. The refCount is a single malloced int, initially set to 1
indicating a single BalsaString owns this allocatedString, which can be incremented for each sub-
string creation and decremented for each sub-string deallocation. The functions BalsaStringRef and
BalsaStringUnref are used to maintain this count and handle the deallocation of BalsaStrings.

Besides BalsaStringRef and BalsaStringUnref, the balsasim/bstring.h package only contains two
other functions, both used to create new BalsaString objects:

NewBalsaString: creates a BalsaString from an existing char array by copying “length” character
from the source string into a newly allocated allocatedString. NewBalsaString can be called with a
NULL strings, which causes it to allocate only the BalsaString object rather than the underlying char
array. This can be useful when the required array is to be constructed by hand rather than copied.
Note that after calling NewBalsaString this way, both allocatedString and string elements of the
resulting BalsaString must be correctly initialised by the user. Passing -1 as the “length’ argument to

92

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

7.7. Example Custom Test Harnesses

NewBalsaString results in the creation of a BalsaString containing all of the source C string up to
the first NUL character in that string.

NewBalsaSubString: creates a BalsaString which shares its allocatedString with the given
BalsaString between start[0] and start[length-1]. The mechanism for sharing sub-strings is described
above.

Better understanding of the common uses of the BalsaString type and its associated functions can be
gained by reading the builtin function code in the [balsa.types.builtin] and [balsa.sim.string]
libraries.

BalsaFile File access is performed in Balsa using the File type. The is defined in the library [balsa.sim/fileio]
using the underlying C type BalsaFile defined in balsasinvbfile.h. BalsaFile is a simple wrapper for
the C standard library type FILE * and has 3 elements: FILE *file: the open file handle or NULL
indicating that the file is not open. char *filename: a copy of the filename used to open the file. This
is used for error reporting. BalsaFileMode mode: an enumeration indicating how the file was
opened. Currently four options exist for this element: read, write, writeUnbuffered and
writeLineBuffered. The options read and write correspond to the fopen file modes “r”” and “w”. The

buffered write options correspond to mode “w” with a subsequent call to setvbuf to select the
appropriate file buffering mode.

The BalsaFileMode type is defined in Balsa (as type FileMode) and C as it is used as the argument
to the FileOpen function. The C header file balsasim/bfile.h defines only two functions of interest to
users wanting create their own file handling functions: Bal saFileReadable and
Bal saFi | ewi t abl e. These functions can be used to check if a BalsaFile corresponds to an open
file and if that file is readable/writable through the ->file element of that BalsaFile. Examples of the
use of these functions can be found in the C implementation of the [balsa.sim/fileio] library.

7.7. Example Custom Test Harnesses

Data Actually this example is now obsolete as the user can set the format of displayed data when
Formatting configuring the test harness in balsa-mgr. However, since the example illustrates use of some of the
builtin functions, the description is still included in the manual.

By default, numbers are witten in decimal. The example in Smulation/Format illustrates the use of
the builtin functions. The example is actually the shifter example “A Balsa shifter,” on page 67. The
test procedure test_ror.balsa shifts a bit pattern of 3 consecutive ‘1’s around a 32 bit word The
default output produced is:

230: chan ‘0’ reading 14
727: chan ‘0’ reading 7

1245: chan ‘0’ readi ng 2147483651
1749: chan ‘0’ readi ng 3221225473
2267: chan ‘0’ readi ng 3758096384
2785: chan ‘o' readi ng 1879048192
3326: chan ‘0’ readi ng 939524096
3839: chan ‘0’ reading 469762048
4357: chan ‘0’ readi ng 234881024
4875: chan ‘0’ readi ng 117440512
5416: chan ‘0’ readi ng 58720256
5943: chan ‘0 reading 29360128
6484: chan ‘0’ readi ng 14680064
7025: chan ‘o' reading 7340032
7589: chan ‘0o’ reading 3670016
8111: chan ‘0’ readi ng 1835008
8629: chan ‘0’ reading 917504
9147: chan ‘0o readi ng 458752
9688: chan ‘0’ readi ng 229376

10215: chan ‘0’ reading 114688

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 93

7.7. Example Custom Test Harnesses

10756: chan ‘o’ reading 57344
11297: chan ‘0’ reading 28672
11861: chan ‘0’ reading 14336
12397: chan ‘0’ reading 7168
12938: chan ‘0’ reading 3584
13479: chan ‘0’ reading 1792
14043: chan ‘0’ reading 896
14593: chan ‘0’ reading 448
15157: chan ‘0’ reading 224
15721: chan ‘0’ reading 112
Ended test

It is not easy to spot that this is the correct behaviour. The procedure in the test harness produced by
balsa-mgr that writes the output is:

procedur e bal sa
is
channel o : 32 bhits
begi n
test_ror32 (o) ||
Bal saQut put Port ToLog (32 bits, “0”, 0)
end

The ouput can be produced in binary format by rewriting the builtin procedure repsonsible for
displaying the output: Bal saQut put Port ToLog. The procedure has as to be renamed to prevent a
name clash.

pr ocedur e Bal saQut put Port ToLogX (paraneter X : type;
paraneter portNanme : String; input i : X is
begi n
| oop
i ->then
-- original line in Bal saQut put Port ToLog
-- Bal saWi t eLogLi ne (portNarme, “reading”, <- ToString (X i))
Bal saWi t eLogLi ne (portName, “reading”,
<- NunberToString (X i, 2, 4, 1))
end
end
end -- procedure Bal saQut put Port ToLogX

This produces the output in binary with leading zeros with each 4 bit field separated by an
underscore.

230: chan ‘0o reading 0000_0000_0000_0000_0000_0000_0000_1110
727: chan ‘0o reading 0000_0000_0000_0000_0000_0000_0000_0111

1245: chan ‘0o’ readi ng 1000_0000_0000_0000_0000_0000_0000 0011
1749: chan ‘0o’ reading 1100_0000_0000_0000_0000_0000_0000_0001
2267: chan ‘o' reading 1110_0000_0000_0000_0000_0000_0000_0000
2785: chan ‘0’ reading 0111_0000_0000_0000_0000_0000_0000_0000
3326: chan ‘0’ reading 0011_1000_0000_0000_0000_0000_0000_0000
3839: chan ‘0’ reading 0001_1100_0000_0000_0000_0000_0000_0000
4357: chan ‘o reading 0000_1110_0000_0000_0000_0000_0000_0000
4875: chan ‘o readi ng 0000_0111_0000_0000_0000_0000_0000_0000
5416: chan ‘0o’ reading 0000_0011_1000_0000_0000_0000_0000_0000
5943: chan ‘o' reading 0000_0001_1100_0000_0000_0000_0000_0000
6484: chan ‘o' reading 0000_0000_1110_0000_0000_0000_0000_0000
7025: chan ‘o' readi ng 0000_0000_0111_0000_0000_0000_0000_0000
7589: chan ‘0’ reading 0000_0000_0011_1000_0000_0000_0000_0000
8111: chan ‘0o’ reading 0000_0000_0001_1100_0000_0000_0000_0000
8629: chan ‘0’ reading 0000_0000_0000_1110_0000_0000_0000_0000
9147: chan ‘o' reading 0000_0000_0000_0111_0000_0000_0000_0000
9688: chan ‘0’ reading 0000_0000_0000_0011_1000_0000_0000_0000

10215: chan ‘o readi ng 0000_0000_0000_0001_1100_0000_0000_0000

94 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

7.7. Example Custom Test Harnesses

10756: chan ‘0o’ readi ng 0000_0000_0000_0000_1110_0000_0000_0000
11297: chan ‘0’ readi ng 0000_0000_0000_0000_0111_0000_0000_0000
11861: chan ‘0o’ readi ng 0000_0000_0000_0000_0011_1000_0000_0000
12397: chan ‘0o’ readi ng 0000_0000_0000_0000_0001_1100_0000_0000
12938: chan ‘0o’ readi ng 0000_0000_0000_0000_0000_1110_0000_0000
13479: chan ‘0’ readi ng 0000_0000_0000_0000_0000_0111_0000_0000
14043: chan ‘0o’ readi ng 0000_0000_0000_0000_0000_0011_1000_0000
14593: chan ‘0’ readi ng 0000_0000_0000_0000_0000_0001_1100_0000
15157: chan ‘0o’ readi ng 0000_0000_0000_0000_0000_0000_1110_0000
15721: chan ‘0o’ readi ng 0000_0000_0000_0000_0000_0000_0111_0000
Ended t est

The rotation of the 3 ‘1’s can now be clearly seen. If it is desired to produce the ouptut in
hexadecimal with no leading zeros and no underscore separator, call Bal sawi t eLogLi ne as:

Bal saWi t eLogLi ne (portNane, "readi ng",
<- NunberToString (X i, 16, 0, 0))

Further examples of conversions to and from strings can be found in “Memory models” on page 96.

FilelO The examples in simulation/FilelO illustrates some basic use of the File I/O routines. These
procedures read the contents of a file whose name is a parameter of the procedure. Note that it is not
possible to test for the readability or existence of a file to open: if access is not allowed, the
Fi | eQpen procedure will fail internally producing an error message.

i nport [bal sa.types. basi c]
inport [bal sa.simfileioq]

procedure rd_filel (
paraneter fnane : String

) is
variable file : File

begi n
file := FileQuen(fnane, read);
print “Qpened file: “ , fnane;
loop while not FileEC(file) then

print “content is: “, FileReadLine(file)

end

end

The rd_filel procedure is instantiated with the name of the file to be opened thus:
procedure rfl is rd_filel(“data”)

where “data” is the name of the file to be opened. A disadvantage of this approach is that what is
being generated is an instance of a parameterised procedure. Everytime the name of the file is
changed, a new instance has to be compiled. Another approach is shown below:

procedure rd_file2 (
input fname : String
) is
variable file: File
begi n
fnane -> then
file := Fileen(fnane, read);

print “Qpened file: “, fnane ;
| oop while not FileEC(file) then
print “content is: “, FileReadLine(file)
end
end
end

The file name is passed to rd_fi | e2 from a top-level procedure using a variable port.:

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 95

7.7. Example Custom Test Harnesses

Memory
models

Smple memory
manipulation

More Complex
memory
composition

procedure rf2 is
begi n

rd_file2(<- “data”)
end

The example in Smulation/Memory/meml.basa illustrates interfacing to Balsa’s memory model:

i nport [bal sa. si m nmenory]
i nport [bal sa.simstring]

procedure exl is
channel addr : 4 bits
channel read, wite : 8 bits
channel rNw: bit
variabl e addrCount : 4 bits
begi n
-- Read the Bal saMenory description in /share/bal sa/si mnenory. bal sa
-- for details. BalsaMenory is the name of a type that represents
-- simulation nenories and al so a procedure encapsul ati ng a nenory
-- nodel built from Bal saMenoryRead and Bal saMenmoryWite builtin function
-- calls. You can either use this nodul e or nake your own use of the
-- builtin functions directly.
Bal saMenory (

{4, -- address width
8}, -- data width
<- Bal saMermoryNew (), -- direct expression to port connection
addr, rNw, wite, read) ||
begi n

addr Count : = O;
print “Wite inverse address as data” ;
| oop
addr <- addrCount || rNw<- 0 ||
wite <- (not addrCount as 8 hits);
addr Count := (addrCount + 1 as 4 bits)
while addrCount /=0
end;

-- Now dunp the nenory,
-- there really ought to be builtin functions for this
addr Count : = 0;
| oop
addr <- addrCount || rNw<- 1 |]
read -> then

print “Address: “, addrCount, “ Data: “,
Nurmber ToString (8 bits, read, 16, 4, 1)
end;

addrCount := (addrCount + 1 as 4 bits)
whi | e addr Count /=0
end
end
end

This example uses separate procedure to load the memory and dump its contents. These procedures
are composed with a simple process that writes and read a few arbitrary locations. Notice the use of
the string to number conversions (and vice versa). If the numeric values in the data file are in the
default format (i.e. decimal values carry no prefix, hexadecimal numbers are prefixed with Ox etc.),
the appropriate conversion routine to use is Fr ont ri ng. However, if the numbers are in a particular
format (say hexadecimal) and are not prefixed, then Nunber Fr onSt r i ng must be employed with the
appropriate radix passed in the function call.

96

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

7.7. Example Custom Test Harnesses

i nport [bal sa. si m nmenory]
i nport [bal sa.simstring]
inport [balsa.simfileio]

constant addr width =5
constant data width = 8
constant MenSize = 2 ~ addr_width

type AddrWdth is addr_width bits
type DataWdth is data width bits

procedure | oad_nmem (
input fnane : String ;
out put addr_bus : AddrWdth ;
out put data_bus : DataWdth ;
output rNw: bit
) is
variable file : File
vari abl e num: DataWdth
vari abl e addr : AddrWdth

begi n
fname -> then
print “loading menory from “, fnane;

file := FileQuen(fnane, read);
print “Qpened file:
loop while FileECH(file) /=1 then

-- if data has no radix prefix use this conversion
-- see the effect with supplied data file which has prefix.
num : = Nunber FronString(DataWdth, FileReadLine(file) ,16);

-- if data has radix prefix use this form
-- this is probably what is required for supplied data

-- num:= FronBtring(DataWdth, FileReadLine(file) , “*);
print num;
addr _bus <- addr || data_bus <- num|| rNw <-
addr: = (addr + 1 as AddrWdth)
end
end

end

procedure proc (
out put addr_bus : AddrWdt h;
output wite bus : Datawdth;
input read_bus : DataWdth ;
output rNw: bit
) is
variable x : DataWdth
begi n
-- poke the nenory to show we can
addr_bus <- 0 || wite_bus <- Oxff || rNw<- O;
addr_bus <- 1 || wite_bus <- Oxfe || rNw<- O;
-- read the nmenory to show we can

addr_bus <- 1 || read_bus -> x || rNw<- 1,
print “Value fromaddress 1 is: “, X
end

procedur e dunp_rmem (
out put addr_bus : AddrWdth ;
input data bus : DataWdth ;
output rNw: bit

) is

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

97

7.7. Example Custom Test Harnesses

A Processor
Test Harness

variable data : DataWdth
variabl e addr : AddrWdth

begi n
print “durnpi ng menory”;
addr := O;
| oop

addr_bus <- addr || data_bus -> data || rNw<- 1,
print “<O0x“, NunberToString (AddrWdth, addr, 16, 0, 1) , “> Ox“,
Nurber ToString (DataWdth, data, 16, 0 ,1) ;
addr := (addr + 1 as AddrWdt h)
while addr /=0
end
end

procedure ex2 is
vari abl e mem: Bal saMenory
channel datafile : String
channel addr_bus : AddrWdth
channel read_bus : DataWdth
channel wite_bus : DataWdth
channel rNw: bit
begi n
nmem : = Bal saMeror yNew () ;
Bal saMenory ({addr_wi dth , data_wi dth},
<- nmem
addr _bus,
r Nw,
wite_bus, read_bus) ||
begi n
| oad_men(<- "data", addr_bus, wite_bus, rNa ;
proc(addr_bus, wite_bus, read bus, rNy ;
dunp_ren{ addr _bus, read_bus, rNw
end
end

This example in Simulation/Processor ties together many of the previous examples of using the
builtin Balsa functions to create custom Balsa test harnesses. The ssem processor described
previously (see “A Simple Processor — The Manchester SSEM (The Baby)” on page 72) is
connected to a memory model which is loaded which the code corresponding to a program for
computing the gcd of two numbers. The source code can be found in gecd.s. The two numbers are
specified in locations Ox11 and O0x12 with the result, on termination, found in location Ox11. A
description of processor can be found in ssem.pdf. An assembler sasm is provided for users who
wish to write other programs.

98

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

Technologies

Styles

Implementations

8.1. Introduction

Balsa provides means of describing and modelling asynchronous systems together with a means of
functionally simulating these systems. However, Balsa is primarily a synthesis system and in this
chapter the various implementation routes and options are described. In order to produce real silicon
or a real gate-array implementations, access to the design-kits of the silicon or gate-array vendor is
required — Balsa merely produces a netlist in format appropriate to a CAD system that supports the
technology.

When creating an implementation, users may choose a particular technology, different “styles”
within a technology and for each style a variety of options may be available.

Currently Balsa supports the following technologies. Each technology has its own cell libraries, gate
fan-in restrictions, instance naming and pin mapping conventions. Different technologies may also
use different netlist formats. The technologies must be downloaded and installed as separate
packages. Only the

balsa-tech-ams: This technology supports the AMS 350nm design kit and produces a Verilog
netlist.

balsa-tech-amulet: This technology contains a set of custom cells designed within the Balsa group
based on the SGS-ST 180nm library and produces a Verilog netlist.

balsa-tech-sths018: This technology contains only standard cellsfrom the SGS-ST 180nm library.

balsa-tech-example: This technology produces a Verilog description based on example cells and
is intended as template for users who wish to create their own back-ends.

balsa-tech-xilinx: This technology produces a EDIF netlist suitable for Xilinx gate-arrays

Currently the Balsa release supports the following back-end protocols for use with each technology.:
four_b rb: abundled-data scheme using a four-phase-broad/reduced-broad signalling protocol.
dual_b: a delay-insensitive dual-rail encoding.

one of 2 4: adelay-insensitive one-of-four encoding.

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 99

8.1. Introduction

The bundled-data back end should be faster and smaller, but needs more careful post-layout timing
validation. The two delay-insensitive schemes are larger and slower but should be more robust to
layout variations.

Options Each option is set/unset or takes a value as shown in Table 8.1 on page 100.

Option Values Notes

Handshake circuit descriptions allow for nodes in the circuit to
be identified as being points at which buffers may be inserted
because the node may be heavily loaded. Setting this option will
cause the buffers to be instantiated.

suggest-buffer | set/unset

Substitutes behavioural assign statements for feed-through
se components when importing into Silicon Ensemble and
substitutes supply 0/1 for Vdd and Gnd. This is the default route.

Currently, this option only makes sense for the amuST library. It
is used for as part of the design flow for transistor-level back-
cadence annotated simulations

Feed-through components are replaced with a special
component to allow verilog-in to generate the correct output.

cad

Implements “helper” cells — those cells composed from the basic

DIM
S cell library — in a DIMS style

Implements “helper” cells — those cells composed from the basic
NCL cell library — using NCL style gates. In many circumstances
logic smaller implementations result.

Creates balanced circuits where the notional path delays through
the DIMS circuts are matched in an attenpt to defeat Differential
Power Analysis attacks in security applications such as
smartcards

Balanced

SR Variables stored in “standard”SR latches

Each variable latch is reset to a NULL state before a writie
Spacer operation in an attenpt to defeat Differential Power Analysis

variable . . L
attacks in security applications such as smartcards

Variables are stored in pipleline style latches. More efficient for

NCL 1-of-4 codes.

Enables general n-of-m mapping strategy for dual rail (dual_b)
set/unset styles. General users should accept the default option — the
option is included for historical reasons.

n-of-m
mapping

icarus

vl These option are only available for the example technology.

They are various Verilog simulators known to work with the

. ncv . .
sim o Balsa system. Note that bal sa-simverilog must be
A
. configured to locate a particular simulator (see the installation
modelsim
notes). i car us and cver are publicly available simulators.
cver

Table 8.1: Style options

100 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

8.2. Creating an implementation

Many of the options offered are for use within specialist research projects; others depend on the
exact tool flow used when targetting particular silicon technologies and design kits.

8.2. Creating an implementation

In balsa-mgr, select the top-level procedure. Right-click and choose “Add Implementations” (as

-
06006 X/ Balsa Project Manager

I Project File Selected ltem Wiew Build CY35 Tools Help

Files—
0'@@3-%!

ssem.balsa | top.halsa |

Pro]ect Froject Mame—

0"*@@@%%

Files j Makeﬂlel

MName f Dotted path 1
ssem.balsa

procedure SSEM (
— Memory interface, Memd,MemRNW, MemB M2

e

output Memd @ Linedddress;

top.balsa . Edit autput MemRMW @ bit; |

= top_level proc Make input MemR @ word; |

= dump_mem proc= output Mem : word ; |

= load_mem proc P.dd Test F|x1ure ;n?ﬁgﬂega]t state
Add LARD Test File.. | s

Add Jmplementation kJ variable ACC, ACC_slave : waord
e variable IR @ word
AddﬁuntmLmrary variable PC, PC_step : LineAddress
variable MOR @ word

variabhle Stopped : hit

Delete

— Extract an address from a ward |
Functinn Fetrartaddrass fwardial « ward? | £]]

Figure 8.1: Adding an implementation.

shown in Figure 8.1) causing a dialogue box to be spawned. The user can change the nakme of the
implementation and the default balsa-netlist options (see Section, “Balsa Reference,” on page 125).

Clicking on the technology tab reveals the technology and style options. shown in Figure 8.2

X Implementation Options

Mame & Options Technolog I

Technology === e 7| 1
oy four_b_rh
Style dual_b . | 4
A
Style options clE e

Option isuggest—buﬁers
Value] s i
£

logic dims

PR, v

BALSATECH [amustd1a8/dual_b/

e

Description [gs B
suggest-buffers: Add defaults buffers in 2
suggested drive-up buffer insertion point@ ‘l
5
/

Ok i Cancel 1

Figure 8.2: Choosing an implementation style.

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 101

8.2. Creating an implementation

Choose the technology desired, the implementation style and the style options. An icon for the
implementation should be displayed in the File pane under the chosen procedure. Changing to the
Makefile pane should reveal the new rule listed under the implementations subpane. Clicking on the
Make button will generate the appropriate netlist for the technology.

@6 e [X| Balsa Project Manager
I Project File Selected ltem Miew Build CW¥5 Tools Help

oo e

OCP0RKE

ssem.balsa | top.halsa |

r Praject * Project Mame——————

CwOGL XS

| Files Makeﬂle]

Tests — Memory interface, Memd,MemRNW, MemB, M2

ey
output Memd @ Linedddress;
t:

Implementations output MemRHW @ bit;

dual-rail Make i! input MemR @ word;
output Mem : word ;
SRR — Signal halt state
| Filas sync halted
| 3 s
| lzsem.halsa
| [ssem breeze Compile variable ACC, ACC_slave : word
rE—— variable IR @ word
cost Run variable PC, PC_step : LineAddress
— : variable MOR @ word
SSEM.pS tlake VIEWi variable Stopped : bit
| topbalsa — Extract an address from a word

functinn Fytractaddrecs fwnrdial « wordd |/

Figure 8.3: Making the implemetation.

All that remains is for the netlist to imported into the CAD framework for the chosen technology!
Future versions of this manual will give advice how to do this.

102

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

Technologies
and Styles

Adding Technologies to Balsa

9.1. The Balsa backend

This chapter documents how multiple technologies and implementation styles (described in
“Implementations,” on page 99) are handled. It describes how to add technologies and
implementation styles to the Balsa system.

A Balsa description of a circuit is initially compiled to an intermediated breeze format containing
references to generic, parameterised handshake components. To create a concrete implementation,
bal sa-net|i st creates instances of expanded handshake components, in a .net format netlist, from
the parameterised breeze specifications by applying the parameters to a description of the
component.

The description used to generate the handshake component is composed from abstract gate operators
and customised cells and is dependant on the implementation style and, in a small number of cases,
the technology. The implementations are described in a special language abs (see “The abs
language” on page 110). The .net file is then mapped, according to specifications defined by the
technology, into the target netlist format which involves mapping the .net instance names into the
names of the technology cells and decomposing large gates that are incompatible with the
technology into smaller gates.

A knowledge (and love!) of the lisp-like language scheme is helpful for understanding how to

construct a new backend

The Balsa backend system allows for implementations in different technologies and different
asynchronous styles. The technologies correspond to different cell libraries (either custom built or
vendor-supplied standard cell libraries) for silicon foundaries or libraries for programmable gate-
arrays such as Xilinx. Although each technology has its own cell libraries, gate fan-in restrictions,
instance naming and pin mapping conventions and netlist formats, most handshake component
descriptions are common across all technologies.

Balsa supports several different asynchronous implementation styles; the present release supports:
* abundled data scheme using a four-phase-broad/reduced-broad signalling protocol
e adual-rail delay insensitive scheme

* aone-of-four encodings delay-insensitive scheme.

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 103

9.1. The Balsa backend

Directory
structure

example ———— example

——— example-cells.net

——— balsa-cells.net

——— balsa-mgr.cfg

I —— components.abs

—— drive-table

L gate-mappings.scm

common —r——— components —————— Adapt.abs
—— common | Arbiter.abs

—— components.abs

— helper-cells.abs —— While.abs
—— helper-mappings [~ definitions.abs
— template-balsa-mgr.cfg—— ctrl-broad ————— Arbiter.abs
L Synch.abs
—— data-single-broad ———— Adapt.abs
L While.abs
—— data-dual ———— Adapt.abs
L While.abs

—— dual-rail-definitions.abs

— data-lof4 —————— Adapt.abs

L While.abs

L one-of-four-definitions.abs

Figure9.1: Directory structure for the example technology and common components

Each implementation style may have several style options such as variations in the types of latches
or the style of logic used. In contrast to technologies, styles need different component descriptions
for each type of implementation.

There is much similarity between the requirements of different netlist formats which is reflected in
the directory structure. Information specific to a particular technology is held in a directory
corresponding to the technology’s name. Other information which is common to all technologies is
held in the directory common. As control components are generally determined by the signalling
protocol rather than by the data encoding, the descriptions for the implementation directories are
split up into various control and datapath implementations to reduce the number of directories. A
extract of the directory structure (rooted at balsa/shareftech) is shown in Figure 9.1.

104

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

9.2. Thetechnology configuration file

common
directory

the <tech>
directory

The common directory contains the following files and directories.
common: this is an empty configuration file for the technology — not used.

components: this directory contains each component in a separate file. For each implementation
style there is a link to the directory and file of the relevant description. Also in the directory are
several definition files: definitions.abs, dual-rail-definitions.abs, one-of-four-definitions.abs; these
files contain functions (in the abs language) used by many of the component descriptions.

components.abs: this file includes all the components in the component directory.

helper-cells.abs: this file is a set of descriptions of all the current helper-cells in abs — it allows
helper-cells to be generated in any technology by the program bal sa- make- hel pers.

helper-mappings. this is a 3-way mapping file format similar to gate-mappings to map from a
helper-cell-abs description to a cell name in balsa-cells.net and an entry in gate-mappings. e.g.

("c-elenent3" "c-element3" "c3")

Here the first argument is the name of the cell in helper-cells.abs the second the name of the cell the
abs HC component descriptions and the gate-mappings file, and the third the name of the cell in the
balsa-cell.net file to be generated.

template-balsa-mgr.cfg: a template for adding technologies, styles and style options to balsa-mgr.
In each technology directory, <tech>, the following files are found:

<technology>: essentially a configuration file for defining various files and component names
used by the technology. The file format is described in “The technology configuration file,” on
page 105.

<technology>-cells.net: a file in .net format (see “Netlist,” on page 122) containing lists of all the
cells in the library, together with their pin orderings and directions. The name of this file can be
changed in the technology configuration file.

balsa-cells.net: a file in .net format containing all the “helper” cells required by the various Balsa
descriptions, such as adders, s-elements etc which are not resident as cells in the target technology
library. The name of this file can be changed in the technology configuration file.

balsa-mgr.cfg: this file is necessary so that the technology and its options are known about by
balsa-mgr. A template for constructing the file can be found in common/template-bal sa-mgr.cfg

components.abs. contains descriptions of handshake components which are specific to that
technology; typically the last line of the file will import common descriptions from common/
components indirectly via common/components.abs.

drive-table: not currently used.

gate-mappings. used to map between the abstract gate names and pin orderings of the .net output
and that required by the technology. This file also contains information about different cells to use
when driving large loads. The information required to “drive-up” signals where necessary is
contained in the drive-table file. — however, at present, this feature is not available in this Balsa
release. For more details see “Netlists,” on page 115.

9.2. The technology configuration file

Each technology is controlled by a configuration file, named the same as the technology:

net-signature-for-netlist-format determines the netlist format to use for the technology,
either verilog, edif I The second argument, if true, sets the format as the default for that

1. “compass” is also allowed for historical reasons , producing a netlist in that design system’s
proprietry format.

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 105

9.2. The technology configuration file

(net-signature-for-netlist-format 'verilog #t)

(set! breeze-gates-net-files ' ("exanple-cells" "bal sa-cells"))

(set! breeze-primtives-file (string-append breeze-tech-dir

"conponent s. abs"))

(set! breeze-gates-mapping-file (string-append breeze-tech-dir "gate-
nappi ngs"))

(set! breeze-gates-drive-file (string-append breeze-tech-dir "cadence-
drive-table"))

;7. max. no. of inputs for and/or/nand/ nor gates and c-el enents
(set! tech-gate-nax-fan-in 3)

(set! tech-c-el enent-nmax-fan-in 3)

(set! tech-map-cell-nane id) ;;; No mapping

(set! tech-netlist-test-includes '("exanple-cells.v"))

(set! tech-gnd-net-name "!gnd")

(set! tech-vcc-net-name "!vcc")

(set! tech-gnd-conponent-name "LOd C0")

(set! tech-vcc-conmponent -nane "LOd C1")

Figure 9.2: A typical configuration file.

technology. The net - si gnat ure-for-netlist-format procedure is also used by bal sa-netli st
with the -n option when producing new-netlists to allow different netlists to be produced other than
the default - if a default netlist signature was not set, then bal sa- net I i st would produce an error as
no netlist could be produced. It is possible to have two different netlist-signatures but their use is
controlled by style-options

breeze- gat es-net -fil es is a list of the cell description files used by the technology.

breeze-primtives-file is the path to the component.abs file of the technology, br eeze-t ech-
di r is a global variable in the scheme code that defines the path to the technology directory.

br eeze- gat es- mappi ng-f i | e is the path to the gate-mappings file

breeze- gat es- dri ve-t abl e is the path to the drive table, containing information about the loading
and drive strengths of each gate

t ech- gat e- max- f an- i n sets the maximum fan-in for the logic gates (AND, OR, etc) in the library.
t ech- c- el errent - nax- f an- i n sets the maximum fan-in for c-elements in the library.

t ech- map- cel | - nane sets the mapping function for the handshake component names, at present
only net - si npl e- cel | - nane- mappi ng function is available, which is a simple cropping procedure
taking a boolean argument stating whether uppercase or lowercase letters are prefered by the
technology. The length at which names are cropped is controlled by the t ech- cel | - nane- nax-
| engt h variable. The i d function is used when no mapping is required, the function preserves the
original balsa names.

tech-netlist-test-includes is alist of HDL models of the cell library, used by balsa-mgr when
simulating implementations with CAD simulators.

The last four declarations set the power and ground net and component names for the technology.
balsa-netlist instantiates power and ground components for conections between gates and the rails.
The name of the net used to connect to these components is determined by the t ech- gnd- net - nare
and t ech- vcce- net - nane variables. If no power and ground component names are supplied when
specifying a verilog netlist, these nets are instantiated as suppl y0 and suppl y1 types respectively.
and no power or ground components are instantiated.

There are three variables not shown in Figure 9.2:

106

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

9.3. Handshake component declarations

par anet er s

ports

synbol

i npl ement ati on

t ech- cel | - name- max- | engt h determines the maximum number of characters for instance names
in the netlist by default this is set at 1024 characters.

t ech- map-cel | - nane-i nport, tech-nap-cel | - nane- export allow balsa-netlist to import and
export any name mappings of cells to or from a mappings file in the local directory, allowing
different balsa-designs to keep consistently mapped cell names, if the tech-map-cell-name or tech-
cell-name-max-length options are used.

Each option takes the name of a simple import/export function: net - si npl e- cel | - narre-i nport
and net - si npl e- cel | - nane- export respectively

9.3. Handshake component declarations

For convenience, the descriptions of common handshake components are separated into
implementation independent declarations and technology specific implementation descriptions.
Each HC declaration (found in cormon/ conponent s/) consists of four parts as shown in Figure 9.3:

(primtive-part "Bar"
(paraneters
("guardCount" (naned-type "cardinal"))

)

(ports

(port "guard" passive output (nuneric-type #f 1))

(sync-port "activate" passive)

(arrayed-port "guardlnput" active input (nuneric-type # 1) O
(param "guardCount "))

(arrayed-sync-port "activateQut" active O (param "guardCount"))

)

(synbol

(centre-string "[]1")

)

(i npl ement ati on

(style "four_b_rb" (include tech "conmmon" "dat a-singl e-broad/ Bar"))

(style "dual _b" (include tech "common" "data-dual/Bar"))

(style "one_of _2 4" (include tech "common" "data-1lof4/Bar"))

)
)

Figure 9.3: Example of a component abs file

Variable expressions used to customise the component.
Declaration of the ports of the component. There are four kinds of port:

sync- port
arrayed sync-port
dat a- port
arrayed dat a- port

The port declaration lists the ports “sense” (whether passive or active), “direction” (input or output),
type (if data port), and, if arrayed port, its low index and cardinality.

The two sections above both include a type declaration to specify the type of the expression. The
types allowed are defined in “Types,” on page 120.

The symbol of the component as it would appear in an HC graph.

The implementation descriptions of the component for each implementation style — usually a link to
a description in the appropriate style directory although descriptions may also be inlined. The format
of these descriptions, their operators and operands is discussed below.

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 107

9.4. Handshake component implementation descriptions

def i nes

nodes

gat es

9.4. Handshake component implementation descriptions

Handshake component instances are generated from these descriptions according to the parameters
in the intermediate breeze file. The descriptions are a recipe written in the abs language which has
operators to create gates or arrays of gates, as well as operators to construct and destruct wire
vectors used by the component. Each HC implementation description consists of four separate
sections:

Specifies an optional list of expressions, defined by the parameters of the component. Definitions
are of the form:

(identifier expression)

The complete grammar for expressions is given in “The ABS Grammar,” on page 118 and includes
operators such as *, /, and, if etc. It also contains several builtin functions:

pop- count ;; the number of bits set in a binary representation

find-set-bit ;; the first set bit of a binary number

find-clear-bit ;; the first clear bit of a binary number

styl e-option ;; returns true if a particular style option is in the BALSATECH variable
bit-1ength ;; the number of bit required to implement a binary number

bi t - set ;; the boolean value of a given bit of a binary number

bi t - xor ;; result of a boolean xor operation on two binary numbers

.. ;; create an interger list between a pair of values

print ;; print a list of expression to current-port

not e ;; print a list of expressions to error-port

The full range of scheme’s builtin functions are also available.

The expression language contains the facility to support user-defined lambdas (anonymous
functions). The lambdas are similar in style to lambdas in the scheme language. Lambdas are
declared like any other expression and take the form:

(I anrbda (parans*)
(I et - expressi on?)
(body- expr essi on)

)

Where paramsis a list of identifiers. The let expression is a list of local definitions, taking the form:

(let
(identifier expression)+

)

The body expression can be any valid expression in the expression language. Multiple expressions
can be executed by enclosing them in a begi n expression. Lambdas can be called from within the
defines section or throughout the other sections by providing values for its parameters:

(identifier parans*)

The expression language also includes several control lambdas, defined in definitions.abs for
operating across lists etc:

map(func args) ;; Applies func to the list args, and return the resulting list
fold(func res args) ;; Applies func to the list args, accumulating the result in res.
for-each(func args) ;; As map but does not return the resulting list - used for side effects

Defines a list of all the internal nodes in the circuit. Definitions are of the form:
(narme wi dth | owbitlndex cardinality)
where width, lowbitIndex and cardinality are valid abs language expressions.

Contains the implementation of the component written in the abs language.

108

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

9.5. Adding a new technology

connecti ons Lists the port to port connections of the component.
(defines
(guard-count (param "guardCount"))
)
(nodes
("bypass" (+ 1 guard-count) 0 1)
(gates
(c-element (ack "guard") (ack (each "guardlnput")))
(or (data "guard") (data (each "guardlnput")))
(or (ack "activate") (ack (each "activateQut"))
(slice guard-count 1 (node "bypass")))
(connect (req "activate") (slice 0 1 (node "bypass")))
(denux2
(slice 0 guard-count (node "bypass"))
(slice 1 guard-count (node "bypass"))
(combi ne (req (each "activateQut")))
(conbi ne (data (each "guardl nput")))
)
)

(connecti ons
(connect (req "guard") (req (each "guardlnput")))

)

Figure 9.4: Example of component implementation description — the single rail “bar”

9.5. Adding a new technology

Adding new technologies is straight-forward. The whole process takes about an hour

1.

Create a <technology>-cells.net file. Add entries for each cell in the new target cell library.
This step may be automated.

Create a gate-mappings file for the abs-gate operators that are available in the library.
Mappings must be provided for anything that is used by the abs descriptions or any logic
required to generate helpers by bal sa- nake- hel per s such as and, or, nor, i nverter, xor,
buffer, 2-1-nux, 1-2dermux, transparent-Iatch, tristate-inverter, tristate-
buf fer, and keeper inverters.

If the cell library contains asynchronous cells such as c-el ement s, s-el ements or nut exs
they should be be put here as well, otherwise less efficient versions will be generated by
bal sa- make- hel per s out of standard cells.

Create a component.abs file including a link to the common components.abs. If keeper -
inverters are not available add single rail implementations of Variabl e, Cal | Muix and
CaseFet ch components.

Create a configuration file.
Install the skeleton implementation (or copy it to share /tech)

Set the environment variable BALSATECH to the new technology. Run bal sa- nake- hel pers
to produce two files: a new full balsa-cells.net and a gate-mappings file that must be
concatenated to the existing file as it only contains new mappings for cells that have been
implemented by bal sa- make- hel per s — the reason why these files are handled differently by
bal sa- make- hel per s is historical and of course has been forgotten.

Create a new balsa-mgr.cfg file using the template, in the common directory.

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 109

9.6. The abslanguage

Bundles

Channels

Adding more implementation styles is not easy: New descriptions must be made for each
component, and the backend scheme code must be updated to inform the system about the structure
of channels within the new style. A brief specification of the handshake components can be found in
<balsa-home>/doc/components.txt. An example description is given in “Example,” on page 113

9.6. The abs language

Each implementation consists of a list of gate operators or helper cells operating on individual wires
or wire vectors, these vectors are obtained by partitioning the port expressions into their constituent
components. The following is a discussion of the datatypes and operators present in the abs
language.

A bundle is an expression of the data/signalling wire bundle which can be connected to the port of a
handshake component. A bundle therefore may be take any of the forms of the port descriptions
(arrayed/sync/data), and several operators allow their manipulation:

“name” - the complete bundle, refers to the named port expression.

bundl e “name” index - used to extract a single channel from an arrayed port expression.

bundl es “nhame” index count - used to extract a range of channels from a bundled array.

each “name” - used to apply an operation on each of the channels in a bundled array.

Channels are the individual communications primitives that constitute the bundles of a component.

Channels are composed from several logical groupings of wires called portions. The structure of a
channel and its portions depend on the implementation style, sense and direction of the channel.

Implementation Style Channel Sense Port Sense Portions
. req
Push Pas'swe Input ack
Active Output d
Four Phase Broad/ ata
Reduced Broad

Active Input req
Pull Passive Output ack
p data
. req0
Push Pas.swe Input reql

Active Output
ack

Dual Rail

. req
P ackl
req0
. reql
Push Pas'swe Input req?

Active Output
req3
ack

One of Four

req
Active Input ack0
Pull Passive Output ackl
P ack2
ack3

110

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

9.6. The abslanguage

Slices

These portions can be accessed from channels/bundles by the portioning operators:

(req bundl e) (ack bundl e) (data bundl €)
(req0 bundl e)(reql bundl e) (ack bundle)...

Where bundle, can be a single bundle expression or several bundled arguments:

” oo

(req “inp” “out™) -> (req “inp”) (req “out”)
(req (each “inp”) -> (req “inp” 0) (req “inp” 1)

These portioning operators return the relevant portion in the form of a slice (see next section), which
are needed to be used as input to the gate operators. In order to extract slices from internal nodes
with no logical grouping another portioning operator is used :

(node bundl e)
where bundle takes the form of one or several internal node names.
Slices are the basic groups of wires that are manipulated by the gate operators of the system. Slices
are a means of constructing a single dimensional wire vector, so must consist of wires of the same

direction. Single slices are created by the portioning operators (r eq, ack, node etc), but slices can
also be formed from other slices by using the conbi ne operator:

(combine a b ¢ d)
which combines a, b, ¢ and d into one slice.

N.B. While most abstract gate operators will accept combinatorial slice as operands, some operators
(e.g. slice and filter) will only accept single slice operands generated by the portioning
operators.

The sl i ce operator is used to extract bit fields from a single slice:
(slice lowbit-index cardinality single-slice)
returns a slice of the input single slice consisting of cardinality wires starting at |low-bit-index.
The fil ter operator can be used to extract arbitrary bit patterns from a single slice:
(filter mask single-slice)
where mask is a decimal representation of the mask required to extract the desired bit pattern.
Slices can be reduced into a list of singleton slices by the snash operator:
(smash single-slice)
this is useful for applying operations across the elements of a slice:
(and (node “out”) (smash (data “in")))
would AND all the elements of “in” together.
Slices can also be duplicated with the dup and dup- each operators.

(dup count slice)
(dup-each count slice)

where slice can be an individual slice or a list of several slices.

The dup operator replicates the slice count times, and can be used with the conbi ne operator to
make a combinatorial slice allowing the slice to be applied several times across another slice, eg:

(and (node “out”) (data “inp”) (conbine (dup width (req “inp”))))

The dup-each operator replicates each element of a slice or slice list, allowing different arrays of
individual wires to be applied across another slice.

(and (node “out”) (data (each “inp”)) (conbine (dup-each width (req (each
“inp”)))))

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 111

9.6. The abslanguage

Gate The abs language has several gate operators for performing operations on slices. The gate operators
Operators can operate on slices of any size as long as the cardinality of all the slices is equal, and are expanded
to produce several operators acting on single width slices.For example, the and gate operator
operating on two nodes, a and b, of width 2 producing a result on node c, also two bits wide:
(and (node c) (node a) (node b))
would produce two and gate operators:
(and (slice 0 1 (node ¢)) (slice 0 1 (node a)) (slice 0 1 (node b)))
(and (slice 11 (node ¢)) (slice 11 (node a)) (slice 1 1 (node b)))
which would be mapped into .net gates as:
(and2 (“c_On" 0) (“a_0n” 0) (“b_On" 0))
(and2 (“c_On” 1) (“a_On" 1) (“b_On" 1))
and into a verilog netlist as:
(and2x1 c_0On[0],a On[0],b_On[0])
(and2x1 c_0On[1],a On[1],b_On[1])
There are two types of gate operators, fixed or stretchable. Fixed input gates have a fixed number of
arguments.. Stretchable gates are a small set of basic gates which can take unlimited numbers of
input arguments allowing tree-like structures to be created out of these simple gates. If the input and
output slices are of plural cardinality, several of these tree structures will be created for each wire in
the slices. The size of the gates used to create these trees is determined by the maximum fan-in for
gates of the target technology. The abs gate operators are presented in “The ABS Grammar,” on
page 118.
The abs language also provides the facility to add customisable cells as illustrated below:
(cell “cell-name” singleton-slice .)
The cell can have any name, and is mapped to a CAD-specific cell in the technology’s gate-
mappings file. The cell descriptions are stored in the technology’s helper cell description file, and
must use technology specific instances. The only restrictions on these cells are that they must take
singleton slices as inputs.
There are several other gate operators for use in constructing component descriptions:
(constant val ue out put-slice)
creates a constant from the decimal value, by tying wires to VCC or GND circuits.
(print args)
prints debugging messages that can be viewed when instances of the component are being
generated, takes unlimited number of arguments.
(nmacro identifier args)
The macro operator is a method for creating complex abs expressions dependent on some
parameters. A macro is lambda defined, as described, in the def i nes section. The lambda is called
using the macr o operator. The macro returns a gate operator which is then evaluated — after the
execution of the original lambda. The macro is executed, and the resulting expression is evaluated as
an abs expression. The arguments to the macro are also not evaluated, allowing abs expressions or
snippets to be passed in without resulting in syntax errors.
The abs system also includes control structure to allow more complex customisable components to
be created. The format of these structures is similar to the Scheme programming language:
(if expr
gate
gate
)
112 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

9.6. The abslanguage

where, gateis a valid gate operator of the abs language.

Either the consequent or the alternative is selected, depending on the value of expr. The syntax of
expr is given in the “The ABS Grammar,” on page 118.

(cond
(condition-expr gate...)
(condition-expr gate...)

.(ell sé gate...)

)

Each condition-expr is evalutated in turn, if it evaluates to true then the gates section is executed,
and the cond statement is exited. If no expression evaluates to true, the else statement is executed

(case expr
((test-value...) gate...)
((test-value...) gate...)

.(el. s;e gate...)

)

This is similar to cond statement except the expression is evaluated and then compared against the
constant test values of each statement.

(gate gate..)

allows several gates to be substituted into a single gate expression.

Several handshake components encode or decode binary values from/to one-hot wires described
using decode/encode gate operators. Because the format of these encodings varies greatly, these
components use a specification string to determine the encodings. The actual format of the string is
given in the appendix. Each string has at most n terms, one for each of the n one-hot-wires and asso-
ciated with each term is a value or set of values.

In the encoding string, this value represents the binary value to be output on receipt of activity on the
relevant input wire.

In the decoding string, this value represents the input value or range of values that will activate the
relevant output wire.

The decode/encode gate operators that are used to provide this logic are:
(encode option input-slices output slices)
(decode option input-slices output slices)

For both single and dual-rail implementations dual-rail QDI logic is employed. In single-rail this
simplifies the delay-assumptions for components and makes timing-enclosure simpler.The option
argument specifies whether to implement the logic in traditional a and/or realisation used for
bundled data implementations, or a c-element/or realisation for return-to-zero delay insensitive
implementations, or whether to use a m-of-n-mapping allow more complex codes such a 1-of-4 to
be handled. For complex codes a mapping-function is passed as an argument to the encode gate that
transforms binary implicants into the relevant encoding.

Example This example in Figure 9.5 illustrates the description of the FalseVariable handshake component in
a dual-rail implementation style using the abs language.

The FalseVariable component is used to implement passive input enclosure, it allows values of
passive inputs to be read in several places without the need for explicit latching. The FalseVariable
has three ports:

e 'write" - the passive input dataport,

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 113

9.6. The abslanguage

0 (primtive-part "Fal seVari abl e"

1 (paraneters

2 ("width" (naned-type "cardinal"))

3 ("readPort Count" (named-type "cardinal"))

4)

5 (ports

6 (port "write" passive input (nuneric-type #f (param"width")))
7 (sync-port "signal" active)

8 (arrayed-port "read" passive output

(nurreri c-type #f (param"w dth")) O (param "readPort Count"))

9)
10 (synbol
11 (centre-string "FV')
12)
13 (i npl enent ati on
14 (style "four_b rb" (include tech "common"
"dat a- si ngl e- br oad/ Fal seVari abl e"))
15 (style "dual _b"
16 (nodes
17 ("witeSig" 10 1)
18 ("witeSigPart" (param"wi dth") 0 1)
19)
20 (gates
21 (or (node "witeS gPart")(req0 "wite")(reql "wite"))
22 (c-elenent (node "witeS g")(smash (node "witeSigPart")))
23 (s-elenment (node "witeSig") (ack "wite") (req "signal")
(ack "signal "))
23 ; data read ports
24 (and (conbi ne (ackl (each "read")))
25 (conbi ne (dup-each (param"wi dth") (req (each "read"))))
26 (conbi ne (dup (param"readPortCount") (req0 "wite"))
27)
28 (and (conbi ne (ackO (each "read")))
29 (conbi ne (dup-each (param"wi dth") (req (each "read"))))
30 (conbi ne (dup (param"readPortCount") (reql "wite")))
31)
32)
33 (connecti ons)
34)
35)
36)

Figure 9.5: Description of dual rail FalseVariable

n

e "signal" - sync port to enclose the "read" port activity within a handshake on the "write
port.

* '"read" - an arrayed set of passive ports to allow the reading of data in multiple sources.
The component has two parameters:

e "width" - width of the read and write datapaths

e "readPortCount" - number of read-ports.
The passive read and write ports form pull and push channels respectively.

The behaviour of the FalseVariable is as follows. Once a request is received on the write port (in
single rail this is signalled by the request line; in dual-rail this requires completion detection to
detect the arrival of valid data) a handshake is initiated on the signal port. This handshake will
enclose all of the reads to the set of read-ports. The read-ports are connected to pull-channels and so
upon receiving a request they acknowledge with valid-data.

114

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

9.7. Netlists

In the dual-rail implementation shown above each channel has a different set of portions:

Push Channels: req0, reql, ack.The request on dual-rail push-channels is encoded within the
data. The req0 and reql portions are each the width of the datapath (param "width") and
respectively contain the zero and one wires of each dual-rail code group; ack is a single wire used to
acknowledge receipt of data on the channel.

Pull Channels: req, ack0, ackl. The data of pull-channels enclose the acknowledgement, ackO
and ackl are each the width of the datapath and contain the zero and one wires of each code group.
req is a single wire used to request data.

Sync Channels: req, ack have single request and acknowledge wires.
The implementation comprises 3 parts:

1. Completion Detection (lines 21 22). The slice arguments of the or gate-operator of line 21 are
each the width of the data-path (param "width") This has the affect of placing a single 2-input
or-gate for each binary bit of the datapath, detecting the arrival of data in each dual-rail code
group of the datapath. These signals are combined to a single signal using the c-element of line
22, the smash slice operator breaks down (node "writeSigPart") into individual single-wire
slices, and so this operator instantiates a tree of C-elements the width of the datapath.

2. An s-element is used to enclose the "signal" handshake between the completion-detection
signal and the acknowledgement of the "write" channel. As each slice is a single wire only one
s-element is instantiated.

3. The read-ports to the read-channels are instantiated with the two and operators (lines 24-31),
an operator for each ackO ack1 portion of the channels. Each operator results in the instantiation
of "readPortCount" arrays of AND-gates each of width "width", each slice argument to the
and-gates is ("readPortCount" * "width") wide. The bundling operator each on line 24 creates
a slice for each channel in the read-port array. This is combined to a single-slice with the
conbi ne command, The input arguments to the and-gate highlight the difference between the
dup and dup- each commands. The dup command is used to duplicate the "write" request
portionsforeachread-port,each wire of the write portis duplicated inturn, soeachread portreceives
all the wires of the write port. The dup- each command is used to ensure that each read-port
only receives the request wires specific to that read port. The each operator of line 29 expands
to "readPortCount" slices of request wires for the read-ports. These slices are then duplicated
in turn so as to produce:

(slice 01 (req (bundle "read" 0)) ... (slice width 1 (req (bundle "read" 0))
(slice 01 (req (bundle "read" 1)))
rather than:

(slice 01 (req (bundle "read" 0)) ... (slice 0 1 (req (bundle "read"
readPort Count)) (slice 1 1 (req (bundle "read" 0))

which would be produced by the dup command.

9.7. Netlists

balsa-netlist processes the breeze file by applying the specified parameters to the abs cell
descriptions: The gate operators are expanded into instances of abstract gates containing single slice
arguments. The stretchable gate operators are expanded into trees of gates of a size determined by
the maximum gate fan in of the technology. The channels are expanded into their constituent vector
components. The names are mapped to the target gate names, and their arguments re-ordered as
necessary. Balsa-netlist then produces a .net netlist which is an internal netlist format, technology
dependant, but independent of all CAD system netlist formats. Each technology has several files to
control this stage:

gat e- mappi ngs. net - This file contains the library cells to use in place of abstract gates and helper
cells. Each entry contains the abstract gate name, the technology cell name foreach available drive

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 115

9.7. Netlists

ports:

nets

iinstances

strength of the gate, and the pin mapping that takes place between the abstract gate pin ordering and
the actual gate ordering. Eg:

("and2" ("AND2" 1 20) (1 "AND2") (2 "AND22") (3 "AND23") (4 "AND24"))

Here an abstract 2-input and gate maps to the cell AND2, where the first pin (pin 0) of the absract
gate, in this case the output, maps to the last pin of the actual gate, the second (pin 1) to the first pin
etc. The customisable gate operators, helper cells, must also be declared in here to allow the same
helper cell to have different definitions in the various technologies.

<t echnol ogy>-cel | s. net - This file contains a list of all the cells in the library and their
arguments.

bal sa- cel I s. net - This file contains a list of all the helper cells and balsa primitives not supported
by the technology, e.g. c-elements, s-elements, arbiters etc.

The expansion process produces an intermediate netlist, based on the constraints of the target
technology, but independent of any established netlist format, allowing each technology to produce
netlists in various forms. The same format is used to declare the technology and helper cells in the
files mentioned above. A circuit declaration The format of a circuit declaration has 4 fields: ports,
nets, instances, attributes.

contains the channels of the input expanded into their constituent vectors. Each vector description is
of the form:

(nane direction width)
The naming scheme for channel portions is:
<channel name>_<channune<porti oni d>
<channum>: the channel index. If the channel is unarrayed, this number is always zero.

<portionid >: the portion identifier. Each portion has a different identifier shown below:

r - request wire

a - acknowledge wire

d - data vector

rod, rid, r2d, r3d - req data vectors (dual-rail/one-of-four)
a0d, ald, a2d, a3d - ack data vectors (dual-rail/one-of-four)

contains all the internal nodes of the circuit with arrayed nodes expanded into their individual. A net
declaration takes the form:

(netname wi dth)
the naming scheme for nodes is:
<nodenane>_<nodenunr<nodei d>:
<nodenum>: the node index, zero if unarrayed node.
<nodeid>: “n".
The above naming schemes apply to generated circuits only: Technology and user defined helper
cells are not restricted to this scheme, but must conform to target technology naming schemes.
lists of all the instances comprising the circuit. The format of instance declaration is:
(i nstance i nstancenane ("connection" "connection" ...))

where, instancename is the name of the instance as it appears in either the <technology>- cel | s or
bal sa- cel | s files. The connections are either nets or ports of the circuit, and are ordered in the
ordering given in the .net files of the technology.

116

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

9.8. The BALSATECH environment variable

attributes Attribute declarations are of the form:
(attribut enane val ue)
Attributes currently in use are:

cell-type: defines the circuit to be a helper cell or a balsa-generated component allowing netlists to
be created with helper cell descriptions removed.

global-ports: allows ports of a helper cell to be defined as global, which are then propagated
through the breeze netlist to the top level, this allows, for example, explicit reset signals on helper-
cells.

feedthrough: allows the insertion of assignment statements in components to avoid unnecessary
buffering in designs. The arguments are the port indices of the left and right handsides of the
assignment statement.

simulation-initialise: currently only configured for verilog netlists, this option signals balsa-
netlist to insert verilog initialisation code into the final netlist to force certain signals into known
states. The arguments to the attribute are a list of pairs (Signal-name value), only signal-bit signals
can be assigned. The resulting verilog code requires two defines to be set in the testbench
bal sa_simulate, a boolean to determine when simulation code is being used, and
bal sa_init_time, which determines the length of time the signals should be forced to their
designated value before being released.

Balsa-netlist takes the .net netlist and maps it to specific netlist formats, this includes changing the
instance declarations, channel naming schemes and node declarations. In formats where there is a
restriction on the length of circuit names, balsa-netlist creates a new abbreviated name, in order to
keep track of the original component it keeps track of this mapping in <technology>.map, in the
invocation directory. Then every time this name mapping needs to take place the .map file is
searched, and where possible the previous mapping is used.

9.8. The BALSATECH environment variable

<t echnol ogynane>/ <st yl enanme>/ <st yl eopt i ons>*

The implementation style of a circuit is determined by the BALSATECH environment variable.
This sets the technology, implementation style and also any options available for the
implementation style.

e.g.
export BALSATECH=exanpl e/ dual b/ vari abl e=spacer : | ogi c=bal anced

Sets the technology to the example technology, using the Dual-Rail backend. The last section sets
the style options. Each implementation style has its own style options, these options can be used to
change the resultant implementation from the default standard. Examples of style options include
changing the cell library or the vari abl e option which determines the cell to use for storage inside
the Balsa Variable components. The | ogi ¢ option determines the style of logic to be used in the
Binary-Function components. The format of the options is shown above with options being colon
separated. Values can be assigned to options that may take multiple vaules, Boolean options just
need to be set to “true”.

Current stylenames (corresponding to implemetation styles) are:
e four_b_rb-bundled data four-phase, broad, reduced broad protocol
e dual _b - dual rail delay insensitive encoding with return to zero signalling

* one_of _2_4 — one-of-four delay insensitive encoding with return to zero signalling

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 117

9.9. The ABS Grammar

9.9. The ABS Grammar

Components component description:

(primtive-part (partname)
(parameter-expr)
(port-expr)
(symbol-expr)
(implementation-expr)

)

(parameter-expry (par anet ers
((“{param-name)” (type-expr)))*

)
(port-expr) (ports
(({port-type) “(portname)” (port-sense) (port-direction) {type-expr)))+
)
(port-type) port
| sync-port

| arrayed- port
| arrayed-sync-port

(port-sense) passi ve
| active
(port-direction) i nput
| out put
(symbol-expr) (synbol
(centre-string "(symbol)")
)
(implementation- (i npl enent ati on
expr) ((styl e “(stylename)” (include-expr} | (style-descr)))+
)
Styles Descriptions of implementation styles
(style-descr) (define-expr)

(node-expr)
(gate-expr)
((connection-expr))?

(define-expr) (defines
({bound-expr))*
)
(node-expr) (nodes
((" (nodename) " (width) (low-bit-index) (cardinality)))*
)
(gate-expr) (gates
(({gate-operator)))*
)

(connection-expr) (connecti ons
((connect (input-slice) ((output-slice))+))*

)

Gates Descriptions of gates

118 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

(gate-operator)

(Fixed Gate)

(Stretchable
Gate)

(Control Gate)

(if-gate-operator)

(cond-gate-
operator)

(case-gate-
operator)

(gates-gate-
operator)

(Other Gate)

(macro-args)

(option)

(Fixed Gate)
| (Stretchable Gate)
| (Control Gate)
| (Other Gate)

(const ant (value) {output-slice))

(xor 2 {output-slice) {input-slice0) (input-slice1))

(mux2 {output-slice) (input-slice0) (input-slice1) (select-slice})

(demux2 (input-slice) {output-slice0) {output-slice1) {select-slice))
(i nv {output-slice) {input-slice))

(keeper - i nv {output-slice) (input-slice))

(l'at ch (enable) (input-slice} {output-slice))

(I at ch- n- enabl e (enable-slice) (input-slice) {output-slice))
(tri-buffer {enable-slice) (input-slice) (output-slice))
(tri-inv{enable-slice) (input-slice) {output-slice))

(mut ex (input-sliceA) (input-sliceB) {output-sliceA) (output-sliceB))

(gnd ((output-slices))+)

(vcce ({output-slices))+)

(connect (input-slice) ((output-slices))+)
(‘and {output-slice) ((input-slices))+)

(nand (output-slice) ({(input-slices))+)

(or {output-slice) ({input-slices))+)

(nor {output-slice) ({input-slices))+)

(c- el enent (output-slice) ({input-slices))+)

(if-gate-operator)
| {cond-gate-operator)
| {case-gate-operator)
| {(gate-gate-operator)

(i f (expr)
(gate-operator)
(gate-operator)

)

(cond
(({condition-expr) (gate-operator)) +
((el se (gate-operator)))?

)

(case (expr)
(((((test-value))+) {(gate-operator)))+
((el se (gate-operator)))?

)

(gat es ((gate-operator))+)

(const ant (value) {output-slice))

(print ({arg))")

(macr o {macro-name) ({macro-args))*)

(encode (option) (({input-slices))+) {output slice})
(decode (option) (input-slice) (({output-slices))+))

| (cell “cell-name)” ((singleton-slice))*)
((identifier))+

and- or

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

9.9. The ABS Grammar

(s- el enent (request-in-slice) (ack-in-slice) (request-out-slice) (ack-out-slice))

9.9. The ABS Grammar

Slices
(slice)

(slice-operator)

(partition-
operator)

(bundle-expr)

Include
(include-stmt)

(technology-
desc)

Types
(type-expr)

| c-or
| m of - n- mappi ng (mapping-function)

Slices and slice operators
(({slice-operator))* ((partition-operator)) ? (bundle-expr))

(conbi ne ((slice))+)
| (dup (slice))
| (dup-each (slice))
| (smash (single-slice})
| (filter (single-slice))
| (sl i ce (low-bit-index) (cardinality) (single-slice))

The last 3 operators take (single-slice) arguments, these arguments must be the result of a
partitioning operator only and cannot be preceeded by any other slice operator.

(r eq (bundle-expr))

(r eqO (bundle-expr))
(r eql {bundie-expr))
(r eq2 (bundle-expr))
(r eq3 (bundle-expr))
(‘ack {bundle-expr))

(‘ackO0 (bundle-expr))
(‘ackl (bundle-expr))
(‘ack?2 (bundle-expr))
(‘ack3 (bundle-expr))
(dat a (bundle-expr))
(node (bundle-expr))

“(name)”’
| bundl e “name)” (index)
| bundl es “name)” (index) {count)
| each {name)”

description of include statements
(i ncl ude ((technology-desc) | (subdirectory)”)? “(filename)”)

t ech “(tech-name)”

The include statement allows the contents of other .abs files to be inserted into this file. Included
.abs files must be present in the components directory (or any sub-directory) of one of the valid
Balsa technologies. For example:

(include “ctrl - broad/ Sequence”)
will include the contents of the file components/ctrl-broad/Sequence.abs in the current technology.
(include tech “common” “ctrl - broad/ Sequence”)

will include the same file but from the ctrl-broad sub-directory of the components directory of the
common technology.

type definitions

(named-type-expr)
(numeric-type-expr)
(alias-type-expr)
(array-type-expr)
(enumeration-type-expr)
(record-type-expr)
(string-type-expr)

120

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

9.9. The ABS Grammar

(named-type-
expr)

(numeric-type-
expr)
(alias-type-expr)
(array-type-expr)
(enumeration-
type-expr)

(record-type-
expr)

(string-type-expr)

(enum-list):
(fields)

(case-spec)

(range)

(signedness)

Expressions

(expr)

(lambda-dec-
expr)
(lambda-call-
expr)
(if-expr)
(arith-expr)
(fn-expr)

(named- t ype (name))

The type identified by named-type are useful predeclared types (in balsa/types/basic and balsa/
types/synthesis) such as cardinality or boolean..

(nuneri c-t ype (signedness) (width))

(al i as-t ype {newname) {oldname))
(array-type (type-expr) (lowindex) {elementCount))

(enumer at i on- t ype (signedness) {(width) (enum-list))
(record-type (width) (fields))

(case-spec) (; (case-spec))*
This type is only used a parameters to a select few gates which take a specification string
(({name) {value)))+
(({name) (type-expr)))+
(range) (, {range))*

[0-9] (.. [0-9])*

#t
| #f

expression types

(lambda-dec-expr)
(lambda-call-expr)
(if-expr)
(arith-expr)
(fn-expr)
(scheme-expr)
(encoding-expr)
(param-expr)
(bind-name)
(primitive-expr)

(1 anbda (identifier) ({param-list)) (body-expr))

((identifier) ((expr))*)

(i f (expr) (expr1) (expr2)) ;;(expr) is consequent, (expr) is alternative.
((arith-op) ((expr))+)

(pop- count {expr))
I (find-set-bit (expr))
| (find-clear-bit (expr))
| (style-option (expr))
| (bit-1ength (expr))
| (bit-set? (expr) (expr))
I (bit-xor (expr)(expr))
I (.. (expr){expr))

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 121

9.10. Netlist Format

I (print ({expn))®)
| (note ({expr))#)

(scheme-expr) (expt (exponent-expr) {expr))
(mod (expr) {expr))

(i n (expr) ({expr))”)

(max (expr) ({expr))”)

(quoti ent (expr) (expr))

(and (expr) ({expr))+)

(not {expr))

(‘or (expr) ((expr))+)

(assoc (expr) (expr))

(cons (expr) (expr))

(car {expr))

(cdr {expr))

(cadr {expr))

(caar {expr))

(1 et (let-expr) (expr))

(17 st ({expr))

(1 engt h (expr))

(reverse! (expr))

(append ((expr))*)

(nul I 2 {expr))

(odd? {expr))

(pai r ? {expr))

(string? {expr))
(string-append ((expr))*)
(make- string (expr) ((expr))?)
(substring (expr)(expr) ((expr))?)
(string-set! (expr)(expr) (expr))
(string-Iength {expr))
(nunber->string (expr))

(encoding-expr) (conpl et e- encodi ng (expr))

The argument to complete encoding is type specification string. It is used to make sure the decode/
encode gate specifications are correct.

(param-expr) (par am“ (param-name)”)
(primitive-expr) #t
| #f
I ([0-9])*
(param-list) ((identifier))*
(let-expr) ((bound-expr))+)
(bound-expr) ((identifier) (expr))
(param-list) ((expr))*
(arith-op) +l- 01>/ 1=1/=1>1<1>1]<=

9.10. Netlist Format

Netlist format of .net netlists

(netlist) (({net-circuit-decl)))*

122 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

9.10. Netlist Format

(net-circuit-decl) (circuit (name) (net-ports) (net-nets) (net-instances) (net-optional))
(net-ports) (ports ({net-port))*)

(net-port) (' (portname) (net-direction) (cardinality))

(portname) (channelname)_(cardinality){portid)

(portid) I r | a| d

|l rOd | rid | r2d | r3d
| a0d | ald | a2d | a3d

(net-direction) i nput

| out put

| inout

I hiz
(net-nets) (net s ((net-net))*)
(net-net) ((name) (cardinality))
(net-instances) (i nstances ((net-instance)) *)
(net-instance) (i nst ance (name) (net-instance-connections) ({net-instance-name))?)
(net-instance- (' ({net-instance-connection))*)
connections)
(net-instance- ((name) (index))
connection) ((name) (index) {cardinality))

(name)

(net-vector)
unconnect ed

(net-vector) (vect or ((net-instance-connection))*)
(net-optional) (attri butes ((net-atiribute)) *)
(net-attribute) (' {net-attribute-name) (value))
(attributes) cel I -t ype (cell-name)

gl obal - port s (portname)
f eedt hr ough (port-indices)
si mul ati on-reset (simulation-signal)

(port-indices) ([0-9])+ (([0-9])+)*

(simulation- (({net-instance-connection) (simulation-value)))+
signal)

(simulation- 0llIxlz

value)

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 123

9.10. Netlist Format

124 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

Balsa Reference

Summary This chapter documents the command line interface to some of the more important components of
the Balsa system. Balsa-mgr is a GUI to these programs, but the expert user may wish to build their
own design flow by calling these programs directly.

10.1. Balsa programs

balsa-c {<switch>}* <block/file-name>

The switches are:

-1 <path>

-0 <directory>

-t <distance>

-V

-c <option>

append <path> to import file path (--import)

discard import path (--discard-import)

directory for output intermediate files (--output)

flatten all procedure calls (--flatten-calls)

DON'T optimise generated HC's (--no-optimise)

inhibit banner (--no-banner)

tabs indent by <distance> places (--tab)

Used for identifying correctly column numbers in the source code when error
reporting.

be verbose (--verbose)

compilation option (--compile-option)

<option> can be:

var-read-split -- split variables on read bitfields as well as writes
Deprecated code generation features:

no-wire-forks -- don't use the WireFork component as a replacement for
permanent Forks

use-masks -- use Mask components instead of slice

accept no more switches

don't generate a Breeze file (--no-breeze)

generate a flat Breeze file (--flatten-files)

suppress import [balsa.types.synthesis] line in output
(--no-imports-in-output)

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

125

10.2. Setting the BALSATECH environment variable

-P <type>

decorate error/warning messages with balsa-c source position
(--error-positions)

report a list of imported blocks on which this file depends (-
(--depends)

used by balsa-md for its dependency analysis

default print command behaviour.

Type can be: (runtimelreportlerrorlwarning|fatal)
(--print-type)

balsa-netlist {<switch>}* <block/file-name>

The switches are:

h, -2
b

-V

-n <format>

-1 <type>

-X <cellname>

-1 <directory>

<component>
<args>

-1 <filename>

-L <filename>

Display this message (--help)

Don't print the balsa-netlist banner (--no-banner)

Be verbose, print cell names as they are produced. (--verbose)

Don't try to make a CAD system native netlist (--no-cad-netlist)

Don't read in old cell name mappings from the .map file (--no-old-cell-
names)

Dump a netlist in the given format (edif, verilog, compass ...) as well as any
other scheduled netlist writes, several -n can be used (--make-other-netlist).
NB. Name mapping/mangling occurs when the internal netlist is generated,
all of these additional netlists will contain names mapped to work with the
default format.

Don't print prototypes for undefined cells (where appropriate).
(--no-prototypes)

Do print prototypes for undefined cells (where appropriate)

(--prototypes)

Add cell type <type> to the list of cell types to netlist. If no additional cell
types are given, then only the netlist definitions for Balsa cells are emitted
(--include-cell-type)

Exclude the cell <cellname> from the generated netlist. No definition or
prototype will be emitted (--exclude-cell)

Add named directory to the Breeze import path (--import)
create test component (--test-component)

Make a list of generated files in file <filename> (--file-list)

Emit definitions for all parts found even if the top level block doesn't need
them (--all-parts)

Insert simulation initialisation code in netlist formats which support this
option (--simulation-initialise)
write a log of balsa-netlist messages to file <filename> (--log)

Replace feedthrough cells with netlist appropriate aliases
(--replace-feedthroughs)

Propagate global ports on cells (--propagate-globals)

10.2. Setting the BALSATECH environment variable

126

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

The Balsa Language Definition

Summary The syntax of the balsa language is given in Table 11.1. An extended form of BNF is used to
describe the syntax. A term (&)* denotes zero or more repetitions of the term a, the term (a)+
denotes one or more repetitions of a and (@)? indicates that the term a is optional (i.e. zero or one
repetitions of the term &). Terminal symbols are shown in bold face, non terminal symbols are
enclosed by angle brackets ().

11.1. Reserved words

The following are reserved words. Most (but not all) correspond to current keywords in the Balsa
language, others are reserved for future releases of the Balsa system.

active, also, and, arbitrate, array, as, begin, bits, case,
channel, constant, continue, else, end, enumeration, for function,
halt, if, import, in, input, is, let, local, log, loop, multicast,
new, not, of, or, output, over, parameter, passive, print,
procedure, pull, push, record, select, shared, signed, sizeo, sync,
then, type, val, variable, while, xor.

11.2. Language Definition

(bin-digit) n= (011)

(oct-digit) w= (0..7)

(dec-digit) n= (0..9)

(hex-digit) = (0..9la..f IA.F)

(letter) m= (a..zIlA..LZ)

(identifier) m= ((letter) | _) ((letter) | (dec-digit) | _)*

Table 11.1: Balsa Language Definition

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 127

11.2. Language Definition

(literal)

(string-char)

(string)

(file)

(dotted-path)
(outer-declarations)

(outer-declaration)

(type-declaration)

(identifiers)

(type)

(function-formals)

(procedure-formals)

(1..9) ({dec-digit) | _)*

0 ({oct-digity I _)*

(0b 10B) ((bin-digit) | _ 1 I XI?)+
(0x 10X) ({hex-digit) | _ I x | XI?)+
5

((letter) | (dec-digity | 11 1#1$1%I &1 1(1) I* 1+, 1- 1.1/ 1
SIS I21@ [1] M {1} 1~)

" ((string-char)* "

(i mport [{dotted-path)])* (outer-declarations)
(identifier) (. (identifier))*

({outer-declaration))*

t ype (identifier) i s {type-declaration)
const ant (identifier) = (expression) (: (type))?
pr ocedur e (identifier) i s (identifier) (({procedure-formals)))?

pr ocedur e (identifier) (((procedure-formals)))?i s
(I ocal)? (inner-declarations) begi n {command) end

functi on (identifier) (((function-formals)))? =
(expression) (: (type))?

i f (expression)t hen (outer-declarations)
(] {expression) t hen (outer-declarations))*
(el se (outer-declarations))?
end

(type)
new type)
r ecor d (identifiers) : (type)

(| (identifiers) : (type))*
(end(over (type)))

enuner at i on (identifier) (= {(expression))?
('] (identifier) (= (expression))?)*
(end I (over (type)))

(identifier) (; (identifier))*

(identifier)

(expression) (si gned)?bits

arr ay (range) of (type)

(identifiers) : (type) (; (identifiers) : (type))*
(formal-parameters)

(formal-ports)

(formal-parameters) ; (formal-ports)

Table 11.1: Balsa Language Definition

128

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

11.2. Language Definition

(formal-parameters) ::

(formal-ports)

(formal-port)

(range)

(inner-declarations)

(inner-declaration)

(channel-options)

(expression)

(expressions)

par anet er (identifiers) : (type)
(; paranet er (identifiers) : (type))*

(formal-port) (; (formal-port))*

(array (range) of)? (i nput | out put) (identifiers) : (type)
(array (range) of)? sync (identifiers)

i f (expression)t hen (formal-ports)
(] (expression) t hen (formal-ports))*
(el se ({formal-ports))?
end

(expression)
(expression) . . (expression)
over (type)

({inner-declaration))*

(outer-declaration)

vari abl e (identifiers) : (type)

(chan-opts) (ar r ay {range) of)? channel (identifiers) : (type)
(chan-opts) (ar r ay (range) of)? sync (identifiers)

shar ed (identifier) i s (1 ocal)? (inner-declarations)
begi n (command) end

i f (expression)t hen (inner-declarations)
(] (expression) t hen (inner-declarations))*
(el se (inner-declarations))?
end

(mul ticast)?

(identifier)

(literal)

(string)

({identifier))? { (expressions) }
(identifier) ' (identifier)
(unary-operator) (expression)
si zeof (identifier)
(expression) (binary-operator) (expression)
(expression) . (identifier)
(expression) [(range)]

(' (expression) as (type))

((expression))

(identifier) (((expressions))?)

(expression) (, (expression))*

Table 11.1: Balsa Language Definition

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

129

11.2. Language Definition

(unary-operator)
(binary-operator)

(command)

(channels)

(channel)

(Ivalue)

(block)

(guards)

(- I+Inot Ilogl#)
(+1-1*1/1 1%~ I=1/=I<l>I<=|>=land lor | xor | @)

conti nue

hal t

(channel) - > (lvalue)

(channel) - > (channel)

(channels) - > t hen (command) end
(channel) <- (expression)

sync (channel)

(Ivalue) : = (expression)

(block)

(command) ; (command)

(command) | | {command)

| oop {command) end

| oop (command) whi | e (expression) end
| oop ((command))? whi | e (guards) (al so (command))? end
i f (guards) (el se (command))? end

case (expression) of (case-guard)
(] {case-guard))*
(el se {command))?
end

for (|11;) identifier)i n (range)t hen (command) end
sel ect {channel-guard) (| (channel-guard))* end

ar bi t r at e (channel-guard) | {(channel-guard) end

pri nt {(expressions)

(identifier) (({procedure-actuals))?)
(channel) (, (channel))*

(identifier)

(identifier) [(expression)]
(identifier)

(value) . (identifier)

(value) [(expression)]

(I ocal (inner-declarations))? begi n {command) end

[(command)]

(expression) t hen {command)
(] (expression) t hen (command))*

Table 11.1: Balsa Language Definition

130

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

11.2. Language Definition

(case-guard) = (case-matches) t hen (command)
f or (identifier) i n {case-matches)t hen (command)
(case-match) = (expression)

(expression) . . (expression)

(case-matches) (case-match) (, {(case-match))*

(channel-guard)

(channels) t hen (command)
(| {channels) t hen (command))*

(procedure-actuals) (actual-parameters)

I (actual-channels)

I (actual-parameters) , (actual-channels)

(actual-parameters) :: (actual-parameter) (, (actual-parameter))*

(actual-parameter)

(expression)
I (type)?(type)

(actual-channels) (actual-channel) (, (actual-channel))*

(actual-channel)

(identifier)

I (actual-channel) [(range)]
I <- (expression)

I - > (lvalue)

I (block)

[{ (actual-channel) (, (actual-channel))* }

I (actual-channel) @ actual-channel)

Table 11.1: Balsa Language Definition

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 131

11.2. Language Definition

132 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

The Breeze Language Definition

Summary Breeze is the intermediate language used for compiled Balsa prgrams. It serves as a repository for
libraries and the level at which all tools in the Balsa system interact. Users who wish to use
components described outside of Balsa need to provide a Breeze wrapper for those components so
that they may be used within the Balsa system.

The syntax of the breeze language is given in Table 12.1. An extended form of BNF is used to
describe the syntax. A term (a)* denotes zero or more repetitions of the term a, the term (a)+
denotes one or more repetitions of a and (@)? indicates that the term a is optional (i.e. zero or one
repetitions of the term &). Terminal symbols are shown in bold face, non terminal symbols are
enclosed by angle brackets ().

(dec-digit) n= (0..9)

(Ic-letter) n= (a..z)

(letter) n= (a..zIlA..Z)

(positive) = (1..9) ((dec-digit))*

(natural) z= (0 I{positive))

(integer) == ({natural) | - {positive))

(identifier) m= " ((letter) | _) ((letter) | (dec-digit) | _)* "

(boolean) n= o (#tI#E)

(symbol) == (lc-letter) ((Ic-letter) | (dec-digit) | _1:)*

(string-char) n= ((letter) | (dec-digity | 11 1#1$1%I &1 1(1) 1*1+1, I- 1.1/
Sh<i=s 0@ 1T IM T T =it

(quoted-symbol) = " (symbol) "

Table12.1:

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 133

(string)

(breeze-file)
(import)

(definition)

(constant-defn)
(type-defn)

(type)

(part-defn)

(balsa-defn)

(part-port)

(port-sense)
(port-direction)

(part-attribute)

(position-option)

" ((string-char))* "
({import))* ({definition))*
(i nport (identifier))

(constant-defn)
(type-defn)
(part-defn)
(balsa-defn)
(netlist-defn)

(composition-defn)
(const ant (identifier) {integer) {type))

(t ype (identifier) (type))

(nuneri c-t ype (boolean) {positive))

(enuner at i on-t ype {(boolean) (positive)
(((identifier) (integer)))+)
(record-type (positive) (((identifier) (type)))+)

(array-type (type) (integer) {positive) {type))

(breeze- part (identifier)

(ports ({part-port))*)
(attributes ({part-attribute))*)
(channel s ((channel))*)

(conponent s ((component))*))

(sync- port (identifier) {port-sense) ((option))*)

(port (identifier) {port-sense) {port-direction) (type) ((option))*)

(arrayed- port (identifier) {port-sense) (port-direction) (type)
(integer) {positive) (type) ({option))*)

(arrayed- sync- port (identifier) {port-sense)
(integer) {positive) (type) ({option))*)

(activelpassive)

(i nput lout put)

(is-procedure)
(is-function)
(is-permanent)
(view-attribute)
(position-option)

(option)

(at (natural) (natural))

Table 12.1:

134

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

(option)

(value)

(channel)

(channel-sense)

(component)

(parameter)

(channel-no)

(view-attribute)

(view-spec)

(netlist-defn)

(net-port)
(net-direction)
(net-net)

(net-instance)

(net-instance-
connection)

(net-single-instance- ::

connection)

((symbol) ({value))*)

(integer)
(identifier)
(boolean)
(symbol)

(({value))*)

(sync (identifier) ((option))*)
(' {channel-sense) (positive) (identifier) ((option))*)

(pushlpull)

(conmponent (identifier)
((parameter)

({integer) | (identifier))

(positive)

(({positive))+)

(vi ew(identifier) (view-spec) (options))

(1'i nes-spec ({string))+)
(1i st -spec (quoted-symbol) (value))

(breeze-netli st (identifier)

(ports ({net-port))*)

(attri but es ((breeze-net-attribute))*)
(net's ({net-net))*)

(i nst ances ({net-instance))*))

(' (identifier) (net-direction) (positive))
(i nput loutput linout Ihiz)
(' (identifier) {positive))

(i nst ance (identifier)
(' ({net-instance-connection))*) ((option))*)

(net-single-instance-connection)
(vect or (({net-instance-connection))+)
(identifier)

(' (identifier) (natural))
(' (identifier) (natural) {(positive))
unconnect ed

Table 12.1:

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

135

(breeze-net- = (view-attribute)
attribute)
| (option)
(composition-defn) ::= (breeze- conposi ti on (identifier)
(ports ({part-port))*)
(‘attri but es ((comp-attribute))*)
(nets ({net-net))*)
(i nstances ((comp-instance))*))
(comp-instance) == (i nstance (identifier)
(' ({comp-instance-connection))*) ((option))*)
(comp-instance- = (net-single-instance-connection)
connection)
[(comp-single-instance-connection)
[(vect or ({comp-instance-connection))+)
(comp-single- == ({comp-portion-connection) (natural))
instance-
connection)
I (' (comp-portion-connection) {natural) {positive))
I (comp-portion-connection)
(comp-portion- = (identifier)
connection)
I (' {portion) (identifier))
I (' {portion) (identifier) {natural))
(comp-attribute) == (view-attribute)
I (position-option)
I (option)
(portion) = (portion-name)
(' {portion-name) (natural))
(portion-name) m= (reglackldata)

Table12.1:

136 Balsa: A Tutorial Guide. V3.4.2 - 2/1/05

References

[1] Kees van Berkel. “Handshake Clrcuits - an Asynchronous Architecture for VLS
programming” . Cambridge International Series on Parallel Computerss 5, Cambridge University
Press ,1993

[2] Theseus Logic Inc. <http://www.theseus.com>

[3] Part 2 of “Principles of Asynchronous Circuit Design: A Systems Perspective”, Eds Sparsg &
Furber, Kluwer Academic Publishers, ISBN 0-7923-7613-7, 2001

[4] http://www.cs.man.ac.uk/apt/projects/lard/index.html

[5] A. Bardsley, “Implementing Balsa Handshake Circuits”, Ph.D. thesis University of
Manchester, 2000.

Balsa: A Tutorial Guide. V3.4.2 - 2/1/05 V3.1 137

