
2. G. Gopalakrishnan, & P. Jain “Some Recent Asynchronous System Design
Methodologies”
Technical Report Number UU-CS-TR-90-016, University of Utah, October
1990

3. I.E. Sutherland, “Micropipelines”, Communications of the ACM,
Vol. 32, Number 6, June 1989, pp 720-738.

4. S.B. Furber, “VLSI RISC Architecture and Organization”,
Marcel Dekker Inc., New York, 1989.

5. N. Paver, P. Day, S.B. Furber, J.D. Garside, J.V. Woods
“Register Locking in an Asynchronous Microprocessor”,
ICCD ‘92: IEEE International Conference on Computer Design (1992)

6. VLSI Technology Inc., “VL86C010 RISC Family Data Manual”
VLSI Technology Inc., 1987

7. D.V. Jaggar “A Performance Study of the Acorn RISC Machine”
M.Sc. Thesis, University of Canterbury, 1990

8. N. Weste & K. Eshraghian “Principles of CMOS VLSI Design”
Addison-Wesley, 1985

data path are reduced by about 0.5 pF per signal. Thus the saving in power is
extended to other surrounding functions.

4. CONCLUSIONS

This paper describes an asynchronous implementation of an ARM ALU. The
unit exploits the fact that most operations can be completed quickly to discard the
hardware typically used in an ALU to speed up a few worst-case operations; these
operations are rare and so are allowed to take longer. Although it appears that a
typical addition in a real programme is somewhat slower than a completely ran-
dom distribution would suggest it is still much faster than the worst case. The aver-
age time for an addition is still about half that of the worst case, with logical
operations faster still. Although not as fast as can be achieved by elaborate carry
prediction schemes the unit gives a good throughput for a minimal number of tran-
sistors.

An asynchronous unit can function with smaller timing safety margins than an
externally clocked one as the unit’s self-timed nature means that processing and
environmental variations will affect the speeds of the logic and timing circuitry
equally. The design should also function at reduced supply voltages. This would
reduce instruction throughput but would be more than compensated for by the
reduction in power dissipation giving more MIPs per watt.

The resultant design is a simple, compact ALU. It’s lack of carry prediction logic
makes it somewhat slower than other designs but this should be compensated for
by its ability to deliver most results in less than the worst case time and a reduction
in power consumption. It is believed that an ALU in this form will be able to per-
form significantly more calculations at a reasonable speed with a given amount of
energy than a comparable, synchronous unit.

5. ACKNOWLEDGEMENTS

The work described here has been carried out as part of ESPRIT project 5386
(the Open Microprocessor systems Initiative - Microprocessor Architecture Project,
OMI-MAP), and the author gratefully acknowledges this support. He is also grate-
ful for additional specific support received during the course of this work from
Acorn Computers Limited, Advanced RISC Machines Limited, VLSI Technology
Limited and Compass Design Automation.

REFERENCES

1. A.J. Martin, S. Burns, T.K. Lee, D. Borkovie, P.J. Hazewindus,
“The Design of an Asynchronous Microprocessor”,
Advanced Research in VLSI: Proceedings of the Decennial
CalTech Conference on VLSI, (1989) MIT Press, pp 351-373.

This is based on the specified cycle time of the processor and the relative complexity
of the various units which must operate in this time. This figure will be a worst case
estimate and should be compared to the 45ns figure in table 3. It is interesting to
note that the typical operation for the asynchronous unit is actually faster than the
synchronous unit.

In practice the fabricated synchronous ARM chips are capable of sustaining
much higher clock rates by ignoring the derating allowance for manufacture. How-
ever this means neglecting the ‘safety margin’ which allows for the variation in
manufacturing and operating conditions of the device. In contrast the self-timed
unit accommodates these variations automatically and therefore operates much
closer to its true speed. In this case a typical addition is about twice as fast as the
(derated) time for the synchronous ALU and even the worst case, including recov-
ery time, is slightly faster.

3.2. Power consumption
The primary aim of the project has been to use asynchronous techniques to

reduce power consumption. This is addressed in several ways. Firstly by omitting
any carry look ahead scheme the number of transistors in the ALU can be reduced.
This means that there will be inherently fewer switching edges within the unit and
consequently - in CMOS technology - a reduction in the power required.

The transistor count is also reduced by the use of dynamic ‘domino’ logic. This
reduces the loading on many of the internal nodes and permits fast operation with
small transistors. Dynamic logic was chosen both for these reasons and because it
gives simple, glitch free operation which is essential for reliable completion detec-
tion.

Finally the compactness of the unit in comparison with its synchronous counter-
part means that parasitic capacitances of the buses crossing through the unit in the

logical

addition (typ.)

addition
(worst case)

Vdd = 4.6V
Temp.= 100°C

slow

7

23

45

typ.

5

13

22

fast

4

9

17

Vdd = 5.0V
Temp.= 40°C

slow

6

17

33

typ.

5

12

21

fast

4

8

14

Vdd = 3.0V
Temp.= 40°C

slow

9

31

64

typ.

6

19

38

fast

5

12

23

Table 3
Simulated timings for representative operations

All numbers are timings in ns

circuitry used for the logic operations so that its propagation delay will be similar
- it is fabricated close by on the same chip and is subject to the same physical con-
ditions - and an extra delay is then added to allow a reasonable safety margin. The
final completion signal is selected from this or the adder circuit, depending on the
function being executed.

3.1. Performance
Ideally a power estimation for a CMOS circuit should be extracted from the

number of switching transitions each net makes and the load capacitance of that
network. Unfortunately it is difficult to derive the number of transitions from exist-
ing tools, a problem which is exacerbated by the extreme data dependencies exhib-
ited in the ALU. However with two similar designs it is possible to make some
rough estimates by comparing the transistor count and size of the two units.

The self-timed unit contains less than 2300 transistors with an additional 140
for timing purposes, a total well under 2500. A comparable synchronous ARM ALU
based on carry selection comprises almost 3000 transistors. In both cases the ALU
is 32 bits wide with a data pitch of 36µm per bit. The asynchronous ALU occupies
a section of the data path approximately 340µm in length as opposed to the syn-
chronous implementation in the same technology which is over 850µm long; the
asynchronous unit is therefore only 40% of the size of the synchronous implemen-
tation. Much of this size difference is accounted for by the irregularity of the layout
used for carry selection, although the need for larger transistors and more control
lines in parts of the synchronous unit also has an effect. A reduction in size is ben-
eficial in decreasing the capacitance of both wiring internal to the ALU and of buses
which traverse the unit.

Performance estimates for the asynchronous ALU have been made using SPICE
simulation of the extracted layout. The important measurements are the propaga-
tion delay for an operation directly through the ALU from input activation to out-
put and the carry propagation time between adjacent bits. Simulation has been
performed under a range of conditions, some results of which are shown in table 3.
Estimates are given for logical (including ‘move’) operations and both typical and
‘worst-case’ additions. These include simulation at different power supply voltages
which suggest that the ALU will operate correctly - albeit slower - at supply volt-
ages lower than 2V, an important consideration for power conservation.

In practice these figures will be less than the actual cycle time required for the
operation as they do not take into account either the precharging of the dynamic
logic or the overhead required for control functions. A reasonable estimate for the
control overhead would be something similar to the logical operation evaluation
time; thus a typical addition cycle would take about 17ns at 5V and 40°C. With an
instruction mix of 20% move/logical instructions this yields an average execution
time of around 14ns or 70 million operations/s.

An estimate of the propagation delay of the worst case addition in the synchro-
nous processor is that, under poor conditions (100°C, 4.6V), it requires about 30 ns.

This ALU has no special fast carry logic and performs addition with a chain of
thirty two full adders. The only concession to the asynchronous nature of the unit
made at the design stage was that the carries between the individual bits are
encoded onto pairs of wires signalling the “0” and “1” states of the carry bit respec-
tively. In this fashion it is possible to detect that a carry signal has arrived at a
given bit position by observing a change in state of one of these signals. ALU com-
pletion is signalled when a carry has been transmitted to all 32 bits in the word.

The inset on figure 4 shows an adder completion stage. Logically all thirty two
of these are wired in series and the completion signal is generated when the arrival
of one or other of the carry states arrives at that stage. This gate would be imprac-
tical and the completion signal is staged and passed through a tree of gates.
Because completion is detected from the carry input it occurs slightly before the
result becomes valid; this is however a constant, known delay and is accounted for
by the 32-way fan-in of the completion signal and subsequent control gating. This
delay modelling is characteristic of the bounded delay approach to asynchronous
circuit design, as opposed to the more ‘pure’ delay-insensitive approach.

The bitwise (move and logical) operations are not significantly data dependent
and take a constant time - typically less than addition operations. The timing
mechanism for these operations differs from that of the addition operation in that
it uses a constant delay element to signal completion. This delay is in the form of a
‘thirty third bit’ on the data path which is physically located furthest from the acti-
vation signals to ensure that it is the last to operate. This circuit is designed to pro-
duce an output state change for every logical operation. It closely resembles the

a

add

c1in

b

a aa

b b b

c1in

c0in

b

a

b

a

add

 Figure 4: The adder circuit in the ALU

c0out

c1out

output

c1in c0in

complete_in

complete_out

* = precharged

*

* *

*

*

*

xor

are not required for a given operation are inhibited from operating and thus con-
sume essentially no power; for example carry propagation is inhibited except dur-
ing addition operations.

The input signals are converted into both true and complement forms at the
input stage (with conditional inversion). This means that a signal will be propa-
gated on one of two wires carrying the state of the bit. The use of dynamic logic
ensures that the internal operation gives at most one edge on each signal so that
the completion signals can be detected unambiguously.

It is interesting to note that - in part - the internal operation thus relies on delay-
insensitive two-rail 4-phase (i.e. level-driven) logic. This form of logic is used pri-
marily for convenience, but also carries timing information in the case of the addi-
tion operation.

From the input stage the input signals are fed to the evaluation stage; the adder
part of the evaluation logic is shown in figure 4. In this diagram either a or a and
either b or b go active (logic high), but never both. The control signals add and add
are set active before this operation. The precharge transistors are omitted for clar-
ity on this diagram, as are the logical functions AND and OR; the XOR function has
been included as it requires only a single control transistor extra to the adder and
serves to illustrate how the different functions are multiplexed onto the output.

22 24 26 28 30 3210 12 14 16 18 200 2 4 6 8

 Figure 3: Proportion of longest carry chains exceeding given length

50%

40%

30%

20%

10%

0%

100%

90%

80%

70%

60%

100%

92%

66%

38%

20%

10%

5%2%
1%

random distribution
data processing operations
address calculations
overall measured distribution

using
‘dhrystone’
benchmark

carry chain length

pe
rc

en
ta

ge
 o

f o
pe

ra
tio

ns
 e

xc
ee

di
ng

 g
iv

en
 le

ng
th

from this study have indicated that typical data operations have carry propagation
chains approximately 18 bits long whereas those for address calculations are about
9 bits. The preponderance of address calculations means that the overall average
appears to lie between 12 and 13 bits; this is subject to confirmation by running
larger test programmes.

3. IMPLEMENTATION

Using the principles outlined above an ALU has been designed for integration
with the asynchronous ARM implementation currently under development. The
addition function is performed by single bit stages with a ripple carry running
between them whilst the logical operations are conventionally implemented, wher-
ever possible sharing gates with the adder.

The design is targeted at a 1.2µm CMOS process for direct comparison with an
existing synchronous processor. The asynchronous ALU is implemented in
dynamic CMOS ‘domino’ logic [8]. This both reduces the transistor count and
ensures that any signal propagation through the unit is glitch-free. Gates which

22 24 26 28 30 3210 12 14 16 18 200 2 4 6 8

 Figure 2: Longest carry chain length distribution - 32-bit word

8%

26%
28%

18%

10%

5%
3%

1%
1%

30%

25%

20%

15%

10%

5%

0%

35%

40%

using ‘dhrystone’
benchmark

carry chain length

pe
rc

en
ta

ge
 o

f o
pe

ra
tio

ns
 o

cc
ur

rin
g

random distribution
data processing operations
address calculations
overall measured distribution

provides an acceptable model. In a dynamic trace of typical compiled ARM code [7]
over 50% of all instructions are branches or memory accesses and require a ‘ran-
dom’ addition which compares favourably with the 20% of operations which are
comparisons or arithmetic operations and have ‘predictable’ data input.

One potential penalty of relying on this approach is that address and branch cal-
culations are often highly repetitive. Most programmes spend the majority of their
time executing a few short loops. If this critical section contains some pathological
cases of the addition operation then the software execution speed could be signifi-
cantly affected by minor changes to the source code altering branch lengths and
positions. For this reason this design of ALU may be less than ideal for address cal-
culations; in such circumstances it may be preferable to use some extra logic to
reduce the worst case-timings. This is an important distinction because many proc-
essors use separate ALUs for data and address calculation.

An internal study at Manchester University has examined the remaining cases
of the data processing operations. This has produced a distribution of maximum
carry propagation chains for the address calculations which is not dissimilar from
the random model although with some significant extra peaks{fig.s 2,3}. The distri-
bution for data operations however appears radically different. Preliminary results

 Figure 1: Average size of longest carry propagation chain
for different word lengths assuming random data distribution

M
ea

n
ca

rr
y

pr
op

ag
at

io
n

di
st

an
ce

22 24 26 28 30 3210 12 14 16 18 200 2 4 6 8

word length

3

2

0

1

4

approaches require a large quantity of circuitry to accommodate the few patholog-
ical cases.

In an asynchronous ALU addition operations may take different times depend-
ing on the input data, providing that some means of detecting completion is
included. If the cases with long carry propagation ‘chains’ are relatively rare a sim-
ple adder may be used which - despite poor worst-case performance - can deliver
‘typical’ results in a reasonable time. This allows a reduction in size and complexity
of the ALU, with a consequent reduction in power consumption, without radically
altering the typical performance.

2.3. Typical addition operations
The degree of exploitation of short ‘typical’ addition times is dependent on what

a typical operation is. It can be observed from table 2b that a carry is propagated
through a bit position if the two operand input bits are different i.e. the exclusive-
OR of the two bits is equal to ‘1’. The carry propagation chains are therefore repre-
sented by contiguous strings of ‘1’s if the input operands are XOR’ed together. As
the carry signals will propagate along these chains in parallel only the length of the
longest chain is significant in determining the addition time. If addition operands
are assumed to be random then the longest chain has a mean value much less than
the maximum - for example the mean carry propagation length is about 4.4 bits for
32-bit operands - over seven times less than the 32-bit worst case - and this benefit
improves with increasing word length {fig. 1}.

In practice the data are not random and it is necessary to derive statistics from
a dynamic instruction trace. However there is still merit in figures derived from
random input data; for example the ARM processor performs operations such as
address offsets for relative branches and memory address calculations with the
main ALU. As these depend on variables such as programme size and load address
- which are unpredictable for any particular circumstance - assuming random data

0
0
0
0
1
1
1
1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

A B Cin Sum

Inputs

Table 2a
Full adder complete truth table

Cout

Outputs

0
0
1
1

0
Cin
Cin
1

0
1
0
1

A B Cout

Table 2b
Full adder carry output

A study of ARM instruction frequencies [7] reveals that about 20% of all instruc-
tions perform arithmetic data processing with a similar proportion of logical oper-
ations (including ‘move’). However the ARM also uses its ALU to perform
calculations for ‘load’, ‘store’ and ‘branch’ operations, so that about 80% of the oper-
ations performed by the ALU require some form of addition. It is therefore impor-
tant to ensure that addition is performed rapidly, either by the use of complex
hardware or by exploiting its inherent data dependency.

2.2. The addition operation
In an individual bit addition three inputs are required: the two operand bits and

a carry input from the previous stage. The addition operation is limited by the
speed of the propagation of the carry signal across the word. However the carry out-
put from a single bit addition does not always depend on the carry input and in half
of the possible input cases it may be generated before the input carry state is
known {table 2}. It is therefore unlikely that a carry signal will have to propagate
across many bit positions before it reaches one where its state has already been cor-
rectly predicted.

In conventional (synchronous) ALUs all operations must take the same amount
of time; a considerable effort has been expended in schemes such as carry look
ahead and carry steering in order to speed up the addition operation; these

op-code

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

function

AND
XOR
add
add
add
add
add
add

AND
XOR
add
add
OR
OR

AND
OR

‘A’ input

true
true
true

complement
true
true
true

complement
true
true
true
true
true
zero
true
zero

‘B’ input

true
true

complement
true
true
true

complement
true
true
true

complement
true
true
true

complement
complement

operation

and
exclusive-OR

subtract
reverse subtract

add
add with carry

subtract with carry
reverse sub w/ carry

test bits
test equal
compare

compare negative
OR

move
bit clear

move NOT

mnemonic

AND
EOR
SUB
RSB
ADD
ADC
SBC
RSC
TST
TEQ
CMP
CMN
ORR
MOV
BIC

MVN

Table 1
ARM ALU data processing functions

Note: functions 8 to B do not produce a result and are only used to set the flags

Several approaches to asynchronous circuit design are currently being investi-
gated [2]. The technique used here is based upon Sutherland’s “Micropipelines” [3],
a bundled-data, bounded-delay model. In this schema data buses with common
timing characteristics are ‘bundled’ together and their validity is indicated by local
handshake signals whose delays are crafted to model the data’s timing character-
istics. Delay modelling is similar to the technique used in conventional synchro-
nous design to ensure that data will be valid at a fixed time such as a clock edge.
The micropipeline approach was chosen over other asynchronous techniques for its
economy in silicon area and thus its potential for low power consumption, although
parts of the ALU borrow techniques from other asynchronous design methodolo-
gies.

2. THE ALU

The ARM architecture [4] defines a register -based RISC processor in which data
processing operations require one or two operands to be read from the register
bank and a single result value to be returned; the Arithmetic Logic Unit (ALU) per-
forms these operations. The ALU is also used to perform other operations on the
processor such as branches and address calculations. The architecture also
requires a barrel shifter on one of the ALU input buses. In existing synchronous
ARM implementations there is a three-stage pipeline consisting of fetch, decode
and execute stages; instruction execution is not further pipelined and an arithmetic
operation is completed within a single clock cycle. In the asynchronous implemen-
tation instruction execution is decomposed into a number of pipeline stages; the
ALU forms one of these stages, as does the register bank [5] and the shifter.

2.1. ARM ALU functions
The set of functions performed by the primary ALU of various microprocessors

is fairly consistent and can normally be decomposed into ‘move’ operations, the
basic logic functions (AND, OR and exclusive-OR) and an addition operation all
with the optional complementing or forcing-to-zero of one or both of the input
buses. The ARM instruction set provides sixteen data processing operations [6] and
a method of synthesizing these is shown in table 1. In addition to these operations
the ALU can perform functions which are implicit in other instructions, such as
moving data from the ‘A’ bus to its output or providing a zero value output.

In an asynchronous architecture the time consumed in processing an operation
is not constrained to a fixed cycle but may depend on both the operation being per-
formed and the data it is performed on. Of the four functions listed in table 1 addi-
tion is potentially the most time consuming because logical operations are
performed in a bitwise fashion whereas addition requires interaction across the
entire word length. The addition operation may therefore be allowed a longer
processing time than the logical operations.

A CMOS VLSI Implementation of an Asynchronous ALU

J. D. Garside

Department of Computer Science, Manchester University,
Oxford Road, Manchester, M13 9PL, U.K.
e-mail: jgarside@cs.man.ac.uk

Abstract
A CMOS self-timed ALU has been developed as part of an asynchronous imple-

mentation of the ARM microprocessor. This unit exploits the data dependency
inherent in many arithmetic operations to enable a small, simple ALU to deliver a
mean performance comparable with that of a more sophisticated synchronous one
with consequent reductions in both silicon area and electrical power consumption.
The self-timed nature of the unit means that the majority of operations complete
quickly whilst allowing rare ‘worst-case’ operations to take longer, maintaining a
high average throughput.

This paper presents instruction usage statistics to justify the claimed perform-
ance and SPICE simulation results of measurements taken from the layout.

Keyword Codes: B.2.0; B.2.1; B.7.1
Keywords: Arithmetic and Logic Structures, General; Arithmetic and
Logic Structures, Design Styles,Integrated Circuits, Types and Design Styles

1. INTRODUCTION

The ever-increasing availability of high performance processing has led to
greater expectations from computer equipment. One offshoot from this is a require-
ment for powerful processors in such devices as portable computers and embedded
controllers. In such circumstances low electrical power consumption is often an
important consideration, especially when the equipment is battery powered. One
approach which promises high performance with low power consumption is the use
of asynchronous computing techniques. To investigate these a self-timed imple-
mentation of the ARM microprocessor - a 32-bit RISC architecture developed by
Advanced RISC Machines Limited - is being produced as a commercially realistic
technology demonstrator. Other researchers [1] have demonstrated the feasibility
of building a complete asynchronous microprocessor; the current project addresses
the problems associated with the re-implementation of an existing commercial
architecture with the specific goal of minimising power consumption.

